1isp Machine Manual 321 Objects, Message Passing, and Flavors

20. Objects, Message Passing, and Flavors

The object-oriented programming style used in the Smalltalk and Actor families of languages
is available in Zetalisp and used by the Lisp Machine software system. Its purpose is to perform
generic operations on objects. Part of its impiementation is simply a convention in procedure-
calling style; part is a powerful language feawre, called Flavors, for defining abstract objects.
This chapter attempts to cxplain what programming with objects and with message passing means,
the various means of implementing these in Zetalisp, and when you should usc them. It assumes
no prior knowledge of any other languages.

20.1 Objects

When writing a program, it is often convenient to model what the program does in terms of
objects, conceptual ecntities that can be likened to real-world things. Choosing what objects to
provide in a program is very important to the proper organization of the program. In an object-
oriented design, specifying what objects exist is the first task in designing the system. In a text
editor, the objects might be "pieces of text”, "pointers into text”, and "display windows". In an
clectrical design system, the objects might be "resistors”, “capacitors”, "transistors”, "wircs”, and
"display windows". Afier specifying what objects there are, the next task of the design is to
figure out what operations can be performed on each object. In the text editor cxample,
operations on "pieces of text” might include inserting text and deleting text; operations on
“pointers into text" might include moving forward and backward; and opcrations on "display
windows” might include redisplaying the window and changing which "piece of text” the window
is associated with.

In this model, we think of the program as being built around a set of objects, each of which
has a set of operations that can be performed on it. More rigorously, the program defines several
types of object (the editor above has three types), and it can create many instances of each type
(that is, there can be many pieces of text, many pointers into text, and many windows). The
program defines a set of types of object and, for each type, a set of operations that can be
performed on any object of the type.

This should not be wholly unfamiliar to the reader. Earlier in this manual, we saw a few
examples of this kind of programming. A simple example is disembodied property lists, and the
functions get, putprop, and remprop. The disembodied property list is a type of object; you
can instantiate one with (cons nil nil) (that is, by evaluating this form you can create a new
disembodied property list); there are threc operations on the object, namely get, putprop, and
remprop. Another example in the manual was the first example of the use of defstruct, which
was called a ship. defstruct automatically defined some operations on this object, the operations
to access its elements. We could define other functions that did uscful things with ships, such as
computing their speed, angle of travel, momentum, or velocity, stopping them, moving them
elsewhere, and so on.

In both cases, we represent our conceptual object by one Lisp object. The Lisp object we use
for the representation has structure and refers to other Lisp objects. In the property list case, the
Lisp object is a list with alternating indicators and values; in the ship case, the Lisp object is an
array whose details are taken care of by defsiruct. In both cases, we can say that the object

SRC:KI.MAN>FLAVOR.TEXT.101 24-JAN-83



Modularity 322 Lisp Machine Manual

keeps track of an internal state, which can be examined and altered by the operations available
for that type of object. get examines the state of a property list, and putprop alters it; ship-x-
position examincs the state of a ship, and (setf (ship-mass) 5.0) alters it.

We have now scen the essence of object-oriented programming. A conccptual object s
modeled by a single Lisp object, which bundles up some state information. For cvery type of
object, there is a set of operations that can be performed to cxamine or alter the state of the
object.

20.2 Modularity

An important bencfit of the object-oriented style is that it lends itself to a particularly simple
and lucid kind of modularity. If you have modular programming constructs and techniques
available, they help and encourage you to write programs that are easy to rcad and understand,
and so arc more reliable and maintainable. Object-oriented programming lets a programmer
implement a useful facility that presents the caller with a sct of cxternal interfaces, without
requiring the caller to understand how the internal details of the implementation work. In other
words, a program that calls this facility can treat the facility as a black box: the program knows
what the facility’s external interfaces guarantee to do, and that is all it knows.

For example, a program that uscs disembodiced property lists never needs to know that the
property list is being maintained as a list of alternating indicators and values: the program simply
performs the operations, passing them inputs and getting back outputs. The program only
depends on the external definition of these operations: it knows that if it putprops a property,
and docesn’t remprop it (or putprop over it), then it can do get and be sure of getting back the
same thing it put in. The important thing about this hiding of the details of the implementation
is that someone rcading a program that uscs disembodied property lists need not concern himself
with how they are implemented; he need only understand what they undertake to do. This saves
the programmer a lot of time and lets him concentrate his energics on understanding the program
he is working on. Another good thing about this hiding is that the representation of property lists
could be changed and the program would continue to work. For example, instead of a list of
alternating clements, the property list could be implemented as an association list or a hash table.
Nothing in the calling program would change at all.

The same is true of the ship example. The caller is presented with a collection of operations,
such as ship-x-position. ship-y-position, ship-speed, and ship-direction: it simply calls these
and looks at their answers, without caring how they did what they did. In our example above,
ship-x-position and ship-y-position would be accessor functions, defined automatically by
defstruct, while ship-speed and ship-direction would be functions defined by the implementor
of the ship type. The code might look like this:

SRCKL.MAN>FLAVOR. TEXT.101 24-JAN-83



Lisp Machine Manual 323 Modularity

(defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

(defun ship-speed (ship)
(sqrt (+ (~ (ship-x-velocity ship) 2)
(~ {ship-y-velocity ship) 2))))

(defun ship-direction (ship)
(atan (ship-y-velocity ship)
(ship-x-velocity ship)))

The caller need not know that the first two functions were structure accessors and that the
sccond two were written by hand and do arithmetic. Those facts would not be considered part of
the black box characteristics of the implementation of the ship type. The ship type does not
guarantee which functions will be implemented in which ways; such aspects are not part of the
contract between ship and its callers. In fact, ship could have been written this way instead:

(defstruct (ship)
ship-x-position
ship-y-position
ship-speed
ship-direction
ship-mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship))))

{defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction ship))))

In this second implementation of the ship typc, we have decided to store the velocity in polar
coordinates instead of rectangular coordinates. This is purely an implementation decision. The
caller has no idea which of the two ways the implementation uses; he just performs the
operations on the object by calling the appropriate functions.

We have now created our own types of objects, whose implementations arc hidden from the
programs that use them. Such types arc usually referred to as abstract types. The object-oriented
style of programming can be used to create abstract types by hiding the implementation of the
operations and simply documenting what the operations are defined to do. v

Some more terminology: the quantitics being held by the clements of the ship structure are
referred to as instance variables. Each instance of a type has the samc operations defined on it;
what distinguishes onc instance from another (besides egness) is the values that reside in its
instance variables. The example above illustrates thai a caller of operations does not know what
the instance variables are; our two ways of writing the ship opcrations have different instance

SRCKLL.MAN>FLAVOR.TEXT.101 24-JAN-83



Modularity 324 Lisp Machine Manual

variables, but from the outside they have exactly the same operations.

Onc might ask: "But what if the caller cvaluates (aref ship 2) and notices that he gets back
the x-velocity rather than the speed? Then he can tell which of the two implementations were
used.” This is truc; if the caller were to do that. he could tell. However, when a facility is
implemented in the object-oriented style, only certain functions are documented and advertised,
the functions that are considered to be operations on the type of object. The contract from ship
to its callers only spcaks about what happens if the caller calls these functions. The contract
makes no guarantees at all about what would happen if the caller were to start poking around on
his own, using aref. A caller who does so is in error; he is depending on something that is not
specified in the contract. No guarantees were ever made about the results of such action, and so
anything may happen; indeed, ship may get reimplemented overnight, and the code that does the
aref will have a different cffect entirely and probably stop working. This example shows why the
concept of a contract between a callee and a caller is important: the contract specifies the
interface between the two modules.

) Unlike some other languages that provide abstract types, Zetalisp makes no attempt to have

the language automatically forbid constructs that circumvent the contract. This is intentional. One
reason for this is that the Lisp Machine is an interactive system, and so it is important to be able
to cxamine and alter internal state interactively (usually from a debugger). Furthermore, there is
no strong distinction between the “system” programs and the “"user" programs on the Lisp
Machine; users are allowed to get into any part of the language system and change what they
want to change.

In summary: by defining a set of operations and making only a specific set of external
entrypoints available to the caller. the programmer can create his own abstract types. These types
can be useful facilities for other programs and programmers. Since the implementation of the
type is hidden from the callers, modularity is maintained and the implementation can be changed
easily.

We have hidden the implementation of an abstract type by making its operations into
functions which the user may call. The important thing is not that they are functions—in Lisp
everything is done with functions. The important thing is that we have defined a new conceptual
opcration and given it a name, rather than requiring anyone who wants to do the operation to
write it out step-by-step. Thus we say (ship-x-velocity s) rather than (aref s 2).

It is just as true of such abstract-operation functions as of ordinary functions that sometimes
they are simple cnough that we want the compiler to compile special code for them rather than
really calling the function. (Compiling special code like this is often called open-coding.) The
compiler is directed to do this through use of macros, defsubsts, or optimizers. defstruct
arranges for this kind of special compilation for the functions that get the instance variables of a
structure.

When we use this optimization, the implementation of the abstract type is only hidden in a
certain sense. It does not appear in the Lisp code written by the user, but does appear in the
compiled code. The reason is that there may be some compiled functions that use the macros (or
whatever); even if you change the definition of the macro, the existing compiled code will
continue to use the old definition. Thus, if the implementation of a module is changed programs
that use it may nced to be rccompiled. This is something we sometimes accept for the sake of

SRCKL.MAN>FLLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 325 Generic Operations

emciency.

in the present impiementation of fiavors, which is discussed below, there is no such compiler
incorporation of nonmodular knowledge into a program, cxcept when the :ordered-instance-
variables featurc is used; sce page 346, where this probiem is cxplained further. If you don’t
use the :ordered-instance-variables” feature, you don't have to worry about this.

20.3 Generic Operations

Suppose we think about the rest of the program that uses the ship abstraction. It may want
to deal with other objects that are like ships in that they are movable objects with mass, but
unlike ships in other ways. A more advanced model of a ship might include the concept of the
ship’s engine power, the number of passengers on board, and its name. An object representing a
meteor probably would not have any of these, but might have another attribute such as how
much iron is in it.

However, all kinds of movable objects have positions, velocitics, and masses, and the system
will contain some programs that deal with these quantities in a uniform way, regardless of what
kind of object the attributes apply to. For example, a piece of the system that calculates every
object’s orbit in space need not worry about the other, more peripheral attributes of various types
of objects; it works the same way for all objects. Unfortunately, a program that tries to calculate
the orbit of a ship will need to know the ship’s attributes, and will have to call ship-x-position
and ship-y-velocity and so on. The problem is that these functions won’t work for meteors.
There would have to be a second program to calculate orbits for meteors that would be exactly
the same, except that where the first one calls ship-x-position, the second one would call
meteor-x-position, and so on. This would be very bad; a great deal of code would have to
exist in multiple copies, all of it would have 1o be maintained in parallel, and it would take up
space for no good reason.

What is needed is an operation that can be performed on objects of several different types.
For each type, it should do the thing appropriate for that type. Such operations are called
generic operations. The classic example of gencric operations is the arithmetic functions in most
programming languages, including Zetalisp. The + (or plus) function will accept either fixnums
or flonums, and perform either fixnum addition or flonum addition, whichever is appropriate,
based on the data types of the objects being manipulated. In our cxample, we need a generic x-
position operation that can be performed on either ships, meteors, or any other kind of mobile
object represented in the system. This way, we can write a single program to calculate orbits.
When it wants to know the x position of the object it is dealing with, it simply invokes the
generic x-position opecration on the object, and whatever type of object it has, the correct
operation is performed, and the x position is returned.

Another terminology for the use of such generic opcrations has emerged from the Smalltalk
and Actor languages: performing a generic operation is called sending a message. The message
consists of an operation name (a symbol) and arguments. The objects in the program are thought
of as little people, who get sent messages and respond with answers (returncd values). In the
example above, the objects are sent x-position messages, to which they respond with their x
position.

SRCKL.MAN>FIAVOR.TEXT.101 24-JAN-83



Generic Operations in Lisp 326 Iisp Machinc Manual

Sending a message is a way of invoking a function without specifying which function is to be
called. Instcad, the data determines the function to use. The caller specifics an operation name
and an object; that is, it said what operation to perform, and what object to perform it on. The
function to invoke is found from this information.

The two data used to figure out which function to call are the npe of the object, and the
name of the operation. The same sct of functions arc used for all instances of a given type, so
the type is the only attribute of the object used to figure out which function to call. The rest of
the message besides the operation are data which arc passed as arguments to the function, so the
operation is the only part of the message used to find the function. Such a function is called a
method. For example, if we send an x-position message to an object of type ship, then the
function we find is “"the ship type's x-position method”. A method is a function that handles a
specific operation on a specific kind of object; this method handles messages named x-position to
objects of type ship.

In our new terminology: the orbit-calculating program finds the x position of the object it is
working on by sending that object a message consisting of the operation x-position and no
arguments. The returned value of the message is the x position of the object. If the object was
of type ship, then the ship type’s x-position method was invoked: if it was of type meteor,
then the meteor type's x-position method was invoked. The orbit-calculating program just sends
the message, and the right function is invoked based on the type of the object. We now have
truc generic functions, in the form of message passing: the same operation can mecan different
things depending on the type of the object.

20.4 Generic Operations in Lisp

How do we implement message passing in Lisp? Our convention is that objects that receive
messages are always functional objects (that is, you can apply them to arguments). A message is
sent to an object by calling that object as a function, passing the operation name as the first
argument and the arguments of the message as the rest of the arguments. Operation names are
represented by symbols; normally these symbols are in the keyword package (see chapter 24, page
506), since messages are a protocol for communication between different programs, which may
reside in different packages. So if we have a variable my-ship whose value is an object of type
ship, and we want to know its x position, we send it a message as follows:

(funcall my-ship ’:x-position)

This form returns the x position as its returned value. To set the ship’s x position to 3.0, we
send it a message like this:

(funcall my-ship ’:set-x-position 3.0)

It should be stressed that no new features are added to Lisp for message sending; we simply
define a convention on the way objects take arguments. The convention says that an object
accepts messages by always interpreting its first argument as an operation name. The object must
consider this operation name, find the function which is thc method for that operation, and
invoke that function.

SRCKLLMAN>FLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 327 Simple Use of Flavors

This raises the question of how message receiving works. The object must somchow find the
right method for the message it is sent. Furthermore, the object now has to be callable as a
function; objects can’t just be defstructs any more, since those aren’t functions. But the structure
defined by defstruct was doing something uscful: it was holding the instance variables (the
internal state) of the object. We need a function with intcrnal state; that is, we nced a coroutine.

Of the Zetalisp features presented so far, the most appropriate is the closure (see chapter 11,
page 180). A message-receiving object could be implemented as a closure over a set of instance
variables. The function inside the closure would have a big selectq form to dispatch on its first
argument. (Actually, rather than using closures and a selectq, you would probably use entities
and defselect; sce section 11.4, page 185.)

While using closures (or entities) does work, it has several serious problems. The main
problem is that in order to add a new operation to a system, it is necessary to modify a lot of
code; you have to find all the types that understand that operation, and add a new clause to the
selectq. The problem with this is that you cannot textually separate the implementation of your
new operation from the rest of the system; the methods must be interleaved with the other
operations for the type. Adding a new operation should only require adding Lisp code; it should
not require modifying Lisp code.

The conventional way of making generic operations is to have a procedure for each operation,
which has a big selectq for all the types; this means you have to modify code to add a type.
The way described above is to have a procedure for each type, which has a big selectq for all
the operations; this means you have to modify code to add an operation. Neither of these has
the desired property that extending the svstem should only require adding code, rather than
modifying code.

Closures (and entities) are also somewhat clumsy and crude. A far more streamlined,
convenient, and powerful system for creating message-receiving objects exists; it is called the
flavor mechanism. With flavors, you can add a new method simply by adding code, without
modifying anything. Furthermore, many common and useful things are very easy to do with
flavors. The rest of this chapter describes flavors.

20.5 Simple Use of Flavors

A flavor, in its simplest form, is a definition of an abstract type. New flavors are created
with the defflavor special form, and methods of the flavor are created with the defmethod special
form. New instances of a flavor are created with the make-instance function. This section
explains simple uses of these forms.

For an example of a simple use of flavors, here is how the ship example above would be
implemented.

SRC:KL.MAN>FLLAVOR.TEXT.101 24-JAN-83



Simple Use of Flavors 328 Lisp Machine Manual

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

()

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (~ x-velocity 2)
(~ y-velocity 2))))

(defmethod (ship :direction) ()
(atan y-velocity x-velocity))

The code above creates a new flavor. The first subform of the defflavor is ship, which is the
name of the new flavor. Next is the list of instance variables; they are the five that should be
familiar by now. The next subform is something we will get to later. The rest of the subforms
arc the body of the defflavor, and cach one specifies an option about this flavor. In our
cxample, there is only one option, namely :gettable-instance-variables. This mecans that for
cach instance variable, a method should automatically be generated to return the value of that
instance variable. 'The name of the operation is a symbol with the samc name as the instance
variable, but intcrned on the keyword package. Thus, methods are created to handle the
opcrations :x-position, :y-position, and so on.

Each of the two defmethod forms adds a mcthod to the flavor. The first one adds a handler
to the flavor ship for the operation :speed. The second subform is the lambda-list, and the rest
is the body of the function that handles the :speed operation. The body can refer to or set any
instancc variables of the flavor, the same as it can with local variables or special variables. When
any instance of the ship flavor is invoked with a first argument of :direction, the body of the
sccond defmethod will be evaluated in an environment in which the instance variables of ship
refer to the instance variables of this instance (the one to which the message was sent). So when
the arguments of atan are evaluated, the values of instance variables of the object to which the
message was sent will be used as the arguments. atan will be invoked, and the result it returns
will be returned by the instance itself.

Now we have seen how to create a new abstract type: a new flavor. Every instance of this
flavor will have the five instance variables named in the defflavor form, and the seven methods
we have seen (five that were automatically generated because of the :gettable-instance-variables
option, and two that we wrote ourselves). The way to create an instance of our new flavor is
with the make-instance function. Here is how it could be used:

(setq my-ship (make-instance ’'ship))
This will return an object whose printed representation is:
#<SHIP 13731210>

(Of course, the value of the magic number will vary; it is not interesting anyway.) The
argument to make-instance is, as you can sce, thc namc of the flavor to be instantiated.
Additional arguments, not used here, are init options, that is, commands to the flavor of which
we arc making an instance, sclecting optional features. This will be discussed more in a moment.

SRCKIL.MAN>FLAVOR.TEXT.101 24-JAN-83



Lisp Machinc Manual 329 _ Simple Use of Flavors

Examination of the flavor we have defined shows that it is quite uscless as it stands, since
- there is no way to set any of the parameters. We can fix this up casily by putting the :settable-
instance-variables option into the defflavor form. This option tells defflavor to gencrate
methods for operations :set-x-position, :set-y-position, and so on: cach such method takes one
argument and scts the corresponding instance variable to the given value.

Another option we can add to the defflavor is ‘inittable -instance -variables, which allows us
to initialize the values of the instance variables when an instance is first created. inittable-
instance-variables docs not create any methods; instead, it makes initialization keywords named
'x-position, :y-position, ectc., that can bc used as init-option arguments to make-instance to
initialize the corresponding instance variables. The set of init options are sometimes called the
init-plist because they are like a property list.

Here is the improved defflavor:
(defflavor ship (x-position y-position
x-velocity y-velocity mass)
0
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

All we have to do is cvaluate this new defflavor, and the existing flavor definition will be
updated and now include the new methods and initialization options. In fact, the instance we
generated a while ago will now be able to accept these new operations! We can sct the mass of
the ship we created by evaluating

(funcall my-ship ':set-mass 3.0)
and the mass instance variable of my-ship will properly get set to 3.0. If you want to play
around with flavors, it is useful to know that describe of an instance tells you the flavor of the
instance and the values of its instance variables. If we were to evaluate (describe my-ship) at
this point, the following would be printed:

#<SHIP 13731210>, an object of flavor SHIP,
has instance variable values:

X-POSITION: unbound
Y-POSITION: unbound
X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS : 3.0

Now that the instance variables are "inittable”. we can create another ship and initialize some
of the instance variables using the init-plist. Lets do that and describe the result:

SRCKLLMAN>FLAVOR.TEXT.101 24-JAN-83



Simple Usc of Flavors 330 Lisp Machinc Manual

(setq her-ship (make-instance ’ship ':x-position 0.0
‘:y-position 2.0
‘:mass 3.5))
=> #<SHIP 13756521>

(describe her-ship)
#<SHIP 13756521>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 0.0
Y-POSITION: 2.0
X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS : 3.5

A flavor can also cstablish default initial values for instance variables. These default values are
.uscd when a new instance is created if the values are not initialized any other way. The syntax
for specifying a default initial value is to replace the name of the instance variable by a list,
whose first clement is the name and whose second is a form to evaluate to produce the default
initial value. For example:

(defvar xdefault-x-velocity* 2.0)
(defvar *default-y-velocity* 3.0)

(defflavor ship ((x-position 0.0)
(y-position 0.0)
(x-velocity *default-x-velocitys)
(y-velocity *default-y-velocitys)
mass)
)
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

(setq another-ship (make-instance ’ship ’:x-position 3.4))
(describe another-ship)

#<SHIP 14563643>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 3.4
Y-POSITION: 0.0
X-VELOCITY: 2.0
Y-VELOCITY: 3.0
MASS : unbound

x-position was initialized explicitly, so the default was ignored. y-position was initialized
from the default value, which was 0.0. The two velocity instance variables were initialized from
their default values, which came from two global variables. mass was not explicitly initialized
and did not have a default initialization, so it was left unbound. :

SRC:KL.MAN>FLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 331 Mixing Flavors

There are many other options that can be used in defflavor, and the init options can be used
more flexibly than just to initialize instance variables; full details are given later in this chapter.
But even with the small set of features we have seen so far, it is casy to writc object-oriented
programs.

20.6 Mixing Flavors

Now we have a system for defining message-receiving objects so that we can have generic
opcrations. If we want to creatc a new type called meteor that would accept the same generic
operations as ship, we could simply write another defflavor and two more defmethods that
looked just like those of ship. and then mecteors and ships would both accept the same
operations. ship would have some more instance variables for holding attributes specific to ships
and some more methods for operations that are not generic, but arc only defined for ships; the
same would be true of meteor.

However, this would be a a wasteful thing to do. The same code has to be repeated in
several places, and several instance variables have to be repeated. The code now nceds to be
maintained in many places, which is always undesirable. The power of flavors (and the name
"flavors”) comes from the ability to mix several flavors and get a new flavor. Since the
functionality of ship and meteor partially overlap, we can take the common functionality and
move it into its own flavor, which might be called moving-object. We would define moving-
object the same way as we defined ship in the previous section. Then, ship and meteor could
be defined like this:

(defflavor ship (engine-power number-of-passengers name)
‘ (moving-object)
:gettable-instance-variables)

(defflavor meteor (percent-iron) (moving-object)
:inittable-instance-variables)

These defflavor forms use the second subform, which we ignored previously. The second
subform is a list of flavors to be combined to form the new flavor; such flavors are called
components. Concentrating on ship for a moment (analogous things are truc of meteor), we see
that it has exactly one component flavor: moving-object. It also has a list of instance variables,
which includes only the ship-specific instance variables and not the ones that it shares with
meteor. By incorporating moving-object, the ship flavor acquires all of its instance variables,
and so need not name them again. It also acquires all of moving-object’s methods, too. So
with the new definition, ship instances will still implement the :x-velocity and :speed operations,
and they will do the same thing. However, the :engine-power operation will also be understood
(and will return the valuc of the engine-power instance variable).

What we have done here is to ‘take an abstract type, moving-object, and build two more
specialized and powerful abstract types on top of it Any ship or meteor can do anything a
moving object can do, and cach also has its own specific abilities. This kind of building can
continue; we could define a flavor called ship-with-passenger that was built on top of ship,
and it would inherit all of moving-object’s instance variables and methods as well as ship’s
instance variables and methods. Furthermore, the sccond subform of defflavor can be a list of

SRCKLMAN>FLAVOR.TEXT.101 24-JAN-83



Mixing Flavors 332 Lisp Machine Manual

several components, meaning that the new flavor should combine all the instance variables and
methods of all the fiavors in the list, as well as the ones those flavors are buill on, and so on.
All the components taken together form a big tree of flavors. A flavor is built from its
components, its components’ components, and so on. We somctimes use the term "components”
to mean the immediate components (the ones listed in the defflavor), and sometimes to mean all
the components (including the components of the immediate components and so on). (Actually, it
is not strictly a tree, since some flavors might be components through more than one path. It is
really a directed graph; it can cven be cyclic.)

The. order in which the components are combined to form a flavor is important. The tree of
flavors is turned into an ordered list by performing a top-down, depth-first walk of the tree,
including non-terminal nodes befure the subtrees they head, ignoring any flavor that has been
encountered previously somewhere clse in the trec. For example, if flavor-1's immediate
components arc flavor-2 and flavor-3, and flavor-2's components are flavor-4 and flavor-5,
and flavor-3's component was flavor-4, then the complete list of components of flavor-1. would
be:

flavor-1, flavor-2, flavor-4, flavor-5, flavor-3
The flavors carlicr in this list are the more specific, less basic ones; in our cxample, ship-with-
passengers would be first in the list. followed by ship. followed by moving-object. A flavor is
always the first in the list of its own components. Notice that flavor-4 docs not appear twice in
this list. Only the first occurrence of a flavor appears; duplicates are removed. (The climination
of duplicates is done during the walk: if there is a cycle in the directed graph, it will not cause a
non-terminating computation.)

The set of instance variables for the new flavor is the union of all the sets of instance
variables in all the component flavors. If both flavor-2 and flavor-3 have instance variables
named foo, then flavor-1 will have an instance variable named foo, and any methods that refer
to foo will refer to this same instance variable. Thus different components of a flavor can
communicate with onc another using shared instance variables. (Typically, only one component
ever sets the variable, and the others only look at it.) The default initial value for an instance
variable comes from the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor system.
When a flavor is defined, a single function, called a combined method, is constructed for each
operation supported by the flavor. This function is constructed out of all the methods for that
operation from all the components of the flavor. There are many different ways that methods can
be combincd; these can be sclected by the user when a flavor is defined. The user can also
createc new forms of combination.

There are several kinds of methods, but so far, the only kinds of methods we have seen are
primary methods. The default way primary methods are combined is that all but the earliest one
provided are ignored. In other words, the combined method is simply the primary method of the
first flavor to provide a primary mcthod. What this means is that if you are starting with a flavor
foo and building a flavor bar on top of it, then you can override foo's method for an operation
by providing your own method. Your method will be called, and foo's will never be called.

Simple overriding is often useful; if you want to make a new flavor bar that is just like foo

except that it reacts completely differently to a few operations, then this will work. However,
often you don’t want to completely override the base flavor's (foo's) method; sometimes you want

SRC:KL.MAN>FLAVOR.TEXT.101 : 24-1AN-83



Lisp Machine Manual 333 Mixing Flavors

to add some extra things to be done. This is where combination of methods is used.

The usual way methods are combined is that onc flavor provides a primary method, and other
flavors provide daemon methods. The idea is that the primary method is "in charge” of the main
business of handling the operation, but other flavors just want to keep informed that the message
was sent, or just wani o do the part of the opcration associated with their own arca of
responsibility.

When methods are combined, a single primary method is found; it comes from the first
component flavor that has one. Any primary methods belonging to later component flavors are
ignored. This is just what we saw above; bar could override foo’s primary method by providing
its own primary method.

However, you can definc other kinds of methods; in particular, daemon methods. They come
in two kinds, before and afier. There is a special syntax in defmethod for defining such
methods. Here is an example of the syntax. To give the ship flavor an after-dacmon method for
the :speed operation, the following syntax would be used:

(defmethod (ship :after :speed) ()
body)

Now, when a message is sent, it is handled by a new function called the combined method.
The combined method first calls all of the before daemons, then the primary method, then all the
after dacmons. Each method is passed the same arguments that the combined method was given.
The returned values from the combined method are the values returned by the primary method;
any values returned from the daemons are ignored. Before-dacmons are called in the order that
flavors are combined, while after-daemons are called in the reverse order. In other words, if you
build bar on top of foo, then bar's before-daemons will run before any of those in foo, and
bar’s after-daemons will run after any of those in foo.

The reason for this order is to keep the modularity order correct. If we create flavor-1 built
on flavor-2: then it should not matter what flavor-2 is built out of. Our new before-daemons
go before all methods of flavor-2, and our new after-dacmons go after all methods of flavor-2.
Note that if you have no dacmons, this reduces to the form of combination described above. The
most tecently added component flavor is the highest level of abstraction; you build a higher-level
object on top of a lower-level object by adding new components o the front. The syntax for
defining daemon methods can be found in the description of defmethod below.

To make this a bit more clear, let's consider a simple example that is easy to play with: the
:print-self method. The Lisp printer (i.e. the print function; see section 21.2.1, page 367) prints
instances of flavors by sending them :print-self messages. The first argument to the :print-self
operation is a stream (we can ignore the others for now), and the receiver of the message is
supposed to print its printed representation on the stream. In the ship example above, the reason
that instances of the ship flavor printed the way they did is because the ship flavor was actually
built on top of a very basic flavor called vanilla-flavor; this component is provided automatically
by defflavor. 1t was vanilia-flavor's :print-self method that was doing the printing. Now, if we
give ship its own primary method for the :print-self operation, then that method will take over
the job of printing completely; vanilla-flavor’s method will not be called at all. However, if we
give ship a before-daecmon method for the :print-self operation, then it will get invoked before
the vanilla-flavor method, and so whatever it prints will appear before what vanilla-flavor prints.

SRC:<I.MAN>FLAVOR.TEXT.101 24-JAN-83



Flavor Functions 334 Lisp Machine Manual

So we can use before-dacmons to add prefixes to a printed representation;  similarly, after-
dacmons can add suffixes.

There are other ways to combine mecthods besides dacmons, but this way is the most
common. ‘The more advanced ways of combining methods are explained in a later scction; sce
section 20.11, page 350. The vanilla-flavor and what it does for you are also explained later; sce
section 20.10, page 348.

20.7 Flavor Functions

defflavor Macro
A flavor is defined by a form
(defflavor flavor-name (varl var2...) (flavi flavl. . . )
optl opt2...)
Slavor-name is a symbol which serves to name this flavor. It will get an si:flavor property
of the intcrnal data-structure containing the details of the flavor.

(typep obj), where obj is an instance of the flavor named Slavor-name, will return the
symbol flavor-name. (typep obj flavor-name) is t if obj is an instance of a flavor, one of
whose components (possibly itself) is flavor-name.

varl. var2, etc. are the names of the instance-variables containing the local state for this
flavor. A list of the name of an instance-variable and a default initialization form is also
acceptable; the initialization form will be cvaluated when an instance of the flavor is
created if no other initial value for the variable is obtained. If no initialization is
specified, the variable will remain unbound.

flavl, flav2, etc. are the names of the component flavors out of which this flavor is built.
The features of those flavors are inherited as described previously.

optl, opi2, ctc. are options; cach option may be cither a keyword symbol or a list of a
keyword symbol and arguments. The options to defflavor are described in section 20.8,
page 342.

*all-flavor-names® ' Variable
This is a list of the names of all the flavors that have ever been defflavor’ed.

defmethod Macro
A method, that is, a function to handle a particular operation for instances of a particular
flavor, is defined by a form such as
(defmethod (flavor-name method-type operation) lambda-list
Jorml form2...)

Sflavor-name is a symbol which is the name of the flavor which is to receive the method.
operation is a keyword symbol which names the operation to be handled. method-type is a
keyword symbol for the type of method: it is omitted when you are defining a primary

method. For some method-types, additional information is expected. It comes after
operation.

SRC:KLLMAN>FLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 335 Flavor Functions

The meaning of the method-type depends on what kind of method-combination is declared
for this operation. For instance, for dacmons :before and :after arc ailowed. See scction
20.11, page 350 for a complete description of mecthod types and the way methods are
combined.

lambda-list describes the arguments and &aux variables of the function: the first argument
to the method. which is the operation name itself, is automatically handled and so is not
included in the lambda-list. Note that methods may not have &quote arguments; that is
they must be functions, not special forms. forml, form2, etc. arc the function body; the
value of the last form is returned.

The variant form

(defmethod (flavor-name operation) function)
where function is a symbol, says that flavor-name’s method for operation is function, a
symbol which names a function. That function must take appropriate arguments; the first
argument is the operation.

If vou redefine a method that is already defined. the old definition is replaced by the new
one. Given a flavor. an operation name, and a mecthod type, there can only be one
function (with the exception of :case methods), so if you define a :before daemon
method for the foo flavor to handle the :bar operation, then you replace the previous
before-dacmon; however, you do not affect the primary method or methods of any other
type, operation or flavor.

The function spec for a method (see section 10.2, page 155) looks like:

(:method flavor-name operation) or

(:method favor-name method-type operation)

(:method flavor-name method-type operation suboperation)
This is useful to know if you want to trace (page 588), breakon (page 591) or advise
(page 593) a method, or if you want to poke around at the method function itself, e.g.
disassemble it (sce page 641).

make-instance flavor-name init-optionl valuel init-option2 value?..

Creates and returns an instance of the specified flavor. Arguments after the first are
alternating init-option keywords and arguments to those keywords. These options are used
to initialize instance variables and to select arbitrary options, as described above. An :init
message is sent to the newly-created object with one argument, the init-plist. This is a
disembodicd property-list containing the init-options specified and those defaulted from the
flavor's :default-init-plist (however, init keywords that simply initialize instance variables,
and the corresponding values, may be absent when the :init methods are called). make-
instance is an easy-to-call interface to instantiate-flavor; for full details refer to that
function.

instantiate-flavor flavor-name init-plist &optional send-init-message-p
return-unhandled-keywords area
This is an extended version of make-instance, giving you more features. Note that it
takes the init-plist as an argument, rather than taking a &rest argument of init-options
and values.

SRCKL.MAN>FLLAVOR.TEXT.101 24-JAN-83



Flavor Functions 336 Lisp Machine Manual

The init-plist argument must be a disembodied property list: foct of a &rest argument
will do. Beware! This property list can be modified: the propertics from the default-init-
plist are putprop'ed on if not alrcady present, and some :init methods do explicit
putprops onto the init-plist.

The :init methods should not look on the init-plist for keywords that simply initialize
instance variables (that is, keywords defined with :inittable-instance -variables rather than
iinit-keywords). ‘The corresponding instance variables will alrcady be set up when the
iinit methods are called, and sometimes the keywords and their values may actually be
missing from the init-plist if it is more efficient not to put them on. To avoid problems,
always refer to the instance variables themselves rather than looking for the init keywords
that initialize them.

In the cvent that :init methods remprop propertics already on the init-plist (as opposed to
simply doing get and putprop), then the init-plist will get rplacd’ed. This means that the
actual list of options will be modified. Tt also means that locf of a &rest argument will
not work: the caller of instantiate-flavor must copy its rest argument (c.g. with copylist);
this is because rplacd is not allowed on &rest arguments.

First, if the flavor's method hash-table and other internal information have not been
computed or are not up to date, they are computed. This may take a substantial amount
of time and invoke the compiler, but will only happen once for a particular flavor no
matter how many instances you make, unless you redefine the flavor.

Next, the instance variables are initialized. There are several ways this initialization can
happen. If an instance variable is declared inittable, and a keyword with the same
spelling as its name appears in inir-plist, it is st to the value specified after that keyword.
If an instance variable does not get initialized this way, and an initialization form was
specified for it in a defflavor, that form is cvaluated and the variable is set to the result.
The initialization form may not refer to any instance variables or to self; it will not be
cvaluated in the "inside” environment in which methods are called. If an instance variable
docs not get initialized cither of these ways it will be left unbound: an :init method may
initialize it (secc below). Note that a simple empty disembodied property list is (nil),
which is what you should give if you want an cmpty init-plist. If you use nil, the
property list of nil will be used, which is probably not what you want.

If any keyword appears in the init-plist but is not used to initialize an instance variable
and is not declarcd in an :init-keywords option (see page 343) it is presumed to be a
misspelling. So any keywords that you handle in an :init handler should also be
mentioned in the :init-keywords option of the definition of the flavor.

If the return-unhandled-keywords argument is not supplied, such keywords are complained
about by signalling an error. But if return-unhandled-keywords is supplied non-nil, a list
of such keywords is returned as the second value of instantiate-flavor.

Note that default values in the init-plist can come from the .default-init-plist option to
defflavor. See page 343.

SRCKIL.MAN>FLAVOR.TEXT.101 24-JAN-83



I.isp Machine Manual 337 IFlavor Functions

If the send-init-message-p argument is supplied and non-nil, an :init message is sent to the
newly-created instance, with one argument, the inir-plist. get can be used to extract
options from this property-list. Fach flavor that nceds initialization can contribute an :init
method by defining a daemon.

If the area argument is specified, it is the number of an arca in which to cons the
instance; otherwise it is consed in the default area. ’

defwrapper Macro
- This is hairy and if you don’t understand it you should skip it.

Sometimes the way the flavor system combines the methods of different flavors (the
daemon system) is not powerful enough. In that case defwrapper can be used to define a
macro that expands into code that is wrapped around the invocation of the methods. This
is best explained by an example; suppose you needed a lock locked during the processing
of the :foo operation on flavor bar, which takes two arguments. and you have a lock-
frobboz special-form that knows how to lock the lock (presumably it gencrates an
unwind-protect). lock-frobboz needs to sec the first argument to the operation; perhaps
that tells it what sort of operation is going to be performed (read or write).
(defwrapper (bar :foo) ((argl arg2) . body)
‘(lock-frobboz (self argl)
.body))

The use of the body macro-argument prevents the defwrapper’ed macro from knowing
the cxact implementation and allows several defwrappers from different flavors to be
combined properly.

Note well that the argument variables, argl and arg2, arc not refcrenced with commas
before them. These may look like defmacro “argument” variables, but they are not.
Those variables are not bound at the time the defwrapper-defined macro is expanded and
the back-quoting is done; rather the result of that macro-cxpansion and back-quoting is
code which, when a message is sent, will bind those variables to the arguments in the
message as local variables of the combined method.

Consider another example. Suppose you thought you wanted a :before daemon, but
found that if the argument was nil you needed to return from processing the message
immediately, without exccuting the primary method. You could write a wrapper such as
(defwrapper (bar :foo) ((argl) . body)
“(cond ((null argl)) ;Do nothing if argl is nil
(t before-code
,body)))

Suppose you need a variable for communication among the daemons for a particular
operation; perhaps the :afier daemons need to know what the primary method did, and it
is something that cannot be easily deduced from just the arguments. You might use an
instance variable for this, or you might create a special variable which is bound during

the processing of the operation and used free by the methods.

SRCKL.MAN>FLAVOR.TEXT.101 24-JAN-83



Flavor Functions 338 Lisp Machine Manual

(defvar *communications*)
(defwrapper (bar :foo) (ignore . body)
“(let ((*communication* nil))
,body))

Similarly you might want a wrapper that puts a *catch around the processing of an
operation so that any onc of the methods could throw out in the event of an unexpected
condition,

Like dacmon methods, wrappers work in outside-in order; when you add a defwrapper
to a flavor built on other flavors, the new wrapper is placed outside any wrappers of the
component flavors. However, «ll wrappers happen before any dacmons happen. When
the combined method is built, the calls to the before-dacmon methods. primary methods,
and after-dacmon methods are all placed together, and then the wrappers are wrapped
around them. Thus, if a component flavor defines a wrapper, mcthods added by new
flavors will exccute within that wrapper’s context.

:around methods can do some of the same things that wrappers can. See page 353. If
onc flavor defines both a wrapper and an :around mecthod for the same operation, the
-around mecthod is cxecuted inside the wrapper.

By careful about inscrting the body into an internal lambda-expression within the
wrapper’s code. This interacts with internals details of the way combined methods are
implemented. It can be done if it is done carcfully. But it is much simpler to use an
:around method instead.

undefmethod (flavor [1ype] operation [suboperation]) Macro
(undefmethod (flavor :before :operation))
removes the method created by
(defmethod (flavor :before :operation) (args) ...)

To remove a wrapper, usc undefmethod with :wrapper as the method type.

undefmethod is simply an interface to fundefine (see page 171) that accepts the same
syntax as defmethod.

If a file that used to contain a method definition is reloaded and if that method no longer
seems to have a definition in the file, the user is asked whether to undefmethod that
method. This may be important to cnable the modified program to inherit the methods it
is supposed to inherit. 1f the method in question has been redefined by some other file,
this is not done, the assumption being that the definition was merely moved.

solf Variable
When a message is sent to an object, the variable self is automatically bound to that
object, for the benefit of methods which want to manipulate the object itself (as opposed
to its instance variables).

SRC:KLMAN>FLLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 339 Flavor Functions

funcall-self operation arguments...
When self is an instance or an entity, (funcali-self args..) has the same effect as
(funcall self args...) except that it is a little faster. If self is not an instance (or an
entity, see section 11.4. page 185), funcall-self and funcall self do the same thing.

When self is an instance, funcall-self will only work correctly if it is used in a method
or a subroutine of a method. Just binding self by hand and using this will not work.

lexpr-funcall-self operation arguments.. list-of-arguments
This function is a cross between lexpr-funcall and funcall-self. When self is an instance
or an cntity, (lexpr-funcall-self args...) has the same ecffect as (lexpr-funcall self args...)
except that it is a little faster. If self is not an instance (or an entity, see scction 11.4,
page 185), lexpr-funcall-self and lexpr-funcall do the same thing.

funcall-with-mapping-table function mapping-table &rest arguments
function is applied to arguments with sys:self-mapping-table bound to mapping-table.
This is faster than binding the variable yourself and doing an ordinary funcall, because
the system assumes that the mapping table you specify is the correct one for function to
be run with. However, if you pass the wrong mapping table, incorrect execution will take
place.

This function is used in the code for combined methods and is also usefill for the user in
:around methods (see page 353).

lexpr-funcall-with-mapping-table fiunction mapping-table &rest arguments
Junction 15 applied to arguments using lexpr-funcaii, with sys:seif-mapping-tabie bound
to mapping-iable.

declare-flavor-instance-variables (flavor) body... Macro
Sometimes you will write a function which is not itself a method, but which is to be
called by methods and wants to be able to access the instance variables of the object self.
The form
(declare-flavor-instance-variables (flavor-name)
(defun function args body...))

surrounds the function definition with a declaration of the instance variables for the
specified flavor, which will make them accessible by name. Any kind of function
definition is allowed; it does not have to use defun per se.

If you call such a function when self’s value is an instance whose flavor does not include
flavor-name as a component, it is an error.

Cleaner than using declare-flavor-instance-variables, because it does not involve
putting anything around the function definition, is using a local declaration. Put (declare
(:self-flavor flavorname)) as the first expression in the body of the function. For example:
(defun foo (a b)
(declare (:self-flavor myobject))
(+ a (* b speed)))
(where speed is an instance variable of the flavor myobject) is equivalent to

SRC:KLMAN>FLLAVOR.TEXT.101 24-JAN-83



Flavor Functions 340 |.isp Machine Manual

(declare-flavor-instance-variables (myobject)
(defun foo (a b)
(+ a (* b speed))))

with-self-variables-bound body... Special Form
Within the body of this special form, all of self’s instance variables are bound as specials
to the values inside self. (Normally this is truc only of those instance variables that are
specified in :special-instance-variables when self's flavor was defined.)

As a result, inside the body you can usc set, boundp and symeval freely on the instance
variablcs of self. -

This special form is used by the interpreter when a method that is not compiled is
executed, so that the interpreted references to instance variables will work properly.

recompile-flavor flavor-name &optional single-operation (use-old-combined-methodst)
(do-dependentst) ,

Updates the internal data of the flavor and any flavors that depend on it. If single-
operation is supplied non-nil, only the methods for that operation are changed. The
system docs this when you define a new method that did not previously cxist. [f wuse-old-
combined-methods is t, then the cxisting combined method functions will be used if
possible. New ones will only be generated if the set of methods to be called has changed.
This is the default. 1f use-old-combined-methods is nil, automatically-generated functions to
call multiple methods or to contain code gencrated by wrappers will be regencrated
unconditionally. If do-dependents is nil, only the specific flavor you specified will be
recompiled. Normally it and all flavors that depend on it will be recompiled.

recompile-flavor affects only flavors that have already been compiled. Typically this
means it affects flavors that have been instantiated, but does not bother with mixins (see
page 348).

compile-flavor-methods flavor... Macro
The form (compile-flavor-methods flavor-name-1 flavor-name-2...), placed in a file to be
compiled, will cause the compiler to include the automatically-gencrated combined
methods for the named flavors in the resulting QFASL file, provided all of the necessary
flavor definitions have becn made. Furthermore, when the QFASL file is loaded, internal
data structures (such as the list of all methods of a flavor) will be generated.

This means that the combined methods get compiled at compile time and the data
structures get generated at load time, rather than both things happening at run time. This
is a very good thing, since if the the compiler must be invoked at run time, the program
will be slow the first time it are run. (The compiler will still be called if incompatible
changes have been made, such as addition or deletion of methods that must be called by
a combined method.) ' '

You should only usc compile-flavor-methods for flavors that are going to be
instantiated. For a flavor that will never be instantiated (that is, a flavor that only serves
to be a component of other flavors that actually do get instantiated), it is a complete
waste of time, except in the unusual case where those other flavors can all inherit the

SRCKL.MAN>FLLAVOR.TEXT.101 24-JAN-83



[Lisp Machine Manual 341 Flavor Functions

PN Tand atlnda F ¢ auver 3 P i i i
combined methods of this flavor instcad of cach one having its own copy of a combined

method which happens to be identical to the others. In this unusual case, you should use
the :abstract-flavor option in defflavor.

The compile-flavor-methods forms should be compiled after all of the information
needed to create the combined methods is available. You should put these forms after all
of the definitions of all relevant flavors, wrappers, and methods of all components of the
flavors mentioned.

The methods used by compile-flavor-methods to form the combined methods that go in
the QFASL file arc all those present in the file being compiled and all those defined in
the Lisp world.

When a compile-flavor-methods form is seen by the interpreter, the combined methods
arc compiled and the internal data structurcs are generated.

get-handler-for object operation
Given an object and an operation, will return that object’s method for that operation, or
nil if it has nonc. When object is an instance of a flavor, this function can be useful to
find which of that flavor’s components supplics the method. If you get back a combined
method, you can use the Meta-X List Combined Methods editor command (page 359) to
find out what it does. :

This is related to the :handler function spec (see section 10.2, page 154).

This function can be used with other things than flavors and has an optional argument
which is not relevant here and not documented.

flavor-allows-init-keyword-p flavor-name keyword
Returns non-nil if the flavor named flavor-name allows keyword in the init options when it
is instantiated, or nil if it does not. The non-nil value is the name of the component
flavor that contributes the support of that keyword.

si:flavor-all-allowed-init-keywords flavor-name
Returns a list of all the init keywords that may be used in instantiating flavor-name.

symeval-in-instance instance symbol &optional no-error-p
This function is used to find the value of an instance variable inside a particular instance.
Instance is the instance to be examined, and symbol is the instance variable whose value
should be returncd. If there is no such instance variable, an error is signalled, unless no-
error-p is non-nil in which case nil is returned.

set-in-instance instance symbol value
This function is used to alter the value of an instance variable inside a particular instance.
Instance is the instance to be altered, symbol is the instance variable whose value should
be set, and value is the new value. If there is no such instance variable, an error is
signalled.

SRCKLMAN>FLAVOR.TEXT.101 24-JAN-83



Defllavor Options 342 Lisp Machine Manual

locate-in-instance insiance symbol
Returns a locative pointer to the cell inside instance which holds the value of the instance
variable named symbol.

describe-flavor flavor-name
This function prints out descriptive information about a flavor; it is sclf-cxplanatory. An
important thing it tells you that can be hard to figure out yourself is the combined list of
component flavors; this list is what is printed after the phrase "and dircctly or indircctly
depends on".

si:*flavor-compilations* Variable
This variable contains a history of when the flavor mechanism invoked the compiler. It is
a list: clements toward the front of the list represent more recent compilations. Flements
are typically of the form
(function-spec pathname)
where the function spec starts with :method and has a method type of :combined.

You may setq this variable to nil at any time; for instance before loading some files that
you suspect may have missing or obsolete compile-flavor-methods in them.

sys:unclaimed-message (error) Condition
This condition is signaled whenever a flavor instance is sent a message whose operation it
does not handle. The condition instance supports these operations:

:object The flavor instance that reccived the message.
:operation The operation that was not handled.

:arguments  The list of arguments to that operation

20.8 Defflavor Options

There are quite a few options to defflavor. They are all described here, although some are
for very specialized purposes and not of interest to most users. Each option can be written in two
forms; cither the keyword by itself, or a list of the keyword and “arguments” to that keyword.

Several of these options declare things about instance variables. These options can be given
with arguments which are instance variables, or without any arguments in which case they refer to
all of the instance variables listed at the top of the defflavor. This is not necessarily all the
instance variables of the component flavors, just the ones mentioned in this flavor's defflavor.
When arguments are given, they must be instance variables that were listed at the top of the
defflavor; otherwise they are assumed to be misspelled and an error is signalled. It is legal to
declare things about instance variables inherited from a component flavor, but to do so you must
list these instance variables explicitly in the instance variable list at the top of the defflavor.

:gettable-instance-variables
Enables automatic gencration of methods for getting the values of instance variables. The
operation name is the name of the variable, in the keyword package (ie. put a colon in
front of it).

SRCKLMAN>FLAVOR.TEXT.101 | 24-JAN-R3



l.isp Machinc Manual 343 _ Deflavor Options

Note that there is nothing special about these methods; you couid casily define them
yourself. 'This option generates them automatically to save you the trouble of writing out
a lot of very simple method definitions. (1he same is true of methods defined by the
:settable-instance-variables option.) If you definc a method for the same operation
name as one of the automatically generated methods, the new definition will override the
old one, just as if you had manually defined two methods for the same operation name.

:settable-instance-variables
Enables automatic generation of methods for sectting the values of instance variables. The
opcration name is ":set-" followed by the name of the variable. All scttable instance
variables are also automatically made gettable and inittable. (Sce the note in the
description of the :gettable-instance-variables option, above.)

sinittable -instance-variables
The instance variables listed as arguments, or all instance variables listed in this defflavor
if the keyword is given alone, are made inittable. This means that they can be initialized
through use of a keyword (a colon followed by the name of the variable) as an init-option
argument to make-instance.

:special-instance-variables
The instance variables listed as arguments, or all instance variables listed in this defflavor
if the keyword is given alone, are made special. Whenever a message is sent to an
instance of this flavor (or any containing flavor), these instance variables will actually be
bound as specials: they will be bound through the exccution of all the methods.

You must do this to any instance variables that you wish to be accessible through
symeval, set, boundp and makunbound. Since those functions refer only to the special
value cell of a symbol, values of instance variables not made special will not be visible to
them.

This should also be done for any instance variables that arc declared globally special. If
you omit this, the flavor system will do it for you automatically when you instantiate the
flavor, and give you a warning to remind you to fix the defflavor.

sinit-keywords

The arguments are declared to be valid keywords to use in instantiate-flavor when
creating an instance of this flavor (or any flavor containing it). The system uscs this for
error-checking: before the system sends the :init message, it makes sure that all the
keywords in the init-plist are either inittable instance variables or elements of this list. If
the caller misspells a keyword or otherwise uses a keyword that no component flavor
handles, this featurc will signal an error. When you write a :init method that accepts
some keywords, they should be listed in the :init-keywords option of the flavor.

:default-init-plist
The arguments arc alternating keywords and value forms, like a property-list. When the
flavor is instantiated, these properties and values are put into the init-plist unless already
present. This allows one component flavor to default an option to another component
flavor. The value forms are only evaluated when and if they are used. For example,
(:default-init-plist :frob-array
(make-array 100))
would provide a default "frob array” for any instance for which the user did not provide

SRCKL.MANDFLLAVOR.TEXT.101 24-JAN-83



Defflavor Options 344 Lisp Machine Manual

one explicitly.

rrequired-instance-variables
Declares that any flavor incorporating this onc that is instantiated into an object must
contain the specified instance variables. An ecrror occurs if there is an attempt  to
instantiate a flavor that incorporates this one if it does not have these in its set of instance
variables.  Note that this option is not onc of those that checks the spelling of its
arguments in the way described at the start of this section (if it did, it would be uscless).

Required instance variables may be freely accessed by methods just like normal instance
variables. The difference between listing instance variables here and listing them at the
front of the defflavor is that the latter declares that this flavor "owns" those variables and
will take carc of initializing them, while the former declares that this flavor depends on
those variables but that some other flavor must be provided to manage them and whatever
features they imply.

:required-methods

The arguments are names of operations that any flavor incorporating this one must handle.
An error occurs if there is an attempt to instantiate such a flavor and it is lacking a
mcthod for one of these operations. Typically this option appears in the defflavor for a
base flavor (scc page 348). Usually this is used when a base flavor does a funcall-self
(page 339) to send itself a message that is not handled by the base flavor itself: the idea
is that the basc flavor will not be instantiated alone, but only with other components
(mixins) that do handle the message. This keyword allows the error of having no handler
for the message be detected when the flavor instantiated or when compile-flavor-
methods is donc, rather than when the missing operation is used.

:required-flavors
The arguments are names of flavors that any flavor incorporating this one must include as
components, directly or indirectly. The difference between declaring flavors as required
and listing them dircctly as components at the top of the defflavor is that declaring
flavors to be required does not make any commitments about where those flavors will
appear in the ordered list of components; that is left up 0 whoever does specify them as
components. The purpose of declaring a flavor to be required is to allow instance
variables declared by that flavor to be accessed. It also provides crror checking: an
attempt to instantiate a flavor that does not include the required flavors as components
will signal an error. Compare this with :required-methods and :required-instance-
variables.

For an cxample of the use of required flavors, consider the ship example given earlier,
and suppose we want to definc a relativity-mixin which increases the mass dependent on
the speed. We might write,

(defflavor relativity-mixin () (moving-object))

(defmethod (relativity-mixin :mass) ()

(// mass (sqrt (- 1 (~ (// (funcall-self ’:speed)
*speed-of-Tight#)
2)))))

but this would lose because any flavor that had relativity-mixin as a component would get
moving-object right after it in its component list. As a base flavor, moving-object
should be last in the list of components so that other components mixed in can replace its

SRC:KL.MAN>FILAVOR.TEXT.101 24-JAN-83



[isp Machine Manual 345 Defflavor Options

methods and so that daemon metho

s combine in the right order. relativity-mixin has no
business changing the order in which flavors are combined, which should be under the
control of its caller. For example,

(defflavor starship ()
(relativity-mixin long-distance-mixin ship))
puts moving-object last (inheriting it from ship).

So instcad of the definition above we write,
(defflavor relativity-mixin () ()
(:required-flavors moving-object))
which allows relativity-mixin's methods to access moving-object instance variables such as
mass (the rest mass), but does not specify any place for moving-object in the list of
components.

It is very common to specify the base flavor of a mixin with the :required-fiavors option
in this way.

included-flavors

The arguments arc names of flavors to be included in this flavor. The difference between
declaring flavors here and declaring them at the top of the defflavor is that when
component flavors are combined, if an included flavor is not specified as a normal
component, it is inserted into the list of components immediately after the last component
to include it. Thus included flavors act like defaults. The important thing is that if an
included flavor is specified as a component, its position in the list of components is
completely controlled by that specification, independently of where the flavor that includes
it appears in the list. ’

included-flavors and :required-flavors are used in similar ways; it would have been
recasonable to use :included-flavors in the relativity-mixin example above. The difference
is that when a flavor is required but not given as a normal component, an error is
signalled, but when a flavor is included but not given as a normal component, it is
automatically inserted into the list of components at a "reasonable” place.

:no-vanilla-flavor .
Normally when a flavor is instantiated, the special flavor sivanilla-flavor is included
automatically at the end of its list of components. The vanilla flavor provides some
default methods for the standard operations which all objects are supposed to understand.
These include :print-self, :describe, :which-operations, and several other operations.
See section 20.10, page 348.

If any component of a flavor specifies the :no-vanilla-flavor option, then si:vanilla-flavor
will not be included in that flavor. This option should not be used casually.
:defauit-handier

The argument is the name of a function that is to be called when a message is received
for which there is no method. 1t will be called with whatever arguments the instance was
called with, including the operation name; whatever values it returns will be returned. If
this option is not specified on any component flavor, it defaults to a function that will
signal an error.

SRC:KI.MAN>FLLAVOR.TEXT.101 24-JAN-83



DefRavor Options 346 1.isp Machinc Manual

:ordered-instance-variables
This option is mostly for csoteric internal system uses. The arguments arc names of
instance variables which must appear first (and in this order) in all instances of this flavor,
or any flavor depending on this flavor. This is used for instance variables that are
specially known about by microcode, and also in connection with the :outside-
accessible-instance-variables option. If the keyword is given alone, the arguments
default o the list of instance variables given at the top of this defflavor.

Removing any of the :ordered-instance-variables, or changing their positions in the list,
requires that you recompile all methods that use any of the affected instance variables.

:outside -accessible-instance -variables

The arguments are instance variables which arc to be accessible from “outside” of this
object, that is from functions other than methods. A macro (actually a defsubst) is
defined which takes an object of this flavor as an argument and returns the value of the
instance variable: setf may be used to set the value of the instance variable. The name
of the macro is the name of the flavor concatcnated with a hyphen and the name of the
instance variable. These macros are similar to the accessor macros created by defstruct
(sce chapter 19, page 298.)

This feature works in two different ways, depending on whether the instance variable has
been declared to have a fixed slot in all instances, via the :ordered -instance-variables
option.

If the variable is not ordered, the position of its value cell in the instance will have to be
computed at run time. This takes noticcable time, although less than actually sending a
message would take. An error will be signalled if the argument to the accessor macro is
not an instance or is an instance that does not have an instance variable with the
appropriate name. However, there is no error check that the flavor of the instance is the
flavor the accessor macro was defined for, or a flavor built upon that flavor. This error
check would be too expensive.

If the variable is ordered. the compiler will compile a call to the accessor macro into a
subprimitive which simply accesses that variable’s assigned slot by number. This
subprimitive is only threc or four times slower than car. The only error-checking
performed is to make sure that the argument is really an instance and is really big enough
to contain that slot. There is no check that the accessed slot really belongs to an instance
variable of the appropriate name.

:accessor-prefix
Normally the accessor macro created by the :outside-accessible-instance-variables
option to access the flavor f’s instance variable v is named fv. Specifying (:accessor-
prefix get$) causes it to be named get$v instead.

:abstract-flavor
This option marks the flavor as one that is not supposed to be instantiated (that is, is
supposed to be used only to make other flavors). An attempt to instantiate the flavor will
signal an error.

SRC:KLL.MAN>FLLAVOR.TEXT.101 « 24-JAN-83



Lisp Machine Manual 347 Defllavor Options

It is sometimes useful to do compile-flavor-methods on a flavor that is not going to be
instantiated, if the combined methods for this flavor wili be inherited and shared by many
others. :abstract-flavor tells compile-flavor-methods not to complain about missing
required flavors, mecthods or instance variables. Presumably the flavors that depend on
this one and actually arc instantiated will supply what is lacking.

:method -combination
Declares the way that methods from different flavors will be combined. Fach "argument™
to this option is a list (iype order operationl operation2...). operationl. operation2, etc.
arec names of operations whose methods are to be combined in the declared fashion. 1ype
is a keyword that is a defined type of combination; see section 20.11, page 350. Order is
a keyword whose interpretation is up to fype; typically it is cither :base-flavor-first or
‘base-flavor-last.

Any component of a flavor may specify the type of method combination to be used for a
particular operation. If no component specifies a type of method combination, then the
default type is used, namely :daemon. If more than one component of a flavor specifics
it, then they must agree on the specification, or clse an error is signalled.

:documentation
The list of arguments to this option is remembered on the flavor’s property list as the
:documentation property. The (loosc) standard for what can be in this list is as follows;
this may be cxtended in the future. A string is documentation on what the flavor is for;
this may consist of a brief overview in the first line, then several paragraphs of detailed
documentation. A symbol is one of the following keywords:

‘mixin A flavor that you may want to mix with others to provide a useful
feature.

:essentiai-mixin A flavor that must be mixed in to aii flavors of its class, or
inappropriate behavior will ensue.

lowlevel-mixin A mixin used only to build other mixins.

-:combination A combination of flavors for a specific purpose.

:special-purpose A flavor that is not intended for general use, used for some internal
or kludgey purpose by a particular program.

This documentation can be viewed with the describe-flavor function (sce page 342) or
the editor's Meta-X Describe Flavor command (see page 358).

SRC:<I.MAN>FLLAVOR.TEXT.101 24-JAN-83



Flavor Familics 348 [.isp Machine Manual

20.9 Flavor Families
The following organization conventions are recommended for all programs that use flavors.

A base flavor is a flavor that defines a whole family of related flavors, all of which will have
that basc flavor as onc of their components. Typically the base flavor includes things relevant to
the whole family, such as instance variables, :required-methods and :required-instance-
variables declarations, default methods for certain operations, :method-combination declarations,
and documentation on the general protocols and conventions of the family. Some base flavors are
complete and can be instantiated, but most are not instantiatable and merely serve as a base upon
which to build other flavors. The base flavor for the foo family is ofien named basic-foo.

A mixin flavor is a flavor that defines onc particular feature of an object. A mixin cannot be
instantiated, because it is not a complete description. Each module or feature of a program is
defined as a scparatc mixin; a usable flavor can be constructed by choosing the mixins for the
desired characteristics and combining them, along with the appropriate base flavor. By organizing
your flavors this way, you keep separate features in scparate flavors, and you can pick and choose
among them. Somctimes the order of combining mixins docs not matter. but often it does,
because the order of flavor combination controls the order in which daemons are invoked and
wrappers are wrapped.  Such order dependencics should be documented as part of the conventions
of the appropriate family of flavors. A mixin flavor that provides the muwmble feature is often
named mumble-mixin.

If you are writing a program that uses someone clse’s facility to do something, using that
facility’s flavors and methods, your program may still define its own flavors, in a simple way.
The facility provides a base flavor and a set of mixins: the caller can combine these in various
ways depending on exactly what it wants, since the facility probably will not provide all possible
useful combinations. Even if your private flavor has exactly the same components as a pre-
existing flavor, it can stll be useful since you can use its :default-init-plist (see page 343) to
select options of its component flavors and you can define one or two methods to customize it
"just a little".

20.10 Vanilla Flavor

The operations described in this scction are a standard protocol, which all message-receiving
objects arc assumed to understand. The standard methods that implement this protocol are
automatically supplicd by the flavor system unless the user specifically tells it not to do so. These
methods are associated with the flavor si:vanilla-flavor:

si:vanilla-flavor Flavor
Unless you specify otherwise (with the :no-vanilla-flavor option to defflavor), every
flavor includes the "vanilla” flavor, which has no instance variables but provides some
basic useful methods.

SRC:KL.MANDFLLAVOR.TEXT.101 24-JAN-83



[isp Machine Manual 349 _ Vanilla Flavor

:print-self swream prindepth slashify-p Operation

‘The object shouid output its printed-representation to a stream. ‘The printer sends this
message when it encounters an instance or an entity. The arguments are the stream, the
current depth in list-structure (for comparison with prinlevel), and whether slashification is
cnabled (prini vs princ; sec page 367). Vanilla-flavor ignores the last two arguments and
prints something like #<flavor-name octal-address>. 'The flavor-name tells you what type
of object it is and the octal-address allows you to tell different objects apart (provided the
garbage collector doesn’t move them behind your back).

:describe Operation
The object should describe itsclf, printing a description onto the standard-output stream.
The describe function sends this message when it encounters an instance or an entity.
Vanilla-flavor outputs in a reasonable format the object, the name of its flavor, and the
names and values of its instance-variables.

:which-operations Operation
The object should return a list of the operations it can handle. Vanilla-flavor generates
the list once per flavor and remembers it. minimizing consing and compute-time. If a
new method is added, the list is regenerated the next time someone asks for it.

:operation-handled-p operation Operation
operation is an operation name. The object should return t if it has a handler for the
specified opcration, nil if it does not.

:get-handler-for operation Operation
operation is an operation name. The object should rcturn the method i1t uscs {0 handle
operation. 1f it has no handier for that operation, it should return nil. This is like the
get-handler-for function (sce page 341), but, of course, you can use it only on objects
known (0 accept messages.

:send-if-handles operation &rest arguments Operation
operation is an operation name and arguments is a list of arguments for the operation. If
the object handles the operation, it should send itself a message with that operation and
arguments. If it doesn’t handle the operation it should just rcturn nil.

:eval-inside-yourself form Operation
The argument is a form that is evaluated in an environment in which special variables
with the names of the instance variables arc bound to the values of the instance variables.
It works to setq one of these special variables; the instance variable will be modified.
This is intended to be used mainly for debugging.

:funcall-inside-yourself function &rest args Operation
the instance variables are bound to the values of the instance variables. It works to setq
one of these special variables; the instance variable will be modified. This is a way of
allowing callers to provide actions to be performed in an environment sct up by the
instance.

SRCKIL.MAN>FLAVOR.TEXT.101 24-JAN-83



Mcthod Combination 350 1isp Machine Manual

:break Operation
break is called in an cnvironment in which special variables with the names of the
instance variables are bound to the valucs of the instance variables.

20.11 Method Combination

As was mentioned carlier, there are many ways to combine methods. The way we have seen
is called the :daemon type of combination. To usc onc of the others, you usc the :method-
combination option to defflavor (sce page 347) to say that all the methods for a certain operation
on this flavor, or any flavor built on it, should be combined in a certain way.

The following types of method combination arc supplied by the system. It is possible to
define your own types of method combination; for information on this, sce the code. Note that
for most types of method combination other than :daemon you must define the order in which
the methods are combined. cither :base-flavor-first or :base-flavor-iast, in the :method-
combination option. In this context, "basc-flavor” means the last clement of the flavor’s fully-

" expanded list of components.

A few mcthod types (:default, :around) have a universal meaning independent of the method
combination type. Aside from these, the method type keywords allowed vary depending on the
type of method combination seclected, and many combination types allow only untyped methods.
There are also certain method types used for internal purposes.

:daemon This is the default type of method combination. All the :before methods are
called, then the primary (untyped) method for the outermost flavor that has one is
called, then all the :after methods are called. The value returned is the value of
the primary method.

:daemon-with-or
This is like the :daemon mecthod combination type, except that the primary
method is wrapped in an :or special form with all :or methods. Multiple values
will be returned from the primary method, but not from the :or mcthods. This
will produce combined methods like this (simplificd to ignorc multiple values):

(progn (foo-before-method)

(or (foo-or-method)
(foo-primary-method))

(foo-after-method))

This is useful primarily for flavors in which a mixin introduces an alternative to
the primary method. Each :or method gets a chance to run before the primary
method and to decide whether the primary mcthod should be run or not; if any
:or method returns a non-nil value, the primary mcthod is not run (nor are the
rest of the :or methods). Note that the ordering of the combination of the :or
methods is controlled by the order keyword in the :method-combination option
to defflavor (see page 347).

:daemon-with-and
This is like :daemon-with-or except that it combines :and mecthods in an and
special form. The primary method will only be run if all of the :and mecthods

SRC:KL.MANDIFLAVOR.TEXT.101 24-JAN-83



|.isp Machine Manual 351 Method Combination

return non-nil values.

:daemon-with-override

:progn

or

:and

:append
:nconc

Jlist

sinverse-list

:pass-on

.case

This is like the :daemon method combination type, cexcept an or special form is
wrapped around the entire combined method with all :override typed methods
before the combined method. 'This differs from :daemon-with-or in that the
‘before and :after dacmons are run only if none of the :override methods returns
non-nil. ‘The combined method looks something like this:

(or {foo-override-method)
(progn (foo-before-method)
(foo-primary-method)
{foo-after-method)))

All the methods are called, inside a progn special form. No typed methods are
allowed. The result of the combined method is whatever the last of the methods
returns.

All the methods are called, inside an or special form. No typed methods are
allowed. This means that each of the mecthods is called in trn. If a method
returns a non-nil value, that value is returned and none of the rest of the
methods are called; otherwise, the next method is called. In other words, each
method is given a chance to handic the message; if it doesn’'t want to handie the
message, it should return nil, and the next method will get a chance to try.

All the methods are called, inside an and special form. No typed methods are
allowed. The basic idea is much like :or; see above.

All the methods are called, and the values are appended together.
All the methods are called, and the values are nconc’d together.

Calls all the methods and returns a list of their returned values. No typed
methods are allowed.

Calls cach method with one argument; these arguments are successive elements of
the list that is the sole argument to the operation. No typed methods are allowed.
Returns no particular value. If the result of a :list-combined operation is sent
back with an :inverse-list-combined operation, with the same ordering and with
corresponding method definitions, each component flavor receives the value that
came from that flavor.

Calls cach method on the values returned by the preceeding one. The values
returned by the combined method are those of the outermost call. The format of
the declaration in the defflavor is:

(:method-combination (:pass-on (ordering . arglist))
. operation-names)

Where ordering is :base-flavor-first or :base-flavor-last. arglist may include the
&aux and &optional keywords.

With :case mecthod combination, the combined method automatically does a
selectq dispatch on the first argument of the operation, known as the

SRC:KLMAN>FLAVOR.TEXT.101 24-JAN-83



Method Combination 352 |.isp Machine Manual

suboperation. Mcthods of type :case can be used, and cach onc specifies one
suboperation that it applics to. If no :case method matches the suboperation, the
primary method, if any, is called.

FExample:
(defflavor foo (a b) ()
(:method-combination (:case :base-flavor-last :win)))

‘This method will handie (send a-foo ":win ":a):
(defmethod (foo :case :win :a) ()

‘a)

‘This methoed will handle (send a-foo ":win :a*b):
(defmethod (foo :case :win :a*b) ()
(*+ ab))

‘This method will handle (send a-foo ":win ":something-else):
(defmethod (foo :win) (suboperation)
(1ist 'something-random suboperation))

:case mcthods are unusual in that onc flavor can have many :case methods for
the same operation, as long as they arc for different suboperations.

The suboperations :which-operations, :operation-handled-p, :send-if-handles
and :get-handler-for arc all handled automatically based on the collection of
:case mecthods that are present.

Mcthods of type :or arc also allowed. They arc called just before the primary
method, and if one of them returns a non-nil value, that is the value of the
operation, and no morc mecthods are called.

Here is a table of all the method types used in the standard system. A user can add more,
by defining new forms of method-combination.

(no type) If no type is given to defmethod, a primary mecthod is created. This is the most
common type of method.

:before

:after These are used for the before-dacmon and after-daemon methods used by
:daemon method-combination.

default If there are no untyped methods among any of the flavors being combined, then

the :default methods (if any) are treated as if they were untyped. If there are any
untyped mecthods, the :default mecthods are ignored.

Typically a base-flavor (see page 348) will define some default methods for certain
of the operations understood by its family. When using the default kind of
mcthod-combination these default methods will not be called if a flavor provides
its own method. But with certain strange forms of method-combination (:or for
cxample) the base-flavor uscs a :default method to achieve its desired effect.

SRCKILMAN>FLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 353 Mcthod Combination

or
:and

:override

.case

These arc used for :daemon-with-or and :daemon-with-and mcthod
combination. The :or methods arc wrapped in an or, or the :and mcthods are
wrapped in an and, together with the primary method, between the :before and
:after methods.

This allows the features of :or method-combination to be used together with
dacmons. If you specify method-combination type :daemon-with-override, you
may usc :override methods. The :override methods are exccuted first, until one
of them returns non-nil. 1f this happens, that method’s value(s) are rcturned and
no more methods are used. If all the :override methods return nil, the :before,
primary and :after methods are executed as usual.

In typical usages of this feature, the :override method usually returns nil and does
nothing, but in cxceptional circumstances it takes over the handling of the
operation.

:case methods are used by :case method combination.

These method types can be used with any method combination type: they have standard mcanings
independent of the method combination type being used.

.around

An :around method is able to control when, whether and how the remaining
methods will be exccuted. It is given a continuation that is a function that will
execute the remaining methods, and has complete responsibility for calling it or
not, and deciding what arguments to give it. For the simplest bchavior, the
arguments shouid be the operation name and opcialion arguinciis ihat Wie
:around method itself received; but somctimes the whole purpose of the :around
method is to modify the arguments before the remaining methods sec them.

The :around method receives three special arguments before the arguments of the
operation itself: the continuation, the mapping-table, and the original-argument-
list. The last is a list of the operation name and operation arguments. The
simplest way for the :around method to invoke the remaining methods is to do
(1expr-funcall-with-mapping-table

continuation mapping-table

original-argument-list)
In general, the continuation should be called with cither funcall-with-mapping-
table or lexpr-funcall-with-mapping-table, providing the continuation, the
mapping-table, and the operation name (which you know because it is the same as
in the defmethod), followed by whatever arguments the remaining methods are
supposed to see.

(deffiavor foo-one-bigger-mixin () ())
(defmethod (foo-one-bigger-mixin :around :set-foo)
(cont mt ignore new-foo0)
(funcall-with-mapping-table cont mt ’:set-foo
(1+ new-foo0}))
is a mixin which modifies the :set-foo operation so that the value actually used in

SRCKI.MAN>FLLAVOR.TEXT.101 24-JAN-83



Mecthod Combination 354 Lisp Machine Manual

it is onc greater than the value specified in the message.

:wrapper This type is used internally by defwrapper.

Note that if one flavor defines both a wrapper and an :around method for the
samc operation, the :around method is executed inside the wrapper.

:combined Used internally for automatically-generated combined methods.

The most common form of combination is :daemon. One thing may not be clear: when do
you usc a :before dacmon and when do you use an :after dacmon? In some cases the primary
method performs a clearly-defined action and the choice is obvious: :before :launch-rocket puts
in the fuel, and :after :launch-rocket turns on the radar tracking.

In other cascs the choice can be less obvious. Consider the :init message, which is sent to a
newly-created object. To decide what kind of dacmon to use, we observe the order in which
dacmon mcthods are called. First the :before dacmon of the highest level of abstraction is called,
then :before dacmons of successively lower levels of abstraction are called, and finally the :before
dacmon (if any) of the base flavor is called. Then the primary method is called. After that, the
:after dacmon for the lowest level of abstraction is called, followed by the :after dacmons at
successively higher levels of abstraction.

Now. if there is no interaction among all these methods, if their actions are completely
orthogonal. then it doesn’t matter whether you use a :before dacmon or an :after daemon. It
makes a difference if therc is some interaction. The interaction we arc talking about is usually
donc through instance variables; in general, instance variables are how the methods of different
component flavors communicate with each other. In the case of the :init opcration. the init-plist
can be used as well.  The important thing to remember is that no mcthod knows beforchand
which other flavors have been mixed in to form this flavor; a method cannot make any
assumptions about how this flavor has been combined, and in what order the various components
are mixed.

This means that when a :before dacmon has run, it must assume that none of the methods
for this opcration have run yet. But the :after dacmon knows that the :before dacmon for each
of the other flavors has run. So if one flavor wants to convey information to the other, the first
one should "transmit” the information in a :before dacmon, and the sccond one should "receive"
it in an :after dacmon. So while the :before dacmons are run, information is "transmitted": that
is, instance variables get set up. Then, when the :after dacmons are run, they can look at the
instance variables and act on their values.

In the case of the :init method, the :before daemons typically set up instance variables of the
object based on the init-plist, while the :after daemons actually do things, relying on the fact that
all of the instance variables have been initialized by the time they are called.

The problems become most difficult when you are creating a network of instances of various
flavors that arc supposed to point to each other. For cxample, suppose you have flavors for
"buffers” and "streams”, and cach buffer should be accompanied by a stream. If you create the
strcam in the tbefore :init method for buffers, you can inform the stream of its corresponding
buffer with an init keyword, but the stream may try sending messages back to the buffer, which
is not yet ready to be used. If you create the stream in the :after :init method for buffers, there

SRC:KLLMANDFLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 355 _ Implementation of Flavors

will be no problem with strcam creation, but some other :after :init methods of other mixins may
have run and made the assumption that there is to be no stream. The only way to guarantce
success is to create the strecam in a :before method and inform it of its associated buffer by
sending it a message from the buffer's :after :init method. This scheme—creating associated
objects in :before methods but linking them up in :after methods—often avoids problems,
because all the various associated objects used by various mixins will at least exist before anything
is donc with any of them.

Of course, since flavors arc not hicrarchically organized, the notion of levels of abstraction is
not strictly applicable. However, it remains a uscful way of thinking about systems.

20.12 Implementation of Flavors

An object that is an instance of a flavor is implemented using the data type dtp-instance.
The representation is a structure whose first word, tagged with dtp-instance-header, points to a
structure (known to the microcode as an "instance descriptor”) containing the internal data for the
flavor. The remaining words of the structure are value cells containing the values of the instance
variables. The instance descriptor is a defstruct that appears on the si:flavor property of the
flavor name. It contains, among other things, the name of the flavor, the size of an instance, the
table of methods for handling operations, and information for accessing the instance variables.

defflavor creates such a data structure for each flavor, and links them together according to
the dependency relationships between flavors.

A message iS sent 10 an insw@ance simpiy Dy caiiing it as a funciion, wiih Gic nusi arguinent
being the operation. The microcode binds self to the object and binds those instance variables
that arc defined to be special to the value cells in the instance. Then it passes on the operation
and arguments to a funcallable hash table taken from the flavor-structure for this flavor.

When the funcallable hash table is called as a function, it hashes the first argument (the
operation) to find a function to handle the operation and an array called a mapping table. The
variable sys:self-mapping-table is bound to the mapping table, which tells the microcode how
to access the other instance variables, those not defined to be special. Then the function is called.
If there is only one method to be invoked, this function is that method; otherwise it is an
automatically-generated function called the combined method (see page 332), which calls the
appropriate methods in the right order. If there are wrappers, they are incorporated into this
combined method.

The mapping table is an array whose elements correspond to the instance variables which can
be accessed by the flavor to which the currently executing method belongs. Each clement contains
the position in self of that instance variable. This position varies with the other instance variables
and component flavors of the flavor of seif.

Each time the combined method calls another method, it scts up the mapping table required
by that method—not in general the same one which the combined method itsclf uses. The
mapping tables for the called methods are extracted from the array leader of the mapping table
used by the combined method, which is kept in a local variable of the combined method’s stack
frame while sys:self-mapping-table is set to the mapping tables for the component methods.

SRCKLMAN>FLAVOR.TEXT.101 24-]JAN-83



Implementation of Flavors 356 |.isp Machine Manual

sys:self-mapping-table Variable
This variable holds the current mapping table, which tclls the running flavor method
where in self to find cach instance variable.

Ordered instance variables are referred to directly without going through the mapping table.
This is a little faster, and reduces the amount of space nceded for mapping tables. It is also the
reason why compiled code contains the positions of the ordered instance variables and must be
recompiled when they change.

20.12.1 Order of Definition

There is a certain amount of freedom to the order in which you do defflavor’s, defmethod’s,
and defwrapper’s. This frcedom is designed to make it easy to load programs containing complex
flavor structures without having to do things in a certain order. It is considered important that
not all the mecthods for a flavor nced be defined in the same file. Thus the partitioning of a
program into files can be along modular lines.

The rules for the order of definition are as follows.

Before a method can be defined (with defmethod or defwrapper) its flavor must have been
defined (with defflavor). This makes sense because the system has to have a place to remember
the method, and because it has to know the instance-variables of the flavor if the method is to be
compiled.

When a flavor is defined (with defflavor) it is not necessary that all of its component flavors
be defined alrcady. This is to allow defflavor’s to be spread between files according to the
modularity of a program, and to provide for mutually-dependent flavors. Methods can be defined
for a flavor some of whose component flavors arc not yet defined; however, in certain cases
compiling those methods will produce a warning that an instance variable was declared special
(because the system did not realize it was an instance variable). If this happens, you should fix
the problem and recompile.

The methods automatically generated by the :gettable-instance-variables and :settable-
instance-variables defflavor options (sce page 342) are generated at the time the defflavor is
done.

The first time a flavor is instantiated, or when compile-flavor-methods is done, the system
looks through all of the component flavors and gathers various information. At this point an error
will be signalled if not all of the components have been defflavor'ed. This is also the time at
which certain other errors are detected, for instance lack of a required instance-variable (see the
:required-instance-variables defflavor option, page 344). The combined methods (see page 332)
are generated at this time also, unless they already exist.

After a flavor has been instantiated, it is possible to make changes to it. These changes will
affect all existing instances if possible. This is described more fully immediately below.

SRCKLMAN>FLLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 357 Entities

20.12.2 Changing a Flavor

You can change anything about a flavor at any time. You can change the flavor’s general
attributes by doing another defflavor with the same name. You can add or modify mcthods by
doing defmethod’s. If you do a defmethod with the same flavor-name, operation (and
suboperation if any), and (optional) method-type as an existing method, that method is replaced
by the new definition. You can remove a method with undefmethod (sce page 338).

These changes will always propagate to all flavors that depend upon the changed flavor.
" Normally the system will propagate the changes to all existing instances of the changed flavor and
all flavors that depend on it. However, this is not possible when the flavor has been changed so
drastically that the old instances would not work properly with the new flavor. This happens if
you change the number of instance variables, which changes the size of an instance. It also
happens if you change the order of the instance variables (and hence the storage layout of an
instance). or if you change the component flavors (which can change several subtle aspects of an
instance). The system docs not keep a list of all the instances of cach flavor, so it cannot find
the instances and modify them to conform to the new flavor definition. Instcad it gives you a
warning message, on the error-output strcam, to the effect that the flavor was changed
incompatibly and the old instances will not get the new version. The system leaves the old flavor
data-structure intact (the old instances will continue to point at it) and makes a new one to
contain the new version of the flavor. If a less drastic change is made, the system modifies the
original flavor data-structure, thus affecting the old instances that point at it. However, if you
redefine methods in such a way that they only work for the new version of the flavor, then trying
to use those methods with the old instances won’t work.

20.12.3 Restrictions

There is presently an implementation restriction that when using daemons, the primary
method may return at most three values if there are any :after daemons. This is because the
combined method necds a place to remember the values while it calls the dacmons. This will be
fixed some day.

20.13 Entities

An entity is a Lisp object; the entity is one of the primitive datatypes provided by the Lisp
Machine system (the data-type function (see page 201) will return dtp-entity if it is given an
entity). Entities are just like closures: they have all the same attributes and functionality. The
only difference between the two primitive types is their data type: ecntities are clearly
distinguished from closures because they have a different data type. The reason there is an
important difference between them is that various parts of the (not so primitive) Lisp system treat
them differently. The Lisp functions that deal with entities are discussed in section 11.4, page
185.

A closure is simply a kind of function, but an entity is assumed to be a message-receiving
object. Thus, when the Lisp printer (see section 212.1, page 367) is given a closure, it prints a
simple textual representation, but when it is handed an entity, it sends the entity a :print-self
message, which the entity is expected to handle. The describe function (sec page 641) aiso sends

SRC:KI.MAN>FLAVOR.TEXT.101 24-JAN-83



Useful Editor Commands 358 LLisp Machine Manual

entitics messages when it is handed them. So when you want to make a message-receiving object
out of a closure, as described on page 327, you should usc an entity instead.

Usually there is no point in using entities instcad of flavors. Flavors have had considerably
more attention paid to their cfficiency and to good tools for using them. If what you are doing is
flavor-like, it is better to use flavors.

Entities are created with the entity function (see page 185). The function part of an entity
should usually be a function created by defselect (sce page 167).

20.14 Useful Editor Commands

Since we presently lack an editor manual, this scction briefly documents some editor
commands that are useful in conjunction with flavors.

Meta-.
The Meta-. (Edit Definition) command can find the definition of a flavor in the same
way that it can find the definition of a function.

Edit Definition can find the definition of a method if you it a suitable function spec
starting with :method. The keyword :method may be omitted if the definition is in the
cditor alrcady. Completion will occur on the flavor name and operation name as usual.

Meta-X Describe Flavor

Asks for a flavor name in the mini-buffer and describes its characteristics.  When typing
the flavor name you have completion over the names of all defined flavors (thus this
command can be used to aid in guessing the name of a flavor). The display produced is
mouse sensitive where there are names of flavors and of methods; as usual the right-hand
mousc button gives you a menu of operations and the left-hand mouse button does the
most common operation, typically positioning the editor to the source code for the thing
you are¢ pointing at.

Meta-X List Methods

Meta-X Edit Methods
Asks you for an operation in the mini-buffer and lists all the flavors that have a method
for that operation. You may type in the operation name, point to it with the mouse, or
let it default to the operation of the message being sent by the Lisp form the cursor is
on. List Methods produces a mousec-sensitive display allowing you to edit selected
methods or just to see which flavors have methods, while Edit Methods skips the display
and proceeds directly to editing the methods.

As usual with this type of command, the editor command Control-Shift-P will advance
the editor cursor to the next method in the list, reading in its source file if necessary.
Typing Control-Shift-P, while the display is on the screen, cdits the first method.

In addition, you can find a copy of the list in the cditor buffer *Possibilities*. While in
that buffer, the command Control-/ will visit the definition of the method described on
the line the cursor is pointing at.

SRC:KIL.MAN>FLLAVOR.TEXT.101 24-JAN-83



Lisp Machine Manual 359 Property List Opcrations

These techniques of moving through the objects listed apply to all the following
commands as well.

Meta-X List Combined Methods

Meta-X Edit Combined Methods
Asks you for an operation name and a flavor in two mini-buffers and lists all the methods
that would be called to handle that operation for an instance of that flavor.

List Combined Methods can be very useful for telling what a flavor will do in response
to a message. It shows you the primary method, the dacmons, and the wrappers and lets
you see the code for all of them; type Control-Shift-P to get to successive oncs.

Meta-X List Flavor Components
Meta- X Edit Flavor Components
Asks you for a flavor and lists or begins visiting all the flavors it depends on.

Meta-X List Flavor Dependents
Meta-X Edit Flavor Dependents
Asks you for a flavor and lists or begins visiting all the flavors which depend on it.

Meta-X List Flavor Direct Dependents
Meta-X Edit Flavor Direct Dependents
Asks you for a flavor and lists or begins visiting all the flavors which depend on it.

Meta-X List Flavor Methods
Meta-X Edit Flavor Methods
Asks you for a flavor and lists or begins visiting all the methods defined for that flavor.

STin Aonn ancnt temnlinda i atlaade dndharitad Fraos it anmaemanant Aogarc )
L LD UULD HIUL LIVIUUL LHIVHIUUD BV 1LV W) VUITH P ULV U T UL O )

20.15 Property List Operations

It is often useful to associate a property list with an abstract object, for the same rcasons that
it is useful to have a property list associated with a symbol. This section describes a mixin flavor
that can be used as a component of any new flavor in order to provide that new flavor with a
property list. For more details and examples, sec the general discussion of property lists (section
5.9, page 81). The usual property list functions (get, putprop, etc.) all work on instances by
sending the instance the corresponding message.

si:property-list-mixin Flavor
This mixin flavor provides the basic operations on property lists.

:get property-name Operation on si:property-list-mixin
The :get operation looks up the object’s property-name property. If it finds such a
property, it returns the value; otherwise it returns nil.

:get1 property-name-list Operation on si:property -list-mixin
The :getl operation is like the :get operation, except that the argument is a list of
property names. The :getl operation searches down the property list untl it finds a
property whose property name is one of the elements of property-name-list. It returns the
portion of the property list begining with the first such property that it found. If i
doesn’t find any, it returns nil.

SRC:KLMAN>FLAVOR.TEXT.101 24-JAN-83



Printing Flavor Instances Readably 360 Lisp Machine Manual

:putprop value properiy-name Operation on si:property-list-mixin
‘This gives the object an property-name property of value.

:TremMprop property-name Operation on si:property - list-mixin
This removes the object’s property-name property, by splicing it out of the property list.
It returns one of the cells spliced out, whose car is the former value of the property that
was just removed. If there was no such property to begin with, the value is nil.

:get-location property-name Operation on si:property -list-mixin
Returns a locative pointer to the cell in which this object's property-name property is
stored. If there is no such property, a cell is added to the property list and initialized to
nil, and a pointer to that cell is returned. This operation never returns nil.

:push-property value property-name Operation on si:property-list-mixin
The property-name property of the object should be a list (note that nil is a list and an
absent property is nil). This operation sets the property-name property of the object to a
list whose car is value and whose cdr is the former property-name property of the list.
This is analogous to doing
(push value (get object property-name))
See the push special form (page 272).

:property-list Operation on si:property-list-mixin
This returns the list of alternating property names and values that implements the property
list.

:property-list-location Operation on si:property - list-mixin
This returns a locative pointer to the cell in the instance which holds the property list
data.

:set-property-list list Operation on si:property-list-mixin

This scts the list of alternating property names and values that implements the property
list to list.

:property-list Iist (Init option for si:property-list-mixin)
This initializes the list of alternating property names and values that implements the
property list to Zist.

20.16 Printing Flavor Instances Readably

A flavor instance can print out so that it can be read back in, as long as you give it a :print-
self mcthod that produces a suitable printed representation, and provide a way to parse it. The
convention for doing this is to print as

#cflavor-name additional-data>
and make sure that the flavor defines or inherits a :read-instance method that can parse the
additional-data and return an instance (see page 377). A convenient way of doing this is to use
si:print-readably-mixin,

SRCKL.MAN>FLAVOR.TEXT.101 : 24-JAN-83



Lisp Machine Manual 361 _ Printing Flavor Instances Readably

si:print-readably-mixin Flavor
This mixin provides for flavor instances to print out using the #c syntax, and also for
reading things that were printed in that way.

:reconstruction-init-plist Operation on si:print-readably -mixin
When vou use si:print-readably-mixin. vou must define the operation :reconstruction-
init-plist. This should return an alternating list of init options and values that could be
passed to make-instance to crcate an instance "like” this onc.

SRCKI.MAN>FLLAVOR.TEXT.101 24-JAN-83



	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361

