[isp Machine Manual 453 Naming of Files

22. Naming of Files

A Lisp Machine gencrally has access to many file systems. While it may have its own file
system on its own disks, usually a community of Lisp Machine uscrs want to have a shared file
system accessible by any of the Lisp Machines over a nctwork. These shared file systems can be
implemented by any computer that is capable of providing file system service. A file server
computer may be a special-purpose computer that docs nothing but service file system requests
from computers on a network, or it may be a time-sharing system.

Programs need to use names to designate files within these file systems. The main difficulty in
dealing with names of files is that different file systems have different naming formats for files.
For cxample, in the ITS file system, a typical name looks like:

DSK: GEORGE; FOO QFASL
with DSK being a device name, GEORGE being a directory name, FOO being the first file name
and QFASL being the second file name. However, in TOPS-20, a similar filc name is expressed
as:

PS:<GEORGE>F00.QFASL
It would be unrcasonable for each program that deals with file names to be expected to know
about cach different file name format that exists, or new formats that could get added in the
future. However, existing programs should retain their abilitics to manipulate the names.

The functions and flavors described in this chapter exist to solve this problem. They provide
an interface through which a program can deal with names of files and manipulate them without
depending on anything about their syntax. This lets a program deal with multiple remote file
servers simultancously, using a uniform set of conventions.

[On the other hand, changes in the standard pathname interface frequently make your old
programs fail to work with any file systems. But that's excusable, right?]

22.1 Pathnames

All file systems dealt with by the Lisp Machine are mapped into a common model, in which
files are named by something called a pathname. A pathname always has six components, each
with a standard meaning. These components are the common interface that allows programs to
work the same way with different file systems: the mapping of the pathname components into the
concepts peculiar to cach file system is taken care of by the pathname software. Pathname
components are described in the following section, and the mappings between components and
uscr syntax is described for each file system later in this chapter.

A pathname is an instance of a flavor (sce chapter 20, page 321); exactly which flavor
depends on what the host of thc pathname is, but fs:pathname is always one of its component
flavors. if p is a pathname, then {(typep p 'fs:pathname) will return . One of the messages
handled by host objects is the :pathname-flavor operation, which returns the name of the flavor
to usc for pathnames on that host. And onc of the differences between flavors of host is how

they handle this operation.

SRC:KL.MAN>PATHNM.TEXT.66 24-JAN-83

Pathnamcs 454 Lisp Machinc Manual

There are functions for manipulating pathnames, and there are also messages that can be sent
to them. These arc described later in this chapter.

Two important operations of the pathname system are parsing and merging. Parsing is the
conversion of a string—which might be something typed in by the user when asked to supply the
name of a file—into a pathname object. This involves finding out what host the pathname is for,
then using the file name syntax conventions of that host to parse the string into the standard
pathname components. Merging is the operation that takes a pathname with missing components
and supplics values for those components from a set of defaults.

The function string, applied to a pathname, converts it into a string that is in the file name
syntax of its host’s file system, except that the name of the host followed by a colon is inserted at
the front. This is the inverse of parsing. princ of a pathname also docs this, then prints the
contents of the string. Flavor operations such as :string-for-dired cxist which convert all or part
of a pathname to a string in other fashions that arc designed for specific applications. prin1 of a
pathname prints the pathname using the #c syntax so it can be read back in to produce an
_cquivalent pathname (or the same pathname, if rcad in the same scssion).

Since cach kind of file server can have its own character string representation of names of its
files, there has to be a different parser for cach of these representations, capable of examining
such a character string and figuring out what each component is. The parsers all work differently.
How can the parsing operation know which parser to use? The first thing that the parser does is
to figure out which host this filename belongs to. A filename character string may specify a host
explicitly by having the name of the host, followed by a colon, at cither the beginning or the
end of the string. For example, the following strings all specify hosts explicitly:

Al: COMMON; GEE WHIZ ; This specifies host Al
COMMON; GEE WHIZ AI: ; So does this.
AI: ARC: USERS1; FOO BAR ; So does this.
ARC: USERS1; FQOO BAR AI: ; So does this.
EE:PS:<COMMON>GEE .WHIZ.5 ; This specifics host EE.
PS:<COMMON>GEE .WHIZ.5 EE: ; So does this.

If the string does not specify a host cxplicitly, the parser will assume some particular host is the
one in question, and will use the parser for that host’s file system. The optional arguments
passcd to the parsing function (fs:parse-pathname) tell it which host to assume. Note: the
parser won't be confused by strings starting with "DSK:" or "PS:" because it knows that neither
of those is a valid host name. (If some file system’s syntax allowed file names that start with the
name of a valid host followed by a colon, therc could be problems.)

Pathnames are kept unique, like symbols, so that there is only one object with a given set of
components. This is useful becausc a pathname object has a property list (sce section 5.9, page
81) on which you can store properties describing the file or family of files that the pathname
represents. The uniquencss implics that any time the same components are typed in, the program
will get the same pathname object and find there the properties it ought to find.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a way to get
to a file; a pathname need not correspond to any file that actually exists, and more than one
pathname can refer to the same file. For example, the pathname with "newest” as its version will
refer to the same file as a pathname with the same components but a certain number as the
version. In systems with links, multiple file names, logical devices, ctc. two pathnames that look

SRC:KLMANDPATHNM.TEXT.66 24-JAN-83

Lisp Machine Manual 455 Pathname Components

quite different may really turn out to address the same file. To get from a pathname to a file
requires doing a file sysicm operation such as open.

When you want to store properties describing an individual file, use the pathname you get by
sending :truename to a strcam rather than the pathname you open. 'This avoids problems with
different pathnames that refer to the same file.

To get a unique pathname object representing a family of files, send the message :generic-
pathname to a pathname for any file in the family (sce section 22.5, page 467).

22.2 Pathname Components

These are the components of a pathname. They will be clarified by an example below.

host An object that represents the file system machine on which the file resides. A
host object is an instance of a flavor one of whose components is si:basic-host.
The precise flavor varies depending on the type of file system and how the files
arc to be accessed.

device Corresponds to the "device" or "file structure™ concept in many host file systems.

directory The name of a group of related files belonging to a single user or project.
Corresponds to the "directory™ concept in many host file systems.

name The name of a group of files that can be thought of as conceptually the “same"”
file. Many host file systems have a concept of "name" which maps directly into

ype : Corresponds to the "filetype™ or "extension" concept in many host file systems.
This says what kind of file this is; such as, a Lisp source file, a QFASL file, etc.

version Corresponds to the “version number” concept in many host file systems. This is a
number that increments every time the file is modified.

As an example, consider a Lisp program named CONCH. If it belongs to GEORGE, who
uses the FISH machine, the host would be the host-object for the machine FISH, the device
would probably be the default and the directory would be GEORGE. On this directory would be
a number of files related to the CONCH program. The source code for this program would live
in a set of files with name CONCH, type LISP, and versions 1, 2, 3, etc. The compiled form
of the program would live in files named CONCH with type QFASL; cach would have the same
version number as the source file that it came from. If the program had a documentation file, it
would have type INFO. '

Not all of the components of a pathname need to be specified. If a component of a
pathname is missing, its value is nil. Before a file server can do anything interesting with a file,
such as opening the file, all the missing components of a pathname must be filled in from
defaults. But pathnames with missing components arc often handed around inside the machine,
since almost all pathnames typed by users do not specify all the components explicitly. The host
is not allowed to be missing from any pathname; since the behavior of a pathname is host-
dependent to some extent, it has to know what its host is. All pathnames have host attributes,
even if the string being parsed does not specify one explicitly.

SRC:KL.MAN>PATHNM.TEXT.66 24-JAN-83

Pathname Components 456 L.isp Machine Manual

A component of a pathname can also be the special symbol :unspecific. :unspecific means,
explicitly. "this component has been specified as missing”, whercas nil means that the component
was not specified and should default. In merging, :unspecific counts as a specified component
and is not replaced by a default. :unspecific docs nor mean "unspecified”; it is unfortunate that
those two words are similar,

:unspecific is used in generic pathnames, which refer not to a file but to a whole family of
files. The version, and usually the type. of a generic pathname are :unspecific. Another way
:unspecific is used has to do with mapping of pathnames into file systems such as ITS that do
not have all six components. A component that is rcally not there will be :unspecific in the
pathname. When a pathname is converted to a string, nil and :unspecific both cause the
component not to appear in the string.

A component of a pathname can also be the special symbol :wild. This is useful only when
the pathname is being used with a directory primitive such as fs:directory-list (scc page 442),
where it means that this pathname component matches anything. The printed representation of a
pathname usually designates :wild with an asterisk; however, this is host-dependent.

What values arc allowed for components of a pathname depends, in gencral, on the
pathname’s host. However, in order for pathnames to be usable in a system-independent way
certain global conventions are adhered to. These conventions are stronger for the type and version
than for the other components. since the type and version arc actually understood by many
programs, while the other components are usually just treated as somcthing supplied by the user
that only nceds to be remembered.

In genceral, programs can interpret the components of a pathname indcpendent of the file
system; and a certain minimum sct of possible values of each component will be supported on all
file systems. The same pathname component value may have very different representations when
the pathname is madc into a string, depending on the file system. This does not affect programs
that operatec on the components. The user, when asked to type a pathname, always uses the
system-dependent string representation. This is convenient for the user who moves between using
the Lisp machine on files stored on another host and making direct use of that host. However,
when the mapping between string form and components is complicated, the components may not
be obvious from what you type.

The type is always a string, or one of the special symbols nil, :unspecific, and :wild.
Certain hosts impose a limit on the size of string allowed, often very small. Many programs that
deal with files have an idea of what type they want to use. For cxample, Lisp source programs
are usually "LISP", compiled Lisp programs arc "QFASL", etc. However, these file type
conventions are host-specific, for the important reason that some hosts do not allow a string five
characters long to be used as the type. Therefore, programs should use a canonical type rather
than an actual string to specify their conventional default file types. Canonical types are described
below.

For the version, it is always legitimate to use a positive fixnum, or certain special symbols.
nil, :unspecific, and :wild have been explained above. The other standardly allowed symbols are
'newest and :oldest. :newest refers to the largest version number that exists when reading a file,
or that number plus one when writing a new file. :oldest refers to the smallest version number
that cxists. Some file systems may define other special version symbols, such as :installed for

SRCKL.MAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machine Manual 457 Pathname Components

cxample, or may allow ncgative numbers. Some do not support versions at all. Then a pathname
may still contain any of the standard version components, but it does not matier what the vaiue
is.

The device, directory. and name are more system-dependent. ‘These can be strings (with host-
dependent rules on allowed characters and length) or they can be structured. A structured
component is a list of strings. This is used for file system features such as hicrarchical directories.
The system is arranged so that programs do not need to know about structured components unless
they do host-dependent operations. Giving a string as a pathname component to a host that
wants a structurcd value converts the string to the appropriate form. Giving a structured
component to a host that does not understand them converts it to a string by taking the first
clement and ignoring the rest.

Some host file systems have features that do not fit into this pathname model. For instance,
directorics might be accessible as files, there might be complicated structure in the directorics or
names, or there might be relative directorics. such as "<" in Multics. Thesc features appear in
the parsing of strings into pathnames, which is one reason why the strings are written in host-
dependent syntax. Pathnames for hosts with these features are also likely to handle additional
messages besides the common ones documented in this chapter, for the benefit of host-dependent
programs that want to access those features. However, note that once your program depends on
any such features, it will only work for certain file servers and not others; in general, it is a
good idea to make your program work just as well no matter what file server is being used.

22.2.1 Raw Components and Interchange Components

On some host file systems it is conventional to use lower-case letters in file names, while in
others upper casc is cusiomary. of possibly required. When pathname components are moved
from pathnames of one file system to pathnames of another fiie system, it is uscful to convert the
case if necessary so that you get the right case convention for the latter file system as a default.
This is especially useful when copying files from onc file system to another.

The Lisp machine system defines two representations for each of several pathname components
(the device, directory, name and type). There is the raw form, which is what actually appears in
the filename on the host file system, and there is the interchange form, which may differ in
alphabetic case from the raw form. The raw form is what is stored inside the pathname object
itself, but programs ncarly always operate on the interchange form. The :name, :type, et
operations return the interchange form, and the :new-name, elc, operations expect the
interchange form. Additional operations :raw-name, etc., arc provided for working with the raw
components, but these are rarely needed.

The interchange form is defined so that it is always customarily in upper case. If upper case
is customary on the host file system, then the interchange form of a component is the same as
the raw form. If lower case is customary on the host file system, as on Unix, then the
interchange form has case inverted. More precisely, an all-upper-case component is changed to
all-lower-case, an all-lower-casc component is changed to all-upper-case, and a mixed-case
component is not changed. (This is a one-to-one mapping). Thus, a Unix pathname with a name
component of "foo" will have an interchange-format name of "FOO", and vice versa.

SRC:KLMAN>PATHNM.TEXT.66 24-JAN-83

Pathname Components 458 Lisp Machine Manual

For host file systems which record case when files are created but ignore case when comparing
filenames, the interchange form is always upper case.

‘The host component is not really a name, and case is always ignored in host names, so there

is no nced for two forms of host component. The version component does not need them either,
because it is never a string,

22.2.2 Pathname Component Operations

shost Operation on fs:pathname
:device Operation on fs:pathname
:directory Operation on fs:pathname
:name Operation on Is:pathname
:type Operation on fs:pathname
:version Operation on fs:pathname

These return the components of the pathname, in interchange form. The returned values
can be strings, special symbols, or lists of strings in the casc of structured components.
The type will always be a string or a symbol. The version will always be a number or a

symbol.
:raw-device Operation on fs:pathname
:raw-directory Operation on fs:pathname
:raw-name Operation on fs:pathname
:raw-type Operation on fs:pathname

These return the components of the pathname, in raw form.

:new-device dev Operation on fs:pathname
:new-directory dir Operation on fs:pathname
:new-name name Operation on fs:pathname
:new-type fpe Operation on fs:pathname
:new-version version Operation on fs:pathname

These return a new pathname that is the same as the pathname they are sent to except
that the valuc of one of the components has been changed. The specified component
valuc is interpreted as being in interchange form, which means its casc may be converted.
The :new-device, :new-directory and :new-name operations accept a string (or a
special symbol) or a list that is a structured name. If the host does not define structured
components, and you specify a list, its first element is used.

:new-raw-device dev Operation on fs:pathname
:new-raw-directory dir Operation on fs:pathname
:new-raw-name name Operation on fs:pathname
:new-raw-type #ype Operation on fs:pathname

These return a new pathname that is the same as the pathname they are sent to except
that the value of one of the components has been changed. The specified component
value is interpreted as raw.

SRCKL.MAN>PATHNM.TEXT.66 24-JAN-83

Iisp Machine Manual 459 Pathname Components

:new-suggestad-name name Operation on fs:pathname
:new-suggested-directory dir Operation on fs:pathname
These differ from the new-name and :new-directory operations in that the new
pathname constructed has a name or directory based on the suggestion, but not necessarily
identical to it. It tries, in a system-dependent manner, to adapt the suggested name or
directory to the usual customs of the file system in use.

For example, on a TOPS-20 system, these operations would convert name or dir to upper
case, because while lower-case letters may appear in TOPS-20 pathnames, it is not
customary to generate such pathnames by default.

:new-pathname &rest options Operation on fs:pathname
This returns a new pathname that is the same as the pathname it is sent to except that
the values of some of the components have becn changed. oprions is a list of alternating
keywords and values. The keywords all specify values of pathname components; they are
‘host. :device, :directory, :name. :type, and :version. Alternatively, the keywords
:raw-device, :raw-directory, raw-name and :raw-type may be used to specify a
component in raw form.

Two additional keywords, :canonical-type and :original-type, allow the type field to be
specified as a canonical type. See the following section for a description of canonical
types. Also, the value specified for the keyword :type may be a canonical type symbol.

The operations :new-name, etc., are equivalent to :new-pathname specifying only one
component to be changed; in fact, that is how those operations are implemented.

22.2.3 Canonical Types

Canonical types are a way of specifying a pathname type component using host-dependent
conventions without making the program itself explicitly host dependent. For example, the
function qc-file normally provides a default type of "LISP", but on VMS systems the default
must be "LSP" instcad, and on Unix systems it is "I". What qc-file actually does is to use a
canonical type, the keyword :lisp, as the default. This keyword is given a definition as a
canonical type, which specifies what it maps into on various file systems.

A single canonical type may have more than one mapping on a particular file system. For
example, on TOPS-20 systems the canonical type :LISP maps into cither "LISP" or "LSP". One
of the possibilities is marked as "preferred”; in this case, it is "LISP". The effect of this is that
either FOO.LISP or FOO.LSP would be acceptable as having canonical type :lisp, but merging
will yicld "LISP" as the type when defaulting from :lisp.

Note that the canonical type of a pathname is not a distinct component. It is another way of
describing or specifying the type component.

A canonical type must be defined before it is used.

SRCKLMAN>PATHNM.TEXT.66 24-JAN-83

Pathname Components 460 Lisp Machine Manual

fs:define-canonical-type symbol standard-mapping Special FForm
system-dependent-mappings...
Defines symbol as a canonical type. standard-mapping is the actual type component that it
maps into (a string), with cxceptions as specified by system-dependent-mappings. Each
clement of system-dependent-mappings (that is, cach additional argument) is a list of the
form
(system-1ype preferred-mapping other-mappings. . .)

system-type is onc of the system-type keywords the :system-type operation on a host
object can return, such as :unix, :tops20, and :lispm (scc page 481). The argument
describes how to map this canonical type on that type of file system. preferred-map (a
string) is the preferred mapping of the canonical type, and other-mappings arc additional
strings that are accepted as matching the canonical type.

sysiem-1ype may also be a list of system types. Then the argument applies to all of those
types of file systems.

All of the mapping strings are in interchange form.

For example, the canonical type :lisp is defined as follows:
(fs:define-canonical-type :lisp "LISP"
(:unix "L"™ "LISP")
(:vms "LSP")
((:tops20 :tenex) "LISP" "LSP"))

Other canonical types defined by the system include :gfasl, :text, :press, :gwabl, :babyl,
:mail, :xmail, :init, :patch-directory, :midas, :palx., :unfasl, :kst, :widths, and :output.
The standard mapping for cach is the symbol's pname.

To match a pathname against a canonical type, use the :canonical-type operation.

:canonical-type Operation on fs:pathname
Returns two values which describe whether and how this pathname’s type component
matches any canonical type.

If the type component is one of the possible mappings of some canonical type, the first
value is that canonical type (the symbol). The sccond value is nil if the type component
is the preferred mapping of the canonical type; otherwise it is the actual type component,
in interchange form. The second value is called the original type of the pathname.

If the type component does not match a canonical type, the first value is the type
component in interchange form (a string), and the second value is nil.

This operation is uscful in matching a pathname against a canonical type; the first value
is eq to the canonical type if the pathname matches it. The operation is also useful for
transferring a type ficld from one file system to another while preserving canonical type;
this is described below.

A new pathname may also be constructed by specifying a canonical type.

SRC:KI.MAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machine Manual 461 Pathname Components

:new-canonical-type canonical-type &optional Operation on fs:pathname
originai-type
Returns a pathname different from this one in having a type component that matches
canonical-type.

If original-type is a possible mapping for canonical-type on this pathname’s host, then it is
used as the type component. Otherwise, the preferred mapping for canonical-type is used.
If original-type is not specified, it defaults fo this pathname’s typc component. If it is
specified as nil, the preferred mapping of the canonical type is always used. If canonical-
ype is a string rather than an actual canonical type, it is used directly as the type
component, and the original-type does not matter.

The :new-pathname operation accepts the keywords :canonical-type and :origial-type.
The :new-canonical-type operation is cquivalent to :new-pathname with those
keywords.

Suppose you wish to copy the file named old-pathname to a dircctory named target-directory-
pathname, possibly on another host, while preserving the name, version and canonical type. That
is, if the original file has a name acceptable for a QFASL file, the new file should also. Here is
how to compute the new pathname:

(multiple-value-bind (canonical original)
(send old-pathname ’:canonical-type)

(send target-directory-pathname ’:new-pathname
":name (send old-pathname ’:version)
*:version (send old-pathname ’:version)
*:canonical-type canonical
>:original-type original))

Suppose that old-pathname is OZ:KFOO>A.LISP.5, where OZ is a TOPS-20, and the target
directory is on a VMS host. canonical will be :lisp and original will be "LISP". Since "LISP"
is not an acceptable mapping for :lisp on a VMS system, the resulting pathname will have as its
type component the preferred mapping for :lisp on VMS, namely, "LSP".

But if the target host is a Unix host, the new file’s type will be "LISP", since that is an
acceptable (though not preferred) mapping for :lisp on Unix hosts. If you would rather that the
preferred mapping always be used for the new file’s type, omit the :original-type argument to
the :new-pathname operation. This would result in a type component of "L" in interchange
form, or "I" in raw form, in the new file’s pathname.

The function qc-file actually does something cleverer than using the canonical type as a
default. Doing that, and opening the resulting pathname, would look only for the preferred
mapping of the canonical type. qc-file actually tries to open each possible mapping, trying the
preferred mapping first. Here is how it does so:

SRCKI.MAN>PATHNM.TEXT.66 24-JAN-83

Defaults and Merging 462 I.isp Machine Manual

:open-canonical-default-type canonical-type Operation on fs:pathname
&rest options

If this pathname’s type component is non-nil, the pathname is simply opened, passing the
options o the :open operation. If the type component is nil, cach mapping of canonical-
npe is tried as a type component, in the order the mappings appear in the canonical type
definition. If an open succeeds, a strecam is returned. The possibilities continue to be
tricd as long as fs:file-not-found crrors happen: other crrors are not handled. If all the
possibilities fail, a fs:file-not-found crror is signaled for the caller, with a pathname that
contains the preferred mapping as its type component.

22.3 Defaults and Merging

When the user is asked to type in a pathname, it is of course unrcasonable to require the
uscr to type a complete pathname, containing all components. Instead there are defaults, so that
components not specificd by the user can be supplied automatically by the system. Each program
that deals with pathnames typically has its own sct of defaults.

The system defines an object called a defaults alist. Functions are provided to create one, get
the default pathname out of one, merge a pathname with one, and storec a pathname back into
one. A defaults alist can remember more than one default pathname if defaults are being kept
separately for each host: this is controlled by the variable fs:*defaults-are-per-host*. The main
primitive for using defaults is the function fs:merge-pathname-defaults (sce page 465).

In place of a defaults alist, you may usc just a pathname. Defaulting one pathname from
another is useful for cases such as a program that has an input filc and an output file, and asks
the user for the name of both, letting the unsupplicd components of one name default from the
other. Unspecified components of the output pathname will come from the input pathname,
except that the type should default not to the type of the input but to the appropriate default
type for output from this program.

The implementation of a defaults alist is an association list of host names and default
pathnames. The host name nil is special and holds the defaults for all hosts, when defaults are
not per-host.

The merging operation takes as input a pathname, a defaults alist (or another pathname), a
default type, and a dcfault version, and returns a pathname. Basically, the missing components
in the pathname are filled in from the defaults alist. However, if a name is specified but the type
or version is not, then the type or version is treated specially.

The full details of the merging rules are as follows. First, if no host is specified, the host is
taken from the defaults. If the pathname explicitly specifies a host and docs not supply a device,
then the device will be the default file device for that host.

If the pathname specifies a device named DSK, that is replaced with the working device for
the pathname’s host, and the directory defaults to the working directory for the host if it is not
specified. Sce fs:set-host-working-directory, below.

SRC:KLMAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machine Manual 463 Defaults and Merging

Next, if the pathname does not specify a host, device, directory, or name, that component
comes from the defaults.

If the value of fs:*always-merge-type-and-version* is non-nil, the type and version are
merged just like the other components.

if ts:*always-merge-type-and-version* is nil, as it normally is, the merging rules for the
type and version are more complicated and depend on whether the pathname specifies a name. If
the pathname doesn’t specify a name, then the type and version, if not provided, will come from
the defaults, just like the other components. However, if the pathname docs specify a name,
then the type and version come from the default-type and default-version arguments to merge-
pathname-defaults. If thosc arguments were omitted. the valuc of fs:*name-specified-default-
type* (initially, :lisp) is used as the default type, and :newest is used as the default version.

The reason for this is that the type and version "belong to™ some other filename, and are
thought to be unlikely to have anything to do with the new filename you are typing in.

fs:set-host-working-directory host pathname
This sets the working device and working directory for host to those specified in pathname.
host should be a host object or the name of a host. pathname may be a string or a
pathname. The working device and working directory are used for defaulting pathnames
in which the device is specified as DSK.

The editor command Meta-X Set Working Directory provides a convenient interface to
this function.

The following special variables are parts of the pathname interface that are relevant to
defaults.

fs:*defaults-are-per-host® Variable

This is a user customization option intended to be set by a user’s LISPM INIT file (see
section 32.7, page 648). The default value is nil, which means that each program’s set of
defaults contains only one default pathname. If you type in just a host name and a colon,
the other components of the name will default from the previous host, with appropriate
translation to the new host's pathname syntax. If fs:*defaults-are-per-host* is set to t,
cach program’s set of defaults will maintain a scparate default pathname for cach host. If
you type in just a host name and a colon, the last file that was referenced on that host
will be used.

fs:*always-merge-type-and-version®* Variable
If this variable is non-nil, then the type and version arc defaulted only from the
pathname defaults just like the other components.

fs:*name-specified-default-type® Variable
If fs:*always-merge-type-and-version* is nil, then when a name is specified but not a
type, the type defaults from an argument to the merging function. If that argument is
not specified, this variable’s value is used. It may be a string or a canonical type
keyword. The valuc is initially :lisp.

SRC:KLLMAN>PATHNM.TEXT.66 24-JAN-83

Defaults and Merging 464 Lisp Machine Manual

fs:*default-pathname-defaults* Variable
This is the default defaults alist; if the pathname primitives that need a set of defaults are
not given one, they use this one. Most programs, however, should have their own
defaults rather than using these.

fs:load-pathname-defaults Variable
This is the defaults alist for the load and qc-file functions. Other functions may share
these defaults if they deem this to be an appropriate user interface.

fs:last-file-opened Variable
This is the pathname of the last file that was opened. Occasionally this is useful as a
default. Since some programs deal with files without notifying the user, you must not
expect the user to know what the value of this symbol is. Using this symbol as a default
may cause unfortunate surpriscs. and so such usc is discouraged.

Thesc functions are used to manipulate defaults alists directly.

fs:make-pathname-defaults
Creates a defaults alist initially containing no defaults. If you ask this empty set of
defaults for its default pathname before anything has been stored into it you will get the
file FOO on the user’s home directory on the host he logged in to.

fs:copy-pathname-defaults defaults
Creates a defaults alist initially a copy of defaults.

fs:default-pathname &optional defaults host default-type defaulr-version
This is the primitive function for getting a default pathname out of a defaults alist.
Specifying the optional arguments host, defaulr-type, and default-version to be non-nil
forces those fields of the returned pathname to contain those values.

If fs:*defaults-are-per-host* is nil (its default value), this gets the one relevant default
from the alist. If it is t, this gets the default for host if one is specified, otherwise for
the host most recently used.

If defaults is not specified, the default defaults are used.
This function has an additional optional argument internal-p, is obsolete.

fs:default-host defaults
Returns the default host object specified by the defaults-alist defaults. This is the host
that will be used by pathname defaulting with the given defaults if no host is specified.

fs:set-default-pathname pathname &optional defaults

This is the primitive function for updating a set of defaults. It stores pathname into
defaults. If defaults is not specified, the default defaults are used.

SRC:KL.MANDPATHNM.TEXT.66 24-JAN-83

Lisp Machine Manual 465 ‘ Pathname Functions

22.4 Pathname Functions

These functions are what programs use to parse and default file names that have been typed in or
otherwise supplied by the user.

fs:parse-pathname rhing &optional host defaults
‘This turns thing, which can be a pathname, a string, a symbol. or a Maclisp-style name
list, into a pathname. Most functions that arc advertised to take a pathname argument
call fs:parse-pathname on it so that they will accept anything that can be turned into a
pathname.

This function does not do defaulting, even though it has an argument named defaulss; it
only does parsing. The host and defaults arguments arc there because in order to parse a
string into a pathname, it is necessary to know what host it is for so that it can be parsed
with the file name syntax peculiar to that host. [If thing does not contain a manifest host
name, then if host is non-nil, it is the host name to use, as a string. If thing is a string,
a manifest host name may be at the beginning or the end, and consists of the name of a
host followed by a colon. If host is nil then the host name is obtained from the default
pathname in defaults. If defaults is not supplied, the default defaults (fs:*default-
pathname-defaults*) are used.

Note that if host is specified, and thing contains a host name, an error is signalled if they
are not the same host.

fs:pathname-parse-error (fs:pathname-error error) Condition
~This coidition is sighaled “whcn §s:paise-pathname finds a syniax Cior in (i sining it is
given.

fs:parse-pathname scts up a nonlocal proceed type :new-pathname for this condition.
The proceed type expects one argument, a pathname, which is returned from fs:parse-
pathname.

fs:merge-pathname-defaults pathname &optional defaults default-type default-version
Fills in unspecified components of pathname from the defaults and returns a new
pathname. This is the function that most programs should call to process a file name
supplied by the user. pathname can be a pathname, a string, a symbol, or a Maclisp
namelist. The returned value will always be a pathname. The merging rules are
documented on page 462.

If defaults is a pathname, rather than a defaults alist, then the defaults are taken from its
components. This is how you merge two pathnames. (In Maclisp that operation is called
mergef.)

defaults defaults to the value of fs:*default-pathname-defaults* if unsupplied. default-
type defaults to the value of fs:*name-specified-default-type*. default-version defaults
to :newest.

SRCKILMAN>PATHNM.TEXT.66 24-JAN-83

Pathname Functions 466 I.isp Machine Manual

fs:merge-and-set-pathname-defaults parthname &optional defaults default-type
default-version
This is the same as fs:merge-pathname-defaults cxcept that after it is donc the defaults-
list defaulis is modified so that the merged pathname is the new default. This is handy
for programs that have "sticky" defaults. (If defaults is a pathname rather than a defaults
alist, then no storing back is done.) The optional arguments default the same way as in
fs:merge - pathname-defaults.

This function yiclds a pathname given its components.

fs:make-pathname &rcst options
The options are alternating keywords and values, which specify the components of the
pathname. Missing components default to nil, except the host (all pathnames must have a
host). The :defaults option specifics what defaults to get the host from if none is
specified. The other options allowed are :host, :device. :structured-device, «directory,
:structured-directory, :name, :structured-name, :type, and :version.

These functions return useful information.

fs:user-homedir &optional host reset-p
Returns the pathname of the logged-in user's home directory on hosi, which defaults to
the host the user logged in to. Home directory is a somewhat system-dependent concept,
but from the point of view of the Lisp Machine it is the directory where the user keeps
personal files such as init files and mail. This function returns a pathname without any
name, type, or version component (those components are all nil). If reser-p is specified
non-nil, the machine the user is logged in to is changed to be host.

fs:init-file-pathname program-name &optional host
Returns the pathname of the logged-in user’s init file for the program program-name, on
the host, which defaults to the host the user logged in to. Programs that load init files
containing user customizations call this function to find where to look for the file, so that
they need not know the separate init file name conventions of each host operating system.
The program-name "LISPM" is used by the login function.

These functions are useful for poking around.

fs:describe-pathname pathname
If pathname is a pathname object, this describes it, showing you its properties (if any)
and information about files with that name that have been loaded into the machine. If
pathname is a string, this describes all interned pathnames that match that string, ignoring
components not specified in the string. One thing this is useful for is finding the directory
of a file whose name you remember. Giving describe (sce page 641) a pathname object
will do the same thing as this function will.

SRC:KL.MAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machine Manual 467 Generic Pathnames

fs:pathname-plist pathname
Parses and defaults pathrame, then returns the list of propertics of that pathname.

fs:*pathname-hash-table® | Variable
This is the hash table in which pathnamec objects are interned. Applying the function
maphash to this will extract all the pathnames in the world.

22.5 Generic Pathnames

A generic pathname stands for a whole family of files. The property list of a generic
pathname is used to remember information about the family, some of which (such as the package)
comes from the -#- line (see section 21.9.2, page 438) of a source file in the family. Several
types of files with that name, in that dircctory, belong together. They are different members of
the same family; for example, they may be source code and compiled code. However, there may
be several other types of files that form a logically distinct group even though they have this same
name: TEXT and PRESS for cxample. The exact mapping is done on a per host basis since it
can sometimes be affected by host naming conventions.

The generic pathname of pathname p usually has the same host, device, directory, and name
as p does. However, it has a version of :unspecific. The type of the generic pathname is
obtained by sending a :generic-base-type iype-ofp message to the host of p. The default
response to this message is to return the associated type from fs:*generic-base-type-alist* if
there is one, clse type-ofp. Both the argument and the value are ecither strings, in interchange
form, or canonical type symbols.

However, the ITS file system presents special problems. One cannot distinguish multiple
generic base types in this same way since the type component docs not exist as such; it is derived
from the second filename, which unfortunately is also sometimes used as a version number. Thus,
on ITS, the type of a generic pathname is always :unspecific if there is any association for the
type of the pathname on fs:*generic-base-type-alist*.

Since generic pathnames are primarily useful for storing propertics, it is important that they
be as standardized and conceptualized as possible. For this reason, generic pathnames are defined
to be "backtranslated”, i.e. the generic pathname of a pathname that is (or could be) the result of
a logical host translation has the host and directory of the logical pathname. For example, the
generic pathname of ALLMWIN;STREAM > would be SYS:WINDOW;STREAM U U if Al is the
system host.

All version numbers of a particular pathname share the same identical generic pathname. If
the values of particular properties have changed between versions, it is possible for confusion to
result. One way to deal with this problem is to have the property be a list associating version
number with the actual desired property. Then it is relatively casy to determine which versions

have which values for the property in question and sclect one appropriately. But in the
applications for which generic pathnames are typically used, this is not necessary.

The :generic-pathname operation on a pathname returns its corresponding generic pathname.
See page 469. The :source-pathname operation on a pathname returns the actual or probable
pathname of the corresponding source file (with :newest as the version). See page 469.

SRC:KL.MAN>PATHNM.TEXT.66 24-JAN-83

Generic Pathnames 468 1.isp Machine Manual

fs:*generic-base-type-alist®* Variable
This is an association list of the file types and the type of the generic pathname used for
the group of which that file type is a part. Constructing a generic pathname will replace
the file type with the association from this list, if there is one (cxcept that ITS hosts
always replace with :unspecific). File types not in this list are really part of the name in
some sensc. The initial list is

((:text . :text) ("DOC" . :text)
(:press . :text) ("XGP" . :text)
(:1isp . :unspecific) (:qfasl . :unspecific)

(NIL . :unspecific))
The association of :lisp and :unspecific is unfortunately made necessary by the problems
of TT'S mentioned previously. This way makes the generic pathnames of logically mapped
LISP files identical no matter whether the logical host is mapped to an ITS host or not.

The first entry in the list with a particular cdr is the entry for the type that source files
have. Note how the first clement whose cdr is :unspecific is the one for lisp. This is
how the :source-pathname operation knows what to do, by default.

Some users may need to add to this list.

The system records certain propertics on generic pathnames automatically.
‘warnings This property is used to record compilation and other warnings for the file.

definitions This property records all the functions and other things defined in the file. The
value has one clement for cach package into which the file has been loaded: the
element’s car is the package itself and the cdr is a list of definitions made.

Fach dcfinition is a cons whose car is the symbol or function spec defined and
whose cdr is the type of definition (usually one of the symbols defun, defvar,
defflavor and defstruct).

'systems This property’s value is a list of the names of all the systems (defined with
defsystem, see page 520) of which this is a source file.

file-id-package-alist
This property records what version of the file was most recently loaded. In case
the file has been loaded into more than onc package, as is sometimes necessary,
the loaded version is remembered for each package scparately. This is how
make-system tefls whether a file needs to be reloaded. The value is a list with
an element for each package that the file has been loaded into; the eclements look
like
(package file-information)

package is the package object itself; file-information is the value returned by the
iinfo operation on a file stream, and is usually a cons whose car is the truename
(a pathname) and whose cdr is the file creation date (a universal time number).

Some additional propertics are put on the generic pathname by reading the attribute list of
the file (scc page 440). It is not completely clear that this is the right place to store these
propertics, so it may change in the future. Any property name can appear in the attributes list
and get onto the generic pathname; the standard ones are described in section 21.9.2, page 438.

SRCKL.MAN>PATHNM. TEXT.66 24-JAN-83

Lisp Machine Manual 469 Pathname Operations

22.6 Pathname Operations

This section documents the operations a user may send to a pathname object. Pathnames
handle some additional operations that are only intended to be sent by the file system itsclf, and
therefore are not documented here. Someone who wants to add a new host to the system would
need to understand those internal opcerations. This section also does not document operations that
are peculiar to pathnames of a particular host; those would be documented under that host.

:generic-pathname Operation on fs:pathname
Returns the generic pathname for the family of files of which this pathname is a member.
See section 22.5, page 467 for documentation on generic pathnames.

:source-pathname Operation on fs:pathname
Returns the pathname for the source file in the family of files to which this pathname
belongs. The returned pathname will have newest as its version. If the file has been
loaded in some fashion into the Lisp environment, then the pathname type is that which
the user actually used. Otherwise, the conventional file type for source files is determined
from the generic pathname.

:primary-device Operation on fs:pathname
Returns the default device name for the pathname’s host. This is used in generating the
initial default pathname for a host.

:wild-p Operation on fs:pathname
Returns t if this pathname contains any sort of wildcards.

Operations to get a path name string out of a pathname object:

:string-for-printing Operation on fs:pathname
Returns a string that is the printed representation of the path name. This is the same as
what you get if you princ the pathname or take string of it.

:string-for-wholine length Operation on fs:pathname
Returns a string like the :string-for-printing, but designed to fit in Jength characters.
length is a suggestion; the actual returned string may be shorter or longer than that.
However, the who-line updater will truncate the value to that length if it is longer.

:string-for-editor Operation on fs:pathname
Returns a string that is the pathname with its components rearranged so that the name is
first. The editor uses this form to name its buffers.

:string-for-dired Operation on fs:pathname
Returns a string to be used by the directory editor. The string contains only the name,
type, and version.

SRCKL.MAN>PATHNM.TEXT.66 24-JAN-83

Pathnamc Opcrations 470 Lisp Machine Manual

:string-for-directory Operation on fs:pathname
Returns a string that contains only the device and directory of the pathname. It identifies
one directory among all directorics on the host.

:string-for-host Operation on fs:pathname
Returns a string that is the pathname the way the host file system likes to see it.

Operations to move around through a hicrarchy of dircectories:

:pathname-as-directory Operation on fs:pathname
Assuming that the file described by the pathname is a directory, return another pathname
specifying that as a directory. 'Thus, if sent to a pathname OZ:XRMS>FOO.DIRECTORY,
it would return the pathname OZ:XRMS.FOO>. The name, type and version of the
returned pathname are :unspecific.

:directory-pathname-as-file Operation on fs;pathname
This is the inverse of the preceding operation. 1t returns a pathname specifying as a file
the directory of the original pathname. The name, type and version of the original
pathname are ignored.

The special symbol :root can be used as the directory component of a pathname on file
systems that have a root directory.

Opcrations to manipulate the property list of a pathname:

:get indicator Operation on fs:pathname
:getl list-ofindicators Operation on fs:pathname
:putprop value indicator Operation on fs:pathname
:remprop indicator Operation on fs:pathname
:plist Operation on fs:pathname

These manipulate the pathname’s property list, and are used if you call the property list
functions of the same names (sec page 82) giving the pathname as the first argument,
Please read the paragraph on page 454 explaining some care you must take in using
property lists of pathnames.

Here are the operations that access files. Many accept an argument error or error-p which specifies
whether to signal an error or to return a condition instance, if the file cannot be accessed. For
these arguments, nil and non-nil are the only significant values. :reprompt has no special
meaning as a value. That value when passed to one of the file accessing functions (open,
deletef, ctc.) has its special significance at a higher level.

:truename Operation on fs:pathname
Return a pathname object describing the exact name of the file specified by the pathname
the object is sent to.

This may be diffcrent from the original pathname. For example, the original pathname
may have :newest as the version, but the truename will have a number as the version.

SRC:KL.MAN>PATHNM.TEXT .66 24-JAN-83

[isp Machine Manual 471 Pathname Opcerations

:open pathname &rest options Operation on fs:pathname
This operation opens a sircam for the file named by the pathname. The argument
pathname is what the :pathname operation on the resulting strcam should return. When a
logical pathname is opened, pathname will be that logical pathname, but self will be its
translated pathname.

options is a list of altcrnating keywords and values, as would be passed to open. The old
style of open keywords arc not allowed; when they are used with open, open converts
them to the new style before sending the :open message.

:delete &optional (errorp t) Operation on fs:pathname
:undelete &optional (error-p 1) Operation on fs:pathname
Delete or undelete the file specified by the pathname.

All file systems support :delete but not all support :undelete.

If error-p is nil, problems such as nonexistent files cause a string describing the problem
to be returned. Otherwise, they signal an error.

:undeletable-p Operation on fs:pathname
Returns t if this pathname is for a file system which allows deletion to be undone. Such
pathnames will support the :undelete and :expunge operations.

:rename new-name &optional (errorp 1) Operation on fs:pathname
Rename the file specified by the pathname. new-name, a string or pathname, specifies the
name to rename to. If it is a string, it is parsed using self as the defaults.

If error-p is nil, problems such as nonexistent files cause a string describing the problem
to be returned. Otherwise, they signal an error.

:complete-string siring options Operation on fs:pathname
Attempt to complete the filename string, returning the results. This operation is used by
the function fs:complete-pathname (sec page 446). The pathname the message is sent to
is used for defaults. oprions is a list whose clements may include :deleted, :read (file is
for input), :write (it's for output), :old (only existing files allowed), or :new-ok (new files
arc allowed too).

There are two values: a string, which is the completion as far as possible, and a flag,
which can be :old, :new or nil. :old says that the returned string names an existing file,
:new says that the returned string is no file but some completion was done, nil says that
no completion was possible.

:change-properties error-p &rest properties Operation on fs:pathname

This operation changes the properties of the file specified by the pathname. properties
should be an alternating list of property names and values.

SRC:KI.MAN>PATHNM.TEXT.66 24-JAN-83

Host File Systems Supported 472 l.isp Machine Manual

:directory-list options Operation on fs:pathname
Performs the work of (fs:directory-list this-pathname options...).

:wildcard-map function plistp dir-list-options &rest Operation on fs:pathname
args
Map function over all the files specified by this pathname (which may contain wildcards).
Each time function is called, its first argument will be a pathname with no wildcards, or
clse a dircctory-list clement (whose car is a pathname and whose cdr contains property
names and values). The clements of args will be given to function as additional
arguments.

plistp says whether function’s first argument should be a directory-list clement or just a
pathname. t specifies a directory-list element. That provides more information, but it
makes it necessary to do extra work if the specified pathname does nof contain wildcards.

dir-list-options is passed to fs:directory-list. You can use this to get deleted files
mentioned in the list, for example.

The remaining file-access operations are defined only on certain file systems.

:expungs &kcy &optional (error t) ~ Operation on fs:pathname
Expunge the directory specified by the host, device and directory components of the
pathname.

The argument error says whether to signal an error if the directory does not exist. nil
means just return a string instead.

:create-directory &key &optional (error t) Operation on fs:pathname
Creates the directory specified in this pathname.

:remote-connect &optional &key (error t) access Operation on fs:pathname
This performs the work of fs:remote-connect with the same arguments on this
pathname’s host.

22.7 Host File Systems Supported

This section lists the host file systems supported, gives an example of the pathname syntax for
each system, and discusses any special idiosyncracics. More host types will no doubt be added in
the future.

SRC:KLMAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machinc Manual 473 Host File Systems Supported

22.7.1 ITS

An ITS pathname looks like "host: device: dir; name type-or-version”. 'The primary device
is DSK: but other devices such as ML:, ARC:, DVR:, or PTR: may be used.

~ITS does not exactly fit the virtual file system model, in that a file name has two components
(FN1 and FN2) rather than three (name, type, and version). Conscquently to map any virtual
pathname into an ITS filename, it is necessary to choose whether the FN2 will be the type or the
version. The rule is that usually the type goes in the FN2 and the version is ignored; however,
certain types (LISP and TEXT) are ignored and instcad the version goes in the FN2. Also if the
type is :unspecific the FN2 is the version.

Given an ITS filename, it is converted into a pathname by making the FN2 the version if it
is "<", ™", or a number. Otherwise the FN2 becomes the type. ITS pathnames allow the
special version symbols :oldest and :newest, which correspond to "<" and ">" respectively.

In every ITS pathname either the version or the type is :unspecific or nil; somectimes both
are. When you create a new ITS pathname, if you specify only the version or only the type, the
one not specified becomes :unspecific. If both are specified, the version is :unspecific unless the
type is a normally-ignored type (such as LISP) in which case the version is :newest and the type
is :unspecific so that numeric FN2’s are found.

Each component of an ITS pathname is mapped to upper case and truncated to six characters.

Special characters (space, colon, and semicolon) in a component of an ITS pathname can be
quotcd by prefixing them with right horsechoe {3) or equivalence cign (=), Right horsechoe is the

same character code in the Lisp Machine character set as control-Q in the ITS character set.

An ITS pathname can have a structured name, which is a list of two strings, the FN1 and
the FN2. In this case there is neither a type nor a version.

An ITS pathname with an FN2 but no FNI1 (ie. a type and/or version but no name) is
represented with the placecholder FN1 "e", because ITS pathname syntax provides no way to
write an FN2 without an FN1 before it.

The ITS init file naming convention is "homedir; user program".

fs:*its-uninteresting-types* Variable
The ITS file system does not have separate file types and version numbers; both
components are stored in the "FN2". This variable is a list of the file types that are "not
important™; files with these types use the FN2 for a version number. Files with other
types use the FN2 for the type and do not have a version number. The initial list is
("LISP" "TEXT" nil :unspecific)
Some users may need to add to this list.

SRCKLMAN>PATHNM.TEXT.66 24-JAN-83

Host File Systems Supported 474 Lisp Machine Manual

:fnl Operation on its-pathname

:fn2 Operation on its-pathname
These two operations return a string that is the FN1 or FN2 host-dependent component
of the pathname.

:type-and-version Operation on fs:pathname
:new-type-and-version new-fype new-version Operation on fs:pathname
These two operations provide a way of pretending that ITS pathnames can have both a
type and a version. It uses the first three characters of the FN2 to store a type and the
last three to store a version number,

On an ITS-pathname, :type-and-version rcturns the type and version thus extracted (not
the same as the type and version of the pathname). :new-type-and-version returns a
new pathname constructed from the specified new type and new version.

On any other type of pathname, these operations simply return or set both the type
component and the version component.

22.7.2 TOPS-20 (Twenex), Tenex, and VMS.

A pathname on TOPS-20 (better known as Twenex) looks like
"host:device {directory>name.type.version". The primary device is PS:.

TOPS-20 pathnames arc mapped to upper case. Special characters (including lower-case
letters) are quoted with the circle-X (®) character, which has the same character code in the Lisp
Machine character set as Control-V in the ASCII character set.

If you specify a period after the name, but nothing after that, then the type is :unspecific,
which translates into an empty extension on the TOPS-20 system. If you omit the period, you
have allowed the type to be defaulted.

TOPS-20 pathnames allow the special version symbols :oldest and :newest. In the string
form of a pathname, these are expressed as ".-2", and as an omitted version.

The directory component of a TOPS-20 pathname may be structured. The directory
<FOO.BAR> is represented as the list ("FOO" "BAR").

The characters * and % are wildcards that match any sequence of characters and any single
character (within one pathname componcnt), respectively. To specify a filename that actually
contains a * or % character, quote the character with ®. When a component is specified with just
a single *, the symbol :wild appears in the pathname object. When wildcards are embedded in
pathname components, the pathname object represents them by using the character # \break to
stand for * and #\quote to stand for %. If a * or % character appears in a component of a
pathname object, it stands for a quoted character, since the convention is that quote characters
arc not present in the components stored in the pathname object.

The TOPS-20 init file naming convention is "<user>program.INIT".

SRC:KL.MAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machinc Manual 475 Host File Systems Supported

When there is an attempt to display a TOPS-20 file name in the who-linc and there isn’t
enough room to show the entire name, the name is truncated and followed by a center-dot
character to indicate that there is more to the name than can be displayed.

Tenex pathnames arc almost the same as TOPS-20 pathnames, cxcept that the version is
preceeded by a semi-colon instcad of a period, the default device is DSK instead of PS, and the
quoting requirements are slightly different.

‘ VMS pathnames are basically like TOPS-20 pathnames, with a few complexitics. The primary
device is SYS$SYSDISK.

First of all. only alphanumeric characters are allowed in filenames (though $ and underscore
can appear in device names).

Sccondly, a version number is preceded by ;" rather than by ".".

Thirdly, file types (“extensions”) are limited to threc characters. Each of the system’s
canonical types has a special mapping for VMS pathnames, which is three characters long:

:1isp » LSP :text » TXT :qfas1 » QFS :midas ~» MID
:press » PRS :widths » WID :patch-directory - PDR
:qwabl - QWB :babyl - BAB :mail » MAI :xmail =+ XML
:init » INI :unfasi » UNF :output = OUT

22.7.3 Unix pathnames

A Unix pathname is a scquence of directory or file names separated by slashes. The last
name is the filename; preceding ones are directory names (but directories are files anyway). There
are no devices or versions. Alphabetic case is significant in Unix pathnames, no case conversion
is normally done, and lower case is the default. Therefore, components of solid upper or lower
case are inverted in case when going between interchange form and raw form. (What the user
types in a pathname string is the raw form.)

Unix allows you to specify a pathname relative to your default directory by using just a
filename, or starting with the first subdirectory name; you can specify it starting from the root
directory by starting with a slash. In addition, you can start with "." as a dircctory name one or
more times, to refer upward in the hierarchy from the default directory.

Unix pathnames on the Lisp Machine provide all these features too, but the canonicalization
to a simple descending list of directory names starting from the root is done on the Lisp Machine
itsclf when you merge the specified pathname with the defaults.

If a pathname string starts with a slash, the pathname object that results from parsing it is
called "absolute”. Otherwise the pathname object is called "relative”.

In an absolute pathname object, the directory component is either a symbol (nil, :unspecific
or xroot), a string, or a list of strings. A single string is used when there is only one level of
directory in the pathname.

SRC:KI.MAN>PATHNM.TEXT.66 24-JAN-83

Host File Systems Supported 476 Lisp Machine Manual

A rclative pathname has a directory that is a list of the symbol :relative followed by some
strings. When the pathname is merged with defaults, the strings in the list are appended to the
strings in the default directory. The result of merging is always an absolute pathname.

In a relative pathname’s string form, the string ".." can be used as a dircctory name. It is
translated to the symbol up when the string is parsed. That symbol is processed when the
rclative pathname is merged with the defaults.

Restrictions on the length of Unix pathnames require abbreviations for the standard Zctalisp
pathname types, just as for VMS. On Unix the preferred mappings of all canonical types are one
or two characters long. We give here the mappings in raw form: they arc actually specified in
interchange form.

:Hisp » 1 ttext » tx :qfasl » gf :midas » md
:press = pr :widths - wd :patch-directory -» pd
:qwabl » qw :babyl » bb :mail -» ma (xmail » xm
:init » din :unfasl » uf :output » ot

The Multics file system is much like the Unix one: there are absolute and relative pathnames,
absolute oncs start with a dircctory delimiter, and there are no devices or versions. Alphabetic
case is significant.

There arc differences in details. Diretory names are terminated, and absolute pathnames
begun, with the character ">". The containing directory is referred to by the character "¢,
which is complete in itself. It does not requirc a delimiter. Thus, <<FOOXBAR refers to
subdirectory FOO, file BAR in the superdirectory of the superdirectory of the default directory.

The limits on filename sizes are very large, so the system canonical types all use their
standard mappings. Since the mappings are specified as upper case, and then interpreted as being
in interchange form. the actual file names on Multics will contain lower case.

22.7.4 Lisp Machine File Systems

There are two file systems that run in the MIT Lisp Machine system. They have different
pathname syntax. Both can be accessed cither remotely like any other file server, or locally.

The Local-File system uses host name LM for the machine you are on. A Local-File system
on another machine can be accessed using the name of that machine as a host name, provided
that machine is known as a file server.

The remainder of the pathname for the Local-File system looks like “directory;
name.type # version". There is no restriction on the length of names; letters are converted to
upper case. Subdirectorics are allowed and are specificd by putting periods between the directory
components, as in RMS.SUBDIR;.

The TOPS-20 pathname syntax is also accepted. In addition, if the flag fs:*Imfs-use-
twenex -syntax* is non-nil, Local-File pathnames will print out using TOPS-20 syntax. Note that
since the printed representation of a pathname is cached, changing this flag’s value will not
change the printing of pathnames with existing representations.

SRCKLL.MAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machinc Manual 471 _ Host File Systems Supported

The Local-File system on the filecomputer at MIT has the host name FS.

The IMFILE system is primarily for use as a file server, unless you have 512k of memory.
At MIT it runs on the fileccomputer and is accessed remotely with host name FC.

The remainder of an LMFILE pathname looks like "directory; name type # version".
However, the directory and name can be composed of any number of subnames, scparated by
backslashes. This is how subdirectories arc specified. FOO;BAR\X refers to the same file as
FOO\BAR;X, but the two ways of specifying the file have different consequences in defaulting,
getting directory listings, etc.

Case is significant in I.MFILE pathnames; however, when you open a file, the LMFILE
system ignores the case when it matches your pathname against the existing files. As a result, the
casc you usc matters when ‘you create or rename a file, and appears in directory listings, but it is
ignored when you refer to an existing file, and you cannot have two files whose names differ only
in case. When components are accessed in interchange form, they are always converted to upper
case.

22.7.5 Logical Pathnames

There is another kind of pathname that doesn't correspond to any particular file server. It is
called a "logical” pathname, and its host is called a "logical” host. Every logical pathname can be
translated into a corresponding "physical” pathname; there is a mapping from logical hosts into
physical hosts used to cffect this translation.

The reason for having logical pathnames is to make it easy to keep bodies of software on
more than one file system. An important exampie is the body of software that constitutes the
Lisp Machine system. Every site has a copy of all of the sources of the programs that are loaded
into the initial Lisp environment. Some sitcs may store the sources on an ITS file system, while
others may store them on a TOPS-20. However, there is software that wants to deal with the
pathnames of these files in such a way that the software will work correctly no matter which site
it is run at. The way this is accomplished is that there is a logical host called SYS; all
pathnames for system software files are actually logical pathnames with host SYS. At each site,
SYS is defined as a logical host, but translation will work differently at one site than at another.
At a site where the sources are stored on a certain TOPS-20, for example, pathnames of the SYS
host will be translated into pathnames for that TOPS-20.

Here is how translation is done. For each logical host, there is a mapping that takes the
name of a directory on the logical host and produces a device and a directory for the
corresponding physical host. To translate a logical pathname, the system finds the mapping for
that pathname’s host and looks up that pathname’s directory in the mapping. If the directory is
found, a new pathname is creaied whose host is the physical host, and whose device and
directory come from the mapping. The other components of the new pathname are left the same.
There is also, for each logical host, a "dcfault device" (it is an instance variable of the host
object). The "default device” is used if a translation exists but specifies nil as the device. If there
is no translation for the specified directory, an error is signaled.

SRCKLMAN>PATHNM.TEXT.66 24-JAN-83

Host File Systems Supported 478 Lisp Machine Manual

This means that when you invent a new logical host for a certain set of files, you also make
up a sct of logical directory names, one for cach of the directorics that the set of files is stored
in. Now when you create the mappings at particular sites, you can choose any physical host for
the files to reside on. and for cach of vour logical directory names, you can specify the actual
directory name to usc on the physical host. This gives you flexibility in setting up your directory
names; if you used a logical directory name called FRED and you want to move your sct of files
to a new file server that already has a directory called FRED, being used by someone clse, you
can translatc FRED to some other name and so avoid getting in the way of the cxisting dircctory.
Furthermore, you can set up your dircctorics on cach host to conform to the local naming
conventions of that host.

fs:add-logical-pathname-host logical-host physical-host translations
This creates a new logical host named logical-host. ts corresponding "physical” host (that
is, the host to which it will forward most operations) is physical-host. logical-host and
physical-host should both be strings. franslations should be a list of translation
specifications. Each translation specification should be a list of two strings. The first is
the name of a dircctory on the logical host. The second is a pathname whose device
component and dircctory component are the translation of that directory. A translation for
logical directory nil specifies the default device for the logical host; if there is none, the
primary device of the physical host is used. Example:
(fs:add-logical-pathname-host "MUSIC" "MUSIC-10-A"
"(("MELODY" "SS:<MELODY>")
("DOC" "PS:<MUSIC-DOCUMENTATION>")))

This creates a new logical host calleld MUSIC. If you try to read the file
MUSIC:DOC;MANUAL TEXT 2, you will be re-directed to the file MUSIC-10-
A:PS:KMUSIC-DOCUMENTATION>MANUAL.TEXT.2 (assuming that the host MUSIC-10-
A is a TOPS-20 system).

:translated-pathname Operation on fs:logical -pathname
This converts a logical pathname to a physical pathname. It returns the translated
pathname of this instance, a pathname whose :host component is the physical host that
corresponds to this instance’s logical host.

If this opcration is applied to a physical pathname, it simply returns itself.

:back-translated-pathname pathname Operation on fs:logical-pathname
This converts a physical pathname to a logical pathname. pathname should be a pathname
whose host is the physical host corresponding to this instance’s logical host. This returns a
pathname whose host is the logical host and whose translation is pathname.

Here is an example of how this would be used in connection with trucnames. Given a
stream that was obtained by opening a logical pathname,

(funcall stream ’:pathname)
returns the logical pathname that was opened.

(funcall stream ’:truename)
returns the true name of the file that is open, which of course is a pathname on the
physical host. To get this in the form of a logical pathname, one would do

SRC:KILMAN>PATHNM.TEXT.66 24-JAN-83

Iisp Machine Manual 479 Host File Systems Supported

(funcall (funcall stream ':pathname)
*:back-transiated-pathname
(funcall stream ’:truename))

If this operation is applied to a physical pathname, it simply returns its argument. Thus
the above example will work no matter what kind of pathname was opened to create the
stream.

fs:unknown-logical-directory (fs:pathname-error error) Condition

This is signaled when a logical pathnamc’s directory has no translation. The condition
instance supports the :logical-directory operation, which returns the dircctory that was
specified.

Two proceed types are supported, :new-directory and :new-translation. Each expects a
single argument, a pathname or a string to be parsed into one. In cither case the device
and directory of the pathname are used for translation. :new-directory specifics the
translation for this time only. :new-translation records a translation permanently for the
logical dircctory that was used.

A logical pathname looks like "host: directory; name Iype version". There is no way to
specify a device; parsing a logical pathname always returns a pathname whose device component
is :unspecific. This is because devices don’t have any mcaning in logical pathnames.

The cquivalence-sign character (=) can be used for quoting special characters such as spaces
and semicolons. The double-arrow character (¢) can be used as a place-holder for components
that are nil, and the up-horseshoe (U) indicates :unspecific (generic patimatues lypicaily have
-unspecific as the type and the version). All letters arc mapped to upper case unless quoted.
The :newest, :oldest, and :wild values for versions are specified with the strings T T, and
"*" respectively.

There isn’t any init file naming convention for logical hosts; you can’t log into them. The
string-for-host, :string-for-wholine, :string-for-dired, and :string -for-editor messages are all
passed on to the translated pathname, but the :string-for-printing is handled by the fs:logical-
pathname flavor itself and shows the logical name.

22.7.6 Editor Buffer Pathnames

The hosts ED, ED-BUFFER and ED-FILE are used in pathnames which refer to buffers in
the editor. If you open such a pathname, you get a stream that reads or writes the contents of
an editor buffer. The three host names differ only in the syntax of the pathname, and in how it
is interpreted.

The host ED is followed by an abbreviation that should complete to the name of an existing
editor buffer. For example, the pathname ED:FOO could refer to the buffer FOO.LISP PS:KME>
oz..

The host ED-BUFFER is followed by an exact buffer name. If there is no buffer with that
name, one is created. This is most useful for creating a buffer.

SRC:KLMAN>PATHNM.TEXT.66 24-JAN-83

Hosts 480 I.isp Machine Manual

The host ED-FILE is followed by an arbitrary pathname, including a host name. An ED-
FILE pathname refers to a buffer visiting that file. If nccessary, the file is read into the cditor.
For example, ED-FILE: OZ: PS:KME>FOO.LISP would refer to the same buffer as ED: FOO.
The current default defaults are used in processing the pathname that follows ED-FILE, when the
pathname is parsed.

22.8 Hosts

Each host known to the Lisp Machine is represented by a flavor instance known as a host
object. The host object records such things as the name(s) of the host, its operating system type,
and its network address(es).

Not all hosts support file access. Those that do support it appear on the list fs:*pathname-
host-list* and can be the host component of pathnames. A host object is also used as an
argument when you make a chaosnet connection for any purpose.

The hosts that you can use for making nctwork connections appear in the value of si:host-
alist. Most of the hosts you can use for pathnames are among these; but some, such as logical
hosts, are not.

22.8.1 Parsing Hostnames

si:parse-host namesiring &optional no-error-p unknown-ok
Returns a host object that recognizes the specified name. If the name is not recognized,
it is an crror, unless no-error-p is non-nil; in that case, nil is returned.

If unknown-ok is non-nil, an unrecognized string is used to construct a new host object.
However, that host object will not have a known operating system type or network
addresses.

The first argument is allowed to be a host object instead of a string. In this case, that
argument is simply returned.

sys:unknown-host-name (sys:local-network-error Condition
sys:network-error error)

This condition is signaled by si:parse-host when the host is not recognized, if that is an
€ITOT.

The :name operation on the condition instance returns the string given to siparse-host.
si:get-host-from-address address network
Returns a host object given an address and the name of the network which that address is

for. Usually the symbol :chaos is used as the network name.

nil is returned if there is no known host with that address.

SRC:KL.MAN>PATHNM.TEXT.66 24-JAN-83

Lisp Machine Manual 481 Hosts

fs:get-pathname-host name &optional no-error-p
Returns a host object that can be used in pathnames. If the name is not recognized, it is
an error, unless #o-error-p is non-nil; in that case, nil is returned.

The first argument is allowed to be a host object instcad of a string. In this case, that
argument is simply returned.

fs:unknown-pathname-host (fs:pathname-error error) Condition
This condition is signaled by fs:get-pathname-host when the host is not recognized, if
that is an crror.

The :name operation on the condition instance returns the string given to fs:get-
pathname-host.

si:parse-host and fs:get-pathname-host differ in the sét of hosts searched.

fs:*pathname-host-1ist* Variable
This is a list of all the host objects that support file access.

si:host-alist Variable
This variable is a list of onc clement for each known network host. The element looks
like this:
(full-name host-object (nickname nickname2 . .. full-name)
systenr-1ype machine-type site
network list-of-addresses network?2 list-of-addresses2 . ..)
The fall mamic is the host’s official name. The mame operation on the host object returne
this.

The host-object is a flavor instance that represents this host. It may be nil if none has
been created yet; si:parse-host creates them when they are referred to.

The nicknames are alternate names that si:parse-host will recognize for this host, but
which are not its official name.

The system-type is a symbol that tells what software the host runs. This is used to decide
what flavor of host object to construct. Symbols now used include :lispm, :its, :tops-20,
tenex, :vms, :unix, :multics. :minits, :waits, :chaos-gateway, :dos, :rsx, .magicsix,
and others. Not all of these are specifically understood in any way by the Lisp machine.
If none of these applies to a host you wish to add, use a new symbol.

The machine-type is a symbol that describes the hardware of the host. Symbols in use
include :lispm, :pdp10, :pdp11, :vax, :pe3230. (nil) has also been observed to appear
here. Note that these machine types attempt to have wide meanings, lumping together as
various brands, models, etc.

The site does not describe anything about the host. Instead it serves to say what the Lisp
Machine’s site name was when the host was defined. This is so that, when a Lisp
Machine system is moved to a different institution that has a disjoint set of hosts, all the
old site’s hosts can be deleted from the host alist by site reinitialization.

SRCKL.MAN>PATHNM.TEXT.66 24-JAN-83

Hosts 432 Lisp Machinc Manual

The networks and lists of addresses describe how to reach the host. Usually there will be
only onc network and only one address in the list. The generality is so that hosts with
multiple addresses on multiple networks can be recorded. Networks include :chaos and
:arpa. The address is meaningful only to code for a specific network.

22.8.2 Host Object Operations

:name Operation on host objects
Returns the full, official name of the host.

:name-as-file-computer Operation on host objects
Returns the name to print in pathnames on this host (assuming it supports files). This is
likely to be a short nickname of the host.

:short-name Operation on host objects
Returns the shortest known nickname for this host.

:pathname-host-namep siring Operation on host objects
Returns t if string is recognized as a name for this host for purposes of pathname parsing.

:system-type Operation on host objects
Returns the operating system type symbol for this host. See page 657.

:network-type Operation on host objects
Returns the symbol for one network that this host is connected to. or nil if it is not
connected to any. :chaos is preferred if it is one of the possible values.

tnetwork-typep network Operation on host objects
Returns t if the host is connected to the specified network.

:sample-pathname Operation on host objects
Returns a pathname for this host, whose device, directory, name, type and version
components are all nil. Sample pathnames are often uscful because many file-system-
dependent pathname operations depend only on the pathname’s host.

:open-streams Operation on host objects
Returns a list of all the open file streams for files on this host.

:close-all-files Operation on host objects
Closes all file streams open for files on this host.

:generic-base-type (ype-component Operation on host objects

Returns the type component for a generic pathname assuming it is being made from a
pathname whose type component is the one specified.

SRC:KI.MAN>PATHNM.TEXT.66 24-JAN-83

L.isp Machine Manual 483 Maclisp Conversion

22.9 Maclisp Conversion

This section bricfly discusses how to convert from Maclisp 170 and filename functions to the
corresponding but ofien more general Lisp Machine ones.

The functions load, open, probef, renamef, and deletef arc upward compatible. Most of
them take optional additional arguments to do additional things, usualiy connccted with crror
handling. Where Maclisp wants to sce a file name in the form of a symbol or a list, the Lisp
Machine will accept those or a string or a pathname object. probef rcturns a pathname or nil
- rather than a namelist or nil.

load keeps defaults, which it updates from the file name it is given.

The old-1/0 functions uread, crunit, etc. do not exist in the Lisp Machine. fasload exists
but is a function rather than a special form.

There is a special form, with-open-file, which should replace most calls to open. Sce page
431.

The functions for manipulating file names themselves are different. The system will accept a
namclist as a pathname, but will never create a namelist. mergef is replaced by fs:merge-
pathname-defauits. defaultf is replaced by fs:default-pathname or fs:set-default-pathname,
depending on whether it is given an argument. namestring is replaced by the :string-for-
printing message to a pathname, or the string function. namelist is approximately replaced by
fs:parse-pathname. (status udir) and (status homedir) are approximately replaced by fs:user-
homedir. ithic uename funciion is icplaced by the itrugname stream oneration - which returns a
pathname containing the actual name of the file open on that stream. The directory and allfiles
functions are replaced by fs:directory-list.

SRC:KI.MAN>PATHNM.TEXT.66 24-JAN-83

	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483

