Processes 538 Lisp Muchine Manual

26. Processes

The Lisp Machine supports multi-processing; several computations can be executed
concurrently by placing cach in a separate process. A process is like a processor, simulated by
software. Fach process has its own program counter, its own stack of function calls and its own
special-variable binding environment in which to cxecute its computation. (This is implemented
with stack groups: sce chapter 12, page 186.)

If all the processes are simply trying to compute, the machine time-slices between them. This
is not a particularly cfficient mode of operation since dividing the finite memory and processor
power of the machine among several processes certainly cannot increase the available power and in
fact wastes some of it in overhead. The way processes are normally used is different; there can
be several on-going computations., but at a given moment only one or two processes will be trying
to run. The rest will be cither waiting for some event to occur, or siwpped, that is, not allowed
to compete for resources.

A process waits for an event by means of the process-wait primitive, which is given a
predicate function which defines the event being waited for. A module of the system called the
process scheduler periodically calls that function. If it returns nil the process continues to wait; if
it returns t the process is made runnable and its call to process-wait rcturns, allowing the
computation to proceed.

A process may be active or stopped. Stopped processes are never allowed to run; they are
not considered by the scheduler, and so will never become the current process until they are
made active again. The scheduler continually tests the waiting functions of all the active processes,
and those which return non-nil values are allowed to run. When you first create a process with
make-process, it is inactive.

A process has two sets of Lisp objects associated with it, called its run reasons and its arrest
reasons. These scts are implemented as lists. Any kind of object can be in these sets; typically
keyword symbols and active objects such as windows and other processes are found. A process is
considered active when it has at least one run reason and no arrest rcasons. A process that is not
active is stopped, is not referenced by the processor scheduler, and does not compete for machine
resources.

To get a computation to happen in another process, you must first create a process, then say
what computation you want to happen in that process. The computation to be exccuted by a
process is specified as an initial function and a list of arguments to that function. When the
process starts up it applies the function to the arguments. In some cases the initial function is
written so that it never returns, while in other cases it performs a certain computation and then
returns, which stops the process.

To reser a process means to throw (scc *throw, page 55) out of its entire computation, then
force it to call its initial function again. Resetting a process clears its waiting condition, and so if
it is active it will become runnable. To preser a function is to sct up its initial function (and
arguments) and then reset it. This is how you start up a computation in a process.

SRC:<L.MAN>PROCES.TEXT 41 24-JAN-83

I.isp Machine Manual : 539 The Scheduler

All processes in a Lisp Machine run in the same virtual address space, sharing the same set
of Lisp objects. Unlike other systems that have special restricted mechanisms for inter-process
communication, the lisp Machine allows processes to communicate in arbitrary ways through
shared Lisp objects. Onec process can inform another of an event simply by changing the value of
a global variable. Buffers containing messages from one process to another can be implemented as
lists or arrays. The usual mechanisms of atomic operations, critical scctions, and interlocks are
provided (sce store-conditional [page 543], without-interrupts [page 540], and process-lock
[page 542)).

A process is a Lisp object, an instance of one of scveral flavors of process (see chapter 20,
page 321). The remainder of this chapter describes the operations defined on processes, the
functions you can apply to a process, and the functions and variables a program running in a
process can use to manipulate its process.

26.1 The Scheduler

At any time there is a set of active processes; as described above. these arc all the processes
that are not stopped. Each active process is cither currently running, trying to run, or waiting for
some condition to become true. The active processes are managed by a special stack group called
the scheduler. which repeatedly cycles through the active processes, determining for each process
whether it is ready to be run or waiting. The scheduler determines whether a process is ready to
run by applying the process's wait-function to its wait-argument-list. If the wait-function returns a
non-nil value, then the process is ready to run; otherwise, it is waiting. If the process is ready to
run, the scheduler resumes the current stack group of the process.

When a process's wait-function returns non-nil, the scheduler will resume its stack group and
let it proceed. The process is now the current process, that is, the one process that is running on
the machine. The scheduler sets the variable current-process to it. it will remain the current
process and continue to run until either it decides to wait, or a sequence break occurs. In either
case, the scheduler stack group will be resumed and it will continue to cycle through the active
processes. This way, each process that is ready to run will get its share of time in which to
execute.

A process can wait for some condition to become true by calling process-wait (see page
541), which will set up its wait-function and wait-argument-list accordingly and resume the
scheduler stack group. A process can also wait for just a moment by calling process-allow-
schedule (sce page 541), which resumes the scheduler stack group but leaves the process
runnable; it will run again as soon as all other runnable processes have had a chance.

A sequence break is a kind of interrupt that is generated by the Lisp system for any of a
variety of reasons; when it occurs, the scheduler is resumed. The function si:sb-on (see page
542) can be used to control when scquence breaks occur. The default is to sequence break once a
seccond. Thus if a process runs continuously without waiting, it will be forced to return control to
the scheduler once a second so that any other runnable processes will get their turn.

The system does not generate a sequence break when a page fault occurs; thus time spent
waiting for a page to come in from the disk is “charged”" to a process the same as time spent
computing, and cannot be used by other processes. It is done this way for the sake of simplicity;

SRCKLL.MAN>PROCES. TEXT41 24-JAN-83

The Scheduler 540 1.isp Machine Manual

this allows the whole implementation of the process system to reside in ordinary virtual memory,
so that it does not have to worry specially about paging. The performance penalty is small since
Lisp Machines are personal computers, not multiplexed among a large number of processes.
Usually only onc process at a time is runnable.

A process's wait function is free to touch any data structure it likes and to perform any
computation it likes. Of course, wait functions should be kept simple, using only a small amount
of time and touching only a small number of pages, or system performance will be impacted
since the wait function will consume resources even when its process is not running. If a wait
function gets an crror, the error will occur inside the scheduler. All scheduling will come to a
halt and the user will be thrown into the error handler. Wait functions should be written in such
a way that they cannot get errors. Note that process-wait calls the wait function once before
giving it to the scheduler, so an crror due simply to bad arguments will not occur inside the
scheduler.

Note well that a process's wait function is exccuted inside the scheduler stack-group, not
_inside the process. This means that a wait function may not access special variables bound in the
process. It is allowed to access global variables. It can access variables bound by a process
through the closure mechanism (chapter 11, page 180), but more commonly any values nceded by
the wait function are passed to it as arguments.

current-process Variable
The value of current-process is the process that is currently cxecuting, or nil while the
scheduler is running. When the scheduler calls a process’s wait-function, it binds
current-process to the process so that the wait-function can access its process.

without-interrupts body.. Special Form

The body forms are evaluated with inhibit-scheduling-flag bound to t. This is the
recommended way to lock out multi-processing over a small critical section of code to
prevent timing errors. In other words the body is an atomic operation. The value(s) of a
without-interrupts is/are the value(s) of the last form in the body.
Examples:

(without-interrupts

(push item 1list))

(without-interrupts
(cond ((memqg item list)
(setq 1ist (delq item list))
t)
(t nil)))

inhibit-scheduling-flag Variable
The value of inhibit-scheduling-flag is normally nil. If it is t, sequence breaks are
deferred until inhibit-scheduling-flag becomes nil again. This means that no process
other than the current process can run.

SRC:KI.MAN>PROCES.TEXT .41 24-JAN-83

Lisp Machinc Manual 541 The Scheduler

process-wait whostate function &rest arguments
This is the primitive for waiting. The current process waits until the application of
Junction 1o arguments returns non-nil (at which time process-wait returns). Note that
Sunction is applied in the environment of the scheduler, not the cnvironment of the
process-wait. so bindings in cffect when process-wait was called will nor be in effect
when function is applied. Be careful when using any free references in function. whostate
is a string containing a brief description of the reason for waiting. If the who-line at the
bottom of the screen is looking at this process, it will show whostate.
Examples:
{process-wait "sleep"
#’(lambda (now)
(> (time-difference (time) now) 100.))
{time))

{process-wait "Buffer"
#’(lambda (b) (not (zerop (buffer-n-things b}))))
the-buffer)

process-sleep interval
This simply waits for interval sixticths of a sccond, and then returns. It uses process-
wait.

process-wait-with-timeout whosiate interval function &rest arguments
This is like process-wait except that if interval sixticths of a second go by and the
application of function to arguments is still returning nil. then process-wait-with-timeout
returns anyway. The value returned is the value of applying function to arguments; thus,
it is non-nil if the wait condition actually occurred, nil for a time-out.

process-allow-schedule
This function simply waits momentarily; all other processes will get a chance to run
before the current process runs again.

sys:scheduler-stack-group Variable
This is the stack group in which the scheduler executes.

sys:clock-function-1ist Variable

This is a list of functions to be called by the scheduler 60 times a second. Each function
is passed onc argument, the number of 60ths of a second since the last time that the
functions on this list were called. These functions implement various system overhead
operations such as blinking the blinking cursor on the screen. Note that these functions
are called inside the scheduler, just as are the functions of simple processes (sece page
549). The scheduler calls these functions as often as possible, but never more often than
60 times a sccond. That is, if there are no processes ready to run, the scheduler will call
the functions 60 times a second, assuming that, all together, they take less than 1/60
second to run. If there arc processes continually ready to run, then the scheduler will call
these functions as often as it can; usually this is once a second, since usually the
scheduler gets control only once a second.

SRC:KLLMAN>PROCES.TEXT.41 24-JAN-83

l.ocks 542 I.isp Machine Manual

sys:active-processes Variable
This is the scheduler’s data-structure. It is a list of lists, where the car of cach clement is
an active process or nil and the cdr is information about that process.

sys:all-processes Variable
This is a list of all the processes in existence. It is mainly for debugging.

si:initial-process Variable
This is the process in which the system starts up when it is booted.

si:sb-on &optional when
si:sb-on controls what cvents cause a sequence break, ic. when re-scheduling occurs.
The following keywords arc names of events which can cause a sequence break.

:clock This event happens periodically based on a clock. The default period is
one second. Sce sys:%tv-clock-rate, page 219.

‘keyboard Happens when a character is reccived from the keyboard.

:chaos Happens when a packet is received from the Chaosnet, or transmission of

a packet to the Chaosnet is completed.

Since the keyboard and Chaosnet are heavily buffered, there is no particular advantage to
cnabling the :keyboard and :chaos cvents, unless the :clock cvent is disabled.

With no argument, si:sb-on returns a list of keywords for the currently cnabled events.

With an argument, the set of enabled cvents is changed. The argument can be a
keyword, a list of keywords. nil (which disables sequence breaks entirely since it is the
empty list), or a number, which is the internal mask, not documented here.

26.2 Locks

A lock is a software construct used for synchronization of two processes. A lock is cither held
by some process, or is frece. When a process tries to seize a lock. it waits until the lock is free,
and then it becomes the process holding the lock. When it is finished, it unlocks the lock,
allowing some other process to seize it. A lock protects some resource or data structure so that
only one process at a time can use it.

In the Lisp Machine, a lock is a locative pointer to a cell. If the lock is free, the cell
contains nil; otherwise it contains the process that holds the lock. The process-lock and
process-unlock functions are written in such a way as to guarantee that two processes can never
both think that they hold a certain lock; only one process can ever hold a lock at one time.

process-lock locative &optional (lock-value current-process) (whostate "Lock™)
This is used to scize the lock that locative points to. If necessary, process-lock will wait
until the lock becomes free. When process-lock returns, the lock has been scized. lock-
value is the object to store into the cell specified by locative, and whostate is passed on to
process-wait.

SRC:KL.MAN>PROCES. TEXT .41 24-JAN-83

[Lisp Machinc Manual 543 Locks

process-unlock /ocative &optional (lock-value current-process)
This is used to unlock the lock that locative points to. If the lock is fiee or was locked
by some other process, an error is signaled. Otherwise the lock is unlocked. Jock-value
must have the same value as the Jock-value parameter to the matching cali to process-

lock, or ¢lsc an crror is signalled.

It is a good idea to usc unwind-protect to make sure that you unlock any lock that you
seize. For example, if you write
(unwind-protect
{progn (process-lock lock-3)
(function-1)
(function-2))
(process-unlock lock-3))
then even if function-1 or function-2 does a *throw, lock-3 will get unlocked correctly.
Particular programs that use locks often define special forms that package this unwind-protect up
into a convenient stylistic device.

A higher level locking construct is with-lock:

with-Tlock (lock options..) body... Special Form
Executes the body with lock locked. lock should actually be an expression whose value
would be the status of the lock; it is used inside locf to get a locative pointer with which
the locking and unlocking are done.

It is OK for one process to lock a lock multiple times, recursively, using with-lock.

The options are alternating keywords and values. The values should be literally t or nil;
they arc interpreted at macro expansion time, not at run time. Only one keyword is
allowed:

:norecursive If the value is t, multiple recursive locking is an error.

A lower level construct which can be used to implement atomic operations, and is used in the
implementation of process-lock, is store-conditional.

store-conditional location oldvalue newvalue
This stores newvalue into location iff location currently contains oldvalue. The value is t iff
the cell was changed.

If location is a list, the cdr of the list is tested and stored in. This is in accord with the
general principle of how to access the contents of a locative properly, and makes (store-
conditional (locf (cdr x)) ...) work.

An cven lower-level construct is the subprimitive %store-conditional, which is like store-
conditional with no error checking.

SRCKI.MAN>PROCES.TEXT 41 24-JAN-83

Creating a Process 544 Iisp Machine Manuaj

26.3 Creating a Process

There arc two ways of creating a process. One is to crcate a permanent process which you
will hold on to and manipulate as desired. The other way is to say simply, “call this function on
these arguments in another process. and don’t bother waiting for the result.” In the latter case
you never actually use the process itsclf as an object.

make-process name &rest options
Creates and returns a process named name. The process will not be capable of running
until it has been reset or preset in order to initialize the state of its computation.

‘The options arc alternating keywords and values that allow you to specify things about the
process; however, no options are necessary if you aren’t doing anything unusual. The
following options are allowed:

simple-p Specifying t here gives you a simple process (see page 549).
:Havor Specifies the flavor of process to be created. See section 26.5, page 549,
for a list of all the flavors of process supplicd by the system.

:stack-group The stack group the process is to use. If this option is not specified, a
stack group will be created according to the relevant options below.

:warm-boot-action
What to do with the process when the machine is booted. Sce page 547.

:quantum Sece page 547.
:priority Sec page 547.
:run-reasons Lets you supply an initial run reason. The default is nil.

.arrest-reasons
Lets you supply an initial arrest reason. The default is nil.

'sg-area The area in which to create the stack group. The default is the value of
default-cons-area.

:regular-pdi-area
:special-pdi-area
:regular-pdi-size
:special-pdl-size
These are passed on to make-stack-group, page 189.

:swap-sv-on-call-out
:swap-sv-of-sg-that-calls-me
trap-enable Specify those attributes of the stack group. You don’t want to use these.

If you specify :flavor, there can be additional options provided by that flavor.

The following three functions allow you to call a function and have its exccution happen
asynchronously in another process. This can be used either as a simple way to start up a process
that will run "forever”, or as a way to make something happen without having to wait for it
complete. When the function returns, the process is returned to a pool of free processes for
reuse. The only difference between these three functions is in what happens if the machine is

SRCKILMAN>PROCES.TEXT .41 24-JAN-83

Lisp Machine Manual - 545 Process Generic Operations

booted while the process is still active.

Normally the function to be tun should not do any 170 to the terminal. Refer to section
12.5, page 194 for a discussion of the issues.

process-run-function name-or-options function &rcst args
Creates a process, presets it so it will apply function to args, and starts it running.

name-or-keywords can be cither a string specifying a name for the process or a list of
alternating keywords and values that can specify the name and various other parameters.

:name This keyword should be followed by a string which specifies the name of
the process. The default is "Anonymous".

rrestart-after-reset
‘This keyword says what to do to the process if it is reset. nil means the
process should be killed; anything eise means the process should be
restarted. nil is the default.

:warm-boot-action
What to do with the process when the machine is booted. Sce page 547.

restart-after-boot
'This is a simpier way of saying what to do with the process when the
machinc is booted. If the :warm-boot-action keyword is not supplied or
its value is nil, then this keyword’s value is used instead. nil means the
process should be killed; anything else means the process should be
restarted. nil is the default.

:quantum See page 547.
:priority See page 547.
process-run-restartable-function name-or-keywords function &rest args
This is the same as process-run-function except that the default is that the process will

be restarted if reset or after a warm boot. You can get the same effect by using
process-run-function with appropriate keywords.

26.4 Process Generic Operations
These are the operations that are defined on all flavors of process. Certain process flavors may

define additional operations. Not all possible operations are listed here, only those "of interest to
the user”.

SRC:KI.MAN>PROCES. TEXT 41 24-JAN-83

Process Generic Operations 546 Lisp Machine Manual

26.4.1 Process Attributes

:name Operation on si:process
Returns the name of the process, which was the first argument to make-process or
process-run-function when the process was created. The name is a string that appears
in the printed-representation of the process, stands for the process in the who-line and the
peek display, ctc.

:stack-group Operation on si:process
Retrns the stack group currently cxccuting on behalf of this process. This can be
different from the initial-stack-group if the process contains several stack groups that
coroutine among themselves, or if the process is in the error-handler, which runs in its
own stack group.

Note that the stack-group of a simiple process (sce page 549) is not a stack group at all,
but a function.

":initial-stack-group Operation on si:process
Returns the stack group the initial-function is called in when the process starts up or is
reset.

:initial-form Operation on si:process

Returns the initial "form" of the process. This isn’t really a Lisp form; it is a cons
whose car is the initial-function and whose cdr is the list of arguments to which that
function is applied when the process starts up or is reset.

In a simple process (sece page 549), the initial form is a list of one element, the process’s
function.

To change the initial form, use the :preset operation (see page 548).

:wait-function Operation on si:process
Returns the process’s current wait-function, which is the predicate used by the scheduler
to dctermine if the process is runnable. This is #’true if the process is running, and
#'false if the process has no current computation (for instance, if it has just been
created, its initial function has returned, or the process has been "flushed” (sec page 548).

:wait-argument-list , Operation on si:process
Returns the arguments to the process’s current wait-function. This will frequently be the
&rest argument to process-wait in the process's stack, rather than a true list. The
system always uses it in a safc manner, ie. it forgets about it before process-wait
returns.

:whostate Operation on si:process
Returns a string that is the state of the process to go in the who-linc at the bottom of the
screen. This is "run" if the process is running or trying to run, otherwise the reason why
the process is waiting. If the process is stopped, then this whostate string is ignored and
the who-line displays arrest if the process is arrested or stop if the process has no run
reasons.

SRC:KLLMAN>PROCES.TEXT 41 24-JAN-83

Lisp Machinc Manual 547 Process Generic Operations

:quantum Operation on si:process

:set-quantum 60ths Operation on si:process
Return or change the number of 60ths of a second this process is allowed to run without
waiting before the scheduler will run someone clse. The quantum defaults to 1 sccond.

:quantum-remaining QOperation on si:process
Returns the amount of time remaining for this process to run, in 60ths of a second.

:priority Operation on si:process

:set-priority priority-number ' Operation on si:process
Return or change the priority of this process. The larger the number, the more this
process gets to run. Within a priority level the scheduler runs all runnable processcs in a
round-robin fashion. Regardless of priority a process will not run for more than its
quantum. The default priority is 0, and no normal process uses other than 0.

:warm-boot-action Operation on $i:process

:set-warm-boot-action action Operation on si:process
Returns or changes the process’s warm-boot-action, which controls what happens if the
machine is booted while this process is active. (Contrary to the name, this applies to both
cold and warm booting.) This can be nil or :flush, which means to "flush” the process
(sec page 548), or can be a function to call. The default is si:process-warm-boot-
delayed-restart, which resets the process, causing it to start over at its initial function.
You can also use siiprocess-warm-boot-reset, which throws out of the process’
computation and kills the process, or si:process-warm-boot-restart, which is like the
default but restarts the process at an carlier stage of system reinitialization. This is used
for processes like the keyboard process and chaos background process, which are needed
for reinitialization itself.

:simple-p Operation on si:process
Returns nil for a normal process, t for a simple process. See page 549.

26.4.2 Run and Arrest Reasons

:run-reasons : Operation on si:process
Returns the list of run reasons, which are the reasons why this process should be active
(allowed to run).

:run-reason object Operation on si:process
Adds object to the process’s run reasons. This can activate the process.

:revoke-run-reason object Operation on Si:process
Removes object from the process’s run reasons. This can stop the process.

:arrest-reasons Operation on si:process

Returns the list of arrest reasons, which are the reasons why this process should be
inactive (forbidden to run).

SRC:KI.MAN>PROCES. TEXT 41 24-JAN-83

Process Generic Operations 548 Lisp Machine Manual

:arrest-reason object : Operation on si:process
Adds object to the process’s arrest rcasons. This can stop the process.

:revoke-arrest-reason object Operation on si:process
Removes object from the process’s arrest reasons. This can activate the process.

:active-p Operation on si:process
:runnable-p Operation on si:process
These two operations are the same. t is returned if the process is active, i.c. it can run if
its wait-function allows. nil is returned if the process is stopped.

26.4.3 Bashing the Process

:preset function &rest args Operation on si:process
Sets the process's initial function to function and initial arguments to args. The process is
then reset so that it will throw out of any current computation and start itself up by
applying function w0 args. A :preset operation on a stopped process will return
immediately, but will not activate the process; hence the process will not really apply
Junction to args until it is activated later.

:raset &optional no-unwind kill Operation on si:process
Forces the process to throw out of its present computation and apply its initial function to
its initial arguments, when it next runs. The throwing out is skipped if the process has
no present computation (e.g. it was just created), or if the no-unwind option so specifies.
The possible values for no-unwind are:

:unless-current
nil Unwind unless the stack group to be unwound is the one we are currently
exccuting in. or belongs to the current process.

:always Unwind in all cases. This may cause the opcration to throw through its
caller instead of returning.

t Never unwind.

If kill is t, the process is to be killed after unwinding it. This is for internal use by the
:kill operation only.)

A reset operation on a stopped process will return immediately, but will not activate the
process; hence the process will not really get reset until it is activated later.

:flush Operation on si:process
Forces the process to wait forever. A process may not :flush itself. Flushing a process is
different from stopping it, in that it is still active and hence if it is resct or preset it will
start running again.

SRC:KLLMAN>PROCES.TEXT .41 24-JAN-83

Lisp Machine Manual 549 Process Flavors

:kill Operation on Si:process
Gets rid of the process. 1t is reset, stopped, and removed from sys:all-processes.

sinterrupt function &rest args Operation on Si:process
Forces the process to apply function to args. When function returns, the process will
continue the interrupted computation. If the process is waiting. it wakes up, calls
function, then waits again when function returns.

If the process is stopped it will not apply function to args immcdiately, but will later
when it is activated. Normally the :interrupt operation rcturns immediately, but if the
process’s stack group is in an unusual internal state it may have to wait for it to get out
of that state.

26.5 Process Flavors

These are the flavors of process provided by the system. It is possible for users to define
additional flavors of their own.

si:process Flavor
This is the standard default kind of process.

si:simple-process Flavor

A simple process is not a process in the conventional sense. It has no stack group of its
own; instead of having a stack group that gets resumed when it is time for the process to
run, it has a function that gets called when it is time for the process to run. When the
wait-function of a simple process becomes true, and the scheduler notices it, the simple
process’s function is called in the scheduler’s own stack group. Since a simple process
does not have any stack group of its own, it can’t save control state in between calls; any
state that it saves must be saved in data structure.

The only advantage of simple processes over normal processes is that they use up less
system overhead, since they can be scheduled without the cost of resuming stack-groups.
They are intended as a special, efficient mechanism for certain purposes. For example,
packets received from the Chaosnet are examined and distributed to the proper receiver by
a simple process that wakes up whenever there are any packets in the input buffer.
However, they are harder to use, because you can’t save state information across
scheduling. That is, when the simple process is ready to wait again, it must return; it
can’t call process-wait and continue to do somcthing clse later. In fact, it is an error to
call process-wait from inside a simple process. Another drawback to simple processes is
that if the function signals an error, the scheduler itself will be broken and
multiprocessing will stop; this situation can be hard to repair. Also, while a simple
process is running, no other process will be scheduled; so simple processes should never

run for a long time without returning.

Asking for the stack group of a simple process docs not signal an error, but returns the
process’s function instead.

SRCKI.MAN>PROCES.TEXT 41 24-JAN-83

Other Process Functions . 550 Lisp Machine Manual

Since a simple process cannot call process-wait, it nceds some other way to specify its
wait-function. To set the wait-function of a simple process, usc si:set-process-wait (see
below). So, when a simple process wants to wait for a condition, it should call si:set-
process-wait to specify the condition, then return.

si:set-process-wait simple-process wait-function wait-argument-list
Sets the wair-function and wait-argument-list of simple-process. Sece the description of the
si:simple-process flavor (above) for more information.

26.6 Other Process Functions

process-enable process
Activates process by revoking all its run and arrest reasons, then giving it a run reason of
:enable.

process-reset-and-enable process
Resets process, then enables it.

process-disable process
Stops process by revoking all its run reasons. Also revokes all its arrest reasons.

The remaining functions in this section are obsolete, since they simply duplicate what can be done
by sending a message. They are documented here because their names arc in the global package.

process-preset process function &rest args
Sends a :preset message.

process-reset process
Sends a :reset message.

process-name process
Gets the name of a process, like the :name operation.

process-stack-group process _
Gets the current stack group of a process, like the :stack-group opcration.

process-initial-stack-group process
Gets the initial stack group of a process, like the :initial-stack-group operation.

process-initial-form process
Gets the initial "form™ of a process, like the :initial-form operation.

process-wait-function process
Gets the current wait-function of a process, like the :wait-function operation.

SRC:KIL.MAN>PROCES. TEXT 41 24-JAN-83

Lisp Machine Manual 551 , Other Process Functions

process-wait-argument-list p
Gets the arguments to the current wait-function of a process, like the :wait-argument-list
operation.

process-whostate p
Gets the current who-line state string of a process, like the :whostate operation.

SRC:KI.MAN>PROCES. TEXT 41 24-JAN-83

	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551

