Maintaining I.arge Systems 520 Lisp Machine Manual

25. Maintaining Large Systems

When a program gets large, it is often desirable to split it up into several files. One reason
for this is w0 help keep the parts of the program organized, to make things casier to find. It's
also uscful to have the program broken into small picces that are more convenient to edit and
compile. It is particularly important to avoid the need to recompile all of a large program every
time any picce of it changes: if the program is broken up into many files. only the files that
have changes in them need to be recompiled.

The apparent drawback to splitting up a program is that morc commands arc needed to
manipulate it. To load the program, you now have to load several files scparately, instead of just
loading one file. To compile it, you have to figure out which files nced compilation, by sceing
which have been cdited since they were last compiled, and then you have to compile those files.

What's cven more complicated is that files can have interdependencies. You might have a file
called DEFS that contains some macro definitions (or flavor or structure definitions), and functions
in other files might use those macros. This means that in order to compile any of those other
files, you must first load the file DEFS into the Lisp environment so that the macros will be
defined and can be expanded at compile time. You have to remember this whenever you compile
any of those files. Furthermore, if DEFS has changed, other files of the program may need to be
recompiled because the macros may have changed and need to be re-expanded.

This chapter describes the system facility, which takes care of all these things for you. The
way it works is that you define a sct of files to be a system, using the defsystem special form,
described below. This system definition says which files make up the system, which ones depend
on the presence of others, and so on. You put this system definition into its own little file, and
then all you have to do is load that file and the Lisp environment will know about your system
and what files are in it. You can then use the make-system function (see page 526) to load in
all the files of the system, recompile all the files that need compiling, and so on.

The system facility is very general and extensible. This chapter explains how to use it and
how to cxtend it. This chapter also explains the patch facility, which lets you conveniently update
a large program with incremental changes.

25.1 Defining a System

defsystem name (keyword args..)... Special Form
Defines a system named name. The options sclected by the keywords are cxplained in
detail later. In general, they fall into two categorics: properties of the system and
transformations. A transformation is an operation such as compiling or loading that takes
one or more files and does something to them. The simplest system is a set of files and a
transformation to be performed on them.

Here are a few examples.

SRC:KLLMAN>MAKSYS.TEXT.30 24-JAN-83

1 isp Machine Manual 521 Defining a System

(defsystem mysys
(:compiie-load ("AI: GEORGE; PROGi" "AI: GEORGZ; PROG2")))

{defsystem zmail

-~ as 1M

(:name "ZMail")

:pathname-default "AI: ZMAIL:")

:package zwei)

:module defs "DEFS")

:module mult "MULT" :package tv)

:module main ("TOP" "COMNDS" "MAIL" "USER" "WINDOW"
"FILTER" mult "COMETH"))

(:compile-load defs)

(:compile-load main (:fasload defs)}))

o~~~ e~ —

{defsystem bar

(:module reader-macros "RDMAC")

(:module other-macros "MACROS™)

(:module main-program "MAIN")

(:compile-load reader-macros)

(:compile-load other-macros (:fasload reader-macros}))

{:compile-load main-program {:faslcad reader-macros
other-macros)))

The first example defines a new system called mysys, which consists of two files, both of
which are to he comniled and loaded. The second example is somewhat more complicated. What
all the options mean will be specified shortly, but the primary difference is that there is a file
DEFS which must be loaded before the rest of the files (main) can be compiled. The final
example has two levels of dependency. reader-macros must be compiled and loaded before
other-macros can be compiled. Both reader-macros and other-macros must then be loaded
before main-program can be compiled.

The defsystem options other than transformations are:
:name Specifics a "pretty” version of the name for the system, for usc in printing.

:short-name
Specified an abbreviated name used in constructing disk label comments and in patch file

names for some file systems.

:component-systems
Specifies the names of other systems used to make up this system. Performing an
operation on a system with component systems is equivalent to performing the same
operation on all the individual systems. The format is (:component-systems names...).

:package
Specifies the package in which transformations are performed. A package specified here
will override one in the -#- linc of the file in question.

:pathname -detault
Gives a local default within the definition of the system for strings to be parsed into
pathnames. Typically this specifies the directory, when all the files of a system are on the

SRCKLL.MAN>MAKSYS.TEXT.30 24-JAN-83

Defining a System 522 Lisp Machine Manual

samc dircctory.

:warnings-default
Gives a default for the file to use to store compiler warnings in. when make-systemis
used with the :batch option.

:patchable
Makes the system be a paichable system (sec section 25.7, page 531). An optional
argument specifies the directory to put patch files in. The default is the :pathname-
default of the system.

sinitial -status
Specifics what the status of the system should be when make-system is used to create a
new major version. The default is :experimental. See section 25.7.5, page 536 for further
details.

:not-in-disk-label
Make a patchable system not appear in the disk label comment. This should probably
never be specified for a user system. It is used by patchable systems internal to the main
Lisp system. to avoid cluttering up the label.

:default-binary-file-type
Specifies the file type to use for compiled Lisp files. The value you specify should be a
string. If you do not specify this, the standard file type "QFASL" is used.

:module
Allows assigning a name to a set of files within the system. This name can then be used
instcad of repeating the filenames. The format is (:module name files options...). files is
usually a list of filenames (strings). In general, it is a module-specification, which can be
any of the following:

a string
This is a file name.

a symbol
This is a module name. It stands for all of the files which are in that module of
this system.

an external module component
This is a list of thc form (system-name module-names...), to specify modules in
another system. It stands for all of the files which are in all of those modules.

a list of module components
A module component is any of the above, or the following:

a list of file names
This is used in the case where the names of the input and output files of a
transformation are not related according to the standard naming conventions, for
cxample when a QFASL file has a different name or resides on a different
directory than the source file. The file names in the list are used from left to
right, thus the first name is the source file. Each file name after the first in the
list is defaulted from the previous one in the list.

SRC:KLMAN>MAKSYS.TEXT.30 24-JAN-83

LLisp Machine Manual 523 ‘T'ransformations

To avoid syntactic ambiguity. this is allowed as a module component but not as a
module specification.

The currently defined options for the :module clause are

:package Overrides any package specified for the whole system for transformations
performed on just this module.

In the sccond defsystem cxample above, there are threc modules. Each of the first two
has only onc file, and the third onc (main) is made up both of files and another module.
To take examples of the other possibilities,

(:module prog (("AI: GEORGE; PROG" "AI: GEORG2; PROG")))

(:module foo (defs (zmail defs)))
The prog module consists of one file, but it lives in two directorics, GEORGE and
GEORG2. If this were a Lisp program, that would mean that the file "Al: GEORGE;
PROG >" would be compiled into "Al: GEORG2; PROG QFASL". 'The foc module
consists of two other modules the defs module in the same system, and the defs module
in the zmail system. It is not generally useful to compile files that belong to other
systems; thus this foo module would not normally be the subject of a transformation.
However, dependencies (defined below) use modules and need to be able to refer to
(depend on) modules of other systems.

si:set-system-source-file system-name filename
This function specifies which file contains the defsystem for the system system-name.
filename can be a pathname object or a string.

Sometimes it is useful to say where the dcfinition of a system can be found without
taking time to load that file. If make-system is ever used on that system, the file whose
name has been specified will be loaded automatically.

25.2 Transformations

Transformations are of two types, simple and complex. A simple transformation is a single
operation on a file, such as compiling it or lvading it. A complex transformation takes the output
from onc transformation and performs another transformation on it, such as loading the results of
compilation.

The general format of a simple transformation is (name input dependencies condition). input is
usually a module specification or another transformation whose output is used. The transformation
name is to be performed on all the files in the module, or all the output files of the other
transformation.

dependencies and condition are optional.

dependencies is a transformation specification, cither a list (transformation-name module-
names...) or a list of such lists. A module-name is either a symbol that is the name of a module
in the current system, or a list (system-name module-names...). A dependency declares that all of
the indicated transformations must be performed on the indicated modules before the current
transformation itsclf can take place. Thus in the zmail example above, the defs module must

SRC:KLMAN>MAKSYS.TEXT.30 24-JAN-83

Transformations 524 I.isp Machine Manual

have the fasload transformation performed on it before the :compile transformation can be
performed on main.

‘The dependency has to be a tranformation that is cxplicitly specified as a transformation in
the system definition. not just an action that might be performed by anything. That is, if you
have a dependency (:fasload foo). it means that (fasload foo) is a tranformation of your system
and you depend on that tranformation: it does not simply mean that you depend on foo’s being
loaded. Furthermore, it doesn’t work if (fasloadfoo) is an implicit picce of another
tranformation. For example, the following is correct and will work:

(defsystem foo
(:module foo "F00")
(:module bar "BAR")
(:compile-load (foo bar)))

but this doesn’t work:
(defsystem foo
(:module foo "FOO")
(:module bar "BAR")
(:module blort "BLORT")
(:compile-load (foo bar))
(:compile-load blort (:fasload foo0)))

because foo's :fasload is not mentioned explicitly (i.e. at top level) but is only implicit in the
(:compile-load (foo bar)). One must instead write:
(defsystem foo

(:module foo "FOO")
:module bar "BAR")
:module blort "BLORT")
:compile-load foo)
:compile-load bar)
:compile-load blort (:fasload foo)))

— — — — —

condition is a predicate which specifies when the transformation should take place. Generally
it defaults according to the type of the transformation. Conditions are discussed further on page
530.

The defined simple transformations are:

:fasload Calls the fasload function to load the indicated files, which must be QFASL files
whose pathnames have canonical type :bin (see section 22.2.3, page 459). The
condition defaults to si:file-newer-than-installed-p, which is t if a newer version
of the file exists on the file computer than was read into the current environment.

readfile Calls the readfile function to read in the indicated files, whose names must have
canonical type :lisp. Use this for files that are not to be compiled. condition
defaults to si:file-newer-than-installed-p.

:compile Calls the gc-file function to compile the indicated files, whosc names must have
canonical type :lisp. condition defaults to si:file-newer-than-file-p, which
returns t if the source file has been written more recently than the binary file.

SRC:KL.MAN>MAKSYS.TEXT.30 24-JAN-83

Iisp Machine Manual 525 Transformations

A special simple transformation is

:do-components
(:do-components dependencies) inside a system with component sysiems will
causc the dependencies to be done before anything in the component systems.
This is useful when you have a module of macro files used by all of the
component systems.

The defined complex transformations are

:compile-load (:compile-load input compile-dependencies load-dependencies compile-condition load-
condition) is the same as (:fasload (:compile input compile-dependencies compile-
condition) load-dependencies load-condition). 'This is the most commonly-used
transformation. Everything after input is optional.

:compile-load-init
See page 531.

As was explained above, cach filename in an input specification can in fact be a list of strings
when the source file of a program differs from the binary file in more than just the file type. In
fact, every filename is treated as if it were an infinite list of filenames with the last filename, or
in the case of a single string the only filename, repeated forever at the end. Each simple
transformation takes some number of input filename arguments and some number of output
filename arguments. As transformations are performed. these arguments are taken from the front
of the filename list. The input arguments arc actually removed and the output arguments left as
input arguments to the next higher transformation. To make this clearer, consider the prog
module above having the icomnile-load trancfarmation performed on it This means that prog is
given as the input to the :compile transformation and the output from this transformation is given
as the input to the :fasload transformation. The :compile transformation takes one input filename
argument, the name of a Lisp source file, and one output filename argument, the name of the
QFASL file. The :fasload transformation takes one input filename argument, the name of a
QFASL file, and no output filename arguments. So. for the first and only file in the prog
module, the filename argument list Jooks like ("Al: GEORGE; PROG" "Al: GEORG2; PROG"
"Al: GEORG2; PROG" ...). The :compile transformation is given arguments of "Al: GEORGE;
PROG" and "Al: GEORG2; PROG" and the filename argument list which it outputs as the
input to the :fasload transformation is ("Al: GEORG2; PROG" "Al: GEORGZ; PROG" ..).
The :fasload transformation then is given its one argument of "Al: GEORG2; PROG".

Note that dependencies are not "transitive” or “inherited”. For example, if module a
depends on macros defined in module b, and therefore needs b to be loaded in order to compile,
and b has a similar dependency on ¢, ¢ will not be loaded during compilation of a.
Transformations with these dependencies would be written

(:compile-load a (:fasload b))
{:compile-locad b {:faslcad c})
To say that compilation of a depends on both b and ¢, you would instead write
(:compile-load a (:fasload b c))
(:compile-load b (:fasload c))
If in addition a depended on c¢ (but not b) during loading (perhaps a contains defvars whose
initial values depend on functions or special variables defined in c) you would write the
transformations

SRC:KILMAN>MAKSYS.TEXT.30 24-JAN-83

Making

a System 526 Lisp Machine Manual

(:compile-Toad a (:fasload b c¢) (:fasload c))
(:compile-load b (:fasload c))

25.3 Making a System

make-system name &rest keywords

The make-system function does the actual work of compiling and loading. In the

example above, if PROG1 and PROG2 have both been compiled recently, then
(make-system ’mysys) ‘

will Joad them as necessary. If either one might also need to be compiled, then
(make-system 'mysys ’:compile)

will do that first as necessary.

The very first thing make-system does is check whether the file which contains the
defsystem for the specified system has changed since it was loaded. If so. it offers to
load the latest version, so that the remainder of the make-system can be done using the
latest system definition. (This only happens if the filetype of that file is LISP.) After
loading this file or not, make-system goes on to process the files that compose the
system.

If the system name is not recognized, make-system offers to load the file SYS: SITE;
system-name SYSTEM, in the hope that that will contain a system definition.

make-system lists what transformations it is going to perform on what files, asks the user
for confirmation, then performs the transformations. Before cach transformation a message
is printed listing the transformation being performed, the file it is being done to, and the
package. This behavior can be altered by keywords.

These are the keywords recognized by the make-system function and what they do.

:noconfirm Assumes a yes answer for all questions that would otherwise be asked of the user.

:selective Asks the uscr whether or not to perform each transformation that appears to be

needed for each file.

:silent Avoids printing out cach transformation as it is performed.

reload Bypasses the specified conditions for performing a transformation. Thus files are
compiled even if they haven’t changed and loaded even if they aren’t newer than
the installed version.

:noload Does not load any files except those required by dependencies. For use in
conjunction with the :compile option.

:compile Compiles files also if need be. The default is to load but not compile.

:recompile This is equivalent to a combination of :compile and :reload: it specifies

compilation of all files, even those whose sources have not changed since last
compiled.

:no-increment-patch

SRCKL

When given along with the :compile option, disables the automatic incrementing
of the major system version that would otherwise take place. See section 25.7,

MAN>MAKSYS.TEXT.30 24-JAN-83

1.isp Machine Manual 527 Adding New Keywords to make-system

page 531.

:increment-patch
Increments a patchable system's major version without doing any compilations.
See section 25.7, page 531.

:no-reload -system-declaration
Turns off the check for whether the file containing the defsystem nhas been
changed. This file will be loaded only if it has never been loaded before.

. batch Allows a large compilation to be done unattended. It acts like :noconfirm with
regard to questions, turns off more-processing and fdcfine-warnings (sce inhibit-
fdefine-warnings, page 171), and saves the compiler warnings in an cditor buffer
and a file (it asks you for the name).

:defaulted -batch
This is like :batch cxcept that it uses the default for the pathname to store
warnings in and does not ask the user to type a pathname.

:print-only Just prints out what transformations would be performed; does not actually do
any compiling or loading.

:noop Is ignored. This is uscful mainly for programs that call make-system, so that
such programs can include forms like
(make-system 'mysys (if compile-p ’:compile '.noop))

254 Adding New Keywords to make-system

make-system keywords are defined as functions on the si:make -system-keyword property of
the keyword. The functions are called with no arguments. Some of the relevant variables they
can use are

si:*system-being-made* Variable
The internal data structure that represents the system being made.

si:*make-system-forms-to-be-evaled-before* Variable
A list of forms that are evaluated before the transformations are performed.

si:*make-system-forms-to-be-evaled-after® Variable
A list of forms that are.cvaluated after the transformations have been performed.
Transformations can push entries here too.

si:*make-system-forms-to-be-evaled-finally®* Variable
A list of forms that are evaluated by an unwind-protect when the body of make-system
is exited. whether it is completed or not. Closing the batch warnings file is done here.
Unlike the si:*make-system-forms-to-be-evaled-after* forms, these forms are
evaluated outside of the "compiler warnings context”.

SRC:KLLMAN>MAKSYS.TEXT.30 24-JAN-83

Adding New Keywords to make-system 528 Lisp Machine Manual

si:*query-type* Variable
Controls how questions arc asked. Its normal value is :normal. :noconfirm mecans no
questions will be asked and :selective asks a question for cach individual file
transformation.

si:*silent-p* Variable
If t. no messages are printed out.

si:*batch-mode-p* Variable
If t, :batch was specified.

si:*redo-all® Variable
If t, all transformations are performed, regardless of the condition functions.

si:*top-level-transformations* Variable
A list of the names of transformations that will be performed, such as (:fasload :readfile).

“si;*filte-transformation-function* Variable
The actual function that gets called with the list of transformations that need to be
performed. The default is si:do-file-transformations.

si:define-make-system-special-variable variable value Special Form
[defvar-p]
Causes variable to be bound to value during the body of the call to make-system. This
allows you to define new variables similar to those listed above. vafue is ecvaluated on
entry to make-system. If defvar-p is specified as (or defaulted to) t, variable is defined
with defvar. It is not given an initial valuc. If defvar-p is specified as nil, variable
belongs to some other program and is not defvar’ed here.

The following simple example adds a new keyword to make-system called :just-warn, which
means that fdefine warnings (see page 169) rcgarding functions being overwritten should be
printed out, but the user should not be queried.

(si:define-make-system-special-variable
inhibit-fdefine-warnings inhibit-fdefine-warnings nil)

(defun (:just-warn si:make-system-keyword) ()
(setq inhibit-fdefine-warnings ’:just-warn))
(Sce the description of the inhibit-fdefine-warnings variable, on page 171.)

make-system keywords can do somecthing directly when called, or they can have their effect
by pushing a form to be evaluated onto si:*make-system-forms-to-be-evaled-after* or one of
the other two similar lists. In general, the only useful thing to do is to sct some special variable
defined by si:define-make-system-special-variable. In addition to the ones mentioned above,
user-defined transformations may have their behavior controlied by new special variables, which
can be sct by new keywords. If you want to get at the list of transformations to be performed,
for example, the right way is to sct si:*file-transformation-function* to a new function, which
then can call si:do-file-transformations with a possibly modified list. That is how the :print-
only keyword works.

SRC:KLMAN>MAKSYS.TEXT.30 24-JAN-83

Lisp Machine Manual 529 Adding New Options for defsystem

25.5 Adding New Options for defsystem

Options to defsystem are defined as macros on the si:defsystem-macro property of the
option keyword. Such a macro can expand into an existing option or transformation, or it can
have side cffects and return nil. There are several variables they can use; the only one of general
interest is

si:*system-being-defined* Variable
The internal data structure that represents the system that is currently being constructed.

si:define-defsystem-special-variable variable value Special Form
Causes value to be evaluated and variable to be bound to the result during the expansion
of the defsystem special form. This allows you to define new variables similar to the one
listed above.

si:define-simple-transformation Special Form
This is the most convenient way to define a new simple transformation. The form is
(si:define-simple-transformation name function
default-condition input-file-types output-file-types
pretty-names compile-like load-like)
For example,
(si:define-simple-transformation :compile si:qc-file-1
si:file-newer-than-file-p ("LISP") ("QFASL"))
input-file-types and output-file-types are how a transformation specifies how many input
filenames and output filenames it should receive as arguments, in this case one of cach.
They also, obviously, specify the default file type for these pathnames. ‘The si:qc-tile-1
function is mostly like gc-file, except for its interface to packages. 1t takes input-file and
output-file arguments.

pretty-names, compile-like, and load-like are optional.

pretty-names specifies how messages printed for the user should print the name of the
transformation. It can be a list of the imperative (“Compile"), the present participle
("Compiling"). and the past participle (“"compiled”). Note that the past participle is not
capitalized, because when used it does not come at the beginning of a sentence. pretty-
names can be just a string, which is taken to be the imperative, and the system will
conjugate the participles itself. If pretty-names is omitted or nil it defaults to the name of
the transformation. '

compile-like and load-like say when the transformation should be performed. Compile-like
transformations are performed when the :compile keyword is given to make-system.
Load-like transformations are performed unless the :noload keyword is given to make-
system. By default compile-like is t but load-like is nii.

Complex transformations are defined as normal macro expansions, for example,

SRC:KI.MAN>MAKSYS.TEXT.30 24-JAN-83

More Esoteric Transformations 530 Lisp Machine Manual

(defmacro (:compile-load si:defsystem-macro)
(input &optional com-dep load-dep
com-cond load-cond)
‘(:fasload (:compile ,input ,com-dep ,com-cond)
,1oad-dep ,1o0ad-cond))

25.6 More Esoteric Transformations

It is sometimes uscful to specify a transformation upon which something clse can depend, but
which is performed not by default, but rather only when requested because of that dependency.
The transformation nevertheless occupies a specific place in the hicrarchy. The :skip defsystem
macro allows specifying a transformation of this type. For cxample, supposc there is a special
compiler for the read table which is not ordinarily loaded into the system. The compiled version
should still be kept up to date, and it needs to be loaded if ever the read table needs to be
recompiled.

(defsystem reader

(:pathname-default "AI: LMIO;")
:package system-internals)
:module defs "RDDEFS")
:module reader "READ")
:module read-table-compiler "RTC")
:module read-table "RDTBL")
:compile-load defs)
:compile-load reader (:fasload defs))
:skip :fasload (:compile read-table-compiler))

(:rtc-compile-load read-table (:fasload read-table-compiler)))
Assume that there is a complex transformation :rtc-compile-load, which is like :compile-load
except that is is built on a transformation called somecthing like :rtc-compile, which uses the read
table compiler rather than the Lisp compiler. In the above system, then, if the :rtc-compile
transformation is to be performed. the :fasload transformation must be done on read-table-
compiler first that is the rcad table compiler must be loaded if the rcad table is to be
recompiled. If you say (make-system ’reader ’:compile), then the :compile transformation will
still happen on the read-table-compiler module, compiling the rcad table compiler if nced be.
But if you say (make-system 'reader). the rcader and the read table will be loaded, but the
:skip keeps this from happening to the read table compiler.

— o~~~ p— p— —

So far nothing has been said about what can be given as a condition for a transformation
except for the default functions, which check for conditions such as a source file being newer
than the binary. In general, any function that takes the same arguments as the transformation
function (c.g. qc-file) and returns t if the transformation needs to be performed, can be in this
place as a symbol, including for example a closure. To take an example, suppose there is a file
that contains compile-flavor-methods for a system and that should therefore be recompiled if
any of the flavor method definitions change. In this case, the condition function for compiling
that file should return t if either the source of that file itself or any of the files that define the
flavors have changed. This is what the :compile-load-init complex transformation is for. It is
defined like this:

SRC:KLLMAN>MAKSYS.TEXT.30 24-JAN-83

[.isp Machine Manual 531 ‘The Patch Facility

(defmacro (:compile-load-init si:defsystem-macro)
{input add-dep &optional com-dep load-dep
&aux function)
(setq function (let-closed ((=*additional-dependent-moduless*
add-dep))
*compile-load-init-condition))
*(:fasload (:compile ,input ,com-dep ,function) ,load-dep))

(defun compile-load-init-condition (source-file gfasi-file)
(or (si:file-newer-than-file-p source-file qfasl-file)
(local-declare ({special *additional-dependent-modules%))
(si:other-files-newer-than-file-p

additional-dependent-modules#
gfasl1-file))))

The condition function that will be generated when this macro is used returns t either if si:file-

newer-than-file-p would with those arguments, or if any of the other files in add-dep, which

presumably is a module specification, are newer than the QFASL file. Thus the file (or module)

to which the :compile-load-init transformation applics will be compiled if it or any of the source

files it depends on has been changed. and will be loaded under the normal conditions. In most

(but not all cases), com-dep will be a :fasload transformation of the same files as add-dep

specifies, so that all the files this one depends on will be loaded before compiling it.

25.7 The Patch Facility

The patch facility allows a system maintainer to manage new releases of a large system and
issue patches to correct bugs. It is designed to be used to maintain both the Lisp Machine system
itself and applications systems that are large enough to be loaded up and saved on a disk
partition.

When a system of programs is very large, it needs to be maintained. Often problems are
found and need to be fixed, or other little changes need to be made. However, it takes a long
time to load up all of the files that make up such a system. and so rather than having every user
load up all the files every time he wants to use the system, usually the files just get loaded once
into a Lisp world, which is then saved away on a disk partition. Users then use this disk
partition, copies of which may appear on many machines. The problem is that since the users
don't load up the system every time they want to use it, they don’t get all the latest changes.

The purpose of the patch system is to solve this problem. A patch file is a little file that,
when you load it, updates the old version of the system into the new version of the system.
Most often, patch files just contain new function definitions; old functions are redefined to do
their new thing. When you want to use a system, you first use the Lisp environment saved on
the disk, and then you load all the latest patches. Patch files are very small, so loading them
doesn’t take much time. You can even load the saved environment, load up the latest patches,
and then save it away, to save future users the trouble of even loading the patches. (Of course,
new patches may be made later, and then these will have to be loaded if you want to get the
very latest version.)

SRCKL.MAN>MAKSYS.TEXT.30 24-JAN-83

‘The Patch Facility 532 Lisp Machine Manual

For every system, there is a serics of patches that have been made to that system. To get the
latest version of the system, you load cach patch file in the series, in order. Sooner or later, the
maintaincr of a system will want to stop building more and more patches, and recompile
everything. starting afresh. A complete recompilation is also necessary when a system is changed
in a far-rcaching way, that can’t bc done with a small patch; for example, if you completely
reorganize a program, or change a lot of names or conventions, you might nced to completely
recompile it to make it work again. After a complete recompilation has been done, the old patch
files arc no longer suitable to use; loading them in might cven break things.

The way all this is kept track of is by labelling cach version of a system with a two-part
number. The two parts are called the major version number and the minor version number. The
minor version number is increased every time a new patch is made; the patch is identified by the
major and minor version number together. The major version number is incrcased when the
program is completely recompiled, and at that time the minor version number is reset to zero. A
complete system version is identified by the major version number, followed by a dot, followed
by the minor version number.

To clarify this, here is a typical scenario. A new system is created; its initial version number
is 1.0. Then a patch file is created; the version of the program that results from loading the first
patch file into version 1.0 is called 1.1. Then another patch file might be created, and loading
that patch file into system 1.1 creates version 1.2. Then the entire system is recompiled, creating
version 2.0 from scratch. Now the two patch files are irrelevant, because they fix old software;
the changes that they reflect are integrated into system 2.0.

Note that the second patch file should only be loaded into system 1.1 in order to create
system 1.2; you shouldn’t load it into 1.0 or any other system besides 1.1. It is important that
all the patch files be loaded in the proper order, for two reasons. First, it is very useful that any
system numbered 1.1 be exactly the same software as any other system numbered 1.1, so that if
somebody reports a bug in version 1.1, it is clear just which software is being complained about.
Sccondly, one patch might patch another patch; loading them in some other order might have
the wrong ecffect.

The patch facility keeps track of all the patch files that exist, remembering which version each
one creates. There is a separate numbered sequence of patch files for cach major version of each
system. All of them arc stored in the file system, and the patch facility keeps track of where they
all are. In addition to the patch files themselves, there are “patch directory” files that contain the
patch facility’s data base by which it keeps track of what minor versions exist for a major version,
and what the last major version of a system is. These files and how to make them are described
below.

In order to use the patch facility, you must define your system with defsystem (sece chapter
25, page 520) and declare it as patchable with the :patchable option. When you load your
system (with make-system, sec page 526), it is added to the list of all systems present in the
world. The patch facility keeps track of which version of cach patchable system is present and
where the data about that system reside in the file system. This information can be used to
update the Lisp world automatically to the latest versions of all the systems it contains. Once a
system is present, you can ask for the latest patches to be loaded, ask which patches are already
loaded, and add new patches.

SRC:KL.MAN>PATCH.TEXT 42 24-JAN-83

I.isp Machine Manual 533 The Patch Facility

You can also load in patches or whole new systems and then save the entire Lisp environment
away in a disk partition. This is explained on scction 32.10, page 651.

When a Lisp Machine is booted, it prints out a linc of information telling you what systems
are present, and which version of cach system is lcaded. This information is returned by the
function si:system-version-info. It is followed by a text string containing any additional
information that was requested by whomever created the current disk partition (sce disk-save,
page 654).

print-system-modifications &rest system-names
With no arguments, this lists all the systems present in this world and, for cach system,
all the patches that have been loaded into this world. For each patch it shows the major
version number (which will always be the same since a world can only contain one major
version), the minor version number, and an explanation of what the patch does, as typed
in by the person who made the patch.

If print-system-modifications is called with arguments, only the modifications to the
systems named are listed.

si:get-system-version &optional system
Returns two values, the major and minor version numbers of the version of system
currently loaded into the machine, or nil if that system is not present. system defaults to
"System".

si:system-version-info &optional (briefp nil)

This retarns a string giving information about which systems and what versions of the
systems are Joaded into the machine, and what microcode version is running. A typical
string for it to produce is:

"System 91.31, ZMail 48.5, Daedalus 1.4, microcode 204"
If briefp is t, it uses short names, suppresses the microcode version, any systems which
should not appear in the disk label comment, the name System, and thc commas:

"91.31 Daed 1.4"

25.7.1 Defining a System

In order to use the patch facility, you must declare your system as patchable by giving the
:patchable option to defsystem (sce chapter 25, page 520). The major version of your system in
the file system will be incremented whenever make-system is used to compile it. Thus a major
version is associated with a set of QFASL files. The major version of your system that is
remembered as having been loaded into the Lisp environment will be set to the major version in
the file system whencver make-system is used to load your system and the major version in the
file system is greater than what you had loaded before.

After loading your system, you can save it with the disk-save function (see page 654). disk-
save will ask you for any additional information you want printed as part of the greeting when
the machine is booted. This is in addition to the names and versions of all the systems present in
this world. If the system version will not fit in the l6-character field allocated in the disk label,
disk-save will ask you to type in an abbreviated form.

SRC:KL.MAN>PATCH.TEXT.42 24-JAN-83

‘The Patch Facility 534 Lisp Machine Manual

25.7.2 Patch files

The patch system will maintain several different types of files in the directory associated with
your system. This directory is specified to defsystem via cither the :patchable option or the
:pathname-default option. These files arc maintained automatically, but so that you will know
what they are and when they are obsolete (because they are associated with an obsolete version of
your system). they arc described here.

The file that tells the system’s current major version has a name of the form Al: MYDIR;
PATCH (PDIR) (on Tops-20, OZ:PS:KMYDIR> PATCH.DIRECTORY), where the host, device,
and dircctory (ALMYDIR; or OZ:PS:KMYDIR> in this example) come from the system definition
as cxplained above.

For each major version of the system, there is a paich directory file, of the form Al MYDIR;
PAT259 (PDIR), which describes the individual patches for that version, where 259 is the major
version number in this cxample. (On Tops-20, this is OZ:PS:KMYDIR> PATCH-
259.DIRECTORY).

Then for cach minor version of the system, the source of the patch file itsclf has a name of
the form Al: MYDIR; P59.69 >, for minor version 69 of major version 259. Notec that 259 has
been truncated to 59 to fit into six characters for ITS. On Tops-20 this would be
OZ:PS:KMYDIR> PATCH-259-69.LISP. Patch files get compiled, so there will also be files like
Al: MYDIR; P59.69 QFASL (on Tops-20, OZ:PS:KMYDIR> PATCH-259-69.QFASL).

If the :patchable option to defsystem is given an argument, telling it to put the patch files
in a different directory than the onc which holds the other files of the system, then a slightly
different set of file name conventions are used.

On ITS, the file that tells the current major version is of the form Al: PATDIR; system
(PDIR), where system is the name of the system and PATDIR is the directory specified in the
:patchable option to defsystem. The patch directory file for major version nnn is of the form
Al: PATDIR; sysnnn (PDIR), where sys is the short name specified with the :short-name option
to defsystem. A patch file has a name of the form Al: PATDIR; nnn.nun; note that the major
version is truncated to three digits instcad of two. In this set of file name conventions, the patch
files don't all fall together in alphabetical order, as they do in the first set.

On TOPS-20, the file names take the forms OZ:PS:KPATDIR>system.PATCH-DIRECTORY,
OZ:PS:KPATDIR>system - nnn PATCH-DIRECTORY, and OZ:PS:KPATDIR>system-nnn-
mmm.LISP (or .QFASL). These file name conventions allow the patches for multiple systems to
coexist in the same directory.

SRCKL.MAN>PATCH.TEXT 42 24-JAN-83

Lisp Machinc Manual 535 The Patch Facility

25.7.3 Loading Patches

load-patches &rcst options
This function is used to bring the current world up to the latest minor version of
whichever major version it is, for all systems present, or for certain specified systems. If
there are any patches available, load-patches will offer to read them in. With no
arguments, load-patches updates all the systems present in this world.

options is a list of keywords. Some keywords arc followed by an argument. The
following options are accepted:

:systems list list is a list of names of systems to be brought up to date. If this option
is not specified, all systems are processed.

:verbose Prints an explanation of what is being done. This is the defauit.

:selective For cach patch, says what it is and then ask the user whether or not to
load it. This is the default. If the user answers P, sclective mode is
turned off for any remaining patches to the current system.

:noselective Turns off :selective.

:silent Turns off both :selective and :verbose. In :silent mode all necessary
patches arc loaded without printing anything and without querying the
user.

:force-unfinished
loads patches that have not been finished yet, if they have been
compiled. ‘This is useful for testing a patch before releasing it to all the
users.

load-patches returns t if any patches were loaded.

Currently load -patches is not called automatically, but the system may be changed to offer
to load patches when the user logs in, in order to keep things up to date.

25.7.4 Making Patches

There are two editor commands that are used to create patch files. During a typical
maintenance session on a system you will make several cdits to its source files. The patch system
can be used to copy these edits into a patch file so that they can be automatically incorporated
into the system to creatc a mew minor version. Edits in a patch file can be modified function
definitions, new functions, modified defvar’s and defconst’s, or arbitrary forms to be evaluated,
even including load’s of new files.

Meta-X Add Patch adds the region (if there is one) or the current "defun” to the patch file
currently being constructed. The first time you give this command it will ask you what system
you arc patching, allocatc a new minor version number, and start constructing the patch file for
that version. If you change a function, you should recompile it, test it, then once it works use
Add Patch to put it in the patch file.

SRCKL.MAN>PATCH.TEXT 42 24-JAN-83

‘The Patch Facility 536 Lisp Machine Manual

The patch file being constructed is in an cditor buffer. If you mistakenly Add Patch
something that docsn’t work, you can sclect the buffer containing the patch file and delete it.
Then later you can Add Patch the corrected version.

While you are making your patch file, the minor version number that has been allocated for
you is reserved so that nobody clse can use it. This way if two people are patching a systen at
the same time, they will not both get the same minor version number.

After making and testing all of your patches, use Meta-X Finish Patch to install the patch
file so that other users can load it. This will compile the patch file if you have not done so
voursclf (patches are always compiled). It will ask you for a comment describing the reason for
the patch; load-patches and print-system-modifications print these comments,

After finishing your patch, if you do another Add Patch it will ask you which system again
and start a new minor version. Note that you can be putting together patches only for one
system at a time.

You can start a patch without adding anything to it with the Meta-X Start Patch command.
This docs everything that Add Patch does except put text into the patch file.

If you start to make a patch and change your mind, use the command Meta-X Cancel
Patch. This will delete the record that says that this patch is being worked on. It will also tell
the cditor that you are not cditing a paich.

If you wish to defer finishing the patch until a later session, you should just save the cditor
buffer that contains the patch file. In the next session, use the command Meta-X Resume Patch
to reselect that patch. You will have to specify the minor version number of the patch you wish
to resume (it would be wrong to assume that your patch is the last one, since somcone else might
have started one). Once you have done this, you are again in a position to use Add Patch or
Finish Patch or Cancel Patch on this patch.

You can undo a finished patch by using Resume Patch and ihen Cancel Patch.

25.7.5 System Status

The patch system has the concept of the "status” of a major version of a system. The status
is displayed when the system version is displayed, in places such as the system grecting message
and the disk partition comment. This status allows users of the system to know what is going on.
The status of a system changes as patches are made to it.

The status is one of the following keywords:

:experimental The system has been built but has not yet been fully debugged and released to
users. This is the default status when a new major version is created, unless it is
overridden with the :initial-status option to defsystem.

rreleased The system is released for general use. This status produces no extra text in the
system greeting and the disk partition comment.

SRC:KXLMAN>PATCH.TEXT .42 24-JAN-83

Lisp Machinc Manual 537 The Patch Facility

:obsolete The system is no longer supported.

:broken This is like :experimental, but is used when the system was thought incorrectly to
have been debugged, and hence was :released for a while.

si:set-system-status system status &optional major-version
Changes the status of a system. sysiem is the name of the system. major-version is the
number of the major version to be changed; if unsupplied it defaults to the version
currently loaded into the Lisp world. status should be one of the keywords above.

SRCKI.MAN>PATCH.TEXT 42 24-JAN-83

	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537

