Packages 506 1isp Machine Manual

24. Packages

A Lisp program is a collection of function dcfinitions. The functions are known by their
names, and so cach must have its own name to identify it. Clearly a programmer must not use
the same name for two different functions.

The Lisp Machine consists of a huge Lisp environment, in which many programs must
coexist. Al of the "operating system”. the compiler, the cditor, and a wide variety of programs
arc provided in the initial environment. Furthermore, cvery program that the user uses during his
session must be loaded into the same environment. Each of these programs is composed of a
group of functions; apparently cach function must have its own distinct name to avoid conflicts.
For example. if the compiler had a function named pull, and the user loaded a program which
had its own function named pull, the compiler’s pull would be redefined, probably breaking the
compiler. :

It would not really be possible to prevent these conflicts, since the programs are written by
many different people who could never get together to hash out who gets the privilege of using a
specific name such as pull.

Now. if we arc to cnable two programs to coexist in the lisp world, cach with its own
function pull, then cach program must have its own symbol named "pull”, because there can’t be
two function definitions on the same symbol. This means that scparatc "name spaces"—mappings
between names and symbols—must be provided for the two programs. The package system is
designed to do just that.

Under the package system, the author of a program or a group of closely related programs
identifics them together as a "package”. The package system associates a distinct name space with
cach package.

Here is an cxample: suppose there are two programs named chaos and arpa, for handling
the Chaosnet and Arpanet respectively. The author of cach program wants to have a function
called get-packet, which reads in a packet from the network (or something). Also, each wants
to have a function called allocate-pbuf, which allocates the packet buffer. Each "get" routine
first allocates a packet buffer, and then reads bits into the buffer; therefore, each version of get-
packet should call the respective version of allocate-pbuf.

Without the package sysiem, the two programs could not coexist in the same Lisp
environment. But the package feature can be used to provide a scparate name space for each
program. What is required is to declare a package named chaos to contain the Chaosnet
program, and another package arpa to hold the Arpanet program. When the Chaosnet program
is read into the machine, its symbols would be cntered in the chaos package’s name space. So
when the Chaosnet program’s get-packet referred to allocate-pbuf, the allocate-pbuf in the
chaos name spacc would be found, which would be the allocate-pbuf of the Chaosnet
program—the right one. Similarly, the Arpanct program’s get-packet would be read in using the
arpa package's name space and would refer to the Arpanct program’s allocate -pbuf.

SRCKL.MAN>PACKD.TEXT.86 24-JAN-83

Lisp Machine Manual 507 ‘The Organization of Name Spaces

To understand what is going on here, you should keep in mind how Lisp reading and loading
works. When a file is gotten into the Lisp Machine, cither by being read or by being fasloaded,
the file itself obviously cannot contain Lisp objects: it contains printed representations of those
objects. When the reader encounters a printed representation of a symbol, it calls intern to look
up that string in some name space and find a corresponding symbol. The package system
arranges that the correct name space is used whenever a file is loaded.

24.1 The Organization of Name Spaces

We could simply let every name space be implemented as onc obarray, c.g. onc big table of
symbols. ‘The problem with this is that just about cvery name space wants to include the whole
Lisp language: car, cdr, and so on should be available to cvery program. We would like to
share the main Lisp system between several name spaces without making many copies.

Instcad of making each name space be one big array, we arrange packages in a tree. Fach
package has a “superpackage” or "parent”, from which it "inherits” symbols. Also, cach package
has a table, or "obarray”. of its own additional symbols. The symbols belonging to a package are
simply those in the package's own obarray, followed by those belonging to the superpackage. The
root of the tree of packages is the package called global, which has no superpackage. global
contains car and cdr and all the rest of the standard Lisp system. In our example, we might
have two other packages called chaos and arpa, each of which would have global as its parent.
Here is a picture of the resulting tree structure:

global

In order to make the sharing of the global package work, the intern function is made more
complicated than in basic Lisp. In addition to the string or symbol to intern, it must be told
which package to do it in. First it searches for a symbol with the specified name in the obarray
of the specified package. If nothing is found there, intern looks at its superpackage, and then at
the superpackage’s superpackage, and so on, until the name is found or a root package such as
global is reached. When intern rcaches the root package, and doesn’t find the symbol there
either, it decides that there is no symbol known with that name, and adds a symbol to the
originally specified package.

Since you don’t normally want to worry about specifying packages, intern normally uses the
"current” package, which is the value of the symbol package. This symbol serves the purpose of
the symbol obarray in Maclisp.

I ‘e h that Lo tho ah 1
Here’s how that works in the above cxample. When the Chaosnet program is read into the

Lisp world, the current package would be the chaos package. Thus all of the symbols in the
Chaosnet program would be interned on the chaos package. If there is a reference to some well
known global symbol such as append, intern would look for “"append” on thc chaos package,
not find it, look for "append” on global, and find the regular lLisp append symbol, and return
that. If, however, there is a reference to a symbol that the user made up himself (say it is called
get-packet), the first time he uscs it, intern won’t find it on either chaos or global. So intern

SRCKL.MAN>PACKD.TEXT.86 24-JAN-83

Shared Programs 508 lisp Machine Manual

will make a new symbol named get-packet, and install it on the chaos package. When get-
packet is referred to later in the Chaosnet program, intern will find get-packet on the chaos
package.

When the Arpanct program is read in, the current package is arpa instcad of chaos. When
the Arpanct program refers to append, it gets the global one; that is, it shares the same one
that the Chaosnet program got. However. if it refers to get-packet. it will nor get the same one
the Chaosnet program got. because the chaos package is not being searched. Rather, the arpa
and global packages are getting scarched. So intern will create a new get-packet and install it
on the arpa package.

So what has happened is that there are two get-packets: one for chaos and one for arpa.
The two programs are loaded together without name conflicts.

24.2 Shared Programs

Now, a very important fecature of the Lisp Machine is that of "shared programs”; if one
person writes a function to, say, print numbers in Roman numecrals, any other function can call
it to print Roman numecrals. This contrasts sharply with PDP-10 system programs, in which
Roman numerals have been independently reimplemented several times (and the ITS filename
parser several dozen times).

For example, the routines to manipulate a robot arm might be a separate program, residing
in a package named arm. If we have a second program called blocks (the blocks world, of
course) which wanted to manipulate the arm, it would want to call functions which are defined
on the arm obarray, and therefore not in blocks’s own name space. Without special provision,
therec would be no way for any symbols not in the blocks name space to be part of any blocks
functions.

The colon character (":") has a special meaning to the Lisp reader. When the reader sees a
colon preceded by the name of a package, it will read in the next Lisp object with package
bound to that package. The way blocks would call a function named go-up decfined in arm
would be by asking to call arm:go-up, because go-up would be interned on the arm package.
What arm:go-up means precisely is "the symbol named go-up in the name space of the package

arm.

Similarly, if the chaos program wanted to refer to the arpa program’s allocate-pbuf
function (for some reason), it would simply call arpa:allocate-pbuf.

An important question that should occur at this point is how the names of packages are
associated with their obarrays and other data. This is donc by means of the "refname-alist” that
each package has. This alist associates strings called reference names or refnames with the packages
they name. Normally, a package’s refname-alist contains an entry for cach subpackage, associating
the subpackage with its name. In addition, cvery package has its own name dcfined as a refname,
referring to itself. However, the user can add any other refnames, associating them with any
packages he likes. This is useful when multiple versions of a program are loaded into different
packages. Of course, each package inherits its superpackage’s refnames just as it does symbols.

SRCKIL.MANXPACKD.TEXT.86 24-JAN-83

Lisp Machine Manual 509 Declaring Packages

In our example, since arm is a subpackage of global, the name arm is on global's refname-
alist, associated with the arm package. Since biocks is also a subpackage of global, when
arm:go-up is seen the string "arm” is found on global's refname alist.

rofor tn a hich vyan worn

When you want {o refer o a Symbal in a f)ZiCA\ab\. which you and your gupudel\Zig\S have no

¥V iVl

refnames for—say, a subpackage named foo of a package named bar that is under global—you
can use multiple colons. For example. the symbol finish in that package foo could be referred to
as foo:bar:finish. What happens here is that the second name, bar, is interpreted as a refname
in the context of the package foo. Alternatively, you can give the foo:bar package a refname
dircctly under global, cven though global is not its superior as a package. This is usually done
by using myrefname in the package declaration (page 517).

24.3 Declaring Packages

Before any package can be referred to or loaded, it must be declared. This is done with the
special form package-declare, which tells the package system all sorts of things, including the
name of the package, the place in the package hierarchy for the new package to go, its estimated
size, and some of the symbols which belong in it

Hcere is a sample declaration:
{package-declare foo global 1000
()

(shadow array-push adjust-array-size))

Wiial Uil deciaraiion sdays is (hal a package named foo shouid be created as an inferior of
global, the package which contains advertised global symbols. Its obarray should initially be large
enough to hold 1000 symbols, though it will grow automatically if that isn’t enough. Unless there
is a specific reason to do otherwise, you should make all of your packages direct inferiors of
global. The size you give is increased slightly to be a good value for the hashing algorithm used.

After the size comes the "file-alist”, which is given as () in the example. This is an obsolete
feature, which is not normally used. The "system"-defining facilitics should be used instead. Sce
chapter 25, page 520.

Finally, the foo package "shadows" array-push and adjust-array-size. What shadowing
means is that the foo package should have its own versions of those symbols, rather than
inheriting its superpackage’s versions. Symbols by these names will be added to the foo package
even though there are symbols on global already with those names. This allows the foo package
to redefine those functions for itself without redefining them in the global package for everyone
else.

3 +n L
¢ found in the system packages.

-3
-\
=
3
[0)7]
n

=3
£

o

ey

o
ngs arations of various interna

They are arcane and nccded only to compensate for the fact that parts of those packages are
actually loaded before the package system is. They should not be needed by any user package.

ay

Your package declarations should go into scparate files containing only package declarations.
Group them however you like, one to a file or all in one file. Such files can be read with load.
It doesn’t matter what package you load them into, so usc user, since that has to be safe.

SRCKLMAN>PACKD.TEXT.86 24-JAN-83

Packages and Writing Code 510 I.isp Machine Manual

If the declaration for a package is read in twice, no harm is done. If you edit the size to
replace it with a larger one, the package will be expanded. At the moment, however, there is no
way to change the list of shadowings; such changes will be ignored. Also, you can't change the
supcrpackage. If you cdit the superpackage name and read the declaration in again, you will
create a new, distinct package without changing the old one.

package-declare Macro
The package-declare macro is used to declare a package to the package system. lts
form is:

(package-declare name superpackage size
Sfile-alist option-1 option-2 . ..)
The interpretation of the declaration is complicated; sce scction 24.3, page 509.

describe-package package-name
(describe-package package-name) is cquivalent to (describe (pkg-find-package
package-name)); that is, it describes the package whose name is package-name.

24.4 Packages and Writing Code

The unsophisticated user need never be aware of the cxistence of packages when writing his
programs. Hec should just load all of his programs into the package user, which is also what
console type-in is interned in. Since all the functions that users are likcly to need are provided in
the global package, which is user’s supcrpackage, they are all available. In this manual,
functions that are not on the global package arc documented with colons in their names, so
typing the name the way it is documented will work.

However, if you are writing a generally useful tool, you should put it in some package other
than user, so that its internal functions will not conflict with names other users use. If you are
loading your programs into packages other than user, there are special constructs that you will
need to know about.

One time that you as the programmer must be aware of the existence of packages is when
you want to use a function or variable in another package. To do this, write the name of the
package, a colon, and then the name of the symbol, as in eine:ed-get-defaulted-file-name.
You will notice that symbols in other packages print out that way, too. Sometimes you may need
to refer to a symbol in a package whose superior is not global. When this happens, use multiple
colons, as in foo:bar:ugh, to refer to. the symbol ugh in the package named bar which is under
the package named foo.

Another time that packages intrude is when you use a "keyword”, for instance, when you
check for egness against a constant symbol, or pass a constant symbol to somcone else who will
check for it using eq. This includes using the symbol as cither argument to get. In such cases,
the usual convention is that the symbol should reside in the user package, rather than in the
package with which its meaning is associated. To make it easy to specify user, a colon before a
symbol, as in :select, is equivalent to specifying user by name, as in useriselect. Since the
user package has no subpackages, putting symbols into it will not cause name conflicts.

SRCKLMAN>PACKD.TEXT.86 24-JAN-83

L.isp Machine Manual 511 Shadowing

Why is this convention used? Well, consider the function make-array, which takes one

required argument followed by any number of keyword arguments. For example,

(make-array 100 ’leader-length 10 ’type art-string)
specifies, after the first required argument. two options with names leader-length and type and
values 10 and art-string. The file containing this function’s definition is in the system-internals
package, but the function is available to cveryone without the use of a colon prefix because the
symbol make-array is itself inherited from global. But all the keyword names, such as type, are
short and should not have to cxist in global. However, it would be a shame if all callers of
make-array had to spccify system-internals: before the name of cach keyword. After all, those
callers can include programs loaded into user, which should by rights not have to know about
packages at all. Putting those keywords in the user package solves this problem. The correct way
to type the above form would be

(make-array 100 ’:leader-length 10 ’:type art-string)

Exactly when should a symbol go in user? Most symbols known spccially by system functions
are in user. Symbols used as keywords for arguments by any function should usually be in user,
to keep things consistent. However, when a program uses a spccific property name to associate its
own internal memoranda with symbols passed in from outside, the property name should belong
to the program’s package, so that two programs using the samec property name in that way don’t
conflict.

24.5 Shadowing

Suppose the user doesn’t like the system nth function; he might be a former Interlisp user
and expect a compictely dificrent meaning from it. Were he to say (defun nth ---) In his
program (call it snail) he would clobber the global symbol named "nth" and affect the "nth” in
gveryone else’s name space. (Actually, since he would be redefining this function in a different
file from the original definition, he would get a warning and a query.)

In order to allow the snail package to have its own (defun nth ---) without interfering with
the rest of the Lisp environment, it must "shadow” out the global symbol "nth" by putting a new
symbol named "nth"” on its own obarray. Normally, this is done by writing (shadow nth) in the
declaration of the snail package. Since intern looks on the subpackage’s obarray before global, it
will find the programmer’s own nth and never the global one. Since the global one is now
impossible to see, we say it has been "shadowed.”

Having shadowed nth, we may sometimes nced to refer to the global definition. This can be
done by writing global:nth. This works because the refname global is defined in the global
package as a name for the global package. Since global is the superpackage of the snail package,
all refnames defined by global, including "global", arc available in snail.

SRC:KLMAN>PACKD.TEXT.86 24-JAN-83

Packages and Interning 512 Lisp Machine Manual

24.6 Packages and Interning

The function intern allows you to specify a package as the sccond argument. It can be
specified by giving cither the package object itsclf or a string or symbol that is the name of the
package. intern returns three values. 'The first is the interned symbol. The second is t if the
symbol is old (was alrcady present, not just added to the obarray). The third is the package in
which the symbol was actually found. This can be cither the specified package or one of its
supcriors.

When you don't specify the second argument to intern, the current package, which is the
valuc of the symbol package, is used. This happens, in particular, when you call read. To
specify the package for such functions to use, bind the symbol package temporarily to the
desired package with let. The function pkg-find-package may be used to obtain the package
with a given name. While most functions that use packages will do this themselves, it is better to
do it only oncc when package is bound. The function pkg-goto scts package t a package
specified by a string. This is unclean if done in a program, but is useful for "putting the
keyboard inside" a package when you are debugging.

package Variable
The valuc of package is the current package. Many functions such as read always
operate on this package, and other functions such as intern which accept a package as an
optional argument default to this one.

pkg-goto &optional pkg
pkg may be a package or the name of a package. pkg is made the current package. It
defaults to the user package.

pkg-bind pkg body... Macro
pkg may be a package or a package name. The forms of the body are evaluated
sequentially with the variable package bound to the package named by pkg.
Example:
(pkg-bind "zwei"
(read-from-string function-name))

There are actually four forms of the intern function: regular intern, intern-soft, intern-
local, and intern-local-soft. -soft mcans that the symbol should not be added to the package if
there isn’t already onc; in that case, all three values are nil. -local means that the superpackages
should not be scarched. Thus, intern-local can be used to cause shadowing. intern-local-soft
is right when you want complete control over what packages to scarch and when to add symbols.
All four forms of intern return the same three values, except that the soft forms return nil nil nil
when the symbol isn’t found.

intern sring &optional (pkg package)
intern scarches pkg and its supcrpackages scquentially, looking for a symbol whose print-
name is equal to sring. If it finds such a symbol, it rcturns threc values: the symbol, t,
and the package on which the symbol is interned. If it does not find one, it creates a
new symbol with a print name of string, interns it into the package pkg, and returns the
new symbol, nil, and pkg.

SRC:KL.MAN>PACKD.TEXT.86 24-JAN-83

Lisp Machine Manual 513 Packages and Interning

If string is not a string but a symbol, intern scarches for a symbol with the same print-
name. If it doesn’t find one, it interns string—rather than a newly-created symbol—in
pkg (cven if it is also interned in some other package) and returns it.

Note: intern is scnsitive to case; that is, it will consider two character strings different
even if the only difference is one of upper-case versus lower-case (unlike most string
comparisons elsewhere in the Lisp Machine system). ‘The reason that symbols get
converted to upper-case when you type them in is that the reader converts the case of
characters in symbols; the characters are converted to upper-case before intern is cver
called. So if you call intern with a lower-case "foo" and then with an upper-case
"FOO", you won't get the same symbol.

intern-local swing &optional (pkgpackage)
intern searches pkg (but not its superpackages), looking for a symbol whose print-name is
cqual o srring. 1f it finds such a symbol, it returns three values: the symbol, t, and
pkg If it docs not find one, it creates a new symbol with a print name of string, and
returns the new symbol, nil, and pkg.

If siring is not a string but a symbol, and no symbol with that print-name is alrcady
interned in pkg, intern-local interns string—rather than a newly-created symbol—in pkg
(even if it is also interned in some other package) and returns it.

intern-soft siring &optional (pkg package)
intern searches pkg and its superpackages sequentially, looking for a symbol whose print-
name is equal to string. 1If it finds such a symbol, it returns three values: the symbol, t,
and the package on which the symbol s intcrncd. I it docs not find one, it returns i,

nil, and nil.

intern-local-soft swring &optional (pkgpackage)
intern searches pkg (but not its superpackages), looking for a symbol whose print-name is
equal to siring. If it finds such a symbol, it returns three values: the symbol, t, and
pkg If it docs not find one, it returns nil, nil, and nil.

Each symbol remembers which package it belongs to. While you can intern a symbol in any
number of packages, the symbol will only remember one: normally, the first one it was interned
in, unless you clobber it. This package is available as (symbcl-package symbol). If the value is
nil, the symbol believes that it is uninterned.

The printer also implicitly uses the value of package when printing symbols. If slashification
is on, the printer trics to print something such that if it were given back to the reader, the same
object would be produced. If a symbol that is not in the current name space were just printed as
its print namc and rcad back in, the reader would intern it on the wrong package, and return the
wrong symbol. So the printer figures out the right colon prefix so that if the symbol’s printed
representation were rcad back in to the same package, it would be interned correctly. The prefix
is only printed if slashification is on, i.e. prin1 prints it and princ does not.

SRCKIL.MAN>PACKD.TEXT.86 24-JAN-83

Packages and Interning 514 Lisp Machine Manual

remob symbol &optional package
remob removes symbol from package (the name means "REMove from OBarray"). symbol
itself is unaffected, but intern will no longer find it on package. remob is always "local”,
in that it removes only from the specified package and not from any superpackages. It
returns t if the symbol was found to be removed. package defaults to the contents of the
symbol’s package cell, the package it is actually in. (Sometimes a symbol can be in other
packages also, but this is unusual.)

symbol-package symbol
Returns the contents of symbol’s package cell, which is the package which owns symbol,
or nil if symbol is uninterned.

package-cell-location symbol
Returns a locative pointer to symbol’s package cell. It is preferable to write
(locf (symbol-package symbol))
rather than calling this function cxplicitly.

mapatoms function &optional (package package) (superiors-pt)
function should be a function of onc argument. mapatoms applies function to all of the
symbols in package. If superiors-p is t, then the function is also applied to all symbols in
package’s superpackages. Note that the function will be applied to shadowed symbols in
the supcrpackages, even though they are not in package’s name space. If that is a
problem. function can try applying intern in package on cach symbol it gets, and ignore
it if it is not eq to the result of intern; this measurc is rarely needed.

mapatoms-all function &optional (package “global”)

function should be a function of one argument. mapatoms-all applics fiunction to all of
the symbols in package and all of package’s subpackages. Since package defaults to the
global package, this normally gets at all of the symbols in all packages. It is used by
such functions as apropos and who-calls (see page 640)

Example:

(mapatoms-all
(function
(1ambda (x)
(and (alphalessp 'z x)
(print x)))))

pkg-create-package name &optional (super package) (size200)
pkg-create-package creatcs and returns a new package. Usually packages are created by
package-declare, but sometimes it is useful to creatc a package just to use as a hash
table for symbols, or for some other reason.

If name is a list, its first element is taken as the package name and the second as the
program name; otherwise, name is taken as both. In cither case, thc package name and
program name are coerced to strings. super is the superpackage for this package; it may
be nil, which is useful if you want the package only as a hash table, and don’t want it to
interact with the rest of the package system. size is the size of the package; as in
package-declare it is rounded up to a "good" size for the hashing algorithm used.

SRC:KLMAN>PACKD.TEXT.86 24-JAN-83

1isp Machine Manual 515 Status Information

pkg-kill pkg
pkg may be cither a package or the name of a package. The package should have a
superpackage and no subpackages. pkg-kill takes the package off its superior’s subpackage
list and refname alist.

pkg-find-package x &optional (create-pnil) (under "global”)
pkg-find-package trics to interpret x as a package. Most of the functions whose
descriptions say ".. may be cither a package or the name of a package” call pkg-find-
package to interpret their package argument.

If x is a package. pkg-find-package returns it. Otherwise it should be a symbol or
string, which is taken to be the name of a package. The name is looked up on the
refname alists of package and its superpackages, the same as if it had been typed as part
of a colon prefix. If this finds the package, it is returned. Otherwise, create-p controls
what happens. If create-p is nil, an crror is signalled. If create-p is :find. nil is returned.
If create-p is :ask the user is asked whether to create it. Otherwise, a new package is
created, and installed as an inferior of under.

A package is implemented as a structure, created by defstruct. The following accessor
defsubsts are available on the global package:

pkg-name The name of the package, as a string.
pkg-refname-alist The refname alist of the package, associating strings with packages.

pkg-super-package The superpackage of the package.

24.7 Status Information

The current package—where your type-in is being interned—is always the value of the symbol
package. A package is a named structure that prints out nicely, so cxamining the value of
package is the best way to find out what the current package is. (It is also displayed in the
who-line.) Normally, it should be user, except when inside compilation or loading of a file
belonging to some other package.

To get more information on the current package or any other, use the function describe-
package. Specify either a package object or a string that is a refname for the desired package as
the argument. This will print out everything except a list of all the symbols in the package. If
you want that, use (mapatoms ’print package nil). describe of a package will call describe-
package.

SRCKI.MAN>PACKD.TEXT.86 24-JAN-83

Packages. [oading. and Compilation 516 [1sp Machine Manual

24.8 Packages, Loading, and Compilation

IU's obvious that cvery file has to be loaded into the right package to serve its purpose. It
may not be so obvious that every file must be compiled in the right package, but it's just as true.
luckily, this usually happens automatically.

The system can get the package of a source file from its "file attribute list” (sce section 21.9.2.
page 438). For instance, you can put at the front of your file a linc such as
; —*- Mode:Lisp; Package:System-Internals -=x-
The compiler puts the package name into the QFASL file for usc when it is loaded. If a file
doesn’t have such a package specification in it, the system loads it into the current package and
tells you what it did.

24.9 Subpackages

Usually, cach independent program occupics one package, which is directly under global in
" the hierarchy. But large programs, such as Macsyma. are usually made up of a number of sub-
programs, which arec maintaincd by a small number of people. We would like cach sub-program
to have its own name space, since the program as a whole has too many names for anyone to
remember. S0 we can make cach sub-program into its own package. However, this practice
requires special care.

It is likely that there will be a fair number of functions and symbols that should be shared by
all of the sub-programs of Macsyma. These symbols should reside in a package named macsyma,
which would be directly under global. Then cach part of macsyma (for instance. sin, risch,
input, and so on) would have its own package. with the macsyma package as its supcrpackage.
To do this, first declare the macsyma package, and then declare the risch, sin, etc. packages,
specifying macsyma as the superpackage for each of them. This way, each sub-program gets its
own name space. All of these declarations would probably be together in a file called something
like MACPKG.

However, to avoid a subtle pitfall, it is necessary that the macsyma package itself contain no
files, only a set of symbols specified at declaration time. This list of symbols is specified using
shadow in the declaration of the macsyma package. The symbols residing in the macsyma
package can have values and definitions, but these must all be supplied by files in macsyma’s
subpackages. Note that this is exactly the same treatment that global receives: all its functions
are actually defined in files that are loaded into system-internals (si), compiler, etc.

To demonstrate the full power and convenience of this scheme, supposc there were a second
huge program called owl that also had a subprogram called input (which, presumably, does all of
the inputting for owl), and one called database. Then a picture of the hicrarchy of packages
would look like this:

SRC:<I.MAN>PACKD.TEXT.86 24-JAN-83

Lisp Machine Manual 517 Subpackages

global
|
[mmmmmm e m e \
I I
macsyma owl
I I
I 11 l I | I I I
(others) risch sin input input database (others)

Now, the risch program and the sin program both do integration, and so it would be natural
for cach to have a function called integrate. From inside sin, sin’s integrate would be referred
to as "integrate” (no prefix nceded), while risch’s would be referred to as “rischintegrate”.
Similarly, from inside risch, risch’s own integrate would be called “integrate”, whereas sin’s
would be referred to as "sin:integrate”.

If sin’s integrate were a recursive function, the implementor would be referring to it from
within sin itself, and would be happy that he need not type out "sin:integrate” every time; he
could just say "integrate”.

From inside the macsyma package or any of its other sub-packages, the two functions would
be referred to as "sin:integrate" and as “risch:integrate”. From anywere clse in the hicrarchy,
they would have to be called "macsyma:sin:integrate™ and "macsyma:risch:integrate”.

Similarly, assume that each of the input packages has a function called get-line. From inside
macsyiia o1 any uf macsyma’s subpiograims {vther than input), the relovant function would be
called input:get-line and the irrelevant one owlinput:get-line. The converse is truc for owl and
its sub-programs. Note that there is no probiem arising from the fact that both owl and

macsyma have subprograms of the same name (input).

You might also want to put Macsyma's get-line function on the macsyma package. Then,
from anywehere inside Macsyma, the function would be called get-line; from the owl package
and subpackages it could be referred to as macsyma:get-line.

You can give a second-level subpackage a globally available name of its own by using
myrefname in the package declaration. For example,
(myrefname global macinput)
in the declaration of the macsyma:input package would give it the additional refname macinput
that can be used from any package under global.

SRCKI.MAN>PACKD.TEXT.86 24-JAN-83

Initialization of the Package System 518 Lisp Machine Manual

24.10 Initialization of the Package System

This scction describes how the package system is initialized when generating a new software
release of the Lisp Machine system; none of this should affect users.

When the world begins to be loaded, there is no package system. ‘There is one "obarray”,
whose format is different from that used by the package system. When the package system is
loaded and initialized, it is necessary to split the symbols of the old-style obarray up among the
various initial packages.

The first packages created by initialization are the most important ones: global, system,
user, and system-internals. All of the symbols alrcady present are placed in one of those
packages. By default, a symbol goes into system-internals. Only those placed on special lists go
into one of the others. 'These lists arc the file SYS: SYS2; GLOBAL LISP of symbols which
belong in global, and the file SYS: SYS2; SYSTEM LISP of symbols which go in system.

After the four basic packages exist, the package system’s definition of intern is installed, and
packages cxist. Then, the other system packages format, compiler, zwei, ctc. arc declared in
almost the normal manner. The exception is that a few of the symbols present before packages
exist really belong in one of these packages. Their package declarations contain calls to forward
and borrow, which exist only for this purpose and arc meaningful only in package declarations,
and arc used to move the symbols as appropriate. These declarations are kept in the file SYS:
SYS; PKGDCL LISP.

globalize symbol &optional (package “global™)
Sometimes it will be discovered that a symbol which ought to be in global is not there,
and the file defining it has alrcady been loaded, thus mistakenly creating a symbol with
that name in some other package. Creating a symbol in global will not fix the problem,
since the cxisting symbol will shadow it. Worse, functions in other packages which should
have used the global symbol may have shadowed it in their own packages.

When this happens, you can correct the situation by doing (globalize " symbol-name").
This function creates a symbol with the desired name in global, merges whatever value,
function definition, and properties can be found on symbols of that name together into
the new symbol (complaining if there are conflicts), and forwards those slots of the
existing symbols to the slots of the new onc using onc-g-forward pointers, so that they
will appear to be one and the same symbol as far as value, function dcfinition, and
property list are concerned. They cannot all be made eq to cach other, but globalize
docs the next-best thing: it takes an existing symbol from user, if there is one, to put it
in global. Since pcople who check for eq are normally supposed to specify user anyway,
they will not perceive any effect from moving the symbol from user into global.

If globalize is given a symbol instead of a string as argument, the exact symbol specified
is put into global. You can usc this when a symbol in another package, which should
have been inherited from global, is being checked for with eq—as long as there are not
two diffcrent packages doing so. Usually, the symbol is just a function name or a
variable, and this problem does not arise.

SRC:KILMAN>PACKD.TEXT.86 24-JAN-83

L.isp Machine Manual 519 Initial Packages

If the argument package is specificd, then the symbol is moved into that package from all
its subpackages, rather than into giobai.

24.11 Initial Packages

The initially present packages include:
global Contains advertised global functions.
user Usced for interning the user’s type-in. Contains all keyword symbols.

sys orsystem Contains internal global symbols used by various system programs. global is for
symbols global to the lisp language, while system is for symbols global to the
Lisp Machine operating system.

si or system-internals
Contains subroutines of many advertised system functions. si is a subpackage of
Ssys.

compiler Contains the compiler. compiler is a subpackage of sys.

fs or file -system
Contains the code that deals with pathnames and accessing files.

eh or dbg Contains the error handler and the debugger.

cc orcadr Contains the program that is used for debugging another machine.
zwei Contains the editor.

chaos Contains the Chaosnet controller.

tv Contains the window system.

format Contains the function format and its associated subfunctions.

There are quite a few others, but it would be pointless to list them all.

Packages that are used for special sorts of data:
fonts Contains the names of all fonts.

format Contains the keywords for format, as well as the code.

Here is a picture depicting the initial package hierarchy:
global

user zwei system format fonts (etc)

system-internals eh chaos cadr fs compiler

SRCKL.MAN>PACKD.TEXT.86 24-JAN-83

	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519

