The 170 System 362 1.isp Machinc Manual

21. The 170 System

Zetalisp provides a powerful and flexible system for performing input and output to peripheral
devices. To allow device independent 170 (that is. to allow programs to be written in a general
way so that the program’s input and output may be connccted with any device), the Zetalisp 170
system provides the concept of an "I/0 stream”. Strcams, their usage, and their implementation
arc described in this chapter. This chapter also describes the Lisp "1/0" operations read and
print and the printed representation they use for Lisp objects.

2] .1 The Character Set

Zctalisp represents characters as fixnums. The Lisp Machine's mapping between these numbers
and the characters is listed here. The mapping is similar to ASCIl, but somewhat modified to
allow the use of the so-called SAIL cxtended graphics, while avoiding certain ambiguities present
in ITS. For a long time ITS treated the Backspace. Control-H, and A keys on the keyboard
. identically as character code 10 octal; this problem is avoided from the start in the Lisp
Machine’s mapping,

It is worth pointing out that although the Zetalisp character set is different from the PDP-10
character set, when files are transferred between Lisp Machines and PDP-10's the characters are
automatically converted. Details of the mapping are explained below.

Fundamental characters arc cight bits wide. Only those less than 200 octal (with the 200 bit
off) arc printing graphics; when output to a device they are assumed to print a character and
move the "cursor” one character position to the right. (All software provides for variable-width
fonts, so the term "character position” shouldn’t be taken too literally.)

Characters in the range of 200 to 236 inclusive are used for special characters. Character 200
is a "null character”, which does not correspond to any key on the keyboard. The null character
is not used for anything much; fasload uses it internally. Characters 201 through 236 correspond
to the special function keys on the keyboard such as Return and Call. The remaining characters
are reserved for future expansion.

It should never be necessary for a user or a source program to know these numerical values.
Indeed, they are likely to be changed in the future. There are symbolic names for all characters:
see below.

Most of the special characters do not normally appear in files (although it is not forbidden for
files to contain them). These characters exist mainly to be used as "commands” from the
keyboard.

A few special characters, however, are "format cffectors” which are just as legitimate as
printing characters in text files. The names and meanings of these characters are:

Return The "newline” character, which scparates lines of text. We do not use the PDP-
10 convention which scparates lines by a pair of characters, a "carriage return”
and a "linefeed”.

SRC:KL.MAN>IOS.TEXT.210 24-JAN-83

Lisp Machine Manual 363 The Character Set

Page The "page separator” character, which scparates pages of text.

Tab The "tabulation” character, which spaces to the right until the next “"tab stop™.
Tab stops arc normally cvery 8 character positions.

The space character is considered to be a printing character whose printed image happens to be

blank, rather than a format cffector.

In some contexts, a fixnum can hold both a character code and a font number for that
character. The following byte specifiers are defined:

~ 4%ch-char Variable
The value of %%ch-char is a byte specifier for the field of a fixnum character that holds
the character code.

%%ch-font Variable
The value of %%ch-font is a byte specifier for the ficld of a fixnum character that holds
the font number.

Characters read in from the keyboard include a character code and control bits. A character
cannot contain both a font number and control bits, since these data are both stored in the same
bits. The following byte specifiers are provided:

%%kbd-char Variable
The value of %%kbd-char is a byte specifier for the field of a keyboard character that
holds the normal cight-bit character code.

%%kbd-control Variable
The value of %%kbd-control is a byte specifier for the field of a keyboard character that
is 1 if cither Controi key was held down.

%%kbd-meta ‘ Variable
The value of %%kbd-meta is a byte specifier for the field of a keyboard character that is
1 if either Meta key was held down.

%%kbd-super Variable
The value of %%Kkbd-super is a byte specifier for the field of a keyboard character that
is 1 if either Super key was held down.

%%kbd-hyper Variable
The value of %%kbd-hyper is a byte specifier for the field of a keyboard character that
is 1 if either Hyper key was held down.

This bit is also set if Control and/or Meta is typed in combination with Shift and a
letter. Shift is much easier than Hyper to reach with the left hand.

SRC:KI..MAN>IOS.TEXT.210 24-JAN-83

The Character Set 364 Lisp Machine Manual

%%kbd-control-meta Variable
The value of %%kbd-control-meta is a byte specifier for the four-bit ficld of a keyboard
character that contains the above control bits. The least-significant bit is Control. The
most significant bit is Hyper.

The following ficlds are used by some programs that encode signals from the mouse in a the
format of a character. Refer to the window system documentation for an explanation of how
these characters are generated.

%%kbd-mouse Variable
The value of %%kbd-mouse is a byte specifier for the bit in a keyboard character that
indicates that the character is not really a character, but a signal from the mouse.

%%kbd-mouse-button Variable
The value of %%kbd-mouse-button is a byte specifier for the field in a mouse signal
that says which button was clicked. The value is 0, 1, or 2 for the left, middle, or right
button, respectively.

%%kbd-mouse-n-clicks Variable
The value of %%kbd-mouse-n-clicks is a byte specifier for the ficld in a mouse signal
that says how many times the button was clicked. The value is one less than the number
of times the button was clicked.

When any of the control bits (Control, Meta. Super, or Hyper) is set in conjunction with a
letter, the letter will always be upper-case. The character codes that consist of a lower-case letter
and non-zero control bits are "holes” in the character set which are never used for anything.
Note that when Shift is typed in conjuction with Control and/or Meta and a letter, it means
Hyper rather than Shift.

Since the control bits are not part of the fundamental 8-bit character codes, there is no way
to express keyboard input in terms of simple character codes. However, there is a convention
accepted by the relevant programs for encoding keyboard input into a string of characters: if a
character has its Control bit on, prefix it with an alpha. If a character has iis Meta bit on,
prefix it with a beta. If a character has both its Control and Meta bits on, prefix it with an
epsilon. 1f a character has its Super bit on, prefix it with a pi. If a character has its Hyper bit
on, prefix it with a lambda. To get an alpha, beta, cpsilon, pi, lambda, or equivalence into the
string, quotc it by prefixing it with an equivalence.

When characters are written to a file server computer that normally uses the ASCII character
sct to store text, Lisp Machine characters are mapped into an encoding that is rcasonably close to
an ASCII transliteration of the text. When a file is written, the characters are converted into this
encoding; the inverse transformation is done when a file is read back. No information is lost.
Note that the length of a file, in characters, will not be the same measured in original Lisp
Machine characters as it will measured in the encoded ASCII characters. In the currently
implemented ASCII file servers, the following encoding is used. All printing characters and any
characters not mentioned cxplicitly here are represented as themsclves. Codes 010 (lambda), 011
(gamma), 012 (declta), 014 (plus-minus), 015 (circle-plus), 177 (intcgral), 200 through 207
inclusive, 213 (Delete), and 216 and anything higher, are preceded by a 177; that is, 177 is used
as a "quoting character” for thesc codes. Codes 210 (Overstrike), 211 (Tab), 212 (Line), and

SRC:KI.MAN>IOS.TEXT.210 24-JAN-83

1.isp Machine Manual 365 The Character Set

214 (Page). are converted to their ASCII cognates, namely 010 (backspace), 011 (horizontal tab),
012 (linc feed). and 014 (form feed) respectively. Code 215 (Return) is converted into 015
(carriage return) followed by 012 (line feed). Code 377 is ignored completely, and so cannot be
stored in files.

SRC:K1.MANDIOS.TEXT.210 24-JAN-83

The Character Set 366
000 center-dot (-) 040 space
001 down arrow (4) 041 !
002 alpha (a) 042 "
003 beta (B) 043 #
004 and-sign (a) 044 §
005 not-sign (-) 045 %
006 epsilon (e) 046 &
007 pi (=) 047 ~
010 Tambda (A) 050 (
011 gamma (vy) 051)
012 delta (4) 052 =
013 uparrow (1) 063 +
014 plus-minus () 054
015 circle-plus (o) 055 -
016 infinity (=) 056 .
017 partial delta (3) 057 /
020 left horseshoe (c) 060 0
021 right horseshoe (2) 061 1
022 up horseshoe (N) 062 2
023 down horseshoe (U) 063 3
024 universal quantifier (V) 064 4
025 existential quantifier (3) 065 5
026 circle-X (&) 066 6
027 double-arrow () 067 7
030 left arrow («) 070 8
031 right arrow (=) 071 9
032 not-equals (=) 072 :
033 diamond (altmode) (¢) 073 ;
034 less-or-equal (<) 074 <
035 greater-or-equal (2) 075 =
036 equivalence (=) 076 >
037 or (v) 077 ?
200 Null character Overstrike
201 Break Tab

202 Clear Line

203 Call Delete
204 Terminal escape Page

205 Macro/backnext Return
206 Help Quote

207 Rubout Hold-output

237-377 reserved for the future

SRC:KI.MAN>IOS. TEXT.210

220
221
222
223
224
225
226
227

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137 _
Stop-output
Abort
Resume
Status
End
Roman-i
Roman-ii
Roman-iii

P AFM NS X ECCAWVMIOC VDO ErXRXRGQURIOMMOODI D

The Lisp Machine Character Set

i.isp Machine Manual

140
141
142
143
144
145
146
147
150
151
152
1563
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177 [
230 Roman-iv
231 Hand-up
232 Hand-down
233 Hand-left
234 Hand-right
235 System
236 Network

U —rAA N X €£ € C c+® 90O T O 3 [wd Nl = TE@ ~HhO® QO O T

24-JAN-83

Lisp Machinc Manual 367 Printed Representation

21.2 Printed Representation

People cannot deal dircctly with Lisp objects, because the objects live inside the machine. In
order to let us get at and talk about Lisp objects, Lisp provides a representation of objects in the
form of printed text; this is called the printed representation. This is what you have been secing
in the examples throughout this manual. Functions such as print, prin1, and princ take a Lisp
object and send the characters of its printed representation to a strecam. ‘These functions (and the
internal functions they call) are known as the printer. The read function takes characters from a
strcam, interprets them as a printed representation of a Lisp object, builds a corresponding object,
and returns it; it and its subfunctions are known as the reader. (Streams are explained in section
21.5, page 391)

This section describes in detail what the printed representation is for any Lisp object, and just
what read docs. For the rest of the chapter, the phrase "printed representation” will usually be
abbreviated as "p.r."

21.2.1 What the Printer Produces

The printed representation of an object depends on its type. In this section, we will consider
cach type of object and explain how it is printed.

Printing is done cither with or without slashification. The non-slashified version is nicer
looking in general, but if you give it to read it won't do the right thing. The slashified version is
carefully st up so that read will be able to read it in. The primary effects of slashification are
that special characters used with other than their normal meanings (e.g. a parenthesis appearing 1n
the name of a symbol) are preceded by slashes or cause the name of the symbol to be enclosed
in vertical bars, and that symbols that are not from the current package get printed out with their
package prefixes (a package prefix looks like a symbol followed by a colon).

For a fixnum or a bignum: if the number is negative, the printed representation begins with
a minus sign ("-"). Then the value of the variable base is cxamined. If base is a positive
fixnum, the number is printed out in that base (base defaults to 8). If it is a symbol with a
si:princ-function property, the value of the property will be applied to two arguments: minus of
the number to be printed, and the stream to which to print it (this is a hook to allow output in
Roman numerals and the like). Otherwise the value of base is invalid and an error is signalled.
Finally, if base cquals 10. and the variable *nopoint is nil, a decimal point is printed out.
Slashification does not affect the printing of numbers.

base Variable
The value of base is a number that is the radix in which fixnums are printed, or a
symbol with a si:princ-function property. The initial value of base is 8.

*nopoint Variable
If the value of *nopoint is nil, a trailing decimal point is printed when a fixnum is
printed out in base 10. This allows the numbers to be read back in correctly even if
ibase is not 10. at the time of reading. If *nopoint is non-nil, the trailing decimal
points are suppressed. The initial value of *nopoint is nil.

SRCKL.MAN>IOS.TEXT.210 24-JAN-83

Printed Representation 368 1.isp Machine Manual

For a flonum: the printer first decides whether to use ordinary notation or exponential
notation. If the magnitude of the number is too large or too small, such that the ordinary
notation would require an unrcasonable number of leading or trailing zeroes, then exponential
notation will be used. "The number is printed as an optional leading minus sign, onc or more
digits, a decimal point. one or more digits, and an optional trailing exponent. consisting of the
letter e, an optional minus sign, and the power of ten. The number of digits printed is the
“correct” number; no information present in the flonum is lost and no extra trailing digits are
printed that do not represent information in the flonum. Feeding the pr. of a flonum back to the
reader is always supposcd to produce an cqual flonum. Flonums arc always printed in decimal;
they arc not affected by slashification or by base and *nopoint.

For a small flonum: the printed representation is very similar to that of a flonum, except that
exponential notation is always used and the exponcnt is delimited by s rather than e.

For a rationalnum: the printed representation consists of the numerator, a backslash, and the
denominator. For example, the value of (rationalize .5) is printed as 1\2.

For a complexnum: the printed representation consists of the real part, the character +, the
imaginary part, and the character i. At the present, they cannot be read back in, and perhaps
the printed representation will be changed.

For a symbol: if slashification is off, the p.r. is simply the successive characters of the print-
name of the symbol. If slashification is on, two changes must be made. First, the symbol might
require a package prefix in order that read work correctly. assuming that the package into which
read will read the symbol is the onc in which it is being printed. See the section on packages
(chapter 24, page 506) for an cxplanation of the package name prefix. Secondly, if the p.r. would
not read in as a symbol at all (that is, if the print-name looks like a number, or contains special
characters), then the p.r. must have some quoting for those characters, either by the use of
slashes (/) before each special character, or by the usc of vertical bars (]) around the whole
name. The decision whether quoting is required is done using the readtable (see section 21.2.6,
page 379), so it is always accurate provided that readtable has the same value when the output is
read back in as when it was printed.

For a string: if slashification is off, the p.r. is simply the successive characters of the string.
If slashification is on, the string is printed between double quotes and any characters inside the
string that need to be preceded by slashes will be. Normally these arc only double-quote and
slash. Compatibly with Maclisp, carriage return is not ignored inside strings and vertical bars.

For an instance or an entity: if the object has a method for the :print-self message, that
message is sent with three arguments: the stream to print to, the current depth of list structure
(sce below). and whether slashification is enabled. The object should print a suitable p.r. on the
stream. Sce chapter 20, page 321 for documentation on instances. Most such objects print like
"any other data type" below, except with additional information such as a name. Some objects
print only their name when slashification is not in effect (when princ’ed). Some objects, including
pathnames, use a printed representation that begins with #c, ends with 5, and contains sufficient
information for the reader to reconstruct an equivalent object. See page 377.

SRC:KL.MAN>IOS.TEXT.210 24-JAN-83

Lisp Machine Manual 369 Printed Representation

For an array that is a named structure: if the array has a named structure symbol with a
named-structure-invoke property that is the name of a function, then that function is called on
five arguments: the symbol :print-self, the object itself, the stream to print to, the current depth
of list structure (scc below), and whether slashification is cnabled. A suitable printed
representation shouid be sent to the strcam. This aillows a user to define his own p.r. for his
named structures; more information can be found in the named structure scction (sce page 312).
Typically the printed representation used will start with cither #< if it is not supposed to be
readable, or with #c (see page 377) if it is supposed to be readable.

If the named structure symbol docs not have a named-structure-invoke property, the
printed-representation is like the p.r. for random data-types: a number sign and a less than sign,
the named structure symbol, the numerical address of the array, and a greater than sign.

Other arrays: the pr. starts with a number sign and a less-than sign. Then the “art-"
symbol for the array type is printed. Next the dimensions of the array are printed, separated by
hyphens. This is followed by a space, the machine address of the array, and a greater-than sign.

Conses: The p.r. for conses tends to favor fists. It starts with an open-parenthesis. Then the
car of the cons is printed and the cdr of the cons is examined. If it is nil, a close-parenthesis is
printed. If it is anything clse but a cons, space dot space followed by that object is printed. If it
is a cons, we print a space and start all over (from the point after we printed the open-
parenthesis) using this new cons. Thus, a list is printed as an open-parenthesis, the p.r.’s of its
elements separated by spaces, and a close-parenthesis. '

This is how the usual printed representations such as (a b (foo bar) c) are produced.

The following additional feature is provided for the p.r. of conses: as a list is printed, print
maintains the length of the list so far and the depth of recursion of printing lists. If the length
exceeds the value of the variable prinlength, print will terminate the printed representation of the
list with an ellipsis (three periods) and a close-parenthesis. If the depth of recursion exceeds the
value of the variable prinlevel, then the list will be printed as "**". These two features allow a
kind of abbreviated printing that is more concise and suppresses detail. Of course, neither the
ellipsis nor the "**" can be interpreted by read, since the relevant information is lost.

prinlevel : Variable
prinlevel can be set to the maximum number of nested lists that can be printed before
the printer will give up and just print a "**". If it is nil, which it is initially, any
number of nested lists can be printed. Otherwise, the value of prinlevel must be a

fixnum.

prinlength Variable
prinlength can be set to the maximum number of elements of a list that will be printed
before the printer will give up and print a "..". If it is nil, which it is initiaily, any

length list may be printed. Otherwise, the value of prinlength must be a fixnum.

For any other data type: The printed representation starts with #< and ends with >. This
sort of printed representation cannot be read back in. The #< is followed by the "dtp-" symbol
for this datatype, a space, and the octal machine address of the object. The object’s name, if
one can be determined, often appcars before the address. If this style of printed representation is

SRC:KLMANDIOS.TEXT210 24-JAN-83

Printed Representation 370 Lisp Machine Manual

being used for a named structure or instance, other interesting information may appear as well.
Finally a greater-than sign (>) is printed.

Including the machine address in the p.r. makes it possible to tell two objects of this kind
apart without cxplicitly calling eq on them. This can be very uscful during debugging. It is
important to know that if garbage collection is turned on, objects will occasionally be moved, and
thercfore their octal machine addresses will be changed. It is best to shut off garbage collection
temporarily when depending on these numbers.

Printed representations that start with " #<" can never be read back. This can be a problem
if, for example, you arc printing a structure into a file with the intent of reading it in later. The
following feature allows you to make sure that what you are printing may indeed be read with the
reader.

si:print-readably Variable
When sicprint-readably is bound to t, the printer will signal an crror if there is an
attempt to print an object that cannot be interpreted by read. When the printer sends a
‘print-self or a :print message, it assumes that this crror checking is done for it. Thus it
is possible for these messages not to signal an error, if they see fit.

si:printing-random-object (vbject stream . keywords) &body body Macro
The vast majority of objects that define :print-self messages have much in common. This
macro is provided for convenience so that users do not have to write out that repetitious
code. It is also the preferred interface to si:print-readably. With no keywords,
si:printing-random-object checks the value of si:print—reﬁldably and signals an error if it
is not nil. It then prints a number sign and a less-than sign, cvaluates the forms in body,
then prints a space. the octal machine address of the object and a greater-than sign. A
typical use of this macro might look like:
(si:printing-random-object (ship stream)

(princ (typep ship) stream)

(tyo #\space stream)

(prinl (ship-name ship) stream))
This might print # <ship "ralph" 23655126,

The following keywords may be used to modify the behaviour of si:printing -random -object:

:no-pointer This suppresses printing of the octal address of the object.

‘typep This prints the result of (typep objecr) after the less-than sign. In the cxample
above, this option could have been used instead of the first two forms in the
body.

sys:print-not-readable (error) Condition
This condition is signaled by si:print-readably when the object cannot be printed
readably.

The condition instance supports the operation :object, which returns the object that was
being printed.

SRC:KLLMAN>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 37 Printed Representation

If you want to control the printed representation of some object, usually the right way to do
it is to make the object an array that is a named structure (sce pagc 312), or an instance of a
flavor (scc chapter 20, page 321). However, occasionally it is desirable to get control over all
printing of objects, in order to change, in some way, how they are printed. If you nced to do
this, the best way to proceed is to customize the behavior of siiprint-object (sce page 431),
which is the main internal function of the printer. All of the printing functions, such as print
and princ, as well as format, go through this function. The way to customize it is by using the
"advice" facility (sce section 27.10, page 592).

21.2.2 What The Reader Accepts

The purpose of the reader is to accept characters, interpret them as the p.r. of a Lisp object,
and return a corresponding Lisp object. The reader cannot accept cverything that the printer
produces; for example, the p.r.’s of arrays (other than strings), compiled code objects, closures,
stack groups, etc.. cannot be read in. However, it has many features that arec not seen in the
printer at all, such as more flexibility, comments, and convenient abbreviations for frequently-used
unwicldy constructs.

This section shows what kind of p.r’s the reader understands, and explains the readtable,
reader macros, and various features provided by read.

In general, the reader operates by recognizing tokens in the input stream. Tokens can be self-
delimiting or can be scparated by delimiters such as whitespace. A token is the p.r. of an atomic
object such as a symbol or number, or a special character such as a parenthesis. The reader reads
one of more tokens untii the compicte p.r. of an ‘object has been seen, Uich Consiiucis and
returns that object.

The reader understands the p.r’s of fixnums in a way more general than is employed by the
printer. Here is a complete description of the format for fixnums.

Let a simple fixnum be a string of digits, optionally preceded by a plus sign or a minus sign,
and optionally followed by a trailing decimal point. A simple fixnum will be interpreted by read
as a fixnum. If the trailing decimal point is present, the digits will be interpreted in decimal
radix; otherwise, they will be considered as a number whose radix is the value of the variable
ibase.

ibase Variable
The value of ibase is a number that is the radix in which fixnums are read. The initial
value of ibase is 8.

read will also understand a simple fixnum, followed by an underscore ("_") or a circumflex
("~"), followed by another simple fixnum. The two simple fixnums will be interpreted in the
usual way; the character in between indicates an operation that will then performed on the two
fixnums. The underscore indicates a binary "left shift"; that is, the fixnum to its left is doubled
the number of times indicated by the fixnum to its right. The circumflex multiplics the fixnum to
its left by ibase the number of times indicated by the fixnum to its right. (The sccond simple
fixnum is not allowed to have a leading minus sign.) Examples: 645_6 means 64500 (in octal)
and 645~3 mecans 645000.

SRC:K1.MAN>IOS.TEXT.210 ‘ 24-JAN-83

Printed Representation 372 Iisp Machine Manual

Here are some cxamples of valid representations of fixnums to be given to read:
4
23456,
-546
+45~+6
2_11

The syntax for bignums is identical to the syntax for fixnums. A number is a bignum rather
than a fixnum if and only if it is too large to be represented as a fixnum. Here are some
cxamples of valid representations of bignums:

72361356126536125376512375126535123712635
-123456789.

1056_1000

105_1000.

The syntax for a flonum is an optional plus or minus sign, optionally some digits, a decimal
point, and onc or more digits. Such a flonum or a simple fixnum. followed by an "e" (or "E")
and a simple fixnum. is also a flonum; the fixnum after the "e" is the exponent of 10 by which
the number is to be scaled. (The exponent is not allowed to have a trailing decimal point.) If the
exponent is introduced by "s" (or "S") rather than "e”, the number is a small-flonum. Here are
some cxamples of printed-representations that read as flonums:

0.0

1.5

14.0
0.01
.707

-.3
+3.14159
6.03e23
1E-9
1.e3

Here are some examples of printed-representations that read as small-flonums:
0s0
1.5s9
-42S3
1.s5

The syntax for a rationalnum is an integer, a backslash, and another integer. Here are
examples:
2
100000000000000\3

A string of letters, numbers, and "ecxtended alphabetic” characters is recognized by the reader
as a symbol, provided it cannot be interpreted as a number. Alphabetic case is ignored in
symbols; lower-case letters arc translated to upper-case. When the reader sees the pr. of a
symbol, it interns it on a package (sec chapter 24, page 506, for an explanation of interning and
the package system). Symbols may start with digits; you could even have one named -345T;
read will accept this as a symbol without complaint. If you want to put strange characters (such

SRC:KILMAN>IOS. TEXT.210 24-JAN-83

I.isp Machine Manual 373 _ Printed Representation

as lower-case letters, parentheses, or reader macro characters) inside the name of a symbol, put a
slash before cach strange character. If you want to have a symbol whose print-name looks like a
number, put a slash before some character in the name. You can also enclose the name of a
symbol in vertical bars, which quotc all characters inside them except vertical bars and slashes,
which must be quoted with slash.
Examples of symbols:

foo

bar/(baz/)

34w23

|Frob Sale]

The reader will also recognize strings, which should be surrounded by double-quotes. If you
want to put a double-quote or a slash inside a string, precede it by a slash.
Examples of strings:
"This is a typical string."
"That is known as a /"cons cell/" in Lisp."

When read sees an open-parenthesis, it knows that the p.r. of a cons is coming, and calls
itself recursively to get the clements of the cons or the list that follows. Any of the following are
valid:

(foo . bar)

(foo bar baz)

(foo . (bar . (baz . nil)))

(foo bar . quux)
"The Srst is a cons, whose car and cdr are both symhols. The second is a list, and the third is
exactly the same as the second (although print would never produce it). The fourth is a "dotted
list": the cdr of the last cons cell {the second one) is not nil, but quux.

Whenever the reader sces any of the above, it creates new cons cells it never returns existing
Tist structure. This contrasts with the case for symbols, as very often read returns symbols that it
found interned in the package rather than creating new symbols itself. Symbols are the only thing
that work this way.

The dot that separates the two elements of a dotted-pair p.r. for a cons is only recognized if
it is surrounded by delimiters (typically spaces). Thus dot may be freely used within print-names
of symbols and within numbers. This is not compatible with Maclisp; in Maclisp (a.b) reads as a
cons of symbols a and b, whereas in Zetalisp it reads as a list of a symbol a.b.

If the circle-X ("e") character is encountered, it is an octal escape, which may be useful for
including weird characters in the input. The next three characters are recad and interpreted as an
octal number, and the character whose code is that number replaces the circle-X and the digits in
the input stream. This character is always taken to be an alphabetic character, just as if it had
been preceded by a slash.

SRC:KI.MAN>IOS.TEXT.210 24-JAN-83

Printed Representation 374 1.isp Machine Manual

21.2.3 Macro Characters

Certain characters are defined to be macro characters. When the reader sees once of these, it
calls a function associated with the character. 'This function rcads whatever syntax it likes and
returns the object represented by that syntax. Macro characters are always token delimiters:
however, they are not recognized when quoted by slash or vertical bar, nor when inside a string.
Macro characters arc a syntax-cxtension mechanism available to the user. Lisp comes with scveral
predefined macro characters:

Quote (') is an abbreviation to make it casier to put constants in programs. 'foo rcads the
same as {(quote foo).

Semicolon (;) is used to enter comments. The semicolon and everything up through the next
carriage return are ignored. Thus a comment can be put at the end of any line without affecting
the reader.

Backquote () makes it easier to writc programs to construct lists and trces by using a
" template. See section 17.2.2, page 251, for details.

Comma (,) is part of the syntax of backquote and is invalid if used other than inside the
body of a backquote. See section 17.2.2, page 251, for details.

Sharp sign (#) introduces a number of other syntax cxtensions. Sce the following section.
Unlike the preceding characters, sharp sign is not a delimiter. A sharp sign in the middle of a
symbol is an ordinary character.

The function set-syntax-macro-char (sec page 380) can be used to define your own macro
characters.

21.2.4 Sharp-sign Constructs

The reader’s syntax includes several abbreviations introduced by sharp sign (#). These take
the general form of a sharp sign, a second character which identifies the syntax, and following
arguments. Certain abbreviations allow a decimal number or certain special "modifier” characters
between the sharp sign and the second character. Here are the currently-defined sharp sign
constructs; more are likely to be added in the future.

#/ #/x reads in as the number which is the character code for the character x. For
example, #/a is cquivalent to 141 but clearer in its intent. This is the recommended
way to include character constants in your code. Note that the slash causes this construct
to be parsed correctly by the editors, EMACS and ZWEI

As in strings, upper and lower-casc letters are distinguished after #/. Any character
works after #/, even those that are normally special to read, such as parentheses. Even
non-printing characters may be used, although for them #\ is preferred.

A semi-obsolete method of specifying control bits in a character is to insert the characters
a, B, &, = and [\ between the # and the /. Those stand for control, meta, control-
meta, super and hyper, respectively. This syntax should be converted to the new

SRC:KLLMAND>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 375 Printed Representation

#\

#\control-meta-x syntax decscribed below.

\name reads in as the number that is the character code for the non-printing character
symbolized by name. A large number of character names are recognized; these are
documented below (section 21.2.5, page 378). For cxample, #\return rcads in as a
fixnum. being the character code for the Return character in the Lisp Machine character
set. In gencral, the names that arc written on the keyboard keys are accepted. In
addition, all the nonalphanumeric characters have names. The abbreviations cr for return
and sp for space are accepted, since these characters are used so frequently. The page
scparator character is called page, although form and clear-screen arc also accepted
since the keyboard has one of those legends on the page key. The rules for reading name
are the same as those for symbols; thus upper and lower-case letters are not distinguished,
and the name must be terminated by a delimiter such as a space, a carriage return, or a
parenthesis.

When the system types out the name of a special character, it uses the same table as the
#\ reader: therefore any character name typed out is acceptable as input.

#\ can also be used to read in the names of characters that have control and meta bits
set. The syntax looks like #\control-meta-b to get a "B" character with the control
and meta bits set. You can use any of the prefix bit names control, meta, hyper, and
super. They may bc in any order, and case is not significant. Prefix bit names can be
abbreviated as single letters, and control may be spelled ctrl as it is on the keyboards.
The last hyphen may be followed by a single character or by any of the special character
names normally recognized by #\. A single character is treated the same way the reader
normally treats characters in symbols; if you want to use a lower-case character or a
special character such as a parenthesis, you must precede it by a slash character.
Examples: # \Hyper-Super-A, \meta-hyper-roman-i, #\CTRL-META-/(.

greek (or front) and top are also allowed as names in the #\ construct. Thus, #\top-
g is equivalent to #/t or #\uparrow. #\top-g should be used if you arc specifying
the keyboard commands of a program and the mnemonic significance belongs to the "G"
rather than to the actual character code.

#~x is exactly like #\control-x if the input is being read by Zetalisp; it generates
ASCII Control-x. In Maclisp x is converted to upper case and then exclusive-ored with
100 (octal). Thus # ~x always gencrates the character returned by tyi if the user holds
down the control key and types x. (In Maclisp #\control-x sets the bit set by the
Control key when the TTY is open in fixnum mode.)

#'foo is an abbreviation for (function foo). foo is the pur. of any object. This
abbreviation can be remembered by analogy with the * macro-character, since the function
and quote special forms are somewhat analogous.

#, foo evaluates foo (the p.r. of a Lisp form) at read time, unless the compiler is doing
the reading, in which case it is arranged that foo will be evaluated when the QFASL file
is loaded. This is a way, for example, to include in your code complex list-structure
constants that cannot be written with quote. Note that the reader docs not put quote
around the result of the evaluation. You must do this yourself if you want it, typically
by using the ’ macro-character. An example of a casc where you do not want quote
around it is when this object is an element of a constant list. '

SRC:<1.MAN>IOS.TEXT.210 24-JAN-83

Printed Representation 376 Lisp Machine Manual

#0

#X

#R

#Q

#M

#N

. foo cvaluates foo (the p.r. of a lisp form) at read time, regardless of who is doing the
rcading.

#* is a construct for repeating an cxpression with some subexpressions varying. It is an
abbreviation for writing scveral similar expressions or for the use of mapc. Fach
subexpression that is to be varied is written as a comma followed by a list of the things
to substitute. The expression is cxpanded at read time into a progn containing the
individual versions.

#'(send stream ’,(:clear-input :clear-output))
expands into

(progn (send stream ’':clear-input)

(send stream ':clear-output))

Multiple repetitions can be donc in parallel by using commas in several subexpressions:
#'(renamef ,("foo" "bar") ,("ofoo" "obar"))
expands into
(progn (renamef "foo" "ofoo")
(renamef "bar" "obar"))

If you want to do multiple independent repetitions, you must use nested # © constructs.
Individual commas inside the inner # * apply to that # *: they vary at maximum speed.
To specify a subexpression that varies in the outer # *, use two commas.
#'# (print (* ,(b 7) ,,(11. 13.)))
expands into
(progn (progn (print (= 5 11.)) (print (* 7 11.)))
(progn (print (* 5 13.)) (print (* 7 13.)))

#0 number reads number in octal regardless of the setting of ibase. Actually, any
expression can be prefixed by #O; it will be rcad with ibase bound to 8.

#X number reads number in radix 16. (hexadecimal) regardless of the setting of ibase.
As with #0O, any expression can be prefixed by #X.

The letters A through F are used as the digits beyond 9, but if a number contains one of
these, it must begin with a sign in order to be properly recognized as a number. Thus,
X+ FF is the same as 377, but # XFF is the symbol ff.

radixR number reads number in radix radix regardless of the sctting of ibase. As with
#0, any expression can be prefixed by # radixR; it will be read with ibase bound to
radix. radix must consist of digits only, and it is rcad in decimal.

For example, #3R102 is another way of writing 11. and #11R32 is another way of
writing 35. Bases larger than ten use the letters starting with A as the additional digits.

#Q foo reads as foo if the input is being read by Zetalisp, otherwise it reads as nothing
(whitespace).
#M foo reads as foo if the input is being read into Maclisp, otherwise it reads as nothing
(whitespace).

#N foo rcads as foo if the input is being read into NIL or compiled to run in NIL,
otherwise it reads as nothing (white space).

SRC:KL.MAN>IOS.TEXT.210 24-JAN-83

Lisp Machine Manual 377 Printed Representation

+ This abbreviation provides a rcad-time conditionalization facility similar to, but more
general than, that provided by #M, #N, and #Q. It is used as # + feature form. 1f
feature is a symbol, then this is read as form if (status feature feature) is t. If (status
feature feature) is nil, then this is rcad as whitespace. Alternately, feature may be a
booiean expression composed of and, or, and not opcrators and symbols representing
items that may appear on the (status features) list. (or lispm amber) represents
cvaluation of the predicate (or (status feature lispm) (status feature amber)) in the
read-time environment.

For cxample, # +lispm form makes form cxist if being read by Zectalisp, and is thus
cquivalent to #Q form. Similarly, # +maclisp form is equivalent to #M form.
+ (or lispm nil) form will make form cxist on either Zetalisp or in NIL. Note that
items may be added to the (status features) list by means of (sstatus feature feature),
thus allowing the user to selectively interpret or compile picces of code by paramcterizing
this list. Sec page 650.

Here is a list of featurcs with standard meanings:

lispm This feature is present on any Lisp machine (no matter what version of
hardware or software).

maclisp This feature is present in Maclisp.

nil This feature is present in NIL (New Implementation of Lisp).

mit This feature is present in the MIT Lisp machine system, which is what

this manual is about.

symbolics This feature is present in the Symbolics version of the Lisp machine
system. With luck, you should have no reason to be using that.

chaos This feature is present in Lisp machine systems that use the Chaosnet
protocol for their local network (regardless of details of hardware
interfacing to the network).

ether This feature is present in Lisp machines that use the Xerox-PARC
Ethernet protocol for their local network communication.

#- # - feature form is equivalent to # + (not feature) form.

#< This is not legal reader syntax. It is used in the p.r. of objects that cannot be read back
in. Attempting to read a #< will cause an error.

This is used in the p.r. of miscellancous objects (usually named structures or instances)
that can be read back in. #c should be followed by a typename and any other data
needed to construct an object, terminated with a >. For example, a pathname might
print as
#cFS:ITS-PATHNAME "AI: RMS; TEST 5">

The typename is a keyword that read uses to figure out how to read in the rest of the
printed representation and construct the object. It is read in in package user (but it can
contain a package prefix). The resulting symbol should cither have a sirread-instance
property or be the name of a flavor that handles the :read-instance operation.

SRCKLMAN>IOS.TEXT.210 24-JAN-83

Printed Representation 378

1.isp Machinc Manual

In the first case, the property is applicd as a function to the typename symbol itself and
the input stream. In the sccond, the handler for that operation is applied to the
operation name (as always), the typename symbol, and the input strcam (threc arguments,
but the first is implicit and not mentioned in the defmethod). self will be nil and
instance variables should not be referred to.

In cither case, the handler function should read the remaining data from the stream, and
construct and return the datum it describes. It should return with the o character waiting
to be read from the input stream (:untyi it if nccessary). read will get an crror after it is
returned to if a o character is not next.

The typename can be any symbol with an appropriate property or flavor, not necessarily
related to the type of object that is created; but for clarity, it is good if it is the same as
the typep of the object printed. Since the type symbol is passed to the handler, one
flavor’s handler can be inherited by many other flavors and can examine the type symbol
read in to decide what flavor to construct.

The function set-syntax- # -macro-char (sce page 380) can be used to define your own

sharp sign abbreviations.

21.2.5 Special Character Names

The following are the recognized special character names, in alphabetical order except with
synonyms together. These names can be used after a "#\" to get the character code for that
character. Most of these characters type out as this name enclosed in a lozenge. First we list the

special function keys.

abort break call clear-input, clear
delete end hand-down hand-left
hand-right hand-up help hold -output

line, If macro, back-next network

overstrike, backspace, bs page, form, clear-screen

quote resume return, cr

roman-i roman-ii roman-iii roman-iv

rubout space, sp status stop -output
system tab terminal, esc

These are printing characters that also have special names because they may be hard to type

on a PDP-10.

SRC:KL.MAN>IOS. TEXT.210

24-JAN-83

Lisp Machinc Manual v Printed Representation

altmode circle-plus delta gamma

integral lambda plus-minus uparrow
center-dot down-arrow alpha beta

and-sign not-sign epsilon pi

lambda gamma delta up-arrow
plus-minus circle-plus infinity partial-delta
left-horseshoe right-horseshoe up-horseshoe down-horseshoe
universal-quantifier existential -quantifier

circle-x double-arrow left-arrow right-arrow
not-equal altmode less-or-equal greater -or-equal
equivalence or-sign

The following are special characters somectimes used to represent single and double mouse
clicks. The buttons can be called cither I, m. r or 1, 2, 3 depending on stylistic preference.
These characters all contain the %%kbd -mouse bit.

mouse-I-1=mouse-1-1 . mouse-i-2 = mouse-1-2
mouse-m-1=mouse-2-1 mouse-m-2 = mouse-2-2

mouse-r-1=motse-3-1 mouse-r-2 = mouse-3-2

21.2.6 The Readtable

There is a data structure called the readtable which is used to control the rcader. It contains
information about the syntax of cach character. Initially it is set up to give the standard Lisp
meanings to all the characters. but the user can change the meanings of characters to alter and
customize the syntax of characters. It is also possible to have several readtables describing
different syntaxes and to switch from onc to another by binding the symbol readtable.

readtable Variable
The value of readtable is the current readtable. This starts out as the initial standard
readtable. You can bind this variable to change temporarily the readtable being used.

si:initial-readtable Variable
The value of sitinitial-readtable is the initial standard readtable. You should not ever
change the contents of this rcadtable: only examine it by using it as the from-readtable
argument to copy-readtable or set-syntax-from-char.

The user can program the reader by changing the rcadtable in any of threc ways. The syntax
of a character can be sct to one of several predefined possibilities. A character can be made into
a macro character, whose interpretation is controlled by a uscr-supplied function which is called
when the character is read. The user can create a completely new readtable, using the readtable
compiler (SYS: 10; RTC LISP) to definc new kinds of syntax and to assign syntax classes to
characters. Use of the rcadtable compiler is not documented here.

copy-readtable &optional from-readtable lo-readtable
from-readtable, which defaults to the current readtable, is copied. If to-readtable is
unsupplied or nil, a fresh copy is made. Otherwise to-readtable is clobbered with the
copy. Usc copy-readtable to get a private readtable before using the following functions
to change the syntax of characters in it. The value of readtable at the start of a Lisp

SRCKLMAN>IOS. TEXT.210 24-JAN-83

Printed Representation 380 Lisp Machine Manual

Machine session is the initial standard readtable, which usually should not be modified.

set-syntax-from-char to-char from-char &optional to-readtable from-readiable
Makes the syntax of fo-char in to-readiable be the same as the syntax of Sfrom-char in
Jrom-readiable. to-readiable defaults to the current readtable, and from-readiable defaults
to the initial standard rcadtable.

set-character-translation from-char fo-char &optional readtable
Changes readiable so that from-char will be translated to fo-char upon read-in, when
readlable is the current readtable. This is normally used only for translating lower case
letters to upper case. Character translations are turned off by slash, string quotes, and
vertical bars. readtable defaults to the current readtable.

set-syntax-macro-char char function &optional readtable
Changes readtable so that char is a macro character. When char is read, function is
called. readtable defaults to the current readtable.

Junction is called with two arguments, lisrso-far and the input strcam. When a list is
being read, [list-so-far is that list (nil if this is the first clement). At the "top level” of
read. list-so-far is the symbol :toplevel. After a dotted-pair dot, list-so-far is the symbol
:after-dot. function may read any number of characters from the input stream and
process them however it likes.

Junction should return three values, called thing, type, and splice-p. thing is the object
read. 1If splice-p is nil, thing is the result. If splice-p is non-nil, then when reading a list
thing replaces the list being read—often it will be list-so-far with something else nconc’ed
onto the end. At top-level and after a dot, if splice-p is non-nil the thing is ignored and
the macro-character does not contribute anything to the result of read. ype is a historical
artifact and is not really used; nil is a safe value. Most macro character functions return
just one value and let the other two default to nil.

Junction should not have any side-effects other than on the stream and list-so-far. Because
of the way the rubout-handler works, function can be called several times during the
reading of a single expression in which the macro character only appears once.

char is given the same syntax that single-quote, backquote, and comma have in the initial
readtable (it is called :macro syntax).

set-syntax-#-macro-char char function &optional readtable
Causes function to be called when # char is read. readtable defaults to the current
readtable. The function’s arguments and return values are the same as for normal macro
characters, documented above. When function is called, the special variable si:xr-sharp-
argument contains nil or a number that is the number or special bits between the # and
char.

SRC:KLL.MAND>IOS.TEXT.210 24-JAN-83

Lisp Machine Manual 381 Printed Representation

set-syntax-from-description char description &optional readtable
~ Sets the syntax of char in readtable to be that described by the symbol description. The
following descriptions are defined in the standard readtable:

si:alphabetic An ordinary character such as "A".

si:break A token separator such as "{". (Obviously left parenthesis has
other properties besides being a break.

si:whitespace A token separator that can be ignored, such as " ".

si:single A self-delimiting single-character symbol. The initial readtable
does not contain any of these.

si:slash The character quoter. In the initial readtable this is RVAN

si:verticalbar The symbol print-name quoter. In the initial readtable this is "|".

si:doublequote The string quoter. In the initial rcadtable this is R

si:macro A macro character. Don’t use this; use set-syntax-macro-char.

si:circlecross The octal escape for special characters. In the initial readtable this
is "e".

These symbols will probably be moved to the standard keyword package at some point.
readtable defaults to the current readtable.

setsyntax character arg? arg3
Thisexisis-only -for~Maclisp- compatibility. - The .above functione_are_preferred in new
programs. The syntax of character is altered in the current readtable, according to arg?
and arg3. character can be a fixnum, a symbol, or a sring, ie. anything acceptable to
the character function. arg?2 is usually a keyword; it can be in any package since this is
a Maclisp compatibility function. The following values arc allowed for arg2:

:macro The character becomes a macro character. arg3 is the name of a function
to be invoked when this character is read. The function takes no
arguments, may tyi or read from standard-input (i.e. may call tyi or
read without specifying a stream), and returns an object which is taken as
the result of the read.

:splicing Like :macro but the object returned by the macro function is a list that is
nconced into the list being read. If the character is read anywhere except
inside a list (at top level or after a dotted-pair dot), then it may return (),
which means it is ignored, or (obj), which means that obj is read.

:single The character becomes a sclf-delimiting single-character symbol. If arg3 is
a fixnum, the character is translated to that character.

nil The syntax of the character is not changed, but if arg3 is a fixnum, the
character is translated to that character.

a symbol The syntax of the character is changed to be the same as that of the
character arg? in the standard initial readtable. arg2 is converted to a
character by taking the first character of its print name. Also if arg3 is a
fixnum, the character is translated to that character.

SRC:KL.MAN>IOS.TEXT 210 24-JAN-83

Input Functions 382 Lisp Machine Manual

setsyntax-sharp-macro character type function &optional readtable

This exists only for Maclisp compatibility. set-syntax- # -macro-char is preferred. If
Junction is nil. # character is turned off, otherwise it becomes a macro that calls function.
fype can bc :macro, :peek-macro, isplicing. or :peek-splicing. The splicing part
controls whether function returns a single object or a list of objects. Specifying peek
causes character to remain in the input stream when Junction is called; this is uscful if
character is something like a left parenthesis. Junction gets onc argument, which is nil or
the number between the # and the character.

21.3 Input Functions

Most of these functions take optional arguments called stream and eofoption. siream is the
strcam from which the input is to0 be rcad: if unsupplicd it defaults to the value of standard-
input. The special pscudo-streams nil and t are also accepted, mainly for Maclisp compatibility.
nil means the value of standard-input (i.c. the default) and t means the value of terminal-io (i.e.
the interactive terminal). This is all morc-or-less compatible with Maclisp. except that instead of
the variable standard-input Maclisp has several variables and complicated rules. For detailed
documentation of streams, refer to section 21.5, page 391.

eof-option controls what happens if input is from a file (or any other input source that has a
definite end) and the end of the file is reached. If no eof-option argument is supplied, an error
will be signalled. If there is an eof-option, it is the value to be returned. Note that an eof-option
of nil means to return nil if the end of the file is rcached; it is nor equivalent to supplying no
eof-option.

Functions such as read, which read an "object” rather than a single character, will always
signal an error, regardless of eof-option, if the file ends in the middle of an object. For example,
if a file docs not contain cnough right parentheses to balance the left parentheses in it, read will
complain. If a file ends in a symbol or a number immediately followed by end-of-file, read will
read thce symbol or number successfully and when called again will see the end-of-file and obey
eof-option. If a file contains ignorable text at the end, such as blank lines and comments, read
will not consider it to end in the middle of an object and will obey eofoption.

These end-of-file conventions are not completely compatible with Maclisp. Maclisp’s deviations
from this are generally considered to be bugs rather than features.

The functions below that take stream and eof-option arguments can also be called with the
stream and cof-option in the other order. This functionality is only for compatibility with old
Maclisp programs, and should never be used in new programs. ‘The functions attempt to figure
out which way they were called by sceing whether each argument is a plausible stream.
Unfortunately, there is an ambiguity with symbols: a symbol might be a stream and it might be
an cof-option. If there are two arguments, one being a symbol and the other being something
that is a valid stream, or only one argument, which is a symbol, then these functions will
interpret the symbol as an cof-option instead of as a stream. To force them to interpret a symbol
as a stream, give the symbol an si:io-stream-p property whose value is t,

SRC:KL.MAN>IOS.TEXT.210 24-JAN-83

[Lisp Machine Manual 383 _ Input Functions

Note that all of these functions will ccho their input if used on an interactive strcam (one
which supports the :rubout-handler operation; sce below.) The functions that input more than
one character at a time (read, readline) allow the input to be edited using rubout. tyipeek
echoes all of the characters that were skipped over if tyi would have cchoed them: the character
not removed from the strcam is not cchocd cither.

read &optional stream eof-option
read rcads in the printed representation of a Lisp object from stream, builds a
corresponding Lisp object, and returns the object. The details have been cxplained above.
(This function can takc its arguments in the other order, for Maclisp compatibility only;
sce the note above.)

read-preserve-delimiters Variable
Certain printed representations given to read, notably those of symbols and numbers,
require a delimiting character after them. (Lists do not, because the matching close-
parenthesis serves to mark the end of the list) Normally read will throw away the
delimiting character if it is "whitespace”, but will preserve it (with a :untyi stream
operation) if the character is syntactically meaningful, since it may be the start of the next
expression.

If read-preserve-delimiters is bound to t around a call to read, no delimiting characters
will be thrown away, cven if they are whitespace. This may be uscful for certain reader
macros or special syntaxes.

tyi &optional stream eof option ‘ -
tyi inputs onc character from stream and returns it. The character is cchoed if stream is
interactive, except that Rubout is not echoed. The Control, Meta, etc. shifts echo as
IIC_II’ "M_";) etc.

The :tyi stream operation is preferred over the tyi function for some purposes. Note that
it does not echo. See page 391.

(This function can take its arguments in the other order, for Maclisp compatibility only;
see the note above.)

read-for-top-level &optional stream eof-option
This is a slightly different version of read. It differs from read only in that it ignores
close-parentheses seen at top level, and it returns the symbol siceof if the stream reaches
end-of-file if you have not supplied an eofoption (instcad of signalling an error as read
would). This version of read is used in the system’s "read-eval-print” loops.

(This function can take its arguments in the other order, for uniformity with read only;
see the note above.)

read-check-indentation &optional stream eof-option
This is like read, but validates the input based on indentation. It assumes that the input
data is formatted to follow the usual convention for source files, that an open-parenthesis
in column zero indicates a top-level list (with certain specific exceptions). An open-
parenthesis in column zero encountered in the middle of a list is more likely to result

SRCKL.MANDIOS.TEXT.210 24-JAN-83

Input Functions 384 1.isp Machinc Manual

from close-parentheses missing before it than from a mistake in indentation.

If read-check-indentation finds an open-parenthesis following a return character in the
middle of a list, it invents cnough close-parentheses to close off all pending lists, and
returns. ‘The offending open-parenthesis is :untyi'd so it can begin the next list, as it
probably should. Ind of file in the middle of a list is handled likewise.

read-check-indentation notifics the caller of the incorrect formatting by signaling the
condition sys:missing-closeparen. This is how the compiler is able to record a warning
about the missing parentheses. If a condition handler proceeds, read goes ahcad and
invents close-parentheses.

There are a few special forms that are customarily used around function definitions—for
example, eval-when, local-declare, and comment. Since it is desirable to begin the
function definitions in column zcro anyway, read-check-indentation allows a list to
begin in column zero within one of these special forms. A non-nil si:may-surround-
defun property identifies the symbols for which this is allowed.

read-check-indentation Variable
This variable is non-nil during a read in which indentation is being checked.

readline &optional stream eof-option options

readline reads in a line of text, terminated by a return. It returns the line as a character
string. without the return character. This function is usually used to get a line of input
from the user. If rubout processing is happening, then oprions is passed as the list of
options to the rubout handler. Onc option that is particularly useful is the :do-not-echo
option (sce page 430), which you can use to suppress the echoing of the return character
that terminates the line. (This function can take its arguments in the other order, for
Maclisp compatibility only; sce the note above.)

readline-trim &optional stream eof-option options
This is like readline except that leading and trailing spaces and tabs are discarded from
the value before it is returned.

readch &optional stream eof-option
This function is provided only for Maclisp compatibility, since in the Zetalisp characters
are always represented as fixnums. readch is just like tyi, except that instead of returning
a fixnum character, it returns a symbol whose print name is the character read in. The
symbol is interned in the current package. This is just like a Maclisp "character object”.
(This function can take its arguments in the other order, for Maclisp compatibility only;
sec the note above.)

tyipeek &optional peek-type stream eof-option
This function is provided mainly for Maclisp compatibility; the :tyipeek stream operation
is usually clearer (see page 392).

What tyipeek does depends on the peek-type, which defaults to nil. With a peek-type of

nil, tyipeek returns the next character to be read from stream, without actually removing
it from the input strcam. The next time input is done from stream the character will still

SRC:KL.MAN>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 385 Input Functions

be there; in general, (= (tyipeek) (tyi)) is t.

If peek-type is a fixnum less than 1000 octal, then tyipeek rcads characters from stream
until it gets one equal to peek-type. That character is not removed from the input stream.

If peek-type is t, then tyipeek skips over input characters until the start of the printed
representation of a Lisp object is reached. As above, the last character (the onc that starts
an object) is not removed from the input stream.

The form of tyipeek supported by Maclisp in which peek-type is a fixnum not less than
1000 octal is not supported, since the readtable formats of the Maclisp reader and the
Zetalisp reader are quite different.

Characters passed over by tyipeek are echoed if stream is interactive.

prompt-and-read (fype-ofparsing format-string &rest format-args
prompt-and-read rcads some sort of object from query-io, parsing it according to type-
of-parsing, and prompting by calling format using format-string and format-args.

ype-of-parsing is cither a keyword or a list starting with a keyword and continuing with a
list of options and values, whose meanings depend on the keyword used.

The keywords defined are

:eval-sexp This keyword directs prompt-and-read to accept a Lisp expression. It is
evaluated, and the value is returned by prompt-and-read.

If the Lisp expression is not a constant or quoted, the user is asked to
confirm the value it evaluated to.

:eval-sexp-or-end
This keyword directs prompt-and-read to accept a Lisp expression or just
the character End. If End is typed, prompt-and-read returns nil as its
first value and #\end as its sccond value. Otherwise, things proceed as
for :eval-sexp.

rread This keyword directs prompt-and-read to read an object and return it
with no evaluation.

:number This keyword directs prompt-and-read to read and return a number. It
will insist on getting a number, forcing the user to rub out anything else.

:string This keyword directs prompt-and-read to read a line and return its
contents as a string, using readline.

.string-or-nil This keyword directs prompt-and-read to read a line and return its
contents as a string, using readline-trim. In addition, if the result would
be empty, nil is returned instead of the empty string.

:pathname This keyword directs prompt-and-read to rcad a line and parse it as a
pathname, merging it with the defaults. You can specify the defaults to
use by passing a list of the form

SRC:KL.MAN>IOS.TEXT210 24-JAN-83

Input Functions 386 LLisp Machinc Manual

(:pathname :defaults defaults-alist-or-pathname)
as the fype-of-parsing argument.

fquery This keyword directs prompt-and-read to query the user for a fixed set

of alternatives, using fquery. type-of-parsing should always be a list,
whose car is :fquery and whose cdr is a list to be passed as the list of
options (fquery’s first argument).
Example:

(prompt-and-read ‘(:fquery

,format:y-or-p-options)
_ "Eat it? ")

is equivalent to

(y-or-n-p "Eat it? ")

This keyword is most useful as a way to get to fquery when going
through an interface defined to call prompt-and-read.

The following functions are related functions which do not operate on strcams. Most of the text
at the beginning of this section does not apply to them.

read-from-string swing &optional eofoption (start0) end
The characters of string are given successively to the reader, and the Lisp object built by
the reader is returned. Macro characters and so on will all take cffect. If string has a fill-
pointer it controls how much can be read.

eof-option is what to return if the end of the string is rcached, as with other reading
functions. starr is the index in the string of the first character to be read. end is the
index at which to stop reading; that point is treated as end of file.

read-from-string returns two values; the first is the object read and the second is the
index of the first character in the string not read. If the entire string was read, this will
be cither the length of the string or 1 more than the length of the string.

Example:
(read-from-string "(a b c)") => (a b c) and 7

readlist charlist
This function is provided mainly for Maclisp compatibility. char-list is a list of characters.
The characters may be represented by anything that the function character accepts:
fixnums, strings, or symbols. The characters arc given successively to the reader, and the
Lisp object built by the reader is returned. Macro characters and so on will all take
effect.

If there are more characters in charlist beyond those necded to define an object, the
extra characters are ignored. If there are mot enough characters, an "eof in middle of
object” ecrror is signalled.

See also the with-input-from-string special form (page 150).

SRC:KIL.MAN>IOS.TEXT.210 24-JAN-83

Lisp Machine Manual 387 Input Functions

sys:read-error (error) Condition
This condition name classifies all errors detected by the reader per se.

sys:end-of-file (error) Condition
Ali errors signaled to report end of file possess this condition name.

The :stream operation on the condition instance returns the strcam on which cnd of file
was reached.

sys:read-end-of-file (sysiread-error sys:end-of-file error) Condition
Whenever read signals an error for end of file, the condition object possesses this
condition name.

sys:read-1ist-end-of-file (sys:read-end-of-file sys:read-error Condition
sys:end-of-file error)
This condition is signaled when read detects end of file in the middle of a list.

In addition to the :stream operation pro'vided because sys:end-of-file is one of the
proceed types, the condition instance supports the :list operation, which returns the list
read so far.

Proceed type :no-action is provided. If it is used, the reader invents a close-parenthesis
to close off the list. Within read-check-indentation, the reader signals the error only
once, no matter how many levels of list are unterminated.

sys:read-string-end-oT-Tiie (sys:read-end-oi-iie Condition
sys:read-error sys:end-of-file error)
This is signaled when read detects end of file in the middle of a siring delimited by
doublequotes.

The :string operation on the condition instance returns the string read so far.
sys:read-symbol-end-of-file (sys:read-end-of-file Condition
sys:read-error sys:end-of-file error)
This is signaled when read detects end of file in the middle of a symbol delimited by
vertical bars.

The :string operation on the condition instance returns the print name read so far.

sys:missing-closeparen (condition) Condition
This condition, which is not an error, is signaled when read-check-indentation finds an
open-parenthesis in column zero within a list.

Proceed type :no-action is provided. On proceeding, the reader invents enough close-
parentheses to close off all the lists that are pending.

SRC:KL.MAN>IOS.TEXT.210 ' 24-JAN-83

Output Functions 388 Lisp Machine Manual

21.4 Output Functions

These functions all take an optional argument called siream, which is where to send the
output. If unsupplicd stream defaults to the value of standard-output. If stream is nil, the
value of standard-output (i.c. the default) is used. If it is t the value of terminal-io is used
(i.c. the interactive terminal). If siream is a list of streams, then the output is performed to all of
the streams (this is not implemented yet, and an error is signalled in this casc). This is all more-
or-less compatible with Maclisp, except that instcad of the variable standard-output Maclisp has
scveral variables and complicated rules. For detailed documentation of streams, refer to scction
21.5, page 391.

prinl x &optional stream
prin1 outputs the printed representation of x to stream, with slashification (see page 367).
X is returned.

prinl-then-space x &optional stream
prin1-then-space is like prin1 cxcept that output is followed by a space.

print x &optional stream
print is just like prin1 except that output is preceded by a carriage return and followed
by a space. x is returned.

princ x &optional stream
princ is just like prin1 except that the output is not slashified. x is returned.

tyo char &optional stream
tyo outputs the character char to stream.

terpri &optional stream
terpri outputs a carriage return character to stream.

The format function (see page 411) is very useful for producing nicely formatted text. It can
do anything any of the above functions can do, and it makes it easy to produce good looking
messages and such. format can generate a string or output to a stream.

The grindef function (see page 426) is useful for formatting Lisp programs.
See also the with-output-to-string special form (page 151).

stream-copy-until-eof from-stream to-stream &optional leader-size
stream-copy-until-eof inputs characters from ﬁom-stream and outputs them to to-stream,
until it reaches the end-of-file on the from-stream. For example, if x is bound to a
stream for a file opened for input, then (stream-copy-until-eof x terminal-io) will print
the file on the console.

If from-stream supports the :line-in operation and fo-stream supports the :line-out

operation, then stream-copy-until-eof will use those operations instcad of ityi and :tyo,
for greater efficiency. Jeader-size will be passed as the argument to the :line-in operation,

SRC:KL.MAN>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 3’9 Output Functions

beep &optional beep-type (stream terminal-io)

This function is intended to attract the user’s attention by causing an audibie beep, or
flashing the screen, or somcthing similar. If the strecam supports the :beep operation,
then this function sends it a :beep message, passing #pe along as an argument.
Otherwise it just causes an audible beep on the terminal. fype is a keyword sciecting
among several different beeping noises. The allowed types have not yet been defined;
type is currently ignored and should always be nil. (The :beep operation is described on
page 396.)

cursorpos &rest args
This function cxists primarily for Maclisp compatibility. Usually it is preferable to send
the appropriatc messages (sce the window system documentation).

cursorpos normally opcrates on the standard-output stream; however, if the last
argument is a stream or t (mcaning terminal-io) then cursorpos uscs that stream and
ignores it when doing the operations described below. Note that cursorpos only works
on streams that arc capable of these operations, for instance windows. A strcam is taken
to be any argument that is not a number and not a symbol, or that is a symbol other
than nil with a name more than one character long.

(cursorpos) => (line . column), the current cursor position.

(cursorpos line column) moves the cursor to that position. It returns t if it succceds and
nil if it doesn’t.

{cursorpos op) performs a special operation coded by op, and returns t if it succeeds
and nil if it doesn’t. op is tested by string comparison, it is not a keyword symbol and
may be in any package.

F Moves one space to the right.

B Moves one space to the left.

D Moves one line down.

U Moves one line up.

T Homes up (moves to the top left corner). Note that t as the last argument to
cursorpos is interpreted as a stream, so a stream must be specified if the T
operation is used.

Z Home down (moves to the bottom left corner).

A Advances to a fresh line. Sec the :fresh-line stream operation.

C Clears the window.

E Clear from the cursor to the e¢nd of the window.

L Clear from the cursor to the end of the line.

K Clear the character position at the cursor.

X B then K.

exploden x
exploden rcturns a list of characters (as fixnums) that are the characters that would be

typed out by (princ x) (i.e. the unslashified printed representation of x).
Example:
(exploden *(+ /12 3)) => (50 53 40 61 62 40 63 51)

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

Output Functions 390 Lisp Machine Manual

explodec x
explodec returns a list of characters represented by symbols that are the characters that
would be typed out by (princ x) (i.e. the unslashified printed representation of x).
Example:
(explodec *(+ /12 3)) => (/(+/ /1 /2 /7 /3 /7))
(Note that there are slashified spaces in the above list.)

explode x
explode returns a list of characters represented by symbols that are the characters that
would be typed out by (print x) (i.e. the slashified printed representation of x).
Example:
(explode *(+ /12 3)) => (/(+ / /1 /1 /2 / /3 7))
(Note that there are slashified spaces in the above list.)

flatsize x
flatsize returns the number of characters in the slashified printed representation of x.

" flatc x
flatc returns the number of characters in the unslashified printed representation of x.

SRC:KI.MAN>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 391 170 Streams

21.5 1/0 Streams

Many programs accept input characters and produce output characters. The method for
performing input and output to one device is very different from the method for some other

program having to know about each device.

Zetalisp makes this possible with /o streams. A stream is a source and/or sink of characters
or bytes. A sct of operations is available with every stream; operations include things like "output
a character” and “input a character”. The way to perform an operation to a stream is the same
for all streams, although what happens inside the stream is very different depending on what kind
of a strcam it is. So all a program has to know is how to dcal with strecams using the standard,
generic operations. A programmer creating a new kind of strcam only needs to implement the
appropriate standard operations.

A stream is a message-receiving object. This means that it is something that you can apply to
arguments. The first argument is a keyword symbol which is the name of the operation you wish
to perform. The rest of the arguments depend on what operation you are doing. Message-passing
and generic operations are explained in the flavor chapter (chapter 20, page 321).

Some streams can only do input, some can only do output, and some can do both. Some
operations are only supported by some streams. Also, there arc some operations that the stream
may not support by itsclf, but will work anyway, albeit slowly, because the “strcam default
handler" can handle them. If you have a stream, there is an operation called :which-operations
that will return a list of the names of all of the operations that are supported "natively” by the
stream. All streams support :which-operations, and so it may not be in the list itself.

All input streams support all the standard input operations, and all output streams support all
the standard output operations. All bidirectional streams support both.

21.5.1 Standard Input Stream Operations

:tyi &optional eof Operation on streams
The stream will input one character and return it. For example, if the next character to
be read in by the stream is a "C", then the form
(funcall s ’:tyi)
will return the value of #/C (that is, 103 octal). Note that the :tyi opecration will not
"echo" the character in any fashion; it just does the input. The tyi function (see page
383) will do echoing when reading from the terminal.

The optional eof argument to the :tyi message tells the stream what to do if it gets to the
end of the file. If the argument is not provided or is nil, the strcam will return nil at the
end of file. Otherwise it will signal an error, and print out the argument as the error
message. Note that this is not the same as the cof-option argument to read, tyi, and

related functions.

The :tyi operation on a binary input stream will return a non-negative number, not
necessarily to be interpreted as a character.

SRCKI.MAN>IOS.TEXT.210 24-JAN-83

170 Streams 392 l.isp Machine Manual

:tyipeek &optional eof Operation on streams
Pecks at the next character or byte from the strcam without discarding it. The next :tyi
or :tyipeek operation will get the same character.

eof is the same as in the :tyi operation: if nil, end of file returns nil; otherwise, end of
file is an error and eof is used as the error message.

:untyi char Operation on streams
Unread the character or byte char; that is to say, put it back into the input stream so
that the next :tyi operation will read it again. For example,

(funcall s ’:untyi 120)

(funcall s ’:tyi) ==> 120
This operation is used by read, and any strecam that supports :tyi must support :untyi as
well.

You are only allowed to :untyi onc character before doing a :tyi, and the character you
:untyi must be the last character read from the stream. That is. :untyi can only be used
to "back up” one character, not to stuff arbitrary data into the strcam. You also can’t
:untyi after you have pecked ahcad with :tyipeek since that does one :untyi itself. Some
streams implement :untyi by saving the character, while others implement it by backing
up the pointer to a buffer.

:string-1in eofoption string &optional (siart 0) end Operation on streams
Reads characters from the stream and stores them into the array siring. Many streams
can implement this far more cfficiently that repeated :tyi's. swart and end, if supplied,
delimit the portion of siring to be stored into. eofoption if non-nil is an error message
and an error is signalled if end-of-file is reached on the stream before the string has been
filled. If eof-option is nil, any number of characters before end-of-file is acceptable, even
no characters.

If string has an array-leader, the fill pointer is adjusted to siart plus the number of
characters stored into string.

Two values are returned: the index of the next position in string to be filled, and a flag
that is non-nil if end-of-file was reached before string was filled. Most callers will not
need to look at either of these values.

string may be any kind of array, not necessarily a string; this is useful when reading
from a binary input stream.

:1ine-1in &optional leader Operation on streams
The stream should input one line from the input source, and return it as a string with the
carriage return character stripped off. Contrary to what you might assume from its name,
this operation is not much like the readline function.

Many streams have a string that is used as a buffer for lines. If this string itself were
returned, there would be problems caused if the caller of the strcam attempted to save
the string away somewhere, becausc the contents of the string would change when the
next line was read in. In order to solve this problem, the string must be copied. On the

SRC:KLMAN>STREAM.TEXT.19 24-JAN-83

Lisp Machine Manual 393 1/0 Streams

other hand, some strcams don’t reuse the string, and it would be wasteful to copy it on
every :line-in operation. This problem is solved by using the leader argumcnt to line-in.
If Jeader is nil (the default), the strcam will not bother to copy the string and the caller
should not rely on the contents of that string after the next operation on the stream. If
jeader is 1, the stream will make a copy. If leader is a fixnum then the strcam will make
a copy with an array leader leader clements long. (This is used by the cditor, which
represents lines of buffers as strings with additional information in their array-leaders, to
eliminate an extra copy operation.)

If the stream reaches the end-of-file while reading in characters, it will return the
characters it has read in as a string and return a sccond value of t. The caller of the
stream should therefore arrange to reccive the second value, and check it to sec whether
the string returned was a whole line or just the trailing characters after the last carriage
return in the input source.

This message should be implemented by all input streams whose data are characters.

:read-until-eof Operation on streams
Discard all data from the stream until it is at end of file, or do anything else with the
same result.

:close &optional ignore Operation on streams

Release resources associated with the string. when it is not going to be used any more.
On some kinds of streams, this may do nothing. On chaosnet streams, it closes the
chaosnet connection, and on file streams, it closes the input file on the file server.

The argument is accepted for compatibility with :close on output streams.

21.5.2 Standard Output Stream Operations

:tyo char Operation on streams
The stream will output the character char. For example, if s is bound to a stream, then
the form

(funcall s ':tyo #/B)
will output a B to the stream. For binary output streams, the argument is a non-negative
number rather than specifically a character.

:fresh-1ine Operation on streams
This tells the stream that it should position itself at the beginning of a new line. If the
stream is already at the beginning of a fresh line it should do nothing; otherwise it
should output a carriage return. If the stream cannot tell whether it is at the beginning of
a line, it should always output a carriage return.

:string-out string &optional swart end Operation on streams
The characters of the string are successively output to the stream. This operation is
provided for two reasons; first, it saves the writing of a loop which is used very often,
and second, many streams can perform this operation much more cfficiently than the
equivalent sequence of :tyo operations.

SRC:KLMAN>STREAM.TEXT.19 24-JAN-83

170 Streams 394 L.isp Machinc Manual

If start and end arc not supplicd, the whole string is output. Otherwisc a substring is
output; start is the index of the first character to be output (defaulting to 0), and end is
onc greater than the index of the last character to be output (defaulting to the length of
the string). Callers need not pass these arguments, but all streams that handle :string-out
must check for them and interpret them appropriately.

:1ine-out siring &optional start end Operation on streams

The characters of the string, followed by a carriage return character, arc output to the
strcam. start and end optionally specify a substring, as with :string-out. If the stream
doesn’t support :line-out itsclf, the default handler will turn it into a bunch of :tyos.

This message should be implemented by all output streams whose data are characters.

:close &optional mode Operation on streams

:e0f

The stream is "closed" and no further output operations should be performed on it
However, it is all right to :close a closed stream.

This operation does nothing on streams for which it is not meaningful.

The mode argument is normally not supplied. If it is :abort, we are abnormally exiting
from the usc of this stream. If the stream is outputting to a file, and has not been closed
already, the stream’s newly-created file will be deleted; it will be as if it was never
opened in the first place. Any previously existing file with the same name will remain
undisturbed.

Operation on streams
Indicates the end of data on an output stream. This is different from :close because
some devices allow multiple data files to be transmitted without closing. :close implies
.eof when the stream is an output stream and the close mode is not :abort.

This operation does nothing on streams for which it is not meaningful.

21.5.3 Asking Streams What They Can Do

All strcams are supposed to support certain operations which enable a program using the
stream to ask which operations are available.

:which-operations Operation on streams

This returns a list of operations handled "natively” by the stream. Certain operations not
in the list may work anyway, but slowly, so it is just as well that any programs that work
with or without them will choose not to use them.

Also, :which-operations is by convention not included in the list.

SRC:KL.MAN>STREAM.TEXT.19 24-JAN-83

Lisp Machine Manual 395 170 Streams

:operation-handled-p operation Operation on streams
- This returns t if operation is handled “natively” by the stream: if operation is a member
of the :which-operations list, or is :which-operations.

:send-if-handles operation &rest argumenis Operation on streams
This performs the operation operation, with the specified arguments. only if the stream
can handle it. If operation is handled, this is the same as sending an operation message
directly, but if operation is not handled. using :send-if-handles avoids any error.

If operation is handled, :send-if-handles returns whatever values the exccution of the
operation returns. If operation is not handled, :send-if-handles returns nil.

:direction Operation on streams
This operation returns :input, :output, or :bidirectional for a bidirectional stream.

There are a few kinds of streams, which cannot do cither input or output, for which the
:direction opcration returns nil. For cxample, open with the :direction keyword specified
as nil returns a strcam-like object which cannot do input or output but can handle certain
file inquiry operations such as :truename and :creation-date.

:characters Operation on streams
This operation returns t if the data input or output on the stream are characters, or nil if
they are just numbers (as for a stream rcading a non-text file).

Nl -0 N o VRSV PR JU (U gy L ISR o, SR
&1.J.4 UPCIALIVID 1Ul HHCIALLIYC Jucan

The operations disten, :tyi-no-hang, :rubout-handler and :beep arc intended for interactive
streams, which communicate with the user. :listen and :tyi-no-hang are supported in a trivial
fashion by other streams, for compatibility.

:Tisten ' Operation on streams
On an interactive device, the :listen operation returns non-nil if there are any input
characters immediately available, or nil if there is no immediately available input. On a
non-interactive device, the operation always returns non-nil except at end-of-file.

The main purposc of :listen is to test whether the user has hit a key, perhaps trying to
stop a program in progress.

:tyi-no-hang &optional eof Operation on streams
Just like :tyi except that it rcturns nil rather than waiting if it would be necessary to wait
in order to get the character. This lets the caller check efficiently for input being available
and get the input if there is any.

:tyi-no-hang is different from :listen because it reads a character.

Streams for which the question of whether input is available is not meaningful will treat
this operation just like :tyi. So will chaosnet file strcams. Although in fact reading
character from a file strcam may invoive a dclay, these delays are supposed t0 be
insignificant, so we pretend they do not exist.

SRCKLMAN>STREAM.TEXT.19 24-JAN-83

170 Streams 396 Lisp Machince Manual

:rubout-handler options function &rest args Operation on streams
This is supported by interactive bidirectional streams, such as windows on the terminal,
and is described in its own scction below (sec section 21.7, page 427).

:beep &optional 1ype Operation on streams
This is supported by interactive streams. It attracts the attention of the user by making an
audible beep and/or flashing the screen. 1ype is a keyword sclecting among several
different beeping noises. The allowed types have not yet been defined; #ype is currently
ignored and should always be nil. '

21.5.5 Cursor Positioning Stream Operations

:read-cursorpos &optional (units ':pixel) Operation on streams
This operation is supported by all windows and some other streams.

It returns two values, the current x and y coordinates of the cursor. It takes one optional
argument, which is a symbol indicating in what units x and y should be; the symbols
:pixel and :character arc understood. :pixel means that the coordinates are measured in
display pixels (bits), while :character mecans that the coordinates are measured in
characters horizontally and lines vertically.

This operation and :increment-cursorpos are used by the format "~T" request (see page
414), which is why "~T" doesn’t work on all streams. Any stream that supports this
operation should support :increment-cursorpos as well.

. Some streams return a meaningful value for the horizontal position but always return zero
for the vertical position. This is sufficient for "~T" to work.

:increment-cursorpos x-increment y-increment &optional Operation on streams
(units ':pixel)
Moves the stream’s cursor left or down according to the specified increments, as if by
outputting an appropriate number of space or return characters. x and y are like the
values of :read-cursorpos and units is the same as the units argument to :read-
Cursorpos.

Any stream which supports this operation should support :read-cursorpos as well, but it
need not support :set-cursorpos.

Moving the cursor with :increment-cursorpos differs from moving it to the same place
with :set-cursorpos in that this operation is thought of as doing output and :set-
cursorpos is not. For example, moving a window’s cursor down with :increment-
cursorpos when it is near the bottom to begin with will wrap around, possibly doing a
MORE. :set-cursorpos, by comparison, cannot move the cursor "down" if it is at
the bottom of the window; it can move the cursor explicitly to the top of the window,
but then no **MORE** will happen.

Some streams, such as thosc created by with-output-to-string, cannot implement
arbitrary cursor motion, but do implement this operation.

SRC:KLMAN>STREAM.TEXT.19 24-JAN-83

Lisp Machine Manual 397 1/0 Streams

.set-cursorpos x y &optional (units ":pixel) Operation on streams
This opcration is supported by the same streams that support :read-cursorpos. It sets
the position of the cursor. Xx and y are like the values of :read-cursorpos and units is
the same as the unifs argument to :read-cursorpos.

:clear-screen Operation on streams
Erases the screen area on which this stream displays. Non-window strcams don’t support
this operation.

There are many other special-purpose stream operations for graphics. They are not
documented here, but in the window-system documentation. No claim that the above operations
are the most useful subset should be implied.

21.5.6 Operations for Efficient Grinding

grindef runs much more efficiently on streams that implement the :untyo-mark and :untyo
operations.

:untyo-mark Operation on streams
This is used by the grinder (sec page 426) if the output stream supports it. It takes no
arguments. The stream should return some object that indicates how far output has gotien
up to in the stream.

suntyo mark Operation on streams
This is used by the grinder (see page 426) in conjunciiun witli UnHyS: mark, It takes one
argument, which is something returned by the :untyo-mark operation of the stream. The

stream should back up output to the point at which the object was returned.

21.5.7 Random Access File Operations

The following operations are implemented only by streams to random-access devices,
principally files.

:read-pointer ' Operation on streams
Returns the current position within the file, in characters (bytes in fixnum mode). For
text files on PDP-10 file servers, this is the number of Lisp Machine characters, not PDP-
10 characters. The numbers are different because of character-set translation.

:set-pointer newpointer ' Operation on streams
Sets the reading position within the file to new-pointer (bytes in fixnum mode). For text
files on PDP-10 file servers, this will not do anything rcasonable unless new-pointer is 0,
because of character-set translation. Some file systems support this operation for input
streams only.

SRC:XL.MAN>STREAM.TEXT.19 24-JAN-83

170 Streams 398 Lisp Machine Manual

:rewind Operation on streams
‘This operation is obsolete. It is the same as :set-pointer with argument zcro.

21.5.8 Buffered Stream Operations

:clear-input ' Operation on streams
This operation discards any buffered input the stream may have. It does nothing on
strcams for which it is not meaningful.

:clear-output Operation on streams
‘This operation discards any buffered output the stream may have. It docs nothing on
streams for which it is not meaningful.

:force-output Operation on streams
This is for output streams to buffered asynchronous devices, such as the Chaosnet.
:force-output causes any buffered output to be sent to the device. It does not wait for it
to complete; usc :finish for that. If a strcam supports ‘force-output, then :tyo, :string-
out, and :line-out may have no visible effect until a :force-output is done.

This operation does nothing on strcams for which it is not meaningful.

:finish Operation on streams
This is for output streams to buffered asynchronous devices, such as the Chaosnet. finish
does a :force-output, then waits until the currently pending 170 operation has been
completed.

This operation does nothing on streams for which it is not meaningful.

The following operations are implemented only by buffered input streams. They allow
increased cfficiency by making the stream’s internal buffer available to the user.

:read-input-buffer &optional eof Operation on streams
Returns three values: a buffer array, the index in that array of the next input byte, and
the index in that array just past the last available input byte. These values are similar to
the string, start, end arguments taken by many functions and strcam operations. If the
end of the file has been reached and no input bytes are available, the strcam returns nil
or signals an error, based on the eof argument, just like the :yi message. After reading
as many bytes from the array as you care to, you must send the :advance-input-buffer
message,

:get-input-buffer &optional eof Operation on streams
This is an obsolete operation similar to rread-input-buffer. The only difference is that
the third value is the number of significant clements in the buffer-array, rather than a
final index. If found in programs, it should be replaced with :read-input-buffer.

SRCAL.MAN>STREAM.TEXT.19 24-JAN-83

Lisp Machine Manual 399 [/0 Streams

:advance-input-buffer &optional newpointer Operation on streams
- If new-pointer is non-nil, it is the index in the buffer array of the next byte to be read.
If new-pointer is nil, the entire buffer has been used up.

21.5.9 Standard Streams

There are several variables whose values arc strecams used by many functions in the Lisp
system. These variables and their uses are listed here. By convention, variables that are expected
" to hold a stream capable of input have names cnding with -input, and similarly for output.
Those expected to hold a bidirectional stream have names ending with -io.

standard-input Variable
In the normal Lisp top-level loop, input is read from standard-input (that is, whatever
stream is the value of standard-input). Many input functions, including tyi and read,
take a strcam argument that defaults to standard-input.

standard-output Variable
In the normal Lisp top-level loop, output is sent to standard-output (that is, whatever
strecam is the value of standard-output). Many output functions, including tyo and print,
take a strecam argument that defaults to standard-output.

error-output Variable
The value of error-output is a stream to which noninteractive error or warning messages
should be sent. Normally this is the same as standard-output, but standard-output
might be bound to a file and error-output left going to the terminal.

[This seems not be used by all the things that ought to use it.]

debug-1io Variable
The value of error-handler-io, is used for all input and output by the error handler.
Nommally this is the samc as standard-output.

query-io Variable
The value of query-io is a strcam that should be used when asking questions of the user.
The question should be output to this stream, and the answer read from it. The reason
for this is that when the normal input to a program may be coming from a file, questions
such as "Do you really want to delete all of the files in your directory??” should be sent
directly to the user, and the answer should come from the user, not from the data file.
query-io is used by fquery and related functions; see page 621. :

terminal-io Variable
The value of ferminai-io is the stream that connects to the user's console. In an
"interactive” program, it will be the window from which the program is being run; 1/0

on this stream will read from the keyboard and display on the TV. However, in a
"background" program that does not normally talk to the user, terminal-io dcfaults to a
strcam that does not ever expect to be used. If it is used, perhaps by an error printout,
it turns into a "background” window and requests the user’s attention.

SRCKL.MAN>STREAM.TEXT.19 24-JAN-83

170 Streams 400 Iisp Machine Manual

trace-output Variable
‘The value of trace-output is the strcam on which the trace function prints its output.

standard-input, standard-output. error-output, debug-io, trace-output, and query-io
arc initially bound to synonym strcams that pass all operations on to the strcam that is the value
of terminal-io. Thus any opcrations performed on those strcams will go to the TV terminal.

Most user program should not change the value of terminal-io. A program which wants (for
example) to divert output to a file should do so by binding the valuc of standard-output; that
way querics on query-io, dcbugging on debug-io and error messages sent to error-output can
still get to the user by going through terminal-io, which is usually what is desired.

21.5.10 Obtaining Streams to Use

Onc important class of streams is windows. FEach window can be used as a strecam. Output is
displayed on the window and input comes from the keyboard. A window is created using
“tv:imake-window. Simple programs use windows implicitly through terminal-io and the other
standard stream variables.

Also important are file streams, which are produced by the function open (see page 432).
These read or write the contents of a file.

Chaosnet streams are made from chaosnct connections. Data output to the strcam goes out
over the nctwork; data coming in over the network is available as input from the strcam. File
streams that deal with chaosnct file servers are very similar to chaosnet streams, but chaosnet
streams can be used for many purposes other than file access.

String streams read or write the contents of a string. They are made by with-output-to-
string or with-input-from-string.

Editor buffer streams tead or write the contents of an editor buffer.

The null stream may be passed to a program that asks for a strcam as an argument. It
returns immediate end of file if used for input and throws away any output. The null stream is
the symbol si:null-stream. This is to say, you do not call that function to get a stream or use
the symbol’s value as the stream; the symbol itself is the object that is the stream.

The cold-load stream is able to do i/o to the keyboard and screen without using the window
system. It is what is used to by the error handler if you typc Terminal Call to handie a
background error that the window system cannot deal with. It is called the cold-load stream
because it is what is used during system bootstrapping, before the window system has been
loaded.

si:null-stream operation &rest arguments

This function is the null stream. Like any stream, it supports various operations. Output
operations are ignored and input operations report end of file immediately, with no data.

SRC:KLMAN>STREAM.TEXT.19 24-JAN-83

Lisp Machinc Manual 401 1/0 Strcams

si:cold-load-stream Variable
The value of this variable is the one and only cold-load stream.

with-open-stream (variable expression) body... Special Form
body is cexccuted with variable bound to the value of expression, which ought to be a
stream. On cxit, whether normal or by throwing, a :close message with argument :abort
is sent to the strecam.

This is a generalization of with-open-file, which is cquivalent to using with-open-
stream with a call 10 open as the expression.

with-open-stream-case (variable expression) clauses... Special Form
Like with-open-stream as far as opcning and closing the stream are concerned, but
instcad of a simple body, it has clauses like thosc of a condition-case that say what to
do if expression does or does not get an error. See with-open-file-case, page 432.

make-syn-stream symbol-orlocative
make-syn-stream creates and returns a “synonym stream” (syn for short). Any
operations sent to this strcam will be redirected to the stream that is the value of the
argument (if it is a symbol) or the contents of it (if it is a locative).

A synonym strcam made from a symbol is actually a symbol named symbol-syn-stream
whose function definition is symbol, with a property that declares it to be a legitimate
strcam. The generated symbol is interned in the same package as symbol.

A synonym strcam made from a locative is a closure.

make-broadcast-stream &rest streams
Returns a stream that only works in the output direction. Any output sent to this stream
will be sent to all of the streams given. The :which-operations is the intersection of the
:which-operations of all of the streams. The value(s) returned by a stream operation are
the values returned by the last stream in sfreams.

zwei:interval-stream interval-or-from-bp &optional 1o-bp in-order-p hack-fonts
Returns a bidirectional stream that reads or writes all or part of an cditor buffer. Note
that editor buffer strcams can also be obtained from open by using a pathname whose
host is ED. ED-BUFFER or ED-FILE (sce section 22.7.6, page 479).

The first three arguments specify the buffer or portion to be rcad or written. Fither the
first argument is an inferval (a buffer is one kind of interval), and all the text of that
interval is read or written, or the first two arguments are two buffer pointers delimiting
the range to be read or written. The third argument is used only in the latter case; if
non-nii, it tells the function to assume that the second buffer pointer comes iater in the
buffer than the first and not to take the time to verify the assumption.

The stream has only one pointer inside it, used for both input and output. As you do
input, the pointer advances through the text. When you do output, it is inserted in the
buffer at the place where the pointer has rcached. The pointer starts at the beginning of
the specified range.

SRCKL.MANDSTREAM.TEXT.19 24-JAN-83

170 Strcams 402 1.isp Machine Manual

hack-fonts tells what to do about fonts.

If hack-fonts is t, then the character ¢ is recognized as special when you output to the
strcam; scquences such as ¢2 arc interpreted as font-changes. They do not get inserted
into the bufler; instcad, they change the font in which following output will be inserted.
On input, font change scquences are inserted to indicate faithfully what was in the buffer.

If hack-jfonts is :tyo, then you are expected to read and write 16-bit characters containing
font numbers.

If hack-fonts is nil, then all output is inserted in font zero and font information is
discarded in the input you receive. This is the best mode to use if you are cvaluating the
contents of an editor buffer.

si:with-help-stream (siream options...) body... ‘ Special Form
Exccutes the body with the variable streamn bound to a suitable strcam for printing a large
help message. If standard-output is a window, then sfream is also a window; a
temporary window which fills the screen. Otherwise. stream is just the same as standard-
output.

The purpose of this is to spare the user the need to read a large help printout in a small
window, or have his data overwritten by it permanently. This is the mechanism used if
you type the Help key while in the rubout handler.

Important note: the body gets turned into a lambda-expression with the strecam and the
width and height variables bound appropriately; this mecans that variables from the
surrounding program that are to be accessed by the body must be special.

options is a list of alternating keywords and values.

Jlabel The value (which is evaluated) is used as the label of the temporary
window, if one is used.

:width The value, which is not cvaluated, is a symbol. While body is executed,
this symbol is bound to the width, in characters, available for the
message.

‘height The value is a symbol, like the value after :width, and it is bound to the

height in lines of the area available for the help message.

:superior The value, which is evaluated, specifics the original strcam to use in
deciding where to print the help message. This overrides the use of
standard-output.

SRCKLLMAN>STREAM.TEXT.19 24-JAN-83

Iisp Machinc Manual 403 1/0 Strcams

21.5.11 Implementing Streams
There are two ways to implement a stream: using defun and using flavors.

Using flavors is best when you can take advantage of the predefined strecam mixins, including
those which perform buffering, or when you wish to define several similar kinds of strcams that
can inherit methods from each other.

defun may have an advantage if you are dividing operations into broad groups and handling
them by passing them off to one or more other streams. In this case, the automatic opcration
decoding provided by flavors may get in the way. A number of strcams in the system are
implemented using defun (or using defselect, which is ncarly the same thing) for historical
reasons. It isn’t yet clear whether there is any reason not to convert most of them to use flavors.

If you use defun, you can use the stream default handler to implement some of the standard
operations for you in a default manner. If you use flavors, there are predefined mixins to do this
for you.

A few streams are individual objects, one of a kind. For example, there is only one null
stream, and no need for more, since two null streams would behave identically. But most streams
are clements of a general class. For cxample, there can be many file strecams for different files,
ceven though all behave the same way. There can also be multiple streams reading from different
points in the same file.

If you implement a class of streams with defun, then the actual streams will be closures of
the function you define, made with closure.

If you use flavors to implement the streams, having a class of similar streams comes naturally:
cach instance of the flavor is a stream, and the instance variables distinguish one stream of the
class from another.

21.5.12 Implementing Streams with Flavors

To define a stream using flavors, define a flavor which incorporates the appropriate predefined
stream flavor, and then redefine those operations which are peculiar to your own type of stream.

Flavors for defining unbuffered streams:

si:stream Flavor
This flavor provides default definitions for a few standard operations such as :direction
and :characters. Usually you do not have to mention this explicitly; instcad you use the
i vors below, which are built on this one.
si:input-stream Flavor
This flavor provides default definitions of all the mandatory input operations except :tyi
and :untyi, in terms of those two. You can make a simple non-character input stream by
defining a flavor incorporating this one and giving it methods for :tyi and :untyi.

SRCKLLMAN>STREAM.TEXT.19 24-JAN-83

170 Strcams 404 Lisp Machine Manual

si:output-stream Flavor
This flavor provides default definitions of all the mandatory output operations except :tyo,
in terms of :tyo. All you nced to do to define a simple unbuffered non-character output
strecam is to define a flavor incorporating this onc and give it a method for the :tyo
operation.

si:bidirectional-stream Flavor
This is a combination of si:input-stream and si:output-stream. It defines :direction to
return bidirectional. To define a simple unbuffered non-character bidirectional stream,
build on this flavor and define :tyi, :untyi and :tyo.

The unbuffered streams implement operations such as :string-out and :string-in by repeated
use of :tyo or :tyi.

For greater efficiency, if the strcam’s data is available in blocks, it is better to define a
buffered stream. You start with the predefined buffered strcam flavors, which define :tyi or :tyo
themsclves and manage the buffers for you. You must provide other operations that the system
uscs to obtain the next input buffer or to write or discard an output buffer.

Flavors for defining buffered streams:

si:buffered-input-stream Flavor
This flavor is the basis for a non-character buffered input stream. It defines :tyi as well as
all the other standard input operations, but you must define the two operations :next-
input-buffer and :discard-input-buffer, which the buffer management routines use.

:next-input-buffer Operation on si:buffered -input-stream
In a buffered input stream, this operation is used as a subroutine of the standard input
operations, such as :tyi, to get the next bufferful of input data. It should return three
values: an array containing the data, a starting index in the array, and an ending index.
For example, in a chaosnet strcam, this operation would get the next packet of input data
and return pointers delimiting the actual data in the packet.

:discard-input-buffer buffer-array Operation on si:buffered-input-stream
In a buffered input stream, this operation is used as a subroutinc of the standard input
operations such as :tyi. It says that the buffer management routines have used or thrown
away all the input in a buffer, and the buffer is no longer needed.

In a chaosnet stream, this operation would return the buffer, a packet, to the pool of
free packets.

si:buffered-output-stream Flavor
This flavor is the basis for a non-character buffered output stream. It defines :tyo as well
as all the other standard output operations, but you must define the operations :new-
input-buffer, :send-input-buffer and :discard-output-buffer, which the buffer
management routines use.

SRCKL.MAN>STREAM.TEXT.19 24-JAN-83

Lisp Machine Manual 405 170 Strecams

:new-output-buffer Operation on si:buffered -output-stream
In a buffered output stream, this operation is used as a subroutine of the standard output
operations, such as :tyo, to get an cmpty buffer for storing more output data. How the
buffer is obtained depends on the kind of stream, but in any case this operation should
return an array (the buffer), a starting index, and an cnding index. ‘The two indices
delimit the part of the array that is to be used as a buffer.

For example, a chaosnet stream would get a packet from the free pool and return indices
delimiting the part of the packet array which can hold data bytes.

:send-output-buffer buffer-array Operation on si:buffered -output -stream
ending-index
In a buffered output strcam, this operation is used as a subroutine of the standard output
operations, such as :tyo, to send the data in a buffer that has been completely or partially
filled.

ending-index is the first index in the buffer that has not actually been stored. This may
not be the same as the ending index that was rcturned by the :new-output-buffer
operation that was used to obtain this buffer; if a :force-output is done, ending-index
will indicatc how much of the buffer was full at the time.

The method for this operation should process the buffer's data and, if necessary, return
the buffer to a free pool.

:discard-output-buffer buffer-array Operation on si:buffered -output-stream
in a buifered output stream, this operation 18 used as a subroutine of the standard output
operations, such as :clear-output, to frec an output buffer and say that the data in it
should be ignored.

It should simply return buffer-array to a free pool, if appropriate.

Some buffered output streams simply have one buffer array which they use over and over.
For such streams, :new-output-buffer can simply return that particular array cach time; :send-
output-buffer and :discard-output-buffer to not have to do anything about returning the buffer
to a free pool. In fact, :discard-output-buffer can probably do nothing.

si:buffered-stream Flavor
This is a combination of si:buffered-input-stream and si:buffered-output-stream, used
to make a buffcred bidirectional stream. The input and output buffering are completely
independent of each other. You must define all five of the low level operations: :new-
input-buffer, :send-input-buffer and :discard-output-buffer for output, and :next-
input-buffer and :discard-input-buffer for input.

The data in most streams are characters. Character streams should support either :line-in or
Jline-out in addition to the other standard operations.

SRC:KLMAN>STREAM.TEXT.19 24-JAN-83

170 Strcams 406 Iisp Machine Manual

si:unbuffered-1ine-input-stream Ilavor
‘This flavor is the basis for unbuffered character input strecams. You need only define :tyi
and :untyi.

si:line-output-stream-mixin Flavor

To make an unbuffered character output stream. mix this flavor into the one you define,
together with si:output-stream. In addition, you must define :tyo, as for unbuffered
non-character strcams,

si:buffered-input-character-stream Flavor
This is used just like si:buffered-input-stream, but it also provides the :line-in opcration
and makes :characters rcturn t.

si:buffered-output-character-stream Flavor
This is used just like si:buffered-output-stream, but it also provides the :line-out
operation and makes :characters return t.

"si:buffered-character-stream Flavor
‘This is used just like si:buffered-stream, but it also provides the :line-in and :line-out
operations and makes :characters return t.

To make an unbuffered random-access strcam, you nced only define the :read-pointer and
:set-pointer operations as appropriate. Since you provide the yi or :tyo handler yourself, the
system cannot help you.

In a buffered random-access stream, the random access opcrations must interact with the
buffer management. The system provides for this.

si:input-pointer-remembering-mixin Flavor
Incorporate this into a buffered input stream to support random access. This flavor defines
the :read-pointer and :set-pointer opcrations. If you wish :set-pointer to work, you
must provide a definition for the :set-buffer-pointer operation. You need not do so if
you wish to support only :read-pointer.

:set-buffer-pointer Operation on si:input- pointer-remembering -mixin
new-pointer
You must define this operation if you use si:input-pointer-remembering-mixin and want
the :set-pointer operation to work.

This opcration should arrange for the next :next-input-buffer operation to provide a
bufferful of data that includes the specified character or byte position somewhere inside it.

The value returned should be the file pointer corresponding to the first character or byte
of that next bufferful.

SRCKI.MAN>STREAM.TEXT.19 24-JAN-83

Lisp Machine Manual 407 1/0 Strecams

si:output-pointsr-remembsring-mixin Flavor
Incorporate this into a buffered output stream to support random access. This mixin
defines the :read-pointer and :set-pointer opcrations. If you wish :set-pointer to work,
you must provide definitions for the :set-buffer-pointer and :get-old-data operations.
You neced not do so if you wish to support only :read-pointer.

:set-buffer-pointer Operation on si:output-pointer -remembering -mixin
new-pointer
This is the same as in sicinput-pointer-remembering -mixin.

:get-old-data buffer-array Operation on si:output-pointer-remembering -mixin
lower-output-limit
The buffer management routines perform this operation when you do a :set-pointer that
outside the range of pointers that fit in the current output buffer. They first send the old
buffer, then do :set-buffer-pointer as described above to say where in the file the next
output buffer should come, then do :new-output-buffer to get the new buffer. Then the
:get-old-data operation is performed. '

It should fill current buffer (buffer-array) with the old contents of the file at the
corresponding addresses, so that when the buffer is eventually written, any bytes skipped
over by random access will retain their old values.

The instance variable si:stream-output-lower-limit is the starting index in the buffer of
the part that is supposed to be used for output. si:stream-output-limit is the ending
index The instance variable si:outnut-pointer-base is the file pointer corresponding to
the starting index in the buffer.

si:file-stream-mixin Flavor
Incorporate this mixin together with si:stream to make a file probe stream, which cannot
do input or output but records the answers to an enquiry about a file. You should
specify the init option :pathname when you instantiate the flavor.

You must provide definitions for the :plist and :truename operations; in terms of them,
this mixin will define the operations :get, :creation-date, and :info.

si:file-input-stream-mixin Flavor
Incorporate this mixin into input streams that are used to rcad files. You should specify
the file’s pathname with the :pathname init option when you instantiate the flavor.

In addition to the services and requirements of si:file-stream-mixin, this mixin takes care
of mentioning the file in the who-line. It also includes si:input-pointer-remembering-
mixin so that the :read-pointer operation, at least, will be available.

si:file-output-stream-mixin Flavor
This is the analogue of si:file-input-stream-mixin for output streams.

SRCKL.MAN>STREAM.TEXT.19 24-JAN-83

170 Streams 408 Iisp Machine Manual

21.5.13 Implementing Streams Without Flavors

You do not need to use flavors to implement a stream. Any object that can be used as a
function. and decodes its first argument appropriatcly as an operation name, will serve as a
strecam. Although in practice using flavors is as casy as any other way, it is cducational to sce
how to define streams "from scratch”.

We could begin to define a simple output strecam, which accepts characters and conses them
onto a list, as follows:

(defvar the-list nil)

(defun list-output-stream {op &optional argl &rest rest)
(selectq op
(:tyo
(setq the-1ist (cons argl the-list)))
(:which-operations '(:tyo))))

This is an output strcam, and so it supports the :tyo operation. All streams must support
:which-operations.

‘The lambda-list for a stream defined with a defun must always have one required parameter
(op), onc optional parameter (arg/), and a rest parameter (rest).

This dcfinition is not satisfactory, however. It handles :tyo properly, but it does not handle
:string-out, :direction, :send-if-handles, and other standard operations.

The function stream-default-handler exists to sparc us the trouble of defining all those
operations from scratch in simple strcams like this. By adding one additional clause, we let the
default handler take carc of all other operations, if it can.

(defun list-output-stream (op &optional argl &rest rest)
(selectq op
(:tyo
(setq the-1ist (cons argl the-list)))
(:which-operations ’'(:tyo))
(otherwise
(stream-default-handler #'list-output-stream
op argl rest))))

If the operation is not one that the stream understands (c.g. :string-out), it calls stream-
default-handler. Note how the rest argument is passed to it. This is why the argument list must
look the way it does. stream-default-handler can be thought of as a restricted analogue of
flavor inheritance.

If we want to have only onc strcam of this sort, the symbol list-output-stream can be used
as the strcam. The data output to it will appear in the global value of the-list. One more step
is required, though:

SRC:KLMAN>STREAM.TEXT.19 24-JAN-83

|isp Machine Manual 409 /0 Strcams

{defprop list-output-stream t si:ic-stream-p)
This tells certain functions including read to trcat the symbol list-output-stream as a stream
rather than as an end-of-file option.

If we wish to be able to create any number of list output strecams, cach accumuiating its own
fist, we inust use closurcs:

{defvar the-stream)
(defvar the-list)

(defun list-output-stream (op &optional argl &rest rest)
(selectq op
{:tyo
(push argl the-Tist)))
(:withdrawal (progl the-list (setq the-Tlist nil)))
(:which-operations ’(:tyo :withdrawal))
{otherwise
(stream-default-handler the-stream
op argl rest))))

(defun make-iist-output-stream ()
(let ((the-stream the-1list))
(setq the-stream
(closure (t

e-stream the-list)
s +) ecdnAaam)X))
v w 2wl W ”I

~and
puu

0

We have added a new operation :withdrawa! that can be used to find out what data has been
accumulated by a stream. This is necessary because we can no longer simply look at or set the
global value of the-list; that is not the same as the value closed into the stream.

In addition, we have a new variable the-stream which allows the function list-output-
stream to know which stream it is serving at any time. This variable is passed to stream-
default-handler so that when it simulates :string-out by means of :tyo, it can do the :tyo’s to
the same stream that the :string-out was done to.

The same strcam could be defined with defselect instcad of defun. It actually makes only a
small difference. The defun for list- output-stream could be replaced with this code:

(defselect (list-output-stream list-output-d-h)
(:tyo (argl)
(push argl the-1list))
{:withdrawal ()
(progl the-list (setq the-list nil))))

(defun list-output-d-h (op &optional argl &rest rest)
(stream-default-handler the-stream cp argl rest))

SRCKL.MAN>STREAM.TEXT.19 24-JAN-83

170 Strcams 410 Iisp Machine Manual

defselect takes care of decoding the operations, provides a definition for :which-operations,
and allows you to write a scparate lambda list for cach opcration.

By comparison, the same strcam defined using flavors looks like this:

(defflavor list-output-stream ((the-list nil))
(si:line-output-stream-mixin si:output-stream))

(defmethod (list-output-stream :tyo) (character)
(push character the-1list))

(defmethod (list-outut-stream :withdrawal) ()
(progl the-1list (setg the-list nil)))

(defun make-list-output-stream ()
(make-instance ’list-output-stream))

Here is a simple input stream, which generates successive characters of a list.
(defvar the-Tlist) ;Put your input 1list here
(defvar the-stream)

(defvar untyied-char nil)

(defun list-input-stream (op &optional argl &rest rest)
(selectq op
(:tyi
(cond ((not (null untyied-char))
(progl untyied-char (setq untyied-char nil)))
((nrull the-list)
(and argl (error argl)))
(t (pop the-tist))))
(:untyi
{setq untyied-char argl))
(:which-operations ’(:tyi :untyi))
(otherwise
(stream-default-handler the-stream
op argl rest))))

(defun make-Tlist-input-stream (the-1list)
(let (the-stream untyied-char)
(setq the-stream
(closure ’(the-list the-stream untyied-char)
>list-input-stream))))

The important things to note are that :untyi must be supported, and that the stream must

check for having reached the end of the information and do the right thing with the argument to
the :tyi operation,

SRC:KLMAN>STREAM.TEXT.19 24-JAN-83

[.isp Machinc Manual 411 , Formatted Output

stroam-default-handler sireamn op argl rest
stream-default-handler trics to handle the op opcration on stream, given arguments of
arg! and the clements of rest. The exact action taken for each of the defined operations
is cxplained with the documentation on that operation, above.

21.6 Formatted Output

There are two ways of doing gencral formatted output. One is the function format. The
- other is the output subsystem. format uses a control string written in a special format specifier
language to control the output format. format:output provides Lisp functions to do output in
particular formats.

For simple tasks in which only thc most basic format specifiers are needed, format is easy to
use and has the advantage of brevity. For more complicated tasks. the format specifier language
becomes obscure and hard to read. Then format:output becomes advantageous because it works
with ordinary Lisp control constructs.

For formatting Lisp code (as opposed to text and tables), there is the grinder (scc page 426).

21.6.1 The Format Function

format destination control-string &rest args
format is used to produce formatted output. format outputs the characters of control-
string, except that a tilde ("~") introduces a directive. 1he character after the tide,
possibly preceded by prefix parameters and modifiers, specifies what kind of formatting is
desired. Most directives use one or more clements of args to create their output; the
typical directive puts the next clement of args into the output, formatted in some special
way.

The output is sent to destination. If destination is nil, a string is crcated which contains
the output; this string is returned as the value of the call to format. In all other cases
format returns no interesting value (generally it returns nil). If destination is a strcam, the
output is sent to it. If destination is t, the output is sent to standard-output. If
destination is a string with an array-leader, such as would be acceptable to string-nconc
(see page 147), the output is added to the end of that string.

A directive consists of a tilde, optional prefix parameters scparated by commas, optional colon
(":") and atsign ("@") modifiers, and a single character indicating what kind of dircctive this is.
The alphabetic case of the character is ignored. The prefix parameters are generally decimal
numbers. Examples of control strings:

"~ST ; This is an S dircctive with no parameters.

"~3,4:@s" ; This is an S directive with two parameters, 3 and 4,
; and both the colon and atsign flags.

"~, 48" ; The first prefix parameter is omitted and takes

: on its default value, while the second is 4.

SRCKLMAN>STREAM.TEXT.19 24-JAN-83

IFormatted Output 412 Lisp Machine Manual

format includes some cxtremely complicated and specialized features. It is not nccessary to
understand all or even most of its features to use format cfficiently. The beginner should skip
over anything in the following documentation that is not immediately uscful or clear. The more
sophisticated features arc there for the convenience of programs with complicated formatting
requirements.

Sometimes a prefix paramcter is used to specify a character, for instance the padding character
in a right- or left-justifying operation. In this case a single quote ("' ") followed by the desired
character may be used as a prefix parameter, so that you don’t have to know the decimal numeric
values of characters in the character set. For example, you can use

"~5,°0d" instcad of "~5,48d"
to print a decimal number in five columns with leading zeros.

In place of a prefix parameter to a directive, you can put the letter V. which takes an
argument from args as a parameter to the directive. Normally this should be a number but it
doesn't really have to be. This feature allows variable column-widths and the like. Also, you can
_use the character # in place of a parameter; it represents the number of arguments remaining to
be processed.

Here are some relatively simple cxamples to give you the general flavor of how format is
used.
(format nil "foo") => "foo"
(setg x 5)
(format nil "The answer is ~D." x) => "The answer is 5."
(format nil1 "The answer is ~3D." x) => "The answer is h."
(setq y "elephant")
(format nil "Look at the ~A!" y) => "Look at the elephant!"
(format nil "The character ~:@C is strange." 1003)
=> "The character Meta-g (Top-X) is strange."
(setq n 3)
(format nil "~D item~:P found." n) => "3 items found."
(format nil "~R dog~:[s are~; is~] here." n (= n 1))
=> "three dogs are here."
(format nil "~R dog~:*~[~1; is~:;s are~] here." n)
=> "three dogs are here."
(format nil "Here ~[~1;is~:;are~] ~:+~R pupp~:@P." n)
=> "Here are three puppies.”

The directives will now be described. arg will be used to refer to the next argument from
args.

~A arg, any Lisp object, is printed without slashification (as by princ). ~:A prints () if
arg is nil; this is useful when printing something that is always supposed to be a list.
~nA inserts spaces on the right, if necessary, to make the column width at least n.
The @ modifier causes the spaces to be inserted on the left rather than the right.
~mincol,colinc.minpad,padcharA is the full form of ~A, which allows elaborate control
of the padding. The string is padded on the right with at Icast minpad copies of
padchar; padding characters are then inserted colinc characters at a time until the total
width is at least mincol. The defaults are 0 for mincol and minpad, 1 for colinc, and

SRCKL.MAN>FD-FIO.TEXT.6 24-JAN-83

Iisp Machine Manual 413 Formatted Output

space for padchar.

~S This is just like ~A, but arg is printed with slashification (as by prin1 rather than
princ).
~D arg. a number, is printed as a decimal integer. Uniike print, ~D will never put a

decimal point after the number. ~uD uses a column width of n; spaces are inserted
on the left if the number requires less than n columns for its digits and sign. If the
number doesn’t fit in # columns, additional columns are used as nceded. ~n,mD uscs
m as the pad character instcad of space. If arg is not a number, it is printed in ~A
format and dccimal base. The @ modifier causes the number’s sign to be printed
always; the default is only to print it if the number is negative. The : modifier causes
commas to be printed between groups of three digits; the third prefix parameter may
be used to change the character used as the comma. Thus the most general form of
~D is ~mincol ,padchar,commacharD.

~0 This is just like ~D but prints in octal instead of decimal.

~F arg is printed in floating point. ~nF rounds arg to a precision of #n digits. The

minimum value of n is 2, since a decimal point is always printed. If the magnitude of
arg is too large or too small, it is printed in exponential notation. If arg is not a
number, it is printed in ~A format. Note that the prefix parameter n is not mincol;
it is the number of digits of precision desired. Examples:

(format nil "~2F" 5) => "b.Q0"

(format nil "~4F" 5) => "5.0"

(format nil "~4F" 1.5) => "1.5"

{format nil "~A4F" 2 141KQ26K) => "3.142"

(format nil "~3F" 1el10) => "1.0elQ"

~E arg is printed in cxponential notation. This is identical to ~F, including the use of a
prefix parameter to specify the number of digits, except that the number is always
printed with a trailing exponent, even if it is within a reasonable range.

~$ ~rdig,ldig field padchar$ prints arg, a flonum, with exactly rdig digits after the decimal
point. The default for rdig is 2, which is convenicnt for printing amounts of money.
At least I/dig digits will be printed preceding the decimal point; leading zeros will be
printed if there would be fewer than /dig. The default for ldig is 1. The number is
right justified in a field fleld columns long, padded out with padchar. The colon
modifier means that the sign character is to be at the beginning of the field, before the
padding, rather than just to the left of the number. The atsign modificr says that the
sign character should always be output.

If arg is not a number, or is unrcasonably large, it will be printed in
~field,,,padchar@A format; ie. it will be princ’ed right-justified in the specified field
width.

~C (character arg) is put in the output. arg is treated as a keyboard character (see page
363), thus it may contain extra control-bits. These are printed first by rcpresenting
them with abbreviated prefixes: "C-" for Control, "M-" for Meta, "H-" for Hyper,
and "S-" for Super.

SRCKLMANDFD-FIO.TEXT.6 24-JAN-83

Formatied Output 414 I.isp Machine Manual

~%

With the colon flag (~:C), the names of the control bits arc spelled out (e.g.
"Control-Meta-F") and non-printing characters are represented by their names (e.g.
"Return”) rather than being output as themselves.

With both colon and atsign (~:@C), the colon-only format is printed. and then if the
character requires the Top or Greek (Front) shift key(s) to type it, this fact is
mentioned (c.g. "Y (Top-U)"). 'This is the format uscd for telling the user about a key
he is expected to type, for instance in prompt messages.

For all three of these formats, if the character is not a keyboard character but a mouse
"character”, it is printed as Mouse-, the name of the button, "-", and the number of
clicks.

With just an atsign (~@C), the character is printed in such a way that the Lisp reader
can understand it, using "# /" or "#\". '

Outputs a carriage return. ~n% outputs n carriage returns. No argument is used.
Simply putting a carriage return in the control string would work, but ~% is usually
used because it makes the control string look nicer in the Lisp source program.

The fresh-line operation is performed on the output stream. Unless the strcam knows
that it is alrcady at the front of a line, this outputs a carriage return. ~n& does a
‘fresh-line opcration and then outputs n-1 carriage returns.

Outputs a page separator character (#\page). ~n| does this s times. With a :
modifier, if the output stream supports the :clear-screen opcration this directive clears
the screen, otherwise it outputs page separator character(s) as if no : modifier were
present. | is vertical bar, not capital I.

Outputs a space. ~nX outputs n spaces.
Outputs a tilde. ~n~ outputs n tildes.

Tilde immediately followed by a carriage return ignores the carriage return and any
whitespace at the beginning of the next line. With a @, the whitespace is left in place.
With an @, the carriage return is left in place. This directive is typically used when a
format control string is too long to fit nicely into one line of the program.

arg is ignored. ~n* ignores the next n arguments. ~:* “ignores backwards": that is,
it backs up in the list of arguments so that the argument last processed will be
processed again. ~n:* backs up n arguments. When within a ~{ construct (sce
below), the ignoring (in cither direction) is relative to the list of arguments being
processed by the iteration.

If arg is not 1, a lower-case "s" is printed. ("P" is for "plural”.) ~:P does the same
thing, after doing a ~:*; that is, it prints a lower-case s if the last argument was not
1. ~@P prints "y" if the argument is 1, or "ies" if it is not. ~:@P does the same
thing, but backs up first.

Spaces over to a given column. ~n,mT will output sufficient spaces to move the
cursor to column n. If the cursor is already past column n, it will output spaces to
move it to column n+mk, for the smallest integer value % possible. n and m default
to 1. Without the colon flag, n and m arc in units of characters; with it, they are in
units of pixels. Note: this operation works properly only on strcams that support the

SRC:KLMAN>FD-FIO.TEXT.6 24-JAN-83

Lisp Machine Manual 415 Formatted Output

:read-cursorpos and :increment-cursorpos stream operations (sec page 396). On
other strcams, any ~T operation will simply output two spaces. When format is
creating a string, ~T will work, assuming that the first character in the string is at the
left margin.

~R ~R prints arg as a cardinal English number, e.g. four. ~:R prints arg as an ordinal
number, c.g. fourth. ~@R prints arg as a Roman numeral, c.g. IV. ~:@R prints arg
as an old Roman numeral, e.g. L.

~nR prints arg in radix n. The flags and any remaining paramecters are used as for
the ~D dircctive. Indeed, ~D is the same as ~10R. The full form here is therefore
~ radix ,mincol ,padchar ,commacharR.

~nG "Goes to" the nth argument. ~OG goes back to the first argument in args. Directives
after a ~nG will take sequential arguments after the one gone to. When within a ~{
construct, the "goto" is relative to the list of arguments being processed by the
iteration. This is an "absolute goto"; for a "relative goto”, see ~*.

~[strO~;strl~;...~;strn~]

This is a set of alternative control strings. The alternatives (called clauses) are
separated by ~; and the construct is terminated by ~]. For cxample,

"~[Siamese ~;Manx ~;Persian ~;Tortoise-Shell ~

~;Tiger ~;Yu-Shiang ~Jkitty"

The argth alternative is sclected; O selects the first. If a prefix parameter is given (i.e.
~n[), then the parameter is used instead of an argument (this is useful only if the
parameter is " #"). If arg is out of range no alternative is sclected. After the selected
alternative has been processed, the controi string continues after the ~J.

~[str0~;strl ~;...~;strn ~:;default~] has a default case. If the last ~; used to separaie
clauses is instead ~:;, then the last clause is an "else™ clause, which is performed if no
other clause is selected. For example,
"~[Siamese ~;Manx ~;Persian ~;Tiger ~
~;Yu-Shiang ~:;Bad ~] kitty"

~[~1ag00,tag0! ,...;str0 ~1agl0,tagl I;strl...~] allows the clauses to have explicit tags.
The parameters to each ~; are numeric tags for the clause which follows it. That
clause is processed which has a tag matching the argument. If ~al ,a2,b1,b2,...;; (note
the colon) is used, then the following clause is tagged not by single values but by
ranges of values al through a2 (inclusive), b/ through b2. etc. ~: with no
parameters may be used at the end to denote a default clause. For example,
"~[~'+,’-,’*,’//;0perator ~'A,’Z,’a, z:;letter ~
~'0,'9:;digit ~:;other ~]"

~:[faise~;true~] selects the false control string if arg is ni
string otherwise.

~@]true~] tests the argument. If it is not nil, then the argument is not used up, but
is the next one to be processed, and the one clause is processed. If it is nil, then the
argument is used up, and the clause is not processed. For example,

SRC:KI..MAN>FD-FIO.TEXT.6 24-JAN-83

Formatted Output 416 Lisp Machine Manual

(setg prinlevel nil prinlength 5)
(format nil "~@[PRINLEVEL=~D~]~@[PRINLENGTH=~D~]"
prinievel prinlength)
=> " PRINLENGTH=5"

The combination of ~[and # is uscful, for cxample, for dealing with English
conventions for printing lists:
(setq foo "Items:~#[none~; ~S~; ~S and ~
~S~i;~@{~#[~1; and~] ~S~~,~}~].")
(format nil foo)
=> "Items: none."
(format nil foo ’foo)
=> "Ttems: FOO."
(format nil foo 'foo ’bar)
=> "Items: FOO and BAR."
(format nil foo 'foo ’bar ’'baz)
=> "Items: F0O, BAR, and BAZ."
(format nil foo 'foo 'bar 'baz ’quux)
=> "Items: FOO, BAR, BAZ, and QUUX."

~; Scparates clauses in ~[and ~< constructions. It is undefined elsewhere.
~] Terminates a ~[. 1t is undefined elsewhere.

~{str~} This is an iteration construct. The argument should be a list. which is used as a set of
arguments as if for a recursive call to format. The string str is used repeatedly as the
control string. Each iteration can absorb as many clements of the list as it likes: if str
uses up two arguments by itself, then two clements of the list will get used up cach
time around the loop. If before any iteration step the list is empty. then the iteration
is terminated. Also, if a prefix parameter n is given, then there will be at most n
repetitions of processing of sir. Here are some simple examples:
(format nil "Here it is:~{ ~S~}." '(a b c))
=> "Here it is: A B C."
(format nil "Pairs of things:~{ <~§,~8>~}." ’(a 1 b 2 ¢ 3))
=> "Pairs of things: <A,1> <B,2> <C,3>."

~{sir~} is similar, but the argument should be a list of sublists. At ecach repetition
step onc sublist is used as the sct of arguments for processing str; on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed. Example:
(format nil "Pairs of things:~:{ <~§,~S>~} "
"((a 1) (b 2) (c 3)))

=> "Pairs of things: <A,1> <B,2> <C,3>."
~@{str~} is similar to ~{sir~}, but instead of using one argument which is a list,

all the remaining arguments are used as the list of arguments for the iteration.
Example:

SRCAL.MAN>FD-FIO.TEXT.6 24-JAN-83

Lisp Machine Manual 417 Formatted Output

{format nil "Pairs of things:~B{ <~§,~S>~}."
'al b2 'c 3
=> "Pairs of things: <A,1> <B,2> <C,3>."

~:@{sir~} combines the features of ~:{str~} and ~@{sr~}. All the remaining
arguments are used, and cach one must be a list. On ecach iteration the next argument
is used as a list of arguments to str. Example:
(format nil "Pairs of things:~:@{ <~§,~S>~}."
"(a 1) (b 2) "(c 3))
=> "Pairs of things: <A,1> <B,2> <(C,3>."

Terminating the repetition construct with ~:} instcad of ~} forces sir to be processed
at least once even if the initial list of arguments is null (however, it will not override
an explicit prefix parameter of zero).

If sir is empty, then an argument is used as str. It must be a string, and precedes
any arguments processed by the iteration. As an cxample, the following are
equivalent:

(lexpr-funcall #'format stream string args)

(format stream "~1{~:}" string args)
This will use string as a formatting string. The ~1{ says it will be processed at most
once, and the ~:} says it will be processed at least once. Therefore it is processed
exactly once, using args as the arguments.

As another example, the format function itself uses format-error (a routine internal to
the format package) to signal error messages, which in turn uses ferror, which uses
format recursively. Now format-error takes a string and arguments, just like format,
but alse prints seme additional information: if the control string in ctl-string actually
is a string (it might be a list—sec below), then it prints the string and a little arrow
showing where in the processing of the control string the error occurred. The variable
ctl-index points one character after the place of the error.

(defun format-error (string &rest args)

(if (stringp ctl-string)
(ferror nil "~1{~:}~U~VTI~%~3X/"~A/"~%"
string args (+ ctl-index 3) ctl-string)
(ferror nil "~1{~:}" string args)))

This first processes the given string and arguments using ~1{~:}, then tabs a variable
amount for printing the down-arrow, then prints the control string between double-
quotes. The cffect is something like this:

(format t "The item is a ~[Foo~;Bar~;Loser~]." ’quux)

>>ERROR: The argument to the FORMAT "~[" command

must be a number
+
"The item is a ~[Foo~;Bar~;Loser~]."

~} Terminates a ~{. It is undcfined clsewhere.

~ ~mincol colinc,minpad padchar<text~> justifics text within a ficld at least mincol wide.
text may be divided up into segments with ~;—the spacing is cvenly divided between

SRCKL.MAN>FD-FIO.TEXT.6 24-JAN-83

Formatted Output 418 Lisp Machine Manual

the text segments. With no modifiers, the lefumost text segment is left justified in the
ficld, and the rightmost text segment right justified; if there is only one, as a special
case, it is right justified. The : modifier causes spacing to be introduced before the
first text segment; the @ modifier causes spacing to be added after the last. Minpad,
default 0, is the minimum number of padchar (default space) padding characters to be
output between cach segment. If the total width needed to satisfy these constraints is
greater than mincol, then mincol is adjusted upwards in colinc increments. coline
defaults to 1. mincol defaults to 0. For example,

(format nil "~10<foo~;bar~>") => "foo bar”
(format nil "~10:<foo~;bar~>") => " foo bar"
(format nil "~10:@<foo~;bar~>") => " foo bar "
(format nil "~10<foobar~>") L= foobar"
(format nil "~10:<foobar~>") => " foobar®
(format nil "~10@<foobar~>") => "foobar "
(format nil "~10:@<foobar~>") => " foobar "

(format nil "$~10,,, #<~3f~>" 2.59023) => "Frr**x+2 59"

Note that rext may include format directives. The last example illustrates how the ~<
directive can be combined with the ~f directive to provide more advanced control over
the formatting of numbers.

Here are some examples of the use of ~~ within a ~< construct. ~~ is cxplained in
detail below, however the general idea is that it climinates the segment in which it
appears and all following scgments if there are no more arguments,

(format nil "~15<~S~;~*~S~;~r~S5~>" *f00)

= " FOO "
(format nil "~15<~S~;~"~S~;~*~5~>" 'foo ’bar)
=> "FOO BAR"

(format nil "~15<~S~;~"~S~;~~~S5~>" 'foo ’'bar ’baz)
=> "FOO BAR BAZ"

The idea is that if a segment contains a ~~, and format runs out of arguments, it just
stops there instead of getting an error, and it as well as the rest of the segments are
ignored.

If the first clause of a ~< is terminated with ~:; instead of ~;, then it is used in a
special way. All of the clauses are processed (subject to ~~, of course), but the first
one is omitted in performing the spacing and padding. When the padded result has
been determined, then if it will fit on the current line of output, it is output, and the
text for the first clause is discarded. If, however, the padded text will not fit on the
current line, then the text segment for the first clause is output before the padded text.
The first clause ought to contain a carriage return (~%). The first clause is always
processed, and so any arguments it refers to will be used; the decision is whether to
use the resulting segment of text, not whether to process the first clause. If the ~:;
has a prefix parameter n, then the padded text must fit on the current line with n
character positions to spare to avoid outputting the first clause’s text. For cxample, the
control string
"%y <~y ~1ry ~Se>an N ST

can be used to print a list of items scparated by commas, without breaking items over

SRCKLMAN>FD-FIO.TEXT.6 24-JAN-83

Lisp Machine Manual 419 Formatted Output

line boundarics, and beginning cach line with "; The prefix parameter 1 in ~1:;
accounts for the width of the comma which will follow the justified item if it is not
the last clement in the list, or the period if it is. If ~:; has a sccond prefix
paramcter, then it is used as the width of the line, thus overriding the natural line
width of the output stream. To make the preceding cxample use a line width of 50,
one would write

"%y ~{~<~%yy ~1,50:0; ~S~>~n ~) YT

If the sccond argument is not specified, then format sees whether the strcam handles
the :size-in-characters message. If it does, then format sends that message and usecs
the first returned value as the line length in characters. If it doesn't, format uscs 95.
as the line length.

Rather than using this complicated syntax, one can often call the function
format:print-list (sce page 420).

Terminates a ~<. It is undefined elsewhere.

This is an escape construct. If there are no more arguments remaining to be processed,
then the immediately enclosing ~{ or ~< construct is terminated. If there is no such
enclosing construct, then the entire formatting operation is terminated. In the ~< case,
the formatting is performed, but no more segments are processed before doing the
justification. The ~~ should appear only at the beginning of a ~< clause, because it
aborts the entire clause. ~~ may appear anywhere in a ~{ construct.

If a prefix parameter is given, then termination occurs if the parameter is zero.
(Hence ~~ is the same as ~# ~.) If two parameters arc given, termination occurs if
they arc cqual. If three are given, termination occurs if the sccond is between the
other two in ascending order. Of course, this is useless if all the prefix parameters are
constants; at least onc of them should be a # or a V parameter.

If ~~ is used within a ~:{ construct, then it merely tcrminates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next iteration step commences immediately. To terminate the entire iteration
process, use ~:~.

An escape to arbitrary user-supplied code. arg is called as a function; its arguments
arc the prefix parameters to ~Q, if any. args can be passed to the function by using
the V prefix parameter. The function may output to standard-output and may look
at the variables format:colon-flag and format:atsign-flag, which are t or nil to reflect
the : and @ modifiers on the ~Q. For example,

(format t "~VQ" foo bar)
is a fancy way to say

{(funcall bar foo)
and discard the value. Note the reversal of order; the V is processed before the Q.
This begins a directive whose name is longer than one character. The name is

terminated by another \ character. The following directives have names longer than
one character and make use of the ~\ mechanism as part of their operation.

SRC:KL.MAN>FD-FIO.TEXT.6 24-JAN-83

Formatted Output 420 Iisp Machine Manual

~\date\ This expects an argument that is a universal time (sce page 628), and prints it as a
date and time using time:print-universal-date.
Example:
(format t "It is now ~\date\" (time:get-universal-time))
prints
It is now Saturday the fourth of December, 1982; 4:00:32 am

~\time\ This cxpects an argument that is a universal time (sece page 628), and prints it in a
brief format using time:print-universal-time.
Example:
(format t "It is now ~\time\" (time:get-universal-time))
prints
It is now 12/04/82 04:01:38

~\datime\
This prints the current time and date. It docs not use an argument. It is equivalent to
using the ~\time\ directive with (time:get-universal-time) as argument.

~\time-interval\
This prints a time interval measured in seconds using the function time:print-interval-
or-never.
Example:
(format t "It took ~\time-interval\." 3601.)
prints
It took 1 hour 1 second.

You can define your own directives. How to do this is not documented here; read the code.
Names of user-defined directives longer than one character may be used if they are enclosed in
backslashes (e.g. ~4,3\GRAPH\).

(Note: format also allows control-string to be a list. If the list is a list of one element,
which is a string, the string is simply printed. This is for the use of the format.outfmt function
below. The old feature wherein a more complex interpretation of this list was possible is now
considered obsolete; usc format:output if you like using lists.)

A condition instance can also bc used as the control-string. Then the :report operation is
used to print the condition instance; any other arguments are ignored. This way, you can pass a
condition instance directly to any function that normally expects a format string and arguments.

format:print-1ist destination element-formar list &optional separator start-line
tilde-brace-options
This function provides a simpler interface for the specific purpose of printing comma-
separated lists with no list element split across two lines; see the description of the ~:;
directive (page 418) to see thc more complex way to do this within format. destination
tells where to send the output; it can be t, nil, a string-nconc-able string, or a stream,
as with format. element-format is a format control-string that tells how to print each
element of list; it is used as the body of a "~{..~}" construct. separator, which
defaults to ", " (comma, space) is a string which goes after each clement except the last.
format control commands arc not recommendced in separator. start-line, which defaults to
three spaces, is a format control-string that is used as a prefix at the beginning of each

SRCKL.MANYFD-FIO. TEXT.6 24-JAN-83

ILisp Machinc Manual 421 Formatted Qutput

line of output, cxcept the first. format control commands are aliowed in separator, but
they should not swallow arguments from list. tilde-brace-options is a string inserted before
the opening "{"; it defaults to the null string, but allows you to inscrt colon and/or
atsign. The line-width of the stream is computed the same way that the ~:; command

~ 1 1m0y

computes it; it is not possible to override the natural line-width of the stream.

SRC:KL.MAN>FD-FIO.TEXT.6 24-JAN-83

Formatted Output 422 Iisp Machine Manual

21.6.2 The Output Subsystem

The formatting functions associated with the format:output subsystem allow you to do
formatted output using Lisp-style control structure. Instead of a dircctive in a format control
string. there is one formatting function for cach kind of formatted output.

The calling conventions of the formatting functions are all similar. The first argument is
usually the datum to be output. The second argument is usually the¢ minimum number of
columns to use. The remaining arguments are options—alternating keywords and values.

Options which most functions accept include :padchar, followed by a character to use for
padding; :minpad, followed by the minimum number of padding characters to output after the
data; and ‘tab-period, followed by the distance between allowable places to stop padding. To
make the mcaning of :tab-period clearer, if the value of :tab-period is 5, the minimum size of
the field is 10, and the value of :minpad is 2, then a datum that takes 9 characters will be
padded out to 15 characters. The requirement to use at least two characters of padding mecans it
can't fit into 10 characters, and the :tab-period of 5 means the next allowable stopping place is
at 10+5 characters. The default values for :minpad and :tab-period, if they are not specified,
are zero and one. The default value for :padchar is space.

The formatting functions always output to standard-output and do not require an argument
to specify the stream. The macro format:output allows you to specify the strcam or a string, just
as format docs, and also makes it convenient to concatenate constant and variable output.

format:output swream string-or-form... Macro
format:output makes it convenient to intersperse arbitrary output operations with printing
of constant strings. standard-output is bound to siream. and cach string-or-form is
processed in succession from left to right. If it is a string, it is printed; otherwise it is a
form, which is evaluated for cffect. Presumably the forms will send output to standard-
output.

If stream is written as nil, then the output is put into a string which is returned by
format:output. 1f stream is written as t, then the output goes to the prevailing value of
standard-output. Otherwise stream is a form, which must evaluate to a stream.

Here is an example:
(format:output t "FOO is " (prinl foo) " now." (terpri))

Becausc format:output is a macro, what matters about stream is not whether it evaluates
to t or nil, but whether it is actually written as t or nil.

format:outfmt swring-or-form... Macro
Some system functions ask for a format control string and arguments, to be printed later.
If you wish to generate the output using the formatted output functions, you can use
format:outfmt, which produces a control argument that will eventually make format print
the desired output (this is a list whose one element is a string containing the output). A
call to format:outfmt can be used as the second argument to ferror, for example:

SRCKL.MAN>FD-FIO.TEXT.6 24-JAN-83

[.isp Machine Manual 423 _ Formatted Output

(ferror nil (format:outfmt "Foo is " (format:onum foo)
" which is too large"))

format:onum aumber &optional radix minwidth &rest options
format:onum outputs number in base radix, padding to at least minwidth columns and
obeying the other padding options specified as described above.

radix can be a number, or it can be :roman, :english, or :ordinal. The default radix is
10. (decimal).

Two special keywords arce allowed as options: :signed and :commas. :signed with value
t means print a sign even if the number is positive. :commas with value t means print a
comma every third digit in the customary way. These options are meaningful only with
numeric radices.

format:ofloat number &optional n-digits force-exponential-notation minwidth &rest options
format:ofloat outputs number as a floating point number using n-digits digits. If force-
exponential-notation is non-nil, then an exponent is always used. minwidth and options are
used to control padding as usual.

format:ostring swring &optional minwidth &rest options
format:ostring outputs string, padding to at least minwidth columns if minwidth is not nil,
and obeying the other padding options specified as described above.

Normally the contents of the string are left-justified; any padding follows the data. The
‘'special option :right-justify causes the padding to come before the data. The amount of
padding is not affected.

The argument nced not really be a string. Any Lisp object is allowed, and it is output
by princ.

format:oprint object &optional minwidth &rest options
format:oprint prints object, any Lisp objcct, padding to at least minwidth columns if
minwidth is not nil, and obeying the padding options specified as described above.

Normally the data are left justified; any padding follows. The special option :right-justify
causes the padding to come before the data. The amount of padding is not affected.

The printing of the object is done with print.

format:ochar character &optional style top-explain minwidth &rest options
format:ochar outputs character in one of three styles, sclected by the siyle argument.

minwidth and options control padding as usual

4
Fritrerviissie G Lo

:read or nil The character is printed using #/ or #\ so that it could be read back
in,
-editor Output is in the style of the string "Meta-Rubout”. If the character has

a name, the name is used instecad of the character.

SRCKI.MAN>FD-FIO.TEXT.6 24-JAN-83

Formatted Output 424 l.isp Machine Manual

brief Bricf prefixes such as "C-" and "M-" are used. rather than "Control-"
or "Meta-". Also, character names arc used only if there arc meta bits
present.

:lozenged The output is the same as that of the :editor style, but If the character is

not a graphic character or if it has meta bits, and the strcam supports the
«display-lozenged-string operation, that opcration is used instecad of
:string-out to print the text. On windows this operation puts the
character name inside a lozenge.

:sail a, , ctc. are used to represent "Control” and "Meta”, and shorter names
for characters arc also used when possible. Sce section 21.1, page 362.

top-explain is uscful with the :editor, :brief and :sail styles. It says that any character
that has to be typed using the Top or Greek keys should be followed by an cxplanation
of how to type it. For example: "» (Top-K)" or "« (Greek-a)".

format:tab mincol &rest options

' format:tab outputs padding at least until column mincol. It is the only formatting
function that bases its actions on the actual cursor position rather than the width of what
is being output. The padding options :padchar. :minpad. and :tab-period are obeyed.
Thus, at least the :minpad number of padding characters are output cven if that goes past
mincol, and once past mincol, padding can only stop at a multiple of :tab-period
characters past mincol.

In addition, if the :terpri option is t, then if column mincol is passed, format:tab starts a
new line and indents it to mincol.

The :unit option specifics the units of horizontal position. The default is to count in units
of characters. If wunit is specified as :pixel, then the computation (and the argument
mincol and the :minpad and :tab-period options) are in units of pixels.

format:pad (minwidth option..) body... Macro

format:pad is used for printing several items in a fixed amount of horizontal space,
padding between them to use up any excess space. Each of the body forms prints one
item. The padding goes between items. The entire format.pad always uses at least
minwidth columns; any columns that the items don’t need are distributed as padding
between the items. If that isn’t enough space, then more space is allocated in units
controlled by the :tab-period option until there is enough space. If it’s more than
enough, the excess is used as padding.

If the :minpad option is specified, then at least that many pad characters must go
between each pair of items.

Padding goes only between items. If you want to treat several actual pieces of output as
one item, put a progn around them. If you want padding before the first item or after
the last, as well as between the items, include a dummy item nil at the beginning or the
end.

SRCKL.MAN>EFD-FIO.TEXT.6 24-JAN-83

Lisp Machine Manual 425 Formatted Output

If therc is only one item, it is right justificd. One item followed by nil is left-justified.
One item preceded and followed by nil is centered. ‘Therefore. format:pad can be used
w provide the usual padding options for a function that does not provide them itself.

format:piural number singular &optional plural
format:plural outputs cither the singular or the plural form of a word depending on the
value of number. The singular is used if and only if number is 1. singulur specifies the
singular form of the word. string-pluralize is used to compute the plural, unless plural
is explicitly specified.

It is often uscful for mumber to be a value returned by format:onum, which returns its
argument. For example:

(format:plural (format:onum n-frobs) " frob")
will print "1 frob” or "2 frobs".

format:breakline linel prini-if-terpri print-always... Macro
format:breakline is used to go to the next line if there is not enough room for something
to be output on the current line. The print-always forms print the text which is supposed
to fit on the line. linel is the column before which the text must end. If it doesn’t end
before that column, then format:breakline moves to the next line and exccutes the print-
if-terpri form before doing the print-always forms.

Constant strings are allowed as well as forms for print-if-terpri and print-always. A
constant string is just printed.

To go to a new line unconditionally, simply call terpri.

Here is an example that prints the elements of a list, separated by commas, breaking lines
between clements when necessary.

(defun pcl (1list linel)
(do ((1 list (cdr 1))) ((null 1))
(format:breakline linel " "
(princ (car 1))
(and .(cdr 1) (princ ", ")))))

SRC:KLMAN>EFD-FIO.TEXT.6 24-JAN-83

Formatted Output 426 Lisp Machine Manual

21.6.3 Formatting Lisp Code

grindef function-spec... Special Form
Prints the definitions of onc or more functions, with indentation to make the code
rcadable. Certain other "pretty-printing” transformations arc performed: The quote
special form is represented with the ' character. Displacing macros arc printed as the
original code rather than the result of macro expansion. The code resulting from the
backquote (") reader macro is represented in terms of .

The subforms to grindef are the function specs whose definitions are to be printed; the
usual way grindef is used is with a form likc (grindef foo) to print the definition of foo.
When one of these subforms is a symbol, if the symbol has a value its value is prettily
printed also. Definitions arc printed as defun special forms, and values are printed as
setq special forms.

If a function is compiled, grindef will say so and try to find its previous interpreted
definition by looking on an associated property list (sce uncompile (page 228). This will
only work if the function’s interpreted definition was once in force; if the definition of
the function was simply loaded from a QFASL. file, grindef will not find the interpreted
definition and will not be able to do anything useful.

With no subforms, grindef assumes the same arguments as when it was last called.

grind-top-level obj &optional width (stream standard-output) (untyo-p nil)

(displaced 'si:displaced) (terpri-pt) notify-fun loc
Pretty-prints obj on stream. putting up to widrh characters per line. This is the primitive
interface to the pretty-printer. Note that it does not support variable-width fonts. If the
width argument is supplied, it is how many characters wide the output is to be. If width
is unsupplicd or nil, grind-top-level will try to figure out the "natural width" of the
stream, by scnding a :size-in-characters message to the strecam and using the first
returned value. If the stream doesn’t handle that message, a width of 95. characters is
used instead.

The remaining optional arguments activate various strange features and usually should not
be supplied. These options are for internal use by the system and arc documented here
for only completeness. If uniyo-p is t, the :untyo and :untyo-mark operations will be
used on siream, speeding up the algorithm somewhat. displaced controls the checking for
displacing macros; it is the symbol which flags a place that has been displaced, or nil to
disable the feature. If rerpri-p is nil, grind-top-level docs not advance to a fresh line
before printing.

If notify-fun is non-nil, it is a function that takes threc arguments, which is called for
cach "token" in the pretty-printed output. Tokens arc atoms, open and close parentheses,
and rcader macro characters such as ’. The arguments to notify-fun are the token, its
"location™ (sec next paragraph), and t if it is an atom or nil if it is a character.

loc is the "location” (typically a cons) whose car is obj. As the grinder recursively

descends through the structure being printed, it keeps track of the location where each
thing came from, for the benefit of the notify-fun, if any. This makes it possible for a

SRCKIL.MAN>ED-FIO.TEXT.6 24-JAN-83

1isp Machine Manual 427 Rubout Handling

program to correlate the printed output with the list structure. The "location™ of a close
parenthesis is t, because close parentheses have no associated location.

21.7 Rubout Handling

The rubout handler is a feature of all interactive strcams, that is. strcams that connecct to
terminals. Tts purpose is to allow the user to edit minor mistakes in type-in. At the same time,
it is not supposed to get in the way: input is to be scen by Lisp as soon as a syntactically
complete form has been typed. The definition of “syntactically complete form™ depends on the
function that is reading from the stream; for read, it is a Lisp expression.

Some interactive streams ("editing Lisp listeners™) have a rubout handler that allows input to
be edited with the full power of the ZWEI cditor. Most windows have a rubout handler that
apes ZWEI, implementing about twenty common ZWEI commands. The cold load stream has a
simple rubout handler that allows just rubbing out of single characters, and a few simple
commands like clearing the screen and erasing the entirc input typed so far. All three kinds of
rubout handler use the same protocol, which is described in this section. We also say a little
about the most common of the three rubout handlers.

[Eventually some version of ZWEI will be used for all streams except the cold load stream]

The tricky thing about the rubout handler is the need for it to figure out when you are all
done. The idea of a rubout handler is that vou can type in characters, and they are saved up in
a buffer so that if you change your mind, you can rub them out and type different characters.
However, at some point. the rubout handler has to decide that the time has come to stop putting
characters into the buffer and to let the function parsing the input, such as read, return. This is
called "activating”. The right time to activate depends on the function calling the rubout handler,
and may be very complicated (if the function is read, figuring out when onc Lisp expression has
been typed requires knowledge of all the various printed representations, what all currently-defined
reader macros do, and so on). Rubout handlers should not have to know how to parse the
characters in the buffer to figure out what the caller is reading and when to activate; only the
caller should have to know this. The rubout handler interface is organized so that the calling
function can do all the parsing, while the rubout handler does all the handling of rubouts, and
the two are kept completely separate.

The basic way that the rubout handler works is as follows. When an input function that reads
characters from a stream, such as read or readline (but not tyi), is invoked with a stream which
has :rubout-handler in its :which-operations list, that function "enters” the rubout handler. It
then goes ahcad :tyi’ing characters from the stream. Because control is inside the rubout handler,
the stream will echo these characters so the user can sce what he is typing. (Normally echoing is
considered to be a higher-level function outside of the province of streams, but when the higher-
level function tells the stream to enter the rubout handler it is also handing it the responsibility
for echoing.) The rubout handler is also saving all these characters in a buffer, for reasons
disclosed in the following paragraph. When the function, read or whatever, decides it has
enough input, it returns and control "leaves” the rubout handler. That was the easy case.

If the user types a rubout, a *throw is done out of all recursive levels of read, reader
macros, and so forth, back to the point where the rubout handler was entered. Also the rubout
is echoed by erasing from the screen the character which was rubbed out. Now the read is tried

SRCKL.MAN>FD-FIO.TEXT.6) 24-JAN-83

Rubout Handling 428 I isp Machine Manual

over again, re-reading all the characters that have not been rubbed out, not echoing them this
time. When the saved characters have been exhausted, additional input is read from the user in
the usual fashion.

The effect of this is a complete separation of the functions of rubout handling and parsing,
while at the samc time mingling the exccution of these two functions in such a way that input is
always "activated” at just the right time. It docs mcan that the parsing function (in the usual
casc, read and all macro-character definitions) must be prepared to be thrown through at any
time and should not have non-trivial side-cffects, since it may be called multiple times.

~If an error occurs while inside the rubout handler, the crror message is printed and then
additional characters are rcad. When the user types a rubout, it rubs out the error message as
well as the character that caused the error. The user can then proceed to type the corrected
expression; the input will be reparsed from the beginning in the usual fashion.

‘The rubout handler based on the ZWEI editor interprets control characters in the usual ZWEI
way: as cditing commands, allowing you to edit your buffered input.

The common rubout handler also recognizes a subsct of the cditor commands, including
Rubout, Control-F and Meta-F and others. Typing Help while in the rubout handler displays a
list of the commands. The kill and yank commands in the rubout handler use the same kill ring
as the editor, so you can kill an expression in the editor and yank it back into a rubout handler
with Control-Y. or kill an expression in the rubout handler with Control-K or Clear-input and
yank it back in the editor. The rubout processor also keeps a ring buffer of most recent input
strings (a separate ring for cach stream), and the commands Control-C and Meta-C retrieve from
this ring just as Control-Y and Meta-Y do from the kill ring.

When not inside the rubout handler, and when typing at a program that uses control
characters for its own purposes, control characters are trecated the same as ordinary characters.

Some programs such as the dcbugger allow the user to type either a control character or an
expression. In such programs, you are really not inside the rubout handler unless you have typed
the beginning of an expression. When the input buffer is empty, a control character is treated as
a command for the program (such as, Control-C to continue in the debugger); when there is
text in the rubout handler buffer, the same character is treated as a rubout handler command.
Another conscquence of this is that the message you get by typing Help varics, being cither the
rubout handler’s documentation or the debugger’s documentation.

The following cxplanation tells you how to write your own function that invokes the rubout
handler. The functions read and readline both work this way. You should use the readlinet
example, below, as a template for writing your own function.

The way that the rubout handler is entered is complicated, since a *catch must be
established. The variable rubout-handler is non-nil if the current process is inside the rubout
handler. This is used to handle rccursive calls to read from inside reader macros and the like. If
rubout-handler is nil, and the strcam being read from has :rubout-handler in its :which-
operations, functions such as read send the :rubout-handler message to the stream with
arguments of a list of options, the function, and its arguments. The rubout handler initializes
itself and cstablishes its *catch, then calls back to the specified function with rubout-handler

SRCKILL.MAN>IOS. TEXT.210 24-JAN-83

[.isp Machine Manual 429 A Rubout Handling

bound to t. User-written input reading functions should follow this same protocol to get the same
input cditing bencfits as read and readline.

rubout-handler Variable
t if control is inside the rubout handler in this process.

As an example of how to use the rubout handler, here is a simplified version of the readline
function. it doesn’t bother about end-of-file handling, use of :line-in for cfficiency, etc.
(defun readlinel (stream)
.1 If stream does rubout handling, get inside rubout handler
(cond ((and (not rubout-handler)
(memq ’:rubout-handler
(funcall stream ’:which-operations)))
(funcall stream ’:rubout-handler ’() #'readlinel stream))
;> Accumulate characters until Return
(t (do ({ch (funcall stream ’:tyi)
(funcall stream ’:tyi))

(len 100)
{(string (make-array 100 ’:type ’art-string))
(idx 0))
{{or {null ch) (= ch #return))
(adjust-array-size string idx)
string)

(if (= idx len)

(adjust-array-size strina (seta len (+ len 40))))

(aset ch string idx)

(setq idx (1+ idx))))))

The first argument to the :rubout-handler message is a list of options. The second argument
is the function that the rubout handler should call to do the rcading, and the rest of the
arguments are passed to that function. Note that in the example above, readline1 is sending the
:rubout-handler message passing itself as the function, and its own arguments as thc arguments.
This is the usual thing to do. It isn't passing any options. The returned values of the message
are normally the returned values of the function (cxcept sometimes when the :full-rubout option
is used; see below).

Each option in the list of options given as the first argument to the :rubout-handler message
consists of a list whose first clement is a keyword and whose remaining elements are "arguments”
to that keyword. Note that this is not the same format as the arguments to a typical function that
takes keyword arguments; rather this is an a-list of options. The standard options are:

(:full-rubout vaj)
If the user rubs out all the characters he typed, then control will be
returned from the rubout handler immediately. Two values are returned;
the first is nil and the second is val. (If the uscr doesn’t rub out all the
characters, then the rubout handler propagates multiple values back from
the function that it calls, as usual.) In the absence of this option, the
rubout handler would simply wait for more characters to be typed in and

would ignore any additional rubouts.

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

The iread and :print Stream Operations 430 Lisp Machine Manual

(:pass-through charl char2...)

The characters charl. char2, ctc. arc not to be trcated as special by the
rubout handler. You can use this to override the default processing of
characters such as Clear-input and to reccive control characters. Any
function that reads input and uses non-printing characters for anything
should list them in a :pass-through option. This way. if input is being
rubout-handled by the cditor, thosc non-printing characters will get their
desired meaning rather than their meaning as editor commands.

(:prompt function)

(:reprompt function)
When it is time for the user to be prompted, function is called with two
arguments. The first is a stream it may print on; the sccond is the
character which caused the nced for prompting, e.g. # \clear-input or
#\clear-screen, or nil if the rubout handler was just entered.

‘The difference between :prompt and :reprompt is that the latter does not
call the prompt function when the rubout handler is first entered, but
only when the input is redisplayed (e.g. after a screen clear). If both
options are specified then :reprompt overrides :prompt except when the
rubout handler is first entered.

Junction may also be a string. Then it is simply printed.

If the rubout handler is exited with an empty buffer due to the :full-
rubout option, whatever prompt was printed is erased.

(:initial-input string)
Pretends that the user typed string. When the rubout handler is entered,
siring is typed out. The user can input more characters or rub out
characters from it.

(:do-not-echo char-1 char-2...)
The characters char-1, char-2, etc. are not to be echoed when the user
types them. The comparison is done with =, not char-equal. You can
use this to suppress echoing of the return character that terminated a
readline, for example.

21.8 The :read and :print Stream Operations

A stream can specially handle the reading and printing of objects by handling the :read and
‘print strcam operations. Note that these operations are optional and most strcams do not support
them.

If the read function is given a stream that has :read in its which-operations, then instead of
recading in the normal way it sends the :read message to the strcam with one argument, read’s
eof-option if it had one or a magic internal marker if it didn’t. Whatever the strecam returns is
what read returns. If the stream wants to implement the :read operation by internally calling
read, it must use a different strcam that does not have :read in its which-operations.

SRCKL.MAN>IOS.TEXT.210 24-JAN-83

Lisp Machinc Manual 431 Accessing Files

If a strcam has :print in its which-operations, it may intercept all object printing operations,
including those duc to the print, prin1, and princ functions, those duc to format, and those
used internally, for instance in printing the clements of a list. The strecam reccives the :print
message with three arguments: the object being printed, the prindepth (for comparison against the
prinievei variable), and slashify-p (t for prini, nil for princ). If the stream rcturns nil, then
normal printing takes place as usual. If the stream returns non-nil. then print does nothing; the
strcam is assumed to have output an appropriate printed representation for the object. The two
following functions are uscful in this connection; however, they arc in the system-internals
package and may be changed without much notice. :

si:print-object object prindepth slashify-p stream &optional which-operations
Outputs the printed-representation of object to stream, as modified by prindepth and
slashify-p. This is the internal guts of the Lisp printer. When a stream’s :print handler
calls this function, it should supply the list (:string-out) for which-operations, to prevent
itself from being called recursively. Or it can supply nil if it does not want to receive
:string-out messages.

If you want to customize the behavior of all printing of Lisp objects, advising (see scction
27.10, page 592) this function is the way to do it. Sec section 21.2.1, page 370.

si:print-1ist list prindepth slashify-p stream which-operations
This is the part of the Lisp printer that prints lists. A stream’s :print handler can call this
function, passing along its own arguments and its own which-operations, to arrange for a
list to be printed the normal way and the stream’s :print hook to get a chance at each of
the list’s clements.

21.9 Accessing Files

The Lisp Machine can access files on a varicty of remote file servers, which are typically (but
not necessarily) accessed through the Chaosnet, as well as accessing files on the Lisp Machine
itself, if the machine has its its own file system. This section tells you how to get a stream which
reads or writes a given file, and what the device-dependent operations on that strcam are. Files
are named with pathnames. Since pathnames are quite complex they have their own chapter; see
chapter 22, page 453. You are not allowed to refer to files without first logging in, and you may
also need to specify a username and password for the host on which the file is stored; sec page
648.

with-open-file (stream pathname options...) body... Special Form
Evaluates the body forms with the variable stream bound to a stream that reads or writes
the file named by the value of pathname. The options forms cvaluate to the file-opening
options to be used; see page 434.

When control lcaves the body, either normally or abnormally (via *throw), the file is
closed. If a new output file is being written and control leaves abnormally, the file is
aborted and it is as if it were ncver written. Because it always closes the file, even when
an error exit is taken, with-open-file is preferred over open. Opening a large number
of files and forgetting to close them tends to break some remote file servers, ITS’s for
example.

SRC:KLL.MANDIOS.TEXT.210 24-JAN-83

Accessing Files 432 I.isp Machine Manual

pathname is the name of the file to be opened; it can be a pathname object, a string, a
symbol, or a Maclisp-compatible "namelist”. It can be anything acceptable to fs:parse-
pathname; the complete rules for parsing pathnames are cxplained in chapter 22, page
453.

If an crror, such as file not found, occurs, the result is whatever open does, based on
the value of the :error option passed to it.

with-open-file-case (stream pathname options...) clauses... Special Form
This opens and closes the file like with-open-file, but what happens afterward is
determined by clauses that arc like the clauses of a condition-case. Fach clause begins
with a condition name or a list of condition names and is cxccuted if open signals a
condition that posscsses any of thosc names. A clause beginning with the symbol :no-
error is exccuted if open returns. This would be where the reading or writing of the file
would be done.
Example:
(with-open-file-case (stream (send generic-pathname
’:source-pathname))
(sys:remote-network-error (format t "~&Host down."))
(fs:file-not-found (format t "~&(New file)"))
(:no-error (setq list (read stream))))

file-retry-new-pathname (patimame-var condition-names...) Special Form
body...
file-retry-new-pathname-if cond-form (pathname-var Special Form

condition-names...) body...
file-retry-new-pathname exccutes body. If body does not signal any of the conditions in
condition-names. body’s values are simply returned. If any of condition-names is signaled,
file-retry-new-pathname reads a new pathname, setq’s pathname-var to it, and exccutes
body again.

file-retry-new-pathname-if is similar, but the conditions arc handled only if cond-form’s
value is non-nil.

with-open-file-retry (stream (pathname-var condition-names...) Special Form
options...) body...
Like with-open-file, except that if an error occurs inside open with one of the specified
condition-names, a new pathname is read, the variable pathname-var is setq'd to it, and
the open is retried.

open pathname &rest options
Returns a stream that is connected to the specificd file. Unlike Maclisp, the open
function creates streams only for files; strcams of other kinds arc created by other
functions. The pathname and options arguments are the same as in with-open-file; see
above.

When the caller is finished with the strcam, it should closc the file by using the :close

opcration or the close function. The with-open-file special form does this automatically
and so is usually preferred. open should only be used when the control structure of the

SRCKLL.MAN>IOS. TEXT.210 24-JAN-83

[isp Machine Manual 433 Accessing Files

program necessitates opening and closing of a file in some way more complex than the
simple way provided by with-open-file. Any program that uses open should sct up
unwind-protect handlers (sce page 56) to close its files in the event of an abnormal exit.

0se siream
The close function simply sends the :close message to stream.

deletef file &optional (error-pt) query?
file can be a pathname or a stream that is open to a file. The specified file is deleted.
pathname may contain wildcard characters, in which casc multiple files are deleted.

If query? is non-nil, the user is queried about cach file (whether there are wildcards or
not). Only the files that the user confirms are actually deleted.

If error-p is t, then if an error occurs it will be signalled as a Lisp crror. If error-p is nil
and an crror occurs, the crror message will be returned as a string. Otherwise, the value
is a list of clements, one for cach file considered. The car of cach eclement is the
truename of the file, and the cadr is non-nil if the file was actually deleted (it will always
be t unless querying was donc).

undeletef file &optional (error-pt) query?
file can be a pathnamc or a stream that is open to a file. The specified file is undcieted.
Wildcards are allowed, just as in deletef. The rest of the calling conventions are the
same as well.

Not ail fiile systems support undeietion, and if ii i unoi Suppoited on ic OnC you arc
using, it get an error or return a string according to error-p. To find out whether a
particular file system supports this, send the :undeletabie-p operation o a pathname. If
it returns t, the file system of that pathname supports undeletion.

renamef file new-name &optional (error-pt) query?
file can be a pathname or a stream that is open to a file. The specified file is renamed to
new-name (a pathname). file may contain wildcards, in which case multiple files are
renamed. Each file’s new name is produced by passing new-name to merge-pathname-
defaults with the file's truename as the defaults. Therefore, new-name should be a string
in this case.

If query? is non-nil, the user is quericd about each filc (whether there are wildcards or
not). Only the files that the user confirms are actually renamed.

If error-p is t, then if an error occurs it will be signalled as a Lisp error. If error-p is nil
and an error occurs, the error message will be returned as a string. Otherwise, the value
is a list of clements, one for cach file considered. The car of each element is the original
trucname of the file, the cadr is the name it was to be renamed to, and the caddr is
non-nil if the file was renamed. The caddr is nil if the user was queried and said no.

SRCKI.MAND>IOS. TEXT.210 24-JAN-83

Accessing Files 434 1.isp Machine Manual

copy-file file new-file &optional (error-pt) copy-mode
copy-file is called almost like renamef. Instcad of rcnaming files, it copies them.
Quecrying is not done.

copy-mode tells copy-file whether to copy the file as characters or as binary; or clse, how
to decide which of those to do. The possible values are :characters, binary, :ask,
:never-ask, and nil. :characters and :binary specify straightforwardly which kind of
transfer to do. :ask says to always ask the user about cach file. :never-ask says to guess
about cach file from its byte size and filetype. nil says to guess if guessing appears to be
rcliable, otherwise ask the user.

probef pathname
Returns nil if there is no file named pathname, otherwise returns a pathname that is the
true name of the file, which can be different from pathname because of file links, version
numbers, etc.

Any problem in opening the file except for fs:file-not-found signals an error.

viewf pathname &optional (output-stream standard-output) Jeader
Copies the contents of the file named pathname, opened in character mode, onto output-
stream. Normally this has the cffect of printing the file on the terminal. Jeader is passed
along to stream-copy-until-eof (scc page 388).

fs:close-all-files
Closcs all open files. This is useful when a program has run wild opening files and not
closing them. 1t closes all the files in :abort mode (see page 394), which means that files
open for output will be deleted. Using this function is dangerous, because you may close
files out from under various programs like ZMACS and ZMAIL; only use it if you have
to and if you feel that you know what you're doing.

‘The options used when opening a file are normally alternating keywords and values, like any
other function that takes keyword arguments. In addition, for compatibility with the Maclisp
open function, if only a single option is specified it is cither a keyword or a list of keywords (not
alternating with values).

The file-opening options control things like whether the stream is for input from a existing file
or output to a new file, whether the file is text or binary, etc.

The following option keywords are standardly recognized; additional keywords can be
implemented by particular file system hosts.

[Are all these keywords supported by all file systems?]

:direction The possible values are :input (the default), :output, and nil. The first two
should be seclf-explanatory. nil means that this is a "probe” opcning; no data are
to be transferred, the file is being opened only to access or change its properties.

:characters The possible values arc t (the default), nil, which means that the file is a binary
file, and :default, which means that the file system should decide whether the file
contains characters or binary data and open it in the appropriate mode.

SRCKLL.MAN>IOS. TEX'T'210 24-JAN-83

Lisp Machine Manual 435 , Accessing Files

‘byte-size The possible values are nil (the default), a number, which is the number of bits
per byte, and :defauit, which means that the file system shouid choose the byte
size based on attributes of the file. If the file is being opened as characters, nil
selects the appropriate system-dependent byte size for text files; it is usually not
uscful to usc a different byte size. If the file is being opened as binary, nil selects
the default byte size of 16 bits.

error The possible values arc t (the default), :reprompt and nil. If an crror occurs, this
option controls whether the error is signalled to the user (t). a new pathname is
read (:reprompt) or a string containing an error message is rcturnced instead of a

~ stream (nil).

:reprompt should be used whenever the caller does not need to know which file
was ultimately opened. More sophisticated callers should use with-open-file-retry
or file-retry-new-pathname (see page 432).

:new-file If the value is t. the file system is allowed to creatc a new file. If the value is
nil, an cxisting file must be opened. The default is t if :direction :output is
specified, otherwise nil.

:new-version This controls what happens if the version ficld of the pathname being opened is
newest. If the value is nil, the newest existing version of the file is found. If
the valuc is t (the defauit when :direction :output is specified), then the next-
higher-numbered version of the file is to be created.

:old-file This keyword controls what happens if a file with the specified name already exists
when :direction :output is specified. Possible values are:

nil or :replace The existing file is to be replaced when the new file is closed
{providing :abort is not spccified when closing). This is the
default if :new-file is specified as, or defauits to, t.

tor:rewrite The new data should be stored into the existing file. This is the
default if :new-file is specified as nil.

:append Append new data to the end of the file.

:error Signal an error (file already exists).

rename The old file is to be renamed to some other name, to get it out
of the way.

rename-and-delete
The old file is renamed, possibly immediately, and deleted when
the new file is closed.

:new-version Create a new version, instead of opening the version number
specified in the pathname.

inhibit-links The default is nil. If the pathname is the name of a file-system link, and this
option is t, the link itself is opencd rather than the file it points to. This is
useful only with probe openings, since links contain no data.

«deleted The default is nil. If t is specified, and the file system has the concept of deleted
but not cxpunged files, it is possible to open a deleted file. Otherwise deleted
files are invisible.

SRC:KLMAN>IOS.TEXT.210 24-JAN-83

Accessing Files 436 Lisp Machinc Manual

‘temporary The default is nil. If t is specified, the file is marked as temporary, if the file
system has that concept.

:preserve-dates
The default is nil. If t is specified. the file’s reference and modification dates are
not updated.

flavor This controls the kind of file to be opened. The default is nil, a normal file.
Other possible values are :directory and :link.

Jlink-to When creating a file with :flavor :link, this keyword must be specified; its value
is a pathname that becomes the target of the link.

:estimated-size
The value may be nil (the default), which means there is no cstimated size, or a
number of bytes. Some file systems usc this to optimize disk allocation.

:physical-volume
The value may be nil (the default), or a string that is the name of a physical
volume on which the file is to be stored. This is not meaningful for all file
systems.

‘logical-volume
The value may be nil (the default), or a string that is the name of a logical
volume on which the file is to be stored. This is not meaningful for all file
systems.

:incremental-update
The value may be nil (the default), or t to cause the file system to take extra
pains to write data onto the disk more often.

'super-image The value may be nil (the default), or t, which disables the special treatment of
rubout in ascii files. Normally, rubout is an cscape which causes the following
character to be interpreted specially, allowing all characters from O through 376 to
be stored. This applies to PDP-10 file servers only.

raw The value may be nil (the decfault), or t, which disables all character set
translation in ascii files. 'This applies to PDP-10 file servers only.

In the Maclisp compatibility mode, there is only onc option, and it is either a symbol or a
list of symbols. These symbols are recognized no matter what package they are in, since Maclisp
does not have packages. The following symbols are recognized:

in, read Select opening for input (the default).

out, write, print
Sclect opening for output; a new file is to be created.

binary, fixnum Sclect binary mode; otherwise character mode is used. Note that fixnum mode
uses 16-bit binary words and is not compatible with Maclisp fixnum mode, which
uses 36-bit words. On the PDP-10, fixnum files are stored with two 16-bit words
per PDP-10 word, left-justified and in PDP-10 byte order.

character, ascii
The opposite of fixnum. This is the default.

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 437 Accessing Files

single, block Ignored for compatibility with the Maclisp open function.

byte-size Must be followed by a number in the options list, and must be used in
combination with fixnum. The number is the number of bits per byte, which can
be from 1 to 16. On a PDP-10 file server these bytes will be packed into words
in the standard way defined by the ILDB instruction. 'The :tyi strcam opcration
will (of course) return the bytes one at a time.

probe, error, noerror, raw, super-image, deleted, temporary
These arc not available in Maclisp. The corresponding keywords in the normal
form of file-opening options are preferred over these.

21.9.1 Loading Files

To load a file is to read through the file, evaluating each form in it. Programs are typically
stored in files: the expressions in the file are mostly special forms such as defun and defvar
which define the functions and variables of the program.

Loading a compiled (or QFASL) file is similar, except that the file does not contain text but
rather pre-digested expressions created by the compiler which can be loaded more quickly.

These functions are for loading single files. There is a system for keeping track of programs
which consist of more than one file; for further information refer to chapter 25, page 520.

load pathname &optional pkg nonexistent-ok dont-set-default
This function loads the fle named by nathname into the Lisp environment If the file is a
QFASL file, it calls fasload; otherwise it calls readfile. Normally the file is read into its
"home" package, but if pkg is supplied it is the package in which the file is to be read.
pkg can be cither a package or the name of a package as a siring or a symbol. If pkg is
not specified, load prints a message saying what package the file is being loaded into. If
nonexistent-ok is specified, load just returns if the file cannot be opened.

pathname can be anything acceptable to fs:parse-pathname; pathnames and the complete
rules for parsing them are explained in chapter 22, page 453. pathname is defaulted from
fs:load-pathname-defaults (see page 464), which is the sct of defaults used by load,
qc-file, and similar functions. Normally load updates the pathname defaults from
pathname, but if doni-set-default is specified this is suppressed.

If pathname contains an name but no type, load will first look for the file with a type of
QFASL, then look for a type of LISP.

readfile pathname &optional pkg no-msg-p
readfile is the version of load for text files. It reads and evaluates each expression in the
file. As with load, pkg can specify what package to read the file into. Unless no-msg-p is
t, a message is printed indicating what file is being read into what package. The
defaulting of pathname is the same as in load.

SRCKLLMANDIOS.TEXT.210 24-JAN-83

Accessing Files 438 I.isp Machine Manual

fasload pathname &optional pkg no-msg-p
fasload is the version of load for QFASL files. It defines functions and performs other
actions as dirccted by the specifications inserted in the file by the compiler. As with load,
pkg can specify what package to read the file into. Unless no-ms -p is t, a message is
printed indicating what file is being read into what package. ‘The defaulting of parhname
is the same as in load.

21.9.2 File Attribute Lists

Any text file can contain an “attribute list” that specifies several attributes of the file. The
above loading functions, the compiler, and the editor look at this property list. Attribute lists are
especially useful in program source files, i.c. a file that is intended to be loaded (or compiled and
then loaded). QFASL. files also contain attribute lists, copied from their source files.

If the first non-blank line in a text file contains the three characters "-#-", some text, and
"-#*-" again, the text is recognized as the file's attribute list. Fach attribute consists of the
attribute name. a colon, and the attribute value. If there is more than one attribute they are
scparated by semicolons. An example of such an attribute list is:

; —*- Mode:Lisp; Package:Cellophane; Base:10 -*-
The semicolon makes this line look like a comment rather than a Lisp expression. This defines
three propertics: mode, package, and base. Another example is:

.c Part of the Lisp machine manual. -#*- Mode:Bolio -*-

An attributc name is made up of letters, numbers, and otherwise-undefined punctuation
characters such as hyphens. An attribute value can be such a name, or a decimal number, or
several such items scparated by commas. Spaces may be used freely to separate tokens. Upper
and lower-case letters arc not distinguished. There is no quoting convention for special characters
such as colons and semicolons.

If the attribute list text contains no colons, it is an old Emacs format, containing only the
value of the Mode attribute.

The file attribute list format actually has nothing to do with Lisp; it is just a convention for
placing some information into a file that is easy for a program to interpret. 'The Emacs editor on
the PDP-10 knows how to interpret these attribute lists (primarily in order to look at the Mode
attribute).

The Lisp Machine handles the attribute list stored in the file by parsing it into a Lisp data
structure, a property list. Attribute names are interpreted as Lisp symbols and arc interned on the
keyword package. Numbers are interpreted as Lisp fixnums and are read in decimal. If a
attribute value contains any commas, then the commas scparate several cxpressions that are
formed into a list.

When a file is compiled, its attribute list data structure is stored in the QFASL file. It can
be loaded back from the QFASL file as well. The representation in the QFASL file resembles
nothing described here, but when the attribute list is extracted from therc. the same Lisp data
structure described above is obtained.

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

| isp Machine Manual 439 Accessing Files

When a file is edited. loaded, or compiled, its file attribute list is read in and the propertics
are stored on the property list of the generic pathname (sce section 22.5, page 467) for that file,
where they can be retricved with the :get and :plist messages. This is done using the function
fs:read-attribute-list, below. So the way you examine the properties of a file is usually to use
messages to a pathname object that represents the generic pathname of a file. Note that there are
other properties there, too.

Here the attribute names with standard meanings:

Mode ‘The editor major mode to be used when cditing this file. This is typically the
name of the language in which the file is written. The most common values are
Lisp and Text.

Package This attribute specifies the package in which symbols in the file should be
interned. The attributc may be cither the name of a package, or a list that
specifies both the package name and how to create the package if it does not
exist. If it is a list, it should look like (name superpackage initial-size ...options...).
See chapter 24, page 506 for more information about packages.

Base The number base in which the file is written (remember, it is always parsed in
decimal). This affects both ibase and base, since it is confusing to have the
input and output bases be different. The most common values are 8 and 10.

Lowercase If the atribute value is not nil, the file is written in lower-case letters and the
editor does not translate to upper case. (The cditor does not translate to upper
case by default unless the user sclects "Electric Shift Lock™ mode.)

Camdn The attrihute value ic a lict of font namec cenarated by commas The editor uses
st of font namec <eparated by ¢ ¢ .

this for files that are written in more than one font.

Backspace If the attribute value is not nil, Overstrike characters in the file should cause
characters to overprint on each other. The default is to disallow overprinting and
display Overstrike the way other special function keys are displayed. This default
is to prevent the confusion that can be engendered by overstruck text.

Patch-File If the attribute value is not nil, the file is a "patch file". When it is loaded the
system will not complain about function redefinitions. In a patch file, the defvar
special-form turns into defconst: thus patch files will always reinitialize variables.

Cold-Load A non-nil value for this attribute identifies files that are part of the cold load, the
core from which a new system version is built. Certain features that do not work
in the cold load check this flag to give an error or a compiler warning if used in
such files, so that the problem can be detected sooner.

You are free to define additional file attributes of your own. However, to avoid accidental
name conflicts, you should choose names that are different from all the names above, and from
any names likely to be defined by anybody eisc’s programs.

The following functions are used to examine file attribute lists:

SRC:KLMAN>IOS. TEXT.210 24-JAN-83

Accessing Files 440 Lisp Machinc Manual

fs:file-attribute-1ist parhname
Returns the attribute list of the file specificd by the pathname. This works on both text
files and QFASI. files.

fs:extract-attributs-1ist siream
Returns the attribute list read from the specified stream. which should be pointing to the
beginning of a file. This works on both text streams and QFASI. file binary strcams.
After the auribute list is read. the stream’s pointer is set back to the beginning of the file
using the :set-pointer file strcam operation (sec page 397).

fs:read-attribute-1ist pathname stream
pathname should be a pathname object (nof a string or namelist, but an actual pathname);
usually it is a gencric pathname (see scction 22.5, page 467). stream should be a stream
that has been opened and is pointing to the beginning of the file whose file attribute list
is to be parsed. The attribute list is recad from the stream and then corresponding
properties arc placed on the specified pathname. The attribute list is also returned.

The fundamental way that programs in the Lisp Machine notice the presence of propertics on
a file’s auribute list is by examining the property list in the generic pathname. However, there is
another way that is more convenient for some applications. File attributes can cause special
variables to be bound whenever Lisp expressions are being read from the file—when the file is
being loaded, when it is being compiled, when it is being read from by the cditor, and when its
QFASL. file is being loaded. This is how the Package and Base attributes work. You can also
deal with attributes this way, by using the following function:

fs:file-attribute-bindings pathname

This function examines the property list of pathname and finds all those property names
that have fs:file-attribute-bindings propertics. Each such property name specifies a set of
variables to bind and a set of values to which to bind them. This function returns two
values, a list of all the variables and a list of all the corresponding values. Usually you
use this function by calling it on a generic pathname that has had fs:read-attribute-list
donc on it, and then you usc the two returned values as the first two arguments of a
progv special form (sce page 19). Inside the body of the progv the specified bindings
will be in effect.

Usually pathname is a generic pathname. It can also be a locative, in which case it is
interpreted to be the property list itself.

Of the standard attribute names, the following ones have fs:file-attribute -bindings, with
the following effects. Package binds the variable package (see page 512) to the package.
Base binds the variables base (see page 367) and ibase (scc page 371) to the value.
Patch-file binds fs:this-is-a-patch-file to the value. Cold-load binds si:file-in-cold-
load to the value.

Any properties whose names do not have fs:file-attribute-bindings properties are ignored
completely.

SRC:KLL.MANDIOS.TEXT.210 24-JAN-83

[isp Machine Manual 441 Accessing Files

You can also add vour own attribute names that affect bindings. [f an indicator symbol
has an fs:file-attribute-bindings property, the value of that property is a function that is
called when a file with a file attribute of that name is going to be read from. 'The
function is given threc arguments: the file pathname, the attribute name, and the
attribute value. 1t must return two values: a list of variables to be bound and a list of
values to bind them to. The function for the Base keyword could have been defined by:
(defun (:base file-attribute-bindings) (file ignore bse)
(if (not (and (typep bse ’fixnum)
(> bse 1)
{< bse 37.)))
(ferror ’fs:invalid-file-attrbute
"File ~A has an illegal -*- Base:~D -*-"
file bse))
(values (1list ’base ’ibase) (Tist bse bse)))

fs:invalid-file-attribute (error) Condition
An attribute in the file attribute list had a bad value. This is detected within fs:file-
attribute-bindings.

21.9.3 File Stream Operations

The following operations may be used on file strcams, in addition to the normal [/0
operations which work on all streams. Note that several of these operations are useful with file
streams that have been closed. Some operations use pathnames; refer to chapter 22, page 453 for
an explanation of pathnames.

:pathname Operation on file streams
Returns the pathname that was opened to get this stream. This may not be identical to
the argument to open, since missing components will have been filled in from defaults.
The pathname may have been replaced wholesale if an error occurred in the attempt to
open the original pathname.

:truename Operation on file streams
Returns the pathname of the file actually open on this strecam. This can be different from
what :pathname returns because of file links, logical devices, mapping of "newest"
version to a particular version number, etc. For an output stream the trucname is not
meaningful until after the stream has been closed, at least when the file server is an ITS.

:generic-pathname Operation on file streams
Returns the generic pathname of the pathname that was opened to get this stream.
Normally this is the same as the result of sending the :generic-pathname message 10 the
value of the :pathname operation on the strcam; however, it docs special things when
the Lisp system is bootstrapping itself.

SRC:KL.MAN>IOS.TEXT.210 24-JAN-83

Accessing Dircctories 442 I.isp Machinc Manual

:qfaslp Operation on file streams
Returns t if the file has a magic flag at the front that says it is a QFASL. file, nil if it is
an ordinary file.

:1ength Operation on file streams
Returns the length of the file, in bytes or characters. For text files on PDP-10 file
servers, this is the number of PDP-10 characters, not lLisp Machine characters. The
numbers arc different because of character-set translation; sec page 364 for a full
explanation. For an output strcam the length is not meaningful until after the strcam has
been closed, at least when the file server is an ITS.

:creation-date Operation on file streams
Returns the creation date of the file, as a number that is a universal time. Sce the
chapter on the time package (chapter 31, page 628).

:info Operation on file streams
Returns a cons of the file’s trucname and its creation date. This can be used to tell if the
filc has been modified between two opens. For an output strecam the info is guaranteed
1o be correct until after the stream has been closed.

:set-byte-size new-byte-size Operation on file streams
‘This is only allowed on binary ("fixnum mode”) file strcams. The byte size can be
changed to any number of bits from 1 to 16.

:delete &optional (errorp t) Operation on file streams
Deletes the file open on this strcam. For the meaning of error-p, sec the deletef
function. The file doesn't really go away until the stream is closed.

:undelete &optional (error-p t) Operation on file streams
If you have used the :deleted option in open to open a deleted file, this operation
undeletes the file.

:rename new-name &optional (error-p 1) Operation on file streams
Renames the file open on this stream. For the meaning of error-p, sce the renamef
function.

File output streams implement the :finish and :force-output messages.

21.10 Accessing Directories

To understand the functions in this section, it helps to have read the following chapter, on
pathnames.

fs:directory-1ist pathname &rest options
Finds all the files that match pathname and recturns a list with one clement for each file.
Each element is a list whose car is the pathname of the file and whose cdr is a list of the
properties of the file; thus the clement is a disembodied property list and get may be
used to access the file's propertics. The car of one element is nil: the properties in this
clement are properties of the file system as a whole rather than of a specific file.

SRC:KILMAN>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 443 Accessing Directories

The matching is done using both host-independent and host-dependent conventions. :wild
as a component of a pathname matches anything; all files that match the remaining
components of pathname will be listed, regardiess of their value for the wild component.
In addition, there is host-dependent matching. Typically this uses the asterisk character
(*) as a wild-card character. A pathname component that consists of just a * matches any
valuc of that component (the same as :wild). A pathname component that contains * and
other characters matches any character (on ITS) or any string of characters (on TOPS-20)
in the starred positions and requires the specified characters otherwise. In a TOPS-20
pathname, the % character is used to match a single arbitrary character. Other hosts will
follow similar but not necessarily identical conventions.

The options are keywords which modify the operation. The following options are currently
defined:

:noerror If a file-system error (such as no such directory) occurs during the
operation, normally an error will be signalled and the user will be asked
to supply a new pathname. However, if :noerror is spccified then, in the
event of an crror, a string describing the error will be rcturned as the
result of fs:directory-list. 'This is identical to the :noerror option to
open.

:deleted This is for file servers on which deletion is not pcrmanent. It specifies
that deleted (but not yet expunged) files are to be included in the
directory listing.

:sorted This requests that the directory list be sorted by filenames before it is

returned

The properties that may appear in the list of property lists returned by fs:directory-list
arc host-dependent to some cxtent. The following properiies are thosc that arc defined for
both ITS and TOPS-20 file servers. This set of properties is likely to be extended or
changed in the future.

:length-in-bytes
The length of the file expressed in terms of the basic units in which it is
written (characters in the case of a text file).

byte-size The number of bits in one of those units.

Jlength-in-blocks
The length of the file in terms of the file system’s unit of storage
allocation.

:block-size The number of bits in one of those units.

:creation-date The date the file was created, as a universal time. Sce chapter 31, page

£70

040.

reference-date
The most recent date on which the file was used, as a universal time.
:modified-date
The most recent date on which the file’s contents were changed, as a
universal time.

SRC:KI.MAND>IOS.TEXT.210 24-JAN-83

Accessing Directorics 444 I.isp Machine Manual

:author The name of the person who created the file, as a string.

:not-backed-up
t if the file cxists only on disk. nil if it has been backed up on magnetic
tape.

:directory t if this file is actually a directory.
:temporary t if this filc is temporary.

:deleted t if this file is deleted. Deleted files are included in the directory list only
if you specify the :deleted option.

:dont-delete t indicates that the file is not allowed to be deleted.

:dont-supersede
t indicates that the file may not be superseded; that is, a file with the
same name and higher version may not be crecated.

:dont-reap t indicates that this file is not supposed to be deleted automatically for
lack of use.

:«dont-dump t indicates that this file is not supposed to be dumped onto magnetic tape
for backup purposes.

:characters t indicates that this file contains characters (that is, text). nil indicates that
the file contains binary data. This property, rather than the file’s byte
size, should be used to decide whether it is a text file.

link-to If the file is a link, this property is a string containing the name that the
link points to.

The clement in the directory list that has nil instead of a file’s pathname describes the
directory as a whole. Onec property that will usually be found in this element is the
:pathname property, whose value is a pathname whose directory is the one you listed.
This will usually be the same as the argument to fs:directory-list, plus defaults. But if
that dircctory did not cxist, and the user typed another name on the keyboard, this
property would reflect the name that was typed.

:physical-volume-free-blocks
This property is an alist in which each element maps a physical volume
name (a string) into a number, the number of free blocks on that volume.

:settable-properties
This property is a list of filc property names that may be set. This
information is provided in the directory list because it is different for
different file systems.

:pathname This property is the pathname from which this directory list was made.

:block-size This is the number of words in a block in this directory. It can be used
to interpret the numbers of free blocks.

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

I.isp Machine Manual 445 Accessing Directories

fs:directory-list-stream pathname &rest options
This is like fs:directory-list but returns the information in a different form. Instead of
returning the directory list all at once, it returns a special kind of strcam which gives out
onc clement of the directory list at a time.

The dircctory list stream supports two operations: :entry and :close. :entry asks for the
next element of the directory stream. :close closes any connection to a remote file server.

The purpose of using fs:directory-list-stream instcad of fs:directory-list is that, when
communicating with a remote file server, the directory list stream can give you some of
the information without waiting for it to all be transmitted and parsed. 'This is desirable
if the directory is being printed on the console.

fs:expunge-directory pathname &key &optional (errort)
Expunge the dircctory specified in pathname; that is, permanently climinate any deleted
files in that directory. If error is nil, there is no error if the directory docs not exist.

Note that not all file systems support this function. To find out whether a particular one
does. send the :undeletable-p operation to a pathname. If it returns t, the file system of
that pathname supports undeletion (and therefore expunging).

fs:create-directory pathname &key &optional (errort)
Creates the directory specified in pathname. 1f error is nil, there is no error if the
dircctory cannot be created; instead an error string is returned. Not all file servers
support creation of directories.

fs:remote-connect pathname &key &optional (errort) access
Performs the TOPS-20 “connect™ or "access” function, or their equivalents, in & remote
file server. access specifies which one; "access” is done if it is non-nil.

The "connect" operation grants you full access to the specified directory. The "access”
operation grants you whatever access to all files and directories you would have if logged
in on the specified directory. Both operations affect access only, since the connected
directory of the remote server is never used by transactions from a Lisp Machine.

This function may ask you for a password if one is required for the directory you specify.
If the operation cannot be performed, then if error is nil, an error string will be returned.

fs:change-file-properties pathname error-p &rest properties
Some of the properties of a file may be changed; for instance, its creation date or its
author. Exactly which properties may be changed depends on the host file system; a list
of the changeable property names is the :settable-properties property of the file system

as a whole, returned by fs:directory-list as explained above.

fs:change-file-properties changes one or more properties of a file. pathname names the
file. The properties arguments are alternating keywords and values. The error-p argument
is the same as with renamef; if an error occurs and it is nil a string describing the error
will be returned: if it is t a Lisp error will be signalled. If no error occurs, fs:change-
file-properties returns t.

SRC:KI.MAND>IOS.TEXT 210 24-JAN-83

Acccessing Directorices 446 Lisp Machine Manual

fs:file-properties pathname &optional (error-pt)
Returns a disembodied property list for a single file (compare this to fs:directory-list).
The car of the returned list is the truename of the file and the cdr is an alternating list of
indicators and values. ‘The error-p argument is the same as with renamef; if an error
occurs and it is nil a string describing the crror will be returned; if it is t (the default) a
Lisp crror will be signalled.

fs:complete-pathname defaulis siring type version &rest options
string is a partially-specified file name. (Presumably it was typed in by a user and
terminated with the Altmode key or the End key to request completion.) fs:complete-
pathname looks in the file system on the appropriate host and returns a new, possibly
more specific string. Any unambiguous abbreviations are expanded out in a host-
dependent fashion.

defaults, type, and version arc the arguments that will be given to fs:merge-pathname-
defaults (see page 465) when the user’s input is eventually parsed and defaulted.

options are keywords (without following values) that control how the completion will be
performed. The following option keywords are allowed:

:deleted Looks for files which have been deleted but not yet expunged.

:read or :in The file is going to be read. This is the default.

:print or :write or :out
The file is going to be written (i.c. a new version is going to be created).

:old Looks only for files that already cxist. This is the default.

:new-ok Allows cither a file that already exists or a file that docs not yet exist. An
cxample of the use of this is the C-X C-F (Find File) command in the
editor.

The first value returned is always a string containing a file name, either the original string
or a new, more specific string. The second value returned indicates the success or failure
of the completion. It is nil if an error occurred. One possible error is that the file is on
a file system that does not support completion, in which casc the original string will be
returned unchanged. Other possible sccond values are :old, which means that the string
completed to the name of a file that exists, :new, which means that the string completed
to the name of a file that could be created, and nil again, which means that there is no
possible completion.

fs:balance-directories pathnamel pathname2 &rest options
fs:balance-directories is a function for maintaining multiple copies of a directory. Often
it is useful to maintain copics of your files on more than onc machine; this function
provides a simple way of keeping those copies up to date.

The function first parses pathnamel, filling in missing components with wildcards (except
for the version, which is :newest). Then pathname? is parsed with pathnamel as the
default. The resulting pathnames are used to generate directory lists using fs:directory-
list. Note that the resulting directory lists need not be entire dircctories; any subset of a
directory that fs:directory-list can produce will do.

SRCKIL.MANDIOS. TEXT.210 24-JAN-83

1.isp Muchine Manual 447 _ rrors in Accessing Files

First the directory lists arc matched up on the basis of file name and type. All of the
files in cither directory list which have both the same name and the same type are
grouped together.

The directory lists are next analyzed to determine if the dircctories are consistent, meaning
that two files with the same name and type have cqual creation-dates when their versions
match, and greater versions have later creation-dates. If any inconsistencics are found, a
warning message will be printed on the console.

If the version specified for both pathnamel and pathname? was :newest (the default),
then the newest version of each file in each directory will be copied to the other directory
if it is not already therc. The result will be that cach directory will have the newest copy
of every file in cither of the two directories.

If one or both of the specified versions is not :newest, then every file that appears in one
directory list and not in the other will be copied. This has the result that the two
directories are completely the same. (Note that this is probably not the right thing to use
to copy an entire directory. Use copy-file with a wildcard argument instead.)

The options arc keywords which modify the operation. The following options are currently

defined:

signore This option takes one argument, which is a list of file names to ignore
when making the directory lists. The default value is ’().

:error This option is identical to the :error option to open.

:;query-mode This option takes one argument, which indicates whether or not the user
should be asked before files are transferred. If the argument is nil, no
querying is done. If it is :1->2, then only files being transferred from
pathname? 0 pathnamel will be queried, while if it is ":2->1, then files
transferred from pathnamel to pathname2 will be queried. If the argument
is ":always, then the user will be asked about alt files.

:copy-mode This option is identical to the :copy-mode option of copy-file, and is
used to control whether files are treated as binary or textual data.

21.11 Errors in Accessing Files

fs:file-error (error) Condition Flavor
This flavor is the basis for all errors signaled by the file system.

It defines two special operations, :pathname and :operation. Usually, these return the
pathname of the file being opcrated on, and the operation used. This operation was
performed either on the pathname object itself, or on a stream.

It defines prompting for the procecd types :retry-file-operation and :new-pathname,
both of which are provided for many file errors. :retry-file-operation tries the operation
again exactly as it was requested by the program; :new-pathname expects on argument,
a pathname, and trics the same operation on this pathname instcad of the original one.

SRC:KI.MAN>IOS.TEXT.210 24-JAN-83

Lirrors in Accessing Files 443 Lisp Machine Manual

fs:file-operation-failure (fs:file-error) Condition
This condition name significs a problem with the file operation requested. It is an
altcrnative to fs:file-request-failure (page 452), which mecans that the file system was
unable to consider the operation properly.

All the following conditions in this section arc always accompanicd by fs:file-operation-
failure, fs:file-error, and error, so they will not be mentioned.

fs:file-open-for-output Condition
"The request cannot be performed because the file is open for output.

fs:file-locked Condition
The file cannot be accessed because it is already being accessed. Just which kinds of
simuitancous access are alfowed depends on the file system.

fs:circular-link Condition
A link could not be opened because it pointed, directly or indirectly through other links,
to itself. In fact, some systems report this condition whenever a chain of links exceeds a
fixed length.

fs:invalid-byte-size Condition
In open, the specified byte size was not valid for the particular file server or file.

fs:no-more-room Condition
Processing a request requires resources not available, such as spacc in a directory, or free
disk blocks.

fs:filepos-out-of-range Condition

The :set-pointer operation was used with a pointer valuc outside the bounds of the file.

fs:not-available Condition
A requested pack, file, etc. exists but is currently off line or not available to users.

fs:file-lookup-error Condition
This condition name categorizes all sorts of failure to find a specified file, for any
operation.

fs:device-not-found (fs:file-lookup-error) Condition

The specified device does not exist.

fs:directory-not-found (fs:file-lookup-error) Condition
The specified directory does not exist.

fs:file-not-found (fs:file-lookup-error) Condition

There is no file with the specified name, type and version. This implies that the device
and directory do exist, or an error would have happened for them previously.

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

Lisp Machine Manual 449 Errors in Accessing Files

fs:1ink-target-not-found (fs:file-lookup-error) Condition
The file specified was a link. but the Tink’s target filename faiis to be found.
fs:access-error Condition
The operation is possible, but the file server is insubordinate and refuses to obey you.
fs:incorrect-access-to-file (access-error). Condition
fs:incorrect-access-to-directory (access-error). Condition
The file server refuses to obey you because of protection attached to the file (or, the
directory).
fs:invalid-wildcard Condition
A pathname had a wildcard in a place where the particular file server does not support
them. Such pathnames will not be created by pathname parsing, but they can be created
with the :new-pathname operation.
fs:wildcard-not-allowed Condition
A pathname with a wildcard was used in an operation that does not support it. For
example, opening a file with a wildcard in its name.
fs:wrong-kind-of-file Condition
An operation was done on the wrong kind of file. If files and directories share one name
space and it is an error to open a directory, the crror will possess this condition name.
fs:creation-failure Condition
An attemnt ta create a file or directory failed for a reason specifically connected with
creation.
fs:file-already-sxists (fs:icreation-failure) Condition
The file or directory to be created already exists.
fs:superior-not-directory (fs:creation-failure Condition
fs:wrong -kind - of -file)
In file systems where directories and files share one name space, this error results from an
attempt to create a file whose "directory” is some other kind of file (not a directory).
fs:delete-failure Condition
A file to be deleted exists, but for some reason cannot be deleted.
fs:directory-not-empty (fs:delete-failure) Condition
A file could not be deleted because it is a directory and has files in it.
fs:dont-delete-flag-set (fs:delete-failure) Condition

A file could not be deleted because its "don’t delete” flag is set.

SRC:KL.MANDIOS.TEXT.210 24-JAN-83

File Servers 450 l.isp Machine Manual

fs:rename-failure Condition
A file to be renamed cxists, but the renaming could not be done. ‘The :new-pathname
operation on the condition instance returns the specified new pathname, which may be a
pathname or a string.

fs:rename-to-existing-file (fsirename-failure) Condition
Renaming cannot be done because there is already a file with the specified new name.

fs:rename-across-directories (fsirename-failure) Condition
Renaming cannot be done because the new pathname contains a different device or
directory from the one the file is on. This may not always be an crror—some file systems
support it in certain cascs—but when it is an crror, it has this condition name.

fs:unknown-property (fs:change-property-failure) Condition
A property name specified in a :change-properties operation is not supported by the file
server. (Some file servers support only a fixed set of property names.) The :property
operation on the condition instance returns the problematical property name.

fs:invalid-property-value (fs:change-property-failure) Condition
In a :change-properties opcration, some property was given a value that is not valid for
it. The :property operation on the condition instance returns the property name, and the
:value operation returns the specified value.

fs:invalid-property-name (fs:change-property-failure) Condition
In a :change-properties opcration, a syntactically invalid property name was specified.
This may be because it is wo long to be stored. The :property operation on the
condition instance returns the property name.

21.12 File Servers

Files on remote file servers arc accessed using file servers over the Chaosnet. Normally
connections to servers arc cstablished automatically when you try to use them, but there are a few
ways you can interact with them explicitly.

When a file server is first crcated for you on a particular host, vou must tell the server how
to log in on that host. This involves specifying a username, and, if the obstructionists are in
control of your site, a password. The Lisp machine will prompt you for these on the terminal
when they are nceded.

Logging in a file server is not the same thing as logging in on the Lisp machine (sce login,
page 648). The latter identifies you as a user in general and involves specifying one host, your
login host. The former identifies you to a particular file server host and must be done for each
host on which you access files. However, logging in on the Lisp machinc does specify the
uscrname for your login host and logs in a file server there.

The Lisp machine will always try your username (or the part that follows the last period) as a
first guess for your password (this happens to take no extra time). If that does not work, you
will be asked to type a password, or else a uscrname and a password. on the keyboard. You do
not have to give the same user namec that you are logged in as, since you may have or use

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

L.isp Machine Manual 451 File Servers

different user names on different machines.

fs:user-unames Variable
This is an alist matching host names with the usernames you have specified on those
hosts. Fach clement is the cons of a host object and the username, as a string.

For hosts running I'1'S. the symbol fs:its is used instcad of a host object. This is because
every user has the same uscr name on all TS hosts.

fs:user-host-password-alist : Variable
Once you have specified a password for a given username and host, it will be
remembered for the duration of the session in this variable. The value is a list of
clements, cach of the form
((username hostname) password)
All three data arc strings.

The remembered passwords arc used if more than one file server is needed on the same host,
or if the connection is broken and a new file server needs to be created.

If you are very scared of your password being known, you can turn off the recording by
setting this variable:

fs:record-passwords-flag Variable
Passwords are recorded when typed in if this variable is non-nil.

You chonld cet the variable at the front of vour init file. and also set the preceding variable
to nil, since it will already have recorded your password when you logged in.

If you do not use a file server for a period of time, it is killed to save resources on the
server host.

fs:host-unit-1ifetime Variable
This is the length of time after which an idle file server connection should be closed, in
60'ths of a second. The default is 20 minutes.

Some hosts have a caste system in which all users are not equal. It is sometimes necessary to
enable one’s privileges in order to exercise them. This is done with these functions:

fs:enable-capabilities host &rest capabilities
Enable the named capabilities on file servers for the specified host. capabilities is a list of
strings, whose meanings depend on the particular file system that is available on host. If
capabilities is nil, a default list of capabilities is enabled; the default is also dependent on
the operating system type.

fs:disable-capabilities host &rest capabilities
Disable the named capabilities on file servers for the specified host. capabilities is a list of
strings, whose meanings depend on the particular file system that is available on host. 1If
capabilities is nil, a default list of capabilities is disabled; the default is also dependent on
the operating system iype.

SRCKL.MAN>IOS. TEXT.210 24-JAN-83

File Servers 452 Lisp Machine Manual

The PEEK system has a mode that displays the status of all your file connections, and of the
host unit data structures that record them. Clicking on a connection with the mouse gets a menu
of operations, of which the most interesting is reset. Resetting a host unit may be uscful if the
connection becomes hung.

21.12.1 Errors in Communication with File Servers

fs:file-request-failure (Is:file-error error) Condition
This condition name categorizes ecrrors that prevent the file system from processing the
request made by the program.

The following condition names are always accompanied by the more general classifications
fs:file-request-failure, fs:file-error, and error.

fs:data-error Condition
This condition signifies inconsistent data found in the file system, indicating a failure in
the file system software or hardware.

fs:host-not-available Condition
This condition signifies that the file server host is up, but refusing connections for file
servers.

fs:network-lossage Condition

This condition signifies certain problems in the use of the chaosnet by a file server, such
as failure to open a data connection when it is expected.

fs:not-enough-resources Condition
This condition signifies a shortage of resources needed to consider processing a request, as
opposed to resources used up by the request itself. This may include running out of
network connections or job slots on the server host. It does not include running out of
space in a directory or running out of disk space, because these are resources whose
requirements come from processing the request.

fs:unknown-operation Condition

This condition signifies that the'particular file system fails to implement a standardly
defined operation; such as, expunging or undeletion on ITS.

SRCKIL.MAND>IOS. TEXT.210 24-JAN-83

	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452

