Errors and Debugging 552 I.isp Machine Manual

27. Errors and Debugging

The first portion of this chapter explains how programs can handle errors, by means of
condition handlers. It also explains how a program can signal an error if it detects something it
docsn’t like.

The second explains how users can handle crrors, by means of an interactive debugger; that
is, it cxplains how to recover if you do something wrong. A new user of the Lisp Machine, or
somecone who just wants to know how to deal with errors and not how to cause them, should
ignore the first section and skip ahcad to scction 27.7, page 578.

The remaining scctions describe some other debugging facilities. Anyone who is going to be
writing programs for the Lisp Machine should familiarize himself with these.

The rrace facility provides the ability to perform certain actions at the time a function is
called or at the time it returns. The actions may be simple typeout, or more sophisticated
_ debugging functions.

The advise facility is a somewhat similar facility for modifying the behavior of a function.

The breakon facility allows you to cause the debugger to be entered when a certain function is
called. You can then use the debugger’s stepping commands to step to the next function call or
return.

The step facility allows the evaluation of a form to be intercepted at every step so that the
user may cxamine just what is happening throughout the cxecution of the form. Stepping works
only on interpreted code.

The MAR facility provides the ability to cause a trap on any memory reference to a word (or
a set of words) in memory. If somcthing is getting clobbered by agents unknown, this can help
track down the source of the clobberage.

27.1 Conditions

Programmers often want to control what action is taken by their programs when errors or
other ecxceptional situations occur. Usually different situations are handled in different ways, and
in order to express what kind of handling cach situation should have, each situation must have an
associated name. In Zetalisp, noteworthy events are represented by objects called condition
instances. When an event occurs, a condition instance is created; it is then signaled, and a
handler for that condition may be invoked.

When a condition is signalled, the system (essentially) searches up the stack of nested function
invocations looking for a handler established to handle that condition. The handler is a function
that gets called to decal with the condition. The condition mechanism itsclf is just a convenient
way for finding an appropriate handler function for a particular exceptional situation.

SRC:KLLMAN>ERRORS.TEXT.81 » 24-JAN-83

Lisp Machine Manual 583 Conditions

When a condition is signaled, a condition instance is created to represent the event and hold
information about it. This information includes condition names then classify the condition and
any other data that is likely to be of interest to condition handlers. A condition instance is
immutable once it has been created. Some conditions are errors, which means that the debugger
is invoked if they are signaled and not handled.

Condition instances are flavor instances. The flavor condition is the base flavor from which
all flavors of condition arc built. Several operations that are defined on condition instances are
described below. ‘The flavor error, which is built on condition, is the base flavor for all kinds of
conditions which are crrors.

A condition name is a symbol then is used to identify a category of conditions. FEach
condition instance possesses one or more condition names. Each condition handler specifies one or
more condition names that it should apply to. A handler applics to a condition if they have any
condition names in common. This is the sole purpose of condition names: to match condition
instances with their handlers. The meaning of every condition name signaled by the system is
described in this manual. The condition name index is a directory for them. Conditions then are
errors possess the condition name error.

In PL/I, CLU, ADA and most other systems that provide named conditions, each condition
has only onc name. That is to say. the catcgories identified by condition names are disjoint. In
Zetalisp, each condition instance can have multiple condition names, which means that the
categories identified by condition names can overlap and be subdivided.

For cxample, among the condition names defined by the system are condition, error,
sys:arithmetic-error, sys:negative-sqrt and sys:divide-by-zero. condition is a condition name
that all condition instances posess. error identifies the category of conditions then are considered
errors. sys:arithmetic-error identifies the category of errors that pertain to arithmetic operations.
sys:negative-sqrt ‘and sys:divide-by-zero are the most specific level of categorization. So, the
condition signaled when you cvaluate (sqrt -1) will possess condition names sys:negative-sqrt,
sys:arithmetic-error, error and condition, while the one signaled if you evaluate (// 1 0) will
possess condition names sys:divide-by-zero, sys:arithmetic-error, error and condition. In this
example, the categories fall into a strict hierarchy, but this does not need to be the case.

Condition names are documented throughout the manual, with definitions like this:

sys:divide-by-zero (sys:arithmetic-error error) Condition
The condition name sys:divide-by-zero is always accompanied by sys:arithmetic-error
and error (that is, it categorizes a subset of those categories). The presence of error
implies that all sys:divide-by-zero conditions are errors.

The condition instance also records additional information about the event. The condition
instance signaled by sqrt records the number that sqrt was applicd to, and handles the :number
operation by returning this number. The condition instance signaled by dividing by zero handles
the :function operation by returning the function that did the division (it might be truncate,
floor, ceiling or round, as well as //). In gencral, for cach condition name there are
conventions saying what additional information is provided and what operations to use to obtain

it.

SRCKI.MAN>ERRORS.TEXT.81 24-JAN-83

Handling Conditions 554 Lisp Machine Manual

The flavor of the condition instance is always one of the condition names, and so are its
component flavors (with a few cxceptions: sivanilla-flavor and some other flavor components are
omitted, since they are not useful categories for condition handlers to specify). In our example,
the flavor of the condition is sys:arithmetic-error, and its components include error and
condition. Condition names require new flavors only when they require significantly different
handling by the crror system; you will understand in detail after finishing this section.

condition-typep condition-instance condition-name
Returns t if condition-instance possesses condition name condition-name.

errorp object
Returns t if object is a condition instance and its flavor incorporates error. This is
normally cquivalent to (typep object “:error). Some functions such as open optionally
return the condition instance rather than signaling it, if an ecrror occurs. errorp is useful
in testing the value returned.

:condition-names Operation on condition
Returns a list of all the condition names possesses by this condition instance.

27.2 Handling Conditions

A condition handler is a function that is associated with certain condition names (categories of
conditions). The variable eh:condition-handlers contains a list of the handlers that are current;
handlers arc cstablished using special forms which bind this variable. When a condition is
signaled, this list is scanned and all the handlers which apply are called, one by one, until one of
the handlers cither throws or returns non-nil.

Since each new handler is pushed onto the front of eh:condition-handlers, the innermost-
established handler gets the first chance to handle the condition. When the handler is run,
eh:condition-handlers is bound so that the running handler (and all the ones that were
cstablished farther in) are not in cffect. This avoids the danger of infinite recursion due to an
error in a handler invoking the same handler.

One thing a handler can do is throw to a tag. Often the *catch for this tag is right next to
the place where the handler is established, but this does not have to be so. A simple handler
that applics to all errors and just throws to a tag is cstablished using ignore-errors.

ignore-errors body... ' Special Form
Any error within the cxecution of body causes control to return from the ignore-errors
form. In this case, the first value is nil and the second is non-nil. If there is no error
inside body, the values of the last form in the body are returned from the ignore-errors
form.

The handler can also ask to proceed from the condition. This is done by rcturning a non-nil
value. Sce the section on proceeding, page 569, for more information.

The handler can also decline to handle the condition, by returning nil. Then the next

applicable handler is called, and so on until either some handler does handle the condition or
there arc no more handlers.

SRC:KL.MAN>ERRORS.TEXT 81 24-JAN-83

Lisp Machine Manual 555 lHandling Conditions

The handler function is called in the environment where the condition was signaled, and in
the same stack group. All special variables have the values they had at the place where the
signaling was done, and all catch tags that were available at the point of signaling may be thrown
to.

The handler reccives the condition instance as its first argument. When establishing the
handler, you can also provide additional arguments to pass to the handler when it is called. This
allows the same function to be used in varying circumstances.

A second list of handlers is called eh:condition-default-handlers. This list is scanned after
all of eh:condition-handlers has been used up; that is the only difference between the two lists.
The handlers work the same way.

The fundamental means of cstablishing a condition handler is the special form condition-
bind.

condition-bind (handlers...) body... , Special Form
condition-bind-default (handlers..) body... Special Form
A condition-bind form looks like this:
(condition-bind ((conditions handler-form additional-arg-forms. . .)
(conditions handler-form additional-arg-forms. . .))
body. . .)

The purpose is to exccute body with one or more condition handlers established.

Each list of conditions and handler-form establishes one handler. conditions is a condition
name or a list of condition names to which the handler should apply. It is not evaluated.
handier-form is ecvaluated to produce the function that is the actual handler. The
additional-arg-forms arc evaluated, on entry to the condition-bind, to produce additionai
arguments that will be passed to the handler function when it is called. The arguments to
the handler function will be the condition instance being signaled, followed by the values
of any additional-arg-forms.

conditions can be nil: then the handler will apply to all conditions that are signaled. In
this case it is up to the handler function to decide whether to do anything. It is
important for the handler to refrain from handling certain conditions that are used for
debugging, such as break and si:call-trap. The :debugging-condition-p operation on
condition instances will return non-nil for these conditions. Certain other conditions such
as syswirtual-memory-overflow should be handled only with great care. The
:dangerous-condition-p operation returns non-nil for these conditions.

condition-bind-default is like condition-bind but establishes a default handler instcad of
an ordinary handler. Default handlers work like ordinary handlers, but they are tried in a
different order: first all the applicable ordinary handlers are given a chance to handle the
condition, and then the default handlers get their chance. A more flexible way of doing
things like this is described under signal-condition (page 568).

SRCK1.MAN>ERRORS.TEXT.81 24-JAN-83

Handling Conditions 556 Lisp Machine Manual

Condition handlers that simply throw to the function that cstablished them are very common,
so there are special constructs provided for defining them.

condition-case (variables...) body-form clauses... Special Form
(condition-case (variable)
body-form

(condition-names forms. . .)

(condition-names forms. . .)

L)
body-form is exccuted with a condition handler ecstablished that will throw back to the
condition-case if any of the specified condition names is signaled.

Each list starting with some condition names is a clause, and specifics what to do if one
of those condition names is signaled. condition-names is either a condition name or a list
of condition names; it is not evaluated.

Once the handler per se has done the throw, the clauscs are tested in order until one is
found that applies. This is almost like a selectq, except that the signaled condition can
have several condition names, so the first clause that matches any of them gets to run.
The forms in the clause are executed with variable bound to the condition instance that
was signaled. The values of the last form in the clause are returned from the condition-
case form.

If none of the specified conditions is signaled during the exccution of body-form (or if
other handlers, established within body-form, handle them), then the values of body-form
are returned from the condition-case form.

variable may be omitted if it is not used.

It is also possible to have a clause starting with :no-error in place of a condition name.
This clause is executed if body-form finishes normally. Instead of just one variable there
can be several variables; during the execution of the :no-error clause, these are bound to
the values rcturned by body-form. The values of the last form in the clause become the
values of the condition-case form.

Here is an example:
(condition-case ()
(print foo)
(error (format t " <<Error in printing>>")))

condition-call ([variable]) body-form clauses... Special Form
condition-call is an extension of condition-case that allows you to give each clause an
arbitrary conditional expression instcad of just a list of condition names. It looks like this:
(condition-call (variable)
body-form
(predicate forms. . .)
(predicate forms. . .)

)

The difference between this and condition-case is the predicate in each clause. The

SRC:KIL.MAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machine Manual 557 Handling Conditions

clauses in a condition-call resemble the clauses of a cond rather than those of a selectq.

When a condition is signaled, cach predicate is executed while still within the environment
of the signaling (that is, within the actual handler function). predicate may refer to
variable to sce the condition instance. If any predicate returns non-nil, then the handler
throws to the condition-call and the corresponding clause’s forms are executed. If every
predicate returns nil, the condition is not handled by this handler.

In fact. cach predicate is computed a second time after the throw has occurred in order to
decide which clause to exccute. 'The code for the predicate is copied in two different
places; once into the handler function to decide whether to throw, and once in a cond
which follows the catch.

variable may be omitted if it is not used; but it is unlikely that you will not need to use
it

Example:
(condition-call (instance)
(do-it)
((and (condition-typep instance 'fs:file-error)
(not (condition-typep instance ’'fs:no-more-room)))

{compute-what-to-return)))
The condition name fs:no-more-room is a subcategory of fs:file-error; thus, this will
handlc all file errors except for fs:no-more-room.

Each of the four condition handler ecstablishing special forms has a conditional version that
decides at run time whether to establish the handlers.

condition-bind-if cond-form (handlers...) body... Special Form
(condition-bind-if cond-form
((conditions handler-form additional-arg-forms. . .)
(conditions handler-form additional-arg-forms. . .))
body. . .)
begins by cxccuting cond-form. 1f it returns non-nil, then all proceeds as for a regular
condition-bind. If cond-form returns nil, then the body is still executed but without the
condition handler.

condition-case-1if cond-form (variables..) body-form clauses... Special Form
(condition-case-if cond-form (variable)
body-form

(condition-names forms. . .)

(condition-names forms. . .)

ce)
begins by exccuting cond-form. If it returns non-nil, then all proceeds as for a regular
condition-case. If cond-form rcturns nil, then the body-form is still executed but without
the condition handler. body-form’s values are returned, or, if there is a :no-error clause,
it is exccuted and its values returned,

SRC:KLMAN>ERRORS.TEXT.81 24-JAN-83

Standard Condition Flavors 558 Lisp Machinc Manual

condition-call-if cond-form ([variable]) body-form clauses... Special Form
(condition-call-if cond-form (variable)
body-form

(predicate forms. . .)

(predicate forms. . .)

)
begins by cxecuting cond-form. If it returns non-nil, then everything proceeds as for a
regular condition-call. If cond-form returns nil, then the body-form is still executed but
without the condition handler. In that case, body-form’s valucs are always rcturned.

condition-bind-default-if cond-form (handlers...) body... Special Form
This is used just like condition-bind~if, but cstablishes a default handler instecad of an
ordinary handler.

eh:condition-handlers Variable
This is the list of established condition handlers. Each element looks like this:
(condition-names function additional-arg-values. . .)
condition-names is a condition name or a list of condition names, or nil which means all
conditions.

Sunction is the actual handler function.

additional-arg-values arc additional arguments to be passed to the function when it is
called. function’s first argument is always the condition instance.

Both the links of the value of eh:condition-handlers and the clements are usually created
with with-stack-list, so copy them if you want to save them for any pcriod of time.

eh:condition-default-handlers Variable
This is the list of established default condition handlers. The data format is the same as
that of eh:condition-handlers.

27.3 Standard Condition Flavors

condition Flavor
The flavor condition is the base flavor of all conditions, and provides a default definition
of all the operations described in this chapter.

condition incorporates si:property-list-mixin, which defines opcrations :get and :plist.
Each property name on the property list is also an operation name, so that sending the
:foo message is cquivalent to (send instance :get :fo0).

condition also provides two instance variables, eh:format-string and eh:format-args.
condition’s method for the the :report operation passes these to format to print the error
' message.

SRC:KLLMAN>ERRORS.TEXT.81 24-JAN-83

I.isp Machine Manual 559 Condition Operations

error Flavor
The flavor error makes a condition an error condition. errorp returns t for such
conditions, and the debugger is entered if they are signaled and not otherwise handled.

sys:no-action-mixin Flavor
This mixin provides a definition of the proceed type :no-action.

sys:proceed-with-value-mixin Flavor
This mixin provides a definition of the proceed type :new-value.

ferror Flavor
This flavor is a mixture of error, sys:no-action-mixin and sys:proceed-with-value-
mixin. It is the flavor used by default by the functions ferror and cerror, and is often
convenient for users to instantiate.

sys:warning Flavor
This flavor is a mixture of sys:no-action-mixin and condition.

sys:bad-array-mixin Flavor
This mixin provides a definition of the proceed type :new-array.

27.4 Condition Operations

Every condition instance can be asked to print an error message which describes the
circumstances that led to the signaling of the condition. The easicst way to print one is to print
the condition instance without slashification (princ, or format operation ~A). This actually uses
the report operation, which implements the printing of an error message. When a condition
instance is printed with slashification, it uscs the # c syntax so that it can be read back in.

:raport stream Operation on condition
Prints on stream the condition’s error message, a description of the circumstances for
which the condition instance was signaled. The output should neither start nor end with a
carriage return.

If you are defining a new flavor of condition and wish to change the way the error
message is printed, this is the operation to redefine. All others use this one.

:report-string Operation on condition
Returns a string containing the text that the :report operation would print.

Operations provided spccifically for condition handlers to use:

:dangerous-condition-p Operation on condition
Returns t if the condition instance is one of those that indicate events that are considered
extremely dangerous, such as running out of memory. Handlers that normally handle all
conditions might want to make an exception for these.

SRCKL.MAN>ERRORS.TEXT.81 24-JAN-83

Condition Operations 560 Lisp Machine Manual

:debugging-condition-p Operation on condition
Rewrns t if the condition instance is onc of those that arc signaled as part of debugging,
such as break, which is signaled when you type Meta-Break. These conditions are not
errors, although they will normally cnter the debugger; this serves to prevent most
condition handlers from handling them. But any condition handler which is written to
handle a/f conditions should probably make a specific cxception for these.

See also the operations :proceed-types and :proceed-type-p, which have to do with
proceeding (page 569).

27.4.1 Condition Operations for the Debugger

Some operations are intended for the debugger to use. They are documented because some
flavors of condition redefine them so as to cause the debugger to behave differently. This section
is of interest only to advanced users.

iprint-error-message stack-group brief-flag stream Operation on condition
This operation is used by the debugger to print a complete error message. This is done
primarily using the :report operation.

Certain flavors of condition define a :after :print-error-message method which, when
brief-flag is nil, prints additional helpful information which is not part of the error
message per se. Often this requires access to the stack group in addition to the data in
the condition instance. The method can assume that if brief-flag is nil then stack-group is
not the one which is executing.

For example, the condition signaled when you call an undefined function will check for
the case of calling a function such as bind that is mcaningful only in compiled code; if
that is what happened, it will scarch the stack to look for the name of the function in
which the call appears. This is information that is not considered crucial to the error
itself, and is therefore not recorded in the condition instance.

:maybe-clear-input siream Operation on condition
This operation is used on entry to the debugger to discard input. Certain condition
flavors, used by stepping redefine this operation to do nothing, so that the input will not
be discarded.

:bug-report-recipient-system Operation on condition
The value returned by this operation is used to determine what address to mail bug
reports to, when the debugger Control-M command is used. By default, it returns
"LISPM". The value is passed to the function bug.

:bug-report-description stream &optional Operation on condition
numeric-arg
This operation is used by the Control-M command to print on stream the information
that should go in the bug report. numeric-arg is the numeric argument, if any, that the
user gave to the Control-M command.

SRC:KL.MAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machinc Manual 561 Signaling Conditions

:find-current-frame stack-group Operation on condition
Returns the stack indices of the stack frames that the debugger should operate on.

The first value is the frame "at which the error occurred.” This is not the innermost stack
frame: it is outside the calls to such functions as ferror and signal-condition which were
used to signal the error.

The second value is the initial value for the debugger command loop’s current frame.

The third value is the innermost frame that the debugger should be willing to let the user
sce. By default this is the inncrmost active frame, but it is safe to usc an open but not
active frame within it.

The fourth value, if non-nil, tells the debugger to consider the innermost frame to be
“interesting”. Normally, frames that are part of the interpreter (calls to *eval, si:apply-
lambda, prog, cond, ctc.) are considered uninteresting.

This is a flavor operation so that certain flavors of condition can redefine it.

:debugger-command-loop stack-group &optional Operation on condition
error-object
Enters the debugger command loop. The initial error message and backtrace have already
been printed. This message is sent in an error handler stack group; stack-group is the
stack group in which the condition was signaled. error-object is the condition object which
was signaled; it defaults to the one the message is sent to.

This operation uses :or method combination (see section 20.11, page 350). Some
condition flavors add methods that perform some other sort of processing or enter a
different command loop. For example, unbound variable errors look for lock-alike
symbols in other packages at this point. If the added method returns nil, the original
method that enteres the usual debugger command loop is called.

27.5 Signaling Conditions

Signaling a condition has two steps, creating a condition instance and signaling the instance.
There are convenience interface functions that combine the two steps. You can also do them
separately. If you just want to signal an error and do not want to woITy much about condition
handling, the function ferror is all you need to know.

SRC:KLMAN>ERRORS.TEXT.81 24-JAN-83

Signaling Conditions 562 Lisp Machine Manual

27.5.1 Convenience Functions for Signaling

ferror &rest make-condition-arguments
ferror creates a condition instance using make-condition and then signals it with signal-
condition, specifying no local proceed types, and with t as the use-debugger argument so
the debugger is always entered if the condition is not otherwise handled.

The first argument to ferror is always a signal name (often nil). The sccond argument is
usually a format string and the remaining arguments are additional arguments for format;
but this is under the control of the definition of the signal name. Example:
(ferror ’sys:negative-sqgrt
"You cannot take the square root of ~S." number)

For compatibility with the Symbolics system, if the first argument to ferror is a string,
then a signal name of nil is assumed. The arguments to ferror arc passed on to make-
condition with an additional nil preceding them.

If you prefer, you can use the formatted output functions (page 422) to generate the error
message. Here is an example, though in a simple case like this using format is easier:
(ferror ’'sys:negative-sqrt
(format:outfmt "You cannot take the square root of "
(prinl number) ".")

number)
In this casc. arguments past the second onc are not used for printing the error message,
but the signal name may still ecxpect them to be present so it can put them in the
condition instance.

cerror proceed-type ignore &rest make-condition-arguments
Creates a condition instance by passing the make-condition-arguments to make-condition
and then signals it. If proceed-1ype is non-nil then it is provided to signal-condition as a
proceed type. For compatibility with old uses of cerror, if proceed-type is t, :new-value
is provided as the procced type. If proceed-type is :yes, :no-action is provided as the
proceed type.

The second argument to cerror is not used and is present for historical compatibility. It
may be given a new meaning in the future.

If a condition handler or the debugger decides to proceed, the second value it returns
becomes the value of cerror. -

check-arg var-name predicate description [type-symbol] Macro
The check-arg form is useful for checking arguments to make sure that they are valid.
A simple example is:
(check-arg foo stringp "a string")
foo is the name of an argument whose value should be a string. stringp is a predicate of
one argument, which returns t if the argument is a string. "a string" is an English
description of the correct type for the variable.

SRC:KI.MAN>ERRORS.TEXT.81 24-JAN-83

[Lisp Machine Manual 563 Signaling Conditions

The general form of check-arg is
(check-arg var-name

predicate

description

1ype-symbol)
var-name is the name of the variable whose value is of the wrong type. If the error is
proceeded, this variable will be setq’ed to a replacement value. predicate is a test for
whether the variable is of the correct type. It can be cither a symbol whosce function
definition takes one argument and rcturns non-nil if the type is correct, or it can be a
non-atomic form that is cvaluated to check the type and that presumably contains a
reference to the variable var-name. description is a string that cxpresses predicate in
English, to be used in error messages. fype-symbol is a symbol that is used by condition
handlers to determine what type of argument was expected. 1t may be omitted if it is to
be the same as predicate, which must be a symbol in that case.

The use of the fype-symbol is not really well-defined yet, but the intention is that if it is
numberp (for example), the condition handlers can tell that a number needed, and might
may to convert the actual supplicd value to a number and proceed.

[We need to establish a conventional way of “"registering” the type-symbols to be used for
various expected types. It might as well be in the form of a table right here.}

The predicate is usually a symbol such as fixp, stringp. listp, or closurep, but when
there isn’t any convenient predefined predicate, or when the condition is complex, it can
be a form. In this case you should supply a fype-symbol that encodes the type. For
example:
(check-arg a
(and (numberp a) (< a 10.) (> a 0.))
"a number from one to ten"
one-to-ten)
If this error got to the debugger, the message
The argument a was 17, which is not a number from one to ten.
would be printed.

In general, what constitutes a valid argument is specified in three ways in a check-arg.
description is human-understandable, type-symbol is program-understandable, and predicate
is exccutable. It is up to the user to ensure that these threc specifications agree.

check-arg uses predicate to determine whether the valuc of the variable is of the correct
type. If it is not, check-arg signals the sys:wrong-type-argument condition (see page
38). If a handler procceds, using procced type :new-value, the variable is set to the
value proceeded with, and check-arg starts over, checking the type again.

check-arg-type var-name 1ype-name [description] Macro
This is a useful variant of the check-arg form. A simple example is:
(check-arg foo :number)
foo is the name of an argument whose value should be a number. :number is a value
that is passed as a second argument to typep (scc page 11); that is, it is a symbol that
specifies a data type. The English form of the type name, which gets put into the error

SRC:KLLMAN>ERRORS.TEXT.81 24-JAN-83

Signaling Conditions 564 Lisp Machine Manual

message, is found automatically.

The general form of check-arg-type is:
(check-arg-type var-name
Iype-name
description)
var-name is the name of the variable whose value is of the wrong type. If the crror is
proceeded this variable will be setg’ed to a replacement value. fype-name describes the
type that the variable’s value ought to have. It can be cxactly those things acceptable as
the second argument o typep. description is a string that expresses predicate in English,
to be used in crror messages. It is optional. If it is omitted, and fype-name is onc of the
keywords accepted by :typep, which describes a basic Lisp data type, then the right
description will be provided correctly. If it is omitted and 1ype-name describes some other
data type, then the description will be the word "a" followed by the printed
representation of fype-name in lower-case.

. The remaining signaling functions are provided for compatibility only.

arror &rcst make-condition-arguments
error exists for compatibility with Maclisp and the Symbolics version of Zetalisp. It takes
arguments in three patterns:;
(error string object [interrupt])
which is used in Maclisp, and
(error condition-instance)
(error flavor-name init-options. . .)
which are used by Symbolics. (In fact, the arguments to error are simply passed along to
make-condition if they do not appear to fit the Maclisp pattern).

If the Maclisp argument pattern is not used, then there is no difference between error
and ferror.

fsignal format-siring &rest format-args
This function is for Symbolics compatibility only, and is equivalent to
(cerror ’:no-action nil nil format-string format-args. . .)

signal signal-name &rest remaining-make-condition-arguments
The signal-name and remaining-make-condition-arguments are passed to make-condition,
and the result is signaled with signal-condition.

If the remaining-make-condition-arguments are keyword arguments and :proceed-types is
one of the keywords. the associated value is used as the list of proceed types. In
particular, if signal-name is actually a condition instance, so that the remaining arguments
will be ignored by make-condition, it works to specify the proceed types this way.

If the proceed types are not specified, a list of all the proceed types that the condition
instance knows how to prompt the user about is used by default.

SRC:KI.MAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machine Manual 565 Signaling Conditions

errset form [flag] Special Form

The errset special form catches crrors during the evaluation of form. If an error occurs,
the usual error message is printed unless flag is nil. Then control is thrown and the
errset-form returns nil. flag is evaluated first and is optional, defaulting to t. If no error
occurs, the value of the errset-form is a list of one clement, the value of form.

errset is implemented in an ad-hoc fashion, which is still supported so that old compiled
code will continue to run. It may be changed in the future to compile using condition-
case. Mecanwhile, many uscs of errset or errset-like constructs really ought to be
checking for more specific conditions instead.

catch-error form [flag] Special Form

catch-error is a variant of errset. This special form catches errors during the evaluation
of form and returns two values. Normally the - first value is the value of form and the
second value is nil. If an error occurs, the usual crror message is printed unless flag is
nil, and then control is thrown out of the catch-error form, which returns two values,
first nil and sccond a non-nil value that indicates the occurrence of an error. flag is
evaluated first and is optional, defaulting to t.

errset Variable

err

If this variable is non-nil, errset forms are not allowed to trap errors. The debugger is
entered just as if there were no errset. This is intended mainly for debugging. The initial
value of errset is nil.

Special Form
This is for Maclisp compatibility only and should not be used.

{err) is a dumb way to cause an error. If executed inside an errset, that errset returns
nil, and no message is printed. Otherwise an unseen throw-tag error occurs.

(err form) evaluates form and causes the containing errset to return the result. If executed
when not inside an errset, an unsecn throw-tag error occurs.

(err form flag), which exists in Maclisp, is not supported.

27.5.2 Creating Condition Instances

You can create a condition instance quite satisfactorily with make-instance if you know
which instance variables to initialize. For example,

(make-instance ’ferror ’':condition-names ’(foo0)
>:format-string "~S loses."
’:format-args losing-object)

creates an instance of ferror just like the one that would be signaled if you do

(ferror 'foo "~S loses." losing-object)

Note that the flavor name and its components’ names are added in automatically to whatever

you specify for the :condition-names keyword.

SRCKI.MAN>ERRORS.TEXT .81 24-JAN-83

Signaling Conditions 566 I.isp Machine Manual

Direct use of make-instance is cumbersome. however, and it is usually handicr to define a
signal name with defsignal or defsignal-explicit and then create the instance with make-
condition.

A signal name is a sort of abbreviation for all the things that arc always the same for a
certain sort of condition: the flavor to use, the condition names. and what arguments are
cxpected. In addition, it allows you to use a positional syntax for the arguments. which is usually
more convenient than a keyword syntax in simple use.

Here is a typical defsignal:
(defsignal series-not-convergent sys:arithmetic-error (series)
"Signaled by Timit extractor when SERIES does not converge.")
This defines a signal name series-not-convergent, together with the name of the flavor to use
(sys:arithmetic-error, whose meaning is being stretched a little), an interpretation for the
arguments (series, which will be cxplained below), and a documentation string. The
documentation string is not used in printing the crror message; it is documentation for the signal
name.

series-not-convergent could then be used to signal an error, or just to create a condition
instance, like this:
(ferror ’'series-not-convergent
"The series ~S went to infinity." myseries)

(make-condition ’series-not-convergent
"The series ~S went to infinity." myseries)

The list (series) in the defsignal is a list of implicit instance variable names. They are
matched against arguments to make-condition following the format string, and cach implicit
instance variable name becomes an operation defined on the condition instance to return the
corresponding argument. (You can imagine that :gettable-instance-variables is in cffect for all
the implicit instance variables.) In this cxample, sending a :series message to the condition
instance will rcturn the value specified via myseries when the condition was signaled. The
implicit instance variables arc actually implemented using the condition instance’s property list.

Thus, defsignal spares you the nced to create a new flavor merely in order to remember a
particular datum about the condition.

defsignal signal-name (flavor condition-names...) Special Form
implicit-instance-variables documentation extra-init-keyword-forms
Defines signal-name to create an instance of flavor with condition names condition-names,
and implicit instance variable whosc names are taken from the list implicit-instance-
variables and whose values are taken from the make-condition arguments following the
format string.

Instead of a list (flavor condition-names...) there may appear just a flavor name. This is
cequivalent to using signal-name as the sole condition name.

SRC:KI.MAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machine Manual 567 Signaling Conditions

The extra-init-keyword-forms arc forms to be cvaluated to produce additional keyword
arguments to pass to make-instance. These can be used to initialize other instance
variables that particular flavors may have. These cxpressions can refer to the implicit-
instance-variables.

defsignal-explicit signal-name (flavor condition-names...) Special Form
signal-arglist documentation init-keyword-forms...
Like defsignal, defsignal-explicit defines a signal name. This signal name is used the
same way, but the way it goes about creating the condition instance is different.

First of all, there is no list of implicit instance variables. Instcad, signal-arglist is a
lambda list which is matched up against all the arguments to make-condition except for
the signal-name itself. The variables bound by the lambda list can be used in the init-
keyword-forms, which are cvaluated to get arguments to pass to make-instance. For
example:
(defsignal-explicit mysignal-3
(my-error-flavor mysignal-3 my-signals-category)
(format-string losing-object &rest format-args)
"The third kind of thing I 1ike to signal."
*:format-string format-string
*:format-args (cons losing-object (copylist format-args))
’:losing-object-name (send losing-object ’:name))
Since implicit instance variables arc really just propertics on the property list of the
instance, you can crecatec them by using init keyword :property-list. The contents of the
property list determines what implicit instance variables there will be and their values.

make-condition signal-name &rest arguments
make-condition is the fundamental way that condition instances are created. The signal-
name says how to interpret the arguments and come up with a flavor and values for its
instance variables. The handling of the argumenits is entirely determined by the signal-
name.

If signal-name is a condition instance, make-condition returns it. It is not useful to call
make-condition this way cxplicitly, but this allows condition instances to be passed to
the convenience functions error and signal which call make-condition.

If the signal-name was defined with defsignal or defsignal-explicit, then that definition
specifies exactly how to interpret the arguments and create the instance. In general, if the
signal-name has an eh:make-condition-function property (which is how defsignal works),
this property is a function to which the signal-name and arguments are passed, and it does
the work.

Alternatively, the signal-name can be the name of a flavor. Then the argumenis are
passed to make-instance, which interprets them as init keywords and values. This mode
is not really recommended and exists for compatibility with Symbolics software.

If the signal-name has no eh:make-condition-function property and is not a flavor name,
then a trivial defsignal is assumed as a default. It looks like this:

SRCKI.MAN>ERRORS.TEXT .81 24-JAN-83

Signaling Conditions 568 Lisp Machine Manual

(defsignal signal-name ferror ())
So the value is an instance of ferror, with the signal-name as a condition name, and the
arguments arc interpreted as a format string and args for it.

The signal-name nil actually has a dcfinition of this form. nil is frequently used as a
signal name in the function ferror when there is no desire to usc any condition name in
particular.

27.5.3 Signaling a Condition Instance

Once you have a condition instance, you are rcady to invoke the condition handling
mechanism by signaling it. A condition instance can be signaled any number of times, in any
stack groups.

signal-condition condition-insiance &optional proceed-iypes invoke-debugger
ucode-error-status inhibit-resume-handlers
Invoke the condition handling mechanism on condition-instance. The list of proceed-types
says which proceed types (among those conventionally defined for the type of condition
you have signaled) you arc prepared to implement, should a condition handler return one
(sce "proceeding”). These are in addition to any procced types implemented nonlocally by
condition-resume special forms.

signal-condition returns to its caller only if it decides to proceed using one of the
proceed-types, or if the condition is not an error and therc arc no nonlocal proceed types
to be used, or if inhibit-resume-handlers is non-nil.

ucode-error-status is used for internal purposes in signaling ecrrors detected by the
microcode.

signal-condition tries various possible handlers for the condition. Each handler that is tried
can terminate the act of signaling by throwing out of signal-condition, or it can specify a way to
proceed from the signal. The handler can also decline to handle the condition, and then the next
possible handler is tried.

First eh:condition-handlers is scanned for handlers that are applicable (according to the
condition names they specify) to this condition instance. After this list is exhausted,
eh:condition-default-handlers is scanned the same way.

Finally, if invoke-debugger is non-nil, the debugger is the handler of last resort. With the
debugger, the user can ask to throw or to procced. The default value of invoke-debugger is non-
nil if the condition-instance is an error.

It is possible for all handlers to decline the condition, if thc debugger is not among the
handlers tried. (The debugger cannot “decline to handlc the condition”.) In this circumstance,
signal-condition proceeds using the first proceed type on the list of available ones, provided it is
a nonlocal proceed type. If it is a local proceed type, or if there arc no proceed types, signal-
condition just rceturns nil. (It would be slightly simpler to procced using the first proceed type
whether it is local or not. But in the case of a local proceed type, this would just mean returning
the proceed type instead of nil. 1t is considered slightly more uscful to return nil, allowing the

SRC:KI.MAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machinc Manual 569 A Proceeding

signaler to distinguish the case of a condition not handled. The signaler knows which proceed
types it specified, and can casily consider nil as cquivalent to the first of them.)

Otherwise, by this stage, a proceed type has been chosen from the available list. If the
procecd type was among those specified by the caller of signai-condition, then proceeding
consists simply of rcturning to that caller. The chosen proceed type is the first value, and
arguments (returncd by the handler along with the proceed type) may follow it. If the proceed
type was implemented nonlocally with condition-resume (sce page 575), then the associated
~ proceed handler function on eh:condition-resume -handlers is called.

If inhibit-resume-handlers is non-nil, resume handlers are not invoked. If a handler returns a
nonlocal proceed type, signal-condition just returns to its caller as if the proceed type were local.
If the condition is not handled, signal-condition returns nil.

The purpose of condition-bind-default is so that you can define a handler that will handle
an crror only if it is not handled by any of the callers’ handlers. A more flexible technique for
doing this sort of thing is to make the condition handler signal the same condition instance
recursively by calling signal-condition, like this:

(multiple-value-list
(signal-condition condition-instance
eh:condition-proceed-types nil nil t))
This passes along the same list of proceed types specified by the original signaler, prevents the
debugger from being called, and prevents resume handlers from being run. If the first value
signal-condition returns is non-nil, one of the outer handlers has handicd the condition; your
handler’s simplest option is to return those same values so that the other handler has its way (but
you could also cxamine them and return modified values). Otherwise, you go on to handle the
condition in your default manner.

eh:trace-conditions Variable
This variable may be sct to a list of condition names to be fraced. Whenever a condition
possessing a traced condition name is signaled, an error is signaled to report the fact.
(Tracing of conditions is turned off when this error is signaled). Proceeding with proceed
type :no-action causes the signaling of the original condition to continue.

If eh:trace-conditions is t, all conditions are traced.

27.6 Proceeding

Both condition handlers and the user (through the debugger) have the option of proceeding
certain conditions.

Each condition name can define, as a convention, certain proceed types, which are keywords
that signify a certain conceptual way to proceed. For example, condition name sys:wrong-type-
argument defines the proceed type :argument-value which means, "Here is a new value to use
as the argument.”

Each signaler may or may not implement all the proceed types which are meaningful in
general for the condition names being signaled. For example, it is futile to proceed from a

SRC:KLLMAN>ERRORS.TEXT .81 24-JAN-83

Proceeding 570 Lisp Machine Manual

sys:wrong-type-argument crror with :argument-value unless the signaler knows how to take the
associated value and store it into the argument, or do somecthing elsc that fits the conceptual
specifications of :argument-value. For some signalers, it may not make sense to do this at all.
Therefore. onc of the arguments to signal-condition is a Jist of the proceed types that this
particular signaler knows how to handle.

In addition to the proceed types specified by the individual signaler, other proceed types can
be provided nonlocally; they are implemented by a resume handler which is in effect through a
dynamic scope. Sce below, section 27.6.3, page 575.

A condition handler can use the operations :proceed-types and :proceed-type-p on the
condition instance to find out which proceed types are available. It can request to proceed by
rcturning one of the available proceed types as a value. This value is returned from signal-
condition, and the condition’s signaler can take action as appropriate.

If the handler returns more than onc value. the remaining valucs are considered arguments of

the proceed type. The meaning of the arguments to a proceed type, and what sort of arguments
“are ecxpected. are part of the conventions associated with the condition name that gives the
procced type its meaning. For example, the :argument-value proceed type for sys:wrong-type-
argument crrors conventionally takes one argument, which is the new value to use. All the
values returned by the handler are returned by signal-condition to the signaler.

Here is an example of a condition handler that proceeds from sys:wrong-type-argument
errors. It makes any atom effectively cquivalent to nil when used in car or any other function
that expects a list. The handler uses the :description operation, which on sys:wrong-type-
argument condition instances returns a keyword describing the data type that was desired.

(condition-bind
((sys:wrong-type-argument
#'(lambda (condition)
(if (eq (send condition ’':description) ’:cons)
(values ’:argument-value nil)})))
body. . .)

Here the argument to the :argument-value proceed type is nil.

:proceed fypes Operation on condition
Returns a list of the proceed types available for this condition instance. This operation
should be used only within the signaling of the condition instance, as it refers to the
special variable in which signal-condition stores its second argument.

sproceed-type-p proceed-type Operation on condition
t if proceed-type is one of the proceed types available for this condition instance. This
operation should be used only within the signaling of the condition instance, as it refers
to the special variable in which signal-condition stores its second argument.

SRC:KLMAN>ERRORS.TEXT.81 24-JAN-83

[isp Machine Manual 571 Procceding

27.6.1 Proceeding and the Debugger

If the condition invokes the debugger, then the user has the opportunity to proceed. This too
uscs a proceed type. When the debugger is entered, each of the available proceed types is
assigned a command character starting with Super-A. Each character becomes a command to
proceed using the corresponding proceed type.

Three additional facilities are required to make it convenient for the user to procced using the
debugger. Each is provided by methods defined on condition flavors. When you define a new
* condition flavor, you must provide methods to implement these facilities.

Documentation:
It must be possible to tell the user what each proceed type is for.

Prompting for arguments:
The user must be asked for the arguments for the procced type. Each proceed type may
have different arguments to ask for.

Not always the same proceed types:
Usually the user can choose among the same set of proceed types that a handler can, but
sometimes it is useful to provide the user with a few extra ones, or to suppress some of
them for him.

These three facilities are provided by methods defined on condition flavors. Each proceed
type that is provided by signalers should be accompanied by suitable methods. This means that
you must normally define a new flavor if you wish to use a new proceed type.

The :document-proceed-type operation is supposed to print documentation of what a
proceed type is for. For example, when sent to a condition instance describing an unbound-
variable error, if the proceed type specified is :new-value, the text printed will be something like
"Proceed, reading a value to usc instead.”

:document-proceed-type proceed-type stream Operation on condition
Prints on stream a description of the purpose of procced type proceed-type. This operation
uses :case method combination (see section 20.11, page 350), to make it convenient to
define the way to document an individual proceed type. The string printed should start
with a third person singular verb form, in lower case, and end with a period.

As a last resort, if the condition instance has a :case method for :proceed-asking-user
with proceed-type as the suboperation, and this method has a documentation string, it is
printed. This is in fact the usual way that a proceed type is documented.

The :proceed-asking-user operation is supposed to ask for suitable arguments to pass with

the proceed type. Sending :proceed-asking-user to an instance of sys:unbound-variable with
argument :new-value would read and evaluatc one expression, prompting appropriately.

SRC:K<1.MAN>ERRORS.TEXT.81 24-JAN-83

Procceding 572 Lisp Machine Manual

:proceed-asking-user proceed-type cont read-object-fn Operation on condition
The method for :proceed-asking-user embodics the knowledge of how to prompt for
and read the additional arguments that go with proceed-type.

:case mcthod combination is used (see section 20.11, page 350), making it possible to
definc the handling of cach proceed type individually in a scparatc function. The
documentation string of the :case mecthod for a proceed type is also used as the default
for :document-proceed-type on that proceed type.

The method for :proceed-asking-user should read values by calling read-object-fn, using
a calling scquence like that of prompt-and-read. The read-object-fi may or may not
acwally use prompt-and-read. After rcading the appropriate number and sort of values
to go with the particular proceed type, the method should call the continuation cont with
a proceed type and suitable arguments (presumably based on what the user typed). The
proceed type passed to cont need not be the same as the one given to :proceed-asking-
user; it should be one of the proceed types available for handlers to use.

Here is how sys:proceed-with-value-mixin provides for the proceed type :new-value:
(defmethod (proceed-with-value-mixin
:case :proceed-asking-user :new-value)
(continuation read-object-function)
"Proceeds, reading a value to use instead."
(funcall continuation ':new-value
(funcall read-object-function
’:eval-read
"~&Form whose value to use instead: ")))
Note the documentation string, which is provided for the sakc of the :document-proceed-type
operation.

The :user-proceed-types operation is given the list of proceed types actually available and is
supposed to return the list of proceed types to offer to the user. By default, this operation
returns its argument: all procced types are available to the user through the debugger.

For example, the condition name sys:unbound-variable conventionally defines the proceed
types :new-value and :no-action. The first specifies a new value; the sccond attempts to use the
variable’s current value and gets another error if the variable is still unbound. These are clean
operations for handlers to use. But it is morc convenient for the user to be offered only one
choice, which will usc the variable’s new value if it is bound now, but otherwise ask for a new
value. 'This is implemented with a :user-proceed-types mcthod that replaces the two proceed
types with a single one.

Or, you might wish to offer the user two different proceed types that differ only in how they
ask the user for additional information. For handlers, there would be only one proceed type.

SRC:KLLMAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machine Manual 573 Proceeding

:user-proceed-types proceed-iypes Operation on condition
Assuming that proceed-types is the list of proceed types available for condition handlers to
return, this operation returns the list of proceed types that the debugger should offer to
the user

Only the proceed types offered to the user need to be handled by :document-proceed-
type and :proceed-asking-user.

The flavor condition itself defines this to return its argument. Other condition flavors
may redefine this to filter the argument in some appropriate fashion.

:pass-on method combination is used (sce section 20.11, page 350), so that if multiple
mixins define methods for :user-proceed-types, each method will get a chance to add
or remove proceed types. ‘The methods should not actually modify the argument, but
should cons up a new list in which certain keywords are added or removed according to
the other keywords that are there.

Flements should be removed only if they are specifically recognized. This is to say. the
method should make surc that any unfamiliar elements present in the argument are also
present in the value. Arranging to omit certain specific proceed types is legitimate;
returning only the intersection with a constant list is not legitimate.

Here is an example of nontrivial use of :user-proceed-types:
(defflavor my-error () (error))

(defmethod (my-error :user-proceed-types) (proceed-types)
(if (memq ':foo proceed-types)
(cons ’:foo-two-args proceed-types)
proceed-types))

(defmethod (my-error :case :proceed-asking-user :foo0)
{cont read-object-fn)
"Proceeds, reading a value to foo with."
(funcall cont ’:foo
(funcall read-object-fn ’:eval-read
"Value to foo with: ")))

{defmethod (my-error :case :proceed-asking-user :foo-two-args)
{(cont read-object-fn)
"Proceeds, reading two values to foo with."
(funcall cont ’:foo
(funcall read-object-fn ’:eval-read
"Value to foo with: ")
(funcall read-object-fn ’:eval-read
"Value to foo some more with: ")))

In this example, if the signaler provides the proceed type :foo, then it is described for the

user as "proceeds, reading a valuc to foo with”; and if the user specifies that proceed type, he
will be asked for a single value, which will be used as the argument when proceeding. In

SRCKL.MAN>ERRORS.TEXT.81 24-JAN-83

Proceeding 574 Lisp Machinc Manual

addition, the wuser will be offered the proceed type :foo-two-args, which has its own
documentation and which reads two values. But for condition handlers there is really only one
proceed type, :foo. :foo-two-args is just an alternate interface for the user to proceed type :foo,
and this is why the :user-proceed-types mcthod offers :foo-two-args only if the signaler will
accept :foo.

27.6.2 How Signalers Provide Proceed Types

Each condition name defines a conceptual meaning for certain procced types, but this does
not mean that all of thosc proceed types may be used every time the condition is signaled. The
signaler must specifically implement the proceed types in order to make them do what they are
conventionally supposed to do. For some signalers it may be difficult to do, or may not even
make sensc. For example, it is no usc having a proceed type :store-new-value if the signaler
does not have a suitable place to store, permanently, the argument the handler supplies.

Therefore, we require cach signaler to specify just which proceed types it implements. Unless
the signaler explicitly specifies proceced types one way or another, no proceed types are allowed
(except for nonlocal ones, described in the following scction).

One way to specify the proceed types allowed is to call signal-condition and pass the list of
proceed types as the second argument.

Another way that is less general but morc convenient is signal-proceed -case.

signal-proceed-case ((variables..) make-condition-arguments...) Special Form
clauses...
signal-proceed-case is a convenient special form for signaling a condition and providing
proceed types. Each clause specifics a proceed type to provide, and also contains code to
be run if a handler should procced with that proceed type.

(signal-proceed-case ((argument-vars..)
signal-name signal-name-arguments. . .)
(proceed-type forms. . .)
(proceed-type forms. . .)

)

A condition-object is created with make-condition using the signal-name and signal-name-
arguments; then it is signaled giving a list of the procecd types from all the clauses as the
list of proceed types allowed.

The variables argument-vars are bound to the values returncd by signal-condition, except
for the first value, which is tested against the proceed-type from each clause, using a
selectq. The clause that matches is executed.

SRC:KI.MAN>LERRORS.TEXT.81 24-JAN-83

1isp Machine Manual 515 Proceeding

Example:
(defsignai my-wrong-type-arg
(eh:wrong-type-argument-error sys:wrong-type-argument)
(old-value arg-name description)

Wrong type argument from my own code.")

(signal-proceed-case
{(newarg)
‘my-wrong-type-arg
"The argument ~A was ~S, which is not a cons.”
*foo foo ’cons)
(:argument-value (car newarg)))
The signal name my-wrong-type-arg creates crrors with condition name sys:wrong-type-
argument. The signal-proceed-case shown signals such an error, and handles the proceed type
:argument-value. If a handler proceeds using that proceed type, the handler’s value is put in
newarg, and then its car is returned from the signal-proceed-case.

27.6.3 Nonlocal Proceed Types

When the caller of signal-condition specifies procced types, these are called local proceed
ypes. They are implemented at the point of signaling. There are also nonlocal proceed types,
which are in cffect for all conditions (with appropriatc condition names) signaled during the
exccution of the body of the cstablishing special form.

The most general form for establishing a resume handler is condition-resume. For example,
in
(condition-resume
"(fs:file-error :retry-open t
("proceeds, opening the file again.")
(1ambda (ignore) (*throw 'tag nil)))
(do-forever
(*catch ’tag (return (open pathname)))))
the proceed type :retry-open is available for all fs:file-error conditions signaled within the call to
open.

condition-resume handler-form &body body Special Form

condition-resume-if cond-form handler-form &body body Special Form
Executes body with a resume handler in effect for a nonlocal proceed type according to
the value of handler-form. For condition-resume-if, the resume handler is in effect only
if cond-form’s value is non-nil.

The value of the handler-form should be a list with at least five elements:

(condition-names proceed-type predicate format-string-and-args
handler-function additional-args)

SRC:KL.MAN>ERRORS.TEXT .81 24-JAN-83

Proceeding 576 I.isp Machine Manual

condition-names is a condition name or a list of them. The resume handler applies to
those conditions only.

proceed-type is the proceed type implemented by this resume handler.

predicate is cither t or a function that is applied to a condition instance and dctermines
whether the resume handler is in cffect for that condition instance.

Jormat-string-and-args is a list of a string and additional arguments that can be passed to
format to print a description of what this proceed type is for.

handler-function is the function called to do the work of proceeding, once this proceed
type has been returned by a condition handler or the debugger. Its arguments are the
condition instance and the additional-args.

For condition handlers there is no distinction between local and nonlocal proceed types. They

are both included in the list of available proceed types returned by the :proceed-types operation

"(all the local proceed types come first), and the condition handler selects one by returning the

procced type and any conventionally associated arguments. The debugger's :user-proceed-types,
.document-proceed-type and :proceed-asking-user opcrations are also used the same way.

The difference comes after the handler or the debugger returns to signal-condition. If the
proceed type is a local one (onc of those in the second argument to signal-condition), signal-
condition simply returns. If the proceced type is not there, signal-condition looks for the
handler-function associated with the proceed type, and calls it. The arguments to the handler
function are the condition instance, the additional-args specified in the resume handler, and any
arguments returned by the condition handler in addition to the procced type. The handler
function is supposed to do a throw. If it returns to signal-condition, an error is signaled.

You are allowed to use "anonymous” nonlocal procecd types, which have no conventional
meaning and are not specially known to the :document-proceed-type and :proceed-asking-
user operations. The anonymous proceed type need not cven be a symbol, and in practice they
are frequently lists consed at run time (often using with-stack-list) to make sure they are all
distinct. The default definition of :proceed-asking-user handles an anonymous proceed type by
simply calling the continuation passed to it, reading no arguments. The default definition of
:document-proceed-type handles anonymous proceed types by passing format the formar-string-
and-args list found in the resume handler (this is what that list is for).

Anonymous proceed types are treated like other proceed types except as noted above. Proceed
types that are lists are treated a little bit specially. For onc thing, they are all put at the end of
the list returned by the :proceed-types opecration. For another, the debugger command
Control-C or Resume, which normally proceeds using the first proceed type on that list, will not
operate at all if that procced type is a list.

Anonymous proceed types are usually created with some variant of error-restart.

SRC:KI.MAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machine Manual 577 Procceding

error-rastart (condition-names format-string format-args...) Special Form
body...

error-restart-loop Special Form

catch-error-restart Special Form

catch-error-restart-if cond-forn (condition-names Special Form

Jormat-string format-args...) body...
Exccutes body with an anonymous resume handler for condition-names. condition-names is
cither a single condition name or a list of them, or nil meaning all conditions; it is not
cvaluated.

format-string and the format-args, all of which arc evaluated, are used by the
:document-proceed-type operation to describe the anonymous proceed type.

If the proceed type is used for proceeding, the automatically gencrated resume handler
function does a throw back to the error-restart and the body is exccuted again from the
beginning. If body returns, the values of the last form in it are returned from the error-
restart form.

error-restart-loop is like error-restart except that it loops to the beginning of body
even if body completes normally. It is like enclosing an error-restart in a do-forever.

catch-error-restart is like error-restart except that it never loops back to the beginning.
If the anonymous proceed type is used for proceeding, the catch-error-restart form
returns with nil as the first value and a non-nil second value.

catch-error-restart-if is like catch-error-restart except that the resume handler is only
in effect if the value of the cond-form is non-nil.

All of these variants of error-restart can be written in terms of condition-resume-if.

error-restart forms often specify (error sys:abort) as the condition-names. The presence of
error causes them to be listed (and assigned command characters) by the debugger, for all errors,
and the presence of sys:abort causes the Abort key to use them. These forms are typically used
by any sort of command loop, so that aborting within the command loop returns to it and reads
another command. error-restart-loop is often right for simple command loops. catch-error-
restart is useful when aborting should terminate exccution rather than retry, or with an explicit
conditional to test whether a throw was done.

eh:invoke-resume-handler condition-instance proceed-type &rest args
Invokes the innermost applicable resume handler for proceed-type. Applicability of a
resume handler is determined by matching its condition names against those possessed by
condition-instance and by applying its predicate, if not t, to condition-instance.

If proceed-type is nil, the innermost applicable resume handler is invoked regardless of its
proceed type. However, in this case, the scan stops if t is encountered as an element of
eh:condition-resume-handlers.

SRCKLL.MAN>ERRORS.TEXT.81 24-JAN-83

The Debugger 578 Lisp Machine Manual

eh:condition-resume-handlers Variable

The current fist of resume handlers for nonlocal proceed types. condition-resume works
by binding this variable. FElements are usually lists that have the format described above
under condition-resume. The symbol t is also meaningful as an clement of this list. It
terminates the scan for a resume handler when it is made by signal-condition for a
condition that was not handled. t is pushed onto the list by break loops and the
debugger to shield the evaluation of your type-in from automatic invocation of resume
handlers cstablished outside the break loop or the error.

The links of this list, and its clements, are often created with with-stack-list. so be
careful if you try to save the value outside the context in which you examine it.

sys:abort (condition) Condition
This condition is signaled by the Abort key: it is how that key is implemented. Most
command loops use some version of error-restart to set up a resume handler for
sys:abort so that it will return to the innermost command loop if (as is usually the case)
no handler handles it. These resume handlers usually apply to error as well as sys:abort,
so that the debugger will offer a specific command to return to the command loop.

27.7 The Debugger

When an error condition is signalled and no handlers decide to handle the error, an
interactive debugger is entered to allow the user to look around and see what went wrong, and to
help him continue the program or abort it. This section describes how to use the debugger.

27.7.1 Entering the Debugger

There are two kinds of errors: those generated by the Lisp Machine’s microcode, and those
generated by Lisp programs (by using ferror or related functions). When there is a microcode
error, the debugger prints out a message such as the following:

>>TRAP 5543 (TRANS-TRAP)
The symbol FOOBAR is unbound.
While in the function *EVAL « SI:LISP-TOP-LEVEL1

The first line of this error message indicates entry to the debugger and contains some
- mysterious internal microcode information: the micro program address, the microcode trap name
and parameters, and a microcode backtrace. Users can ignore this line in most cases. The second
line contains a description of the error in English. The third linc indicates where the error
happened by printing a very abbreviated "backtrace™ of the stack (scc below); in the example, it
is saying that the error was signalled inside the function *eval, which was called by sislisp-top-
levell.

Here is an example of an error from Lisp code:
>>ERROR: The argument X was 1, which is not a symbol,
While in the function FOO « *EVAL « SI:LISP-TOP-LEVEL1

SRC:KL.MAN>ERRORS.TEXT.81 24-JAN-83

Lisp Machine Manual 579 The Debugger

Here the first line contains the English description of the error message, and the second line
contains the abbreviated backtrace. foc signalled the crror by calling ferror; however, ferror is
censored out of the backtrace.

After the debugger’s initial message, it prints the function that got the error and its
arguments. Then it prints a list of commands you can use to proceed from the error, or to abort
to various command loops. The possibilitics depend on the kind of crror and where it happened,
so the list is different cach time; that is why the debugger prints it. The commands in the list all
start with Super-A, Super-B and continue as far as is necessary.

eh:*inhibit-debugger-proceed-prompt* Variable
If this is non-nil, the list of Super commands is not printed when the debugger is
entered. Type Help X to see the list.

debug-io Variable
The debugger uses this stream for its 1/0. Normally, the value is a synonym stream
which indirects to the value of terminal-io.

The value of this variable in the stack group in which the error was signaled is the one
that counts.

The debugger can be manually entered either by causing an crror (e.g. by typing a ridiculous
symbol name such as ahsdgf at the Lisp read-eval-print loop) or by typing the Break key with
the Meta shift held down while the program is rcading from the terminal. Typing the Break key
with both Control and Meta hcld down will force the program into the debugger immediately,
even if it is running. If the Break key is typed without Meta, it puts you into a rcad-cval-print
loop using the break function (sce page 644) rather into the debugger.

eh process
Stops process and calls the debugger on it so that you can look at its current state. Exit
the debugger with the Control-Z command and eh will release the process and return.
process can be a window, in which case the window’s process will be used.

If process is not a process but a stack group, the current state of the stack group will be
examined. The caller should ensure that no one tries to resume that stack group while
the dcbugger is looking at it.

27.7.2 How to Use the Debuggér

Once inside the debugger, the user may give a wide variety of commands. This section
describes how to give the commands, then explains them in approximate order of usefulness. A
summary is provided at the end of the listing.

When the debugger is waiting for a command, it prompts with an arrow:

SRCKL.MAN>DEBUG.TEXT.6 24-JAN-83

The Debugger 580 l.isp Machine Manual

If the error took place in the evaluation of an cxpression that you typed at the debugger, you
are in a sccond (or deeper) level error. The number of arrows in the prompt indicates the depth.

The debugger will also warn you about certain unusual circumstances that may cause
paradoxical results. 1f default-cons-area is anything except working-storage-area, a message
to that cffegigis printed. If base and ibase are not the same, a message is printed. .o

At this point, you may type cither a Lisp expression or a command: a Control or Meta
character is interpreted as a command, whereas most normal characters arc interpreted as the first
character of an cxpression. If you type the Help key or the ? key, you will get some
introductory help with the debugger.

If you type a Lisp expression, it will be interpreted as a Lisp form and will be cvaluated in
the context of the function which got the error. That is, all bindings which were in cffect at the
time of the crror will be in effect when your form is evaluated, with certain exceptions explained
below. The result of the evaluation will be printed, and the debugger will prompt again with an
arrow. If, during the typing of the form, you change your mind and want to get back to the
debugger’s command level, type the Abort key or a Control-G; the debugger will respond with
an arrow prompt. In fact, at any time that typein is expected from you, while you are in the
debugger. you may type Abort or Control-G to flush what you are doing and get back to
command level. This read-eval-print loop maintains the values of +, *, and - just as the top-
level one does.

If an error occurs in the cvaluation of the Lisp expression you type, you will get into a
second invocation of the debugger, looking at the new error. The prompt will be " . You can
abort the computation and get back to the first error by typing the Abort key (sce below).
However, if the error is trivial the abort will be done automatically and the original error message
will be reprinted.

Various debugger commands ask for Lisp objects, such as an object to return or the name of
a catch-tag. Whenever it trics to get a Lisp object from you, it expects you to type in a form; it
will evaluate what you type in. This provides greater generality, since there are objects to which
you might want to refer that cannot be typed in (such as arrays). If the form you type is non-
trivial (not just a constant form), the debugger will show you the result of the evaluation, and
ask you if it is what you intended. It cxpects a Y or N answer (sce the function y-or-n-p, page
620), and if you answer ncgatively it will ask you for another form. To quit out of the
command, just type Abort or Control-G.

Note that the variable bindings are those in effect at the point of error, not those of the
current frame being looked at. The Meta-S and Control-Meta-S commands allow you to look
at the bindings in cffect at the current frame. A few variables are rebound by the debugger itself,
S0 you you must usc Meta-S to find the values they had at the point of error:

terminal-io terminal-io is rebound to the stream the debugger is using.

standard-input

standard-output
standard-input and standard-output are rebound to be synonymous with
terminal-io.

SRCKL.MAN>DEBUG.TEXT.6 24-JAN-83

Lisp Machine Manual 581 , The Debugger

+

* + and * arc rcbound to the debugger's previous form and previous value. When
the debugger is first entered, + is the last form typed, which is typically the one
that caused the error, and * is the value of the previous form.

evalhook

si:applyhook Thesce variables (sce page 598) are rebound to nil, turning off the step facility if
it was in use when the error occurred.

eh:condition-handlers

eh:condition-default-handlers
These are rebound to nil, so that errors occurring within forms you type while in
the debugger do not magically resume execution of the erring program.

eh:condition-resume-handlers
To prevent resume handlers established outside the error from being invoked
automatically by deeper levels of error, this variable is rebound to a new value,
which has an clement t added in the front.

27.7.3 Debugger Commands

All debugger commands are single characters, usually with the Control or Meta bits. The
single most useful command is Abort (or Control-Z), which cxits from the debugger and throws
out of the computation that got the error. This is the Abort key, not a S-letter command. Often
you are not interested in using the debugger at all and just want to get back to Lisp top level; so
you can do this in one character.

If the error happened while you were innocently using a system utility such as the editor,
then it represents a bug in the system. Report the bug using the debugger command Control-M.
This gives you an editor preinitialized with the error message and a backtrace. You should type
in a precise description of what you did that led up to the problem, then send the message by
typing End. Be as complete as possible, and always give the exact commands you typed, exact
filenames, etc. rather then general descriptions, as much as possible. The person who investigates
the bug report will have to try to make the problem happen again; if he does not know where to
find your file, he will have a difficult time.

The Abort command signals the sys:abort condition, returning control to the most recent
command loop. This can be Lisp top level, a break, or the dcbugger command loop associated
with another error. Typing Abort multiple times will throw back to successively older read-eval-
print or command loops until top level is recached. Typing Meta-Abort, on the other hand, will
always throw to top level. Meta-Abort is not a debugger command, but a system command that
is always available no matter what program you are in.

Note that typing Abort in the middle of typing a form to be evaluated by the debugger
aborts that form and returns to the debugger’'s command level, while typing Abort as a debugger
command returns out of the debugger and the erring program, to the previous command level
Typing Abort after entering a numeric argument just discards the argument.

SRCKIL.MAN>DEBUG.TEXT.6 24-JAN-83

The Debugger 582 L.isp Machine Manual

Self-documentation is provided by the Help or ? command, which types out some
documentation on the debugger commands, including any special commands that apply to the
particular crror currently being handled.

Often you want to try to proceed from the error. When the debugger is entered, it prints a
table of commands you can use to proceed, or abort to various levels. ‘The commands are
Super-A, Super-B, and so on. How many there arc and what they do is different cach time
there is an crror. but the table says what cach one is for. If you want to sce the table again,
type Help followed by X.

The Resume (or Control-C) command is usually synonymous with Super-A. But Resume
only procceds, never aborts. If there is no way to proceed, just ways to abort, then Resume will
not do anything.

The debugger knows about a current stack frame, and there are several commands that use it.
The initially current stack frame is the one which signalled the crror, cither the one which got the
microcode-detected error or the once which called ferror, cerror, or error. When the dcbugger
" starts it up it shows you this frame in the following format:

FOO:
Arg 0 (X): 13
Arg 1 (Y): 1
and so on. 'This means that foo was called with two arguments, whose names (in the Lisp source
code) arc x and y. The current values of x and y are 13 and 1 respectively. These may not be
the original arguments if foo happens to setq its argument variables.

The Clear-Screen (or Control-L) command clears the screen, retypes the error message that
was initially printed when the debugger was cntered, and prints out a description of the current
frame, in the above format.

Several commands are provided to allow you to examine the Lisp control stack and to make
frames current other than the onc that got the crror. The control stack (or "regular pdl") keeps a
record of all functions currently active. If you call foo at Lisp’s top level, and it calls bar, which
in turn calls baz, and baz gets an error, then a backtrace (a backwards trace of the stack) would
show all of this information. The debugger has two backtracc commands. Control-B simply
prints out the names of the functions on the stack; in the above example it would print

BAZ « BAR « FOO ¢« SI:*EVAL

« SI:LISP-TOP-LEVEL1 « SI:LISP-TOP-LEVEL
The arrows indicate the direction of calling. The Meta-B command prints a more extensive
backtrace, indicating the names of the arguments to the functions and their current values; for
the example above it might look like:

SRC:KLLMAN>DEBUG.TEXT.6 24-JAN-83

lisp Machine Manual 583 ‘The Debugger

BAZ:
Arg 0 (X): 13
Arg 1 (Y): 1

BAR:
Arg 0 (ADDEND): 13

FOO:
Arg 0 (FROB): (A B C . D)
and so on.

Moving around in the stack:

The Control-N command moves "down" to the "next” frame (that is, it changes the current
frame to be the frame that called it), and prints out the frame in this same format. Control-P
moves "up” to the "previous” frame (the one that this onc called), and prints out the frame in
the same format. Meta-< moves to the top of the stack, and Meta-> to the bottom; both print
out the new current frame. Control-S asks you for a string and scarches the stack for a frame
whose exccuting function’s name contains that string. That frame becomes current and is printed
out. These commands are easy to remember since they are analogous to editor commands.

The Control-Meta-N, Control-Meta-P, and Control-Meta-B commands are like the
corresponding Control commands but don’t censor the stack. When running interpreted code, the
debugger usually tries to skip over frames that belong to functions of the interpreter, such as
*eval, prog, and cond, and only show "interesting” functions. Control-Meta-N, Control-
Meta-P, and Conirol-Meta-B show cverything. They also show frames that are not yet active;
that is, frames whose arguments are still being computed for functions that are going to be called.
The Control-Meta-U command goes up the stack to the next interesting function and makes that
the current frame.

Meta-L prints out the current frame in "full screen” format, which shows the arguments and
their values, the local variables and their values, and the machine code with an arrow pointing to
the next instruction to be exccuted. Refer to chapter 28, page 602 for help in reading this
machine code.

Commands such as Control-N and Control-P, which are meaningful to repeat, take a prefix
numeric argument and repeat that many types. The numeric argument is typed by using Control
or Meta and the number keys, as in the editor. Some other commands such as Control-M also
use the numeric argument.

Resuming execution:

Meta-C is similar to Control-C, but in the case of an unbound variable or undefined
function, actually setqs the variable or defines the function, so that the error will not happen
again. Control-C (or Resume) provides a replacement value but does not actually change the
variable. Meta-C proceeds using the proceed type :store-new-value, and is available only if
that proceed type is provided.

SRCKLMAN>DEBUG.TEXT.6 24-JAN-83

The Debugger 584 Lisp Machine Manual

Control-R is used to return a valuc from the current frame; the frame that called that frame
continucs running as if the function of the current frame had returned. This command prompts
you for a form, which it will cvaluate; it returns the resulting value, possibly after confirming it
with you.

The Control-T command docs a *throw to a given tag with a given value; you are prompted
for the tag and the value.

Control-Meta-R is a variation of Control-R; it starts the current frame over with the same
function and arguments. If the function has been redefined in the meantime (perhaps you cdited
it and fixed its bug) the new definition is used. Control-Meta-R asks for confirmation before
doing it.

Stepping through function calls and returns:

You can request a trap to the debugger on exit from a particular frame, or the next time a
function is called.

Each stack frame has a "trap on exit” bit. The Control-X command toggles this bit. The
Meta-X command scts the bit to cause a trap for the current frame and all outer frames. If a
program is in an infinite loop. this is a good way to find out how far back on the stack the loop
is taking place. The Control-Meta-X command clears the trap-on-cxit bit for the current frame
and outer frames.

The Control-D command proceeds like Control-C but requests a trap the next time a
function is called. The Meta-D command toggles the trap-on-next-call bit for the ecrring stack
group. It is useful if you wish to set the bit and then resume exccution with something other
than Control-C. The function breakon is used to request a trap on calling a particular function.
Trapping on entry to a frame automatically sets the trap-on-exit bit for that frame; use Control-X
to clear it if you do not want another trap.

Transfering to other systems:

Control-E puts you into the editor, looking at the source code for the function in the current
frame. This is useful when you have found the function that caused the error and nceds to be
fixed. The editor command Control-Z will return to the debugger, if it is still there.

Control-M puts you into the editor to mail a bug report. The crror message and a backtrace
are put into the editor buffer for you. A numeric argument says how many frames to include in
the backtrace.

Control-Meta-W calls the window debugger, a display-oriented debugger. It is not
documented in this manual, but should be usable without further documentation.

SRCKLLMAN>DEBUG.TEXT.6 24-JAN-83

Iisp Machine Manual 585 The Debugger

Examining and setting the arguments, local variables, and values:

Control-Meta-A takes a numeric argument, #, and prints out the value of the ath argument
of the current frame. It leaves * set to the value of the argument, so that you can use the Lisp
read-eval-print loop to cxamine it. It also leaves + sct to a locative pointing to the argument
on the stack, so that you can change that argument (by calling rplacd on the locative). Control-
Meta-L is similar, but refers to the nth local variable of the frame. Control-Meta-V refers to
the nth value this frame has returned (in a trap-on-cxit). Control-Meta-F refers to the function
exccuting in the frame; it ignores its numeric argument and docsn’t allow you to change the
function.

Another way to examine and sct the arguments, locals and values of a frame is with the
functions eh-arg, eh-loc, eh-val and eh-fun. Usc these functions in expressions you evaluate
inside the debugger, and they refer to the arguments, locals, values and function, respectively, of
the debugger’s current frame.

eh-arg arg-number-or-name
When used in an expression evaluated in the debugger, eh-arg returns the value of the
specifed argument in the debugger's current frame. Argument names are compared
ignoring packages; only the pname of the symbol you supply is relevant. eh-arg can
appear in setf and locf to set an argument or get its location.

eh-loc local-number-or-name
eh-loc is just like eh-arg but accesses the current frame’s locals instcad of its arguments.

eh-val &optional value-number-or-name
gh-val is used in an expression evaluated in the debugger when the current frame is
returning multiple values, to cxamine those values. This is only uscful if the function has
already begun to return some values (as in a trap-on-exit), since otherwise they are aii nil.
If a name is specified, it is looked for in the function’s :values or :return-list declaration,
if any.

eh-val can be used with setf and locf. You can make a frame return a specific sequence
of values by setting all but the last value with eh-val and doing Control-R to return the
last value.

eh-val with no argument returns a list of all the values this frame is returning.
eh-fun

eh-fun can be called in an expression being evalued inside the debugger to return the
function-object being called in the current frame. It can be used with setf and locf.

SRCKAL.MAN>DEBUG.TEXT.6 24-JAN-83

‘The Debugger

586 1.isp Machine Manual

27.7.4 Summary of Commands

Control-A
Control-Meta-A
Control-B
Meta-B
Control-Meta-B

Control-C or Resume

Meta-C

Control-D

Meta-D

Control-E
Control-Meta-F
Control-G or Abort

Print argument list of function in current frame.

Examine or change the nth argument of the current frame.
Print bricf backtrace.

Print longer backtrace.

Print longer backtrace with no censoring of interpreter functions.

Attempt to continue, using the first proceed type on the list of available
ones for this crror.

Attempt to continue, setging the unbound variable or otherwise
"permanently” fixing the crror. This uses the proceed type :store-new-
value, and is available only if that procced type is.

Attempt to continue like Control-C, but trap on the next function call,

Toggle the flag that causes a trap on the next function call after you
continue or otherwise exit the debugger.

Edit the source code for the function in the current frame.
Set * to the function in the current frame.

Quit to command level. This is not a command, but something you can
type to escape from typing in a form.

Control-L or Clear-Screen

Meta-L
Control-Meta-L
Control-M

Control-N or Line
Meta-N

Control-Meta-N

Control-P or Return
Meta-P

Control-Meta-P

Control-R
Meta-R

Redisplay error message and current frame.
Full-screen typecout of current frame.
Get local variable n.

Send a bug report containing the error message and a backtrace of n
frames (default is 3).

Move to next frame. With argument, move down n frames.

Move to next frame with full-screen typcout. With argument, move down
n frames.

Move to next frame even if it is "uninteresting” or still accumulating
arguments. With argument, move down n frames,

Move to previous frame. With argument, move up n frames.

Move to previous frame with full-screen typcout. With argument, move
up n frames.

Move to previous frame even if it is "uninteresting” or still accumulating
arguments. With argument, move up n frames.

Return a value from the current frame.

Return multiple values from the current frame (doesn’t work currently).

SRC:KL.MAN>DEBUG.TEXT.6 24-JAN-83

Lisp Machine Manual 587 _ The Debugger

Control-Meta-R Reinvoke the function in the current frame (throw back to it and start it
over at its beginning.)

Control-S Scarch for a frame containing a specified function.

Meta-S Reads the name of a special variable and returns that variable’s value in
the current frame. Instance variables of self may also be specified even if
not special.

Control-Meta-S Prints a list of special variables bound by the current frame and the values

they arc bound to by the frame. If the frame binds self, all the instance
variables of self are listed even if not special.

Control-T Throw a value to a tag.

Control-Meta-U Move up the stack to the previous "interesting” frame.
Control-X Toggle the flag in the current frame that causes a trap on exit or throw

through that frame.

Meta-X Set the flag causing a trap on exit or throw through the frame for the
current frame and all the frames outside of it.

Control-Meta-~X Clear the flag causing a trap on exit or throw through the frame for the
current frame and all the frames outside of it.

Control-Meta-W Call the window-oricnted debugger.

Control-Z or Abort Abort the computation and throw back to the most recent break or

AL n

debugger, to the program’s "command level”, or to Lisp top level.

?or Help Print a help message.
Meta-< Go to top of stack.
Meta-> Go to bottom of stack.

Control-0 through Control-Meta-9
Numeric arguments to the following command are specified by typing a
decimal number with Control and/or Meta held down.

Super-A, etc. The commands Super-A, Super-B, etc. are assigned to all the available
proceed types for this error. The assignments are different cach time the
debugger is entered, so it prints a list of them when it starts up.

27.7.5 Deexposed Windows and Background Processes

If the debugger is entered in a window that is not exposed, a notification is used to inform
you that it has happened. The notification appears cither as a brief message printed inside square

brackets, or as a small window that pops up with a brief message. The notification reminds you

that you can select the window in which the error happencd by typing Terminal 0 S.

If the debugger is entered in a process that has no window or other suitable stream to type
out on, the window system tries to assign it a "background window" and print a notification to
tell you it is therc. If the window system is in a clean state at the moment, this can be done,
and you can then type Terminal 0S to sclect the background window.

SRCKL.MAN>DEBUG.TEXT.6 24-JAN-83

Tracing Function Exccution 588 Lisp Machinc Manual

However, if the window system cannot notify you, because windows on the screen are locked,
it can still inform you of the crror. The who-line displays a string containing flashing asterisks
that tells you there are errors in the background.

At this time you can either try using Terminal Control-Clear-Input to unlock the locks and
allow the notification to be printed normally, or you can clect to handle the error using the cold-
load strcam by typing Terminal Call. This command normally enters a break-loop that uses the
cold-load stream, but if there arc any background crrors, it offers to enter the debugger to handle
them.

27.8 Tracing Function Execution

‘The trace facility allows the user to frace some functions. When a function is traced, certain
special actions will be taken when it is called and when it returns. The default tracing action is
to print a message when the function is called, showing its name and arguments, and another
message when the function returns, showing its name and value(s).

The trace facility is closely compatible with Maclisp. One invokes it through the trace and
untrace special forms, whose syntax is described below. Alternatively, you can use the trace
system by clicking Trace in the system menu, or by using the Meta-X Trace command in the
editor. This allows you to select the trace options from a menu instead of having to remember
the following syntax.

trace Special Form
A trace form looks like:
(trace spec-l spec-2 ...)

Each spec can take any of the following forms:

a symbol This is a function name, with no options. The function will be traced in
the default way, printing a message each time it is called and each time it
returns.

a list (function-name option-1 option-2 ...)
Junction-name is a symbol and the options control how it is to be traced.
"The various options are listed below. Some options take arguments, which
should be given immediately following the option name.

a list (:function function-spec option-1 option-2 ...)
This is like the previous form except that function-spec need not be a
symbol (sce scction 10.2, page 154). It cxists because if function-name was
a list in the previous form, it would instead be interpreted as the
following form:

a list ((function-1 function-2...) option-1 option-2 ...)
All of the functions are traced with the same options. Each fiunction can
be either a symbol or a general function-spec.

The following trace options exist:

SRC:KL.MAN>DEBUG.TEXT.6 24-JAN-83

Lisp Machine Manual

‘break pred

:exitbreak pred

.error

step

:entrycond pred

:exitcond pred

:cond pred

:wherein function

:argpdl pd!

:entryprint form

589 ‘Tracing Function Execution

Causes a breakpoint to be entered after printing the cntry trace
information but before applying the traced function to its arguments, if
and only if pred evaluates to non-nil. During the breakpoint, the symbol
arglist is bound to a list of the arguments of the function.

This is just like break except that the breakpoint is entered aficr the
function has been cxccuted and the cxit trace information has been
printed, but before control returns. During the breakpoint, the symbol
arglist is bound to a list of the arguments of the function, and the
symbol values is bound to a list of the values that the function is
returning,.

Causes the error handler to be called when the function is cntered. Use
Resume (or Control-C) to continue exccution of the function. If this
option is specified, there is no printed trace output other than the error
message printed by the error handler. This is scmi-cbsolete, as breakon
is more convenient and does more cxactly the right thing.

Causes the function to be single-stepped whenever it is called. See the
documentation on the step facility, section 27.11, page 596.

Causes trace information to be printed on function entry only if pred
evaluates to non-nil.

Causes trace information to be printed on function exit only if pred
cvaluates to non-nil.

This specifies both :exitcond and :entrycond together.

Causcs the function to be traced only when called, directly or indirectly,
from the specified function function. One can give several trace specs to
trace, all specifying the same function but with different wherein options,
so that the function is traced in different ways when called from different
functions.

This is different from advise-within, which only affects the function being
advised when it is called directly from the other function. The trace
:wherein option means that when the traced function is called, the special
tracing actions occur if the other function is the caller of this function, or
its caller’s caller, or its caller’s caller’s caller, etc.

This specifies a symbol pdl, whose value is initially set to nil by trace.
When the function is traced, a list of the current recursion level for the
function, the function’s name, and a list of arguments is consed onto the
pdl when the function is entered, and cdr'ed back off when the function is
exited. The pdl can be inspected from within a breakpoint, for example,
and used to determine the very recent history of the function. This option
can be used with or without printed trace output. Each function can be

given its own pdl, or one pdl may serve several functions.

The form is evaluated and the value is included in the tracc message for
calls to the function. You can give this option more than once, and all
the values will appear, preceded by \\.

SRCKL.MAN>DB-AID.TEXT.5 24-JAN-83

Tracing Function Execution 590 _ Lisp Machine Manual

:exitprint form The form is evaluated and the value is included in the trace message for
returns from the function. You can give this option more than once, and
all the values will appear, preceded by \\.

:print form The form is cvaluated and the value is included in the trace messages for
both calls to and returns from the function. You can give this option
~ more than once. and all the values will appear, preceded by \\.

:entry list This specifies a list of arbitrary forms whose valucs are to be printed along
with the usual entry-trace. The list of resultant values, when printed, is
preceded by \\ to separate it from the other information.

‘exit list This is similar to entry, but specifies expressions whose values are printed
with the exit-trace. Again, the list of values printed is preceded by \\.

:arg :value :both nil These specify which of the usual trace printouts should be cnabled. If
:arg is specified, then on function entry the name of the function and the
values of its arguments will be printed. If :value is specified, then on
function exit the returned value(s) of the function will be printed. If
‘both is specified, both of these will be printed. If nil is specified,
ncither will be printed. If none of these four options are specified the
default is to :both. If any further options appear after one of these, they
will not be trcated as options! Rather, they will be considered to be
arbitrary forms whose values are to be printed on entry and/or cxit to the
function, along with the normal trace information. The values printed will
be preceded by a //. and follow any values specified by :entry or :exit.
Note that since these options “swallow™ all following options, if one is
given it should be the last option specified.

If the variable arglist is used in any of the expressions given for the :cond, :break, :entry,
or :exit options, or after the :arg, :walue, :both, or nil option, when those expressions are
evaluated the valuc of arglist will be bound to a list of the arguments given to the traced
function. Thus

(trace (foo :break (null (car arglist))))
would cause a break in foo if and only if the first argument to foo is nil. If the :break or :error
option is uscd, the variable arglist will be valid inside the break-loop. If you setq arglist, the
arguments scen by the function will change. arglist should perhaps have a colon, but it can be
omitted because this is the name of a system function and therefore global.

Similarly, the variable values will be a list of the resulting values of the traced function. For
obvious reasons, this should be used only with the :exit option. If the :exitbreak option is used,
the variables values and arglist are valid inside the break-loop. If you setq values, the values
returned by the function will change. values should perhaps have a colon, but it can be omitted
because this is the name of a system function and therefore global.

The trace specifications may be "factored”, as explained above. For example,
(trace ((foo bar) :break (bad-p arglist) :value))
is equivalent to
(trace (foo :break (bad-p arglist) :value)
(bar :break (bad-p arglist) :value))
Since a list as a function name is interpreted as a list of functions, non-atomic function names

SRC:KLL.MAN>DB-AID.TEXT.5 24-JAN-83

Lisp Machine Manual 591 ' Breakon

(see scction 10.2, page 154) are specified as follows:
trace (:function (:method flavor :message) :break t})

trace returns as its value a list of names of all functions it traced. If called with no
arguments, as just {trace), it returns a list of all the functions currently being traced.

If you attempt to trace a function alrcady being traced, trace calls untrace before setting up
the new trace.

Tracing is implemented with encapsulation (see section 10.10, page 175), so if the function is
redefined (c.g. with defun or by loading it from a QFASL file) the tracing will be transferred
from the old definition to the new definition.

Tracing output is printed on the stream that is the value of trace-output. This is
synonymous with terminal-io unless you change it.

untrace _ Special Form
untrace is used to undo the effects of trace and restore functions to their normal,
untraced state. untrace will take multiple specifications, c.g. (untrace foo quux fuphoo).
Calling untrace with no arguments will untrace all functions currently being traced.

Unlike Maclisp, if there is an error trace {or untrace) will invoke the error system and give
an English message, instcad of returning lists with question marks in them. Also, the remtrace
function is not provided, since it iS unnccessary.

trace-compile-flag Variable
If the value of trace-compile-flag is non-nil. the functions created by trace will get
compiled, allowing you to trace special forms such as cond without interfering with the
execution of the tracing functions. The default value of this flag is nil.

You can also cause the tracing of a particular function to be compiled by calling compile-
encapsulations. Sct compile-encapsulations-flag non-nil does what trace-compile-flag does,
and more; it makes all kinds of encapsulations be compiled. See page 229.

27.9 Breakon

The function breakon allows you to request that the debugger be entered whenever a certain
function is called.

breakon fiunction-spec &optional condition-form
Encapsulate the definition of function-spec so that a trap-on-call occurs when it is called.
This enters the debugger. A trap-on-exit will occur when the stack frame is exited.

If condition-form is non-nil, its value should be a form to be evaluated each time Sunction-
spec is called. The trap occurs only if condition-form evaluates to non-nil. Omitting the
condition-form is cquivalent to supplying t. If breakon is called more than once for the
same function-spec and different condition-forms, the trap occurs if any of the conditions is
true.

SRCKL.MAN>DB-AID.TEXT.S 24-JAN-83

Advising a Function 592 Lisp Machine Manual

Condition breakons are useful for causing the trap to occur only in a certain stack group.
This sometimes allows debugging of calls functions that are being used frequently in background
processes.

(breakon ’foo ‘(eq current-stack-group ’,current-stack-group))

If you wish to trap on calls to foo when called from the cxecution of bar, you can use
(si:function-active-p ’bar) as the condition. If you want to trap only calls made directly from
bar, the thing to do is

(breakon ’(:within bar foo0))
rather than a conditional breakon.

Another useful form of conditional breakon allows you to control trapping from the keyboard:
(breakon ’foo ’(tv:key-state ’:mode-lock))
The trap will occur only when the Mode-Lock key is down. This key is not normally used for
much elsc. With this technique, you can successfully trap on functions used by the debugger!

unbreakon function-spec &optional conditional-form
Remove the breakon sct on function-spec. 1f conditional-form is specified, remove only
that condition. Breakons with other conditions are not removed.

With no arguments, unbreakon removes all breakons from all functions.

eh:breakon-functions Variable
A list of all function specs on which breakons currently exist.

To cause the cncapsulation which implements the breakon to be compiled, call compile-
encapsulations or sct compile-encapsulations-flag non-nil. Sce page 229. This may ecliminate
some of the problems that occur if you breakon a function such as prog that is used by the
evaluator. (A conditional to trap only in one stack group will help here also.)

27.10 Advising a Function

To advise a function is to tell it to do something extra in addition to its actual definition. It
is done by means of the function advise. The something extra is called a piece of advice, and it
can be donec before, after, or around the definition itself. The advice and the definition are
independent, in that changing either one does not interfere with the other. Fach function can be
given any number of pieces of advice.

Advising is fairly similar to tracing, but its purpose is different. Tracing is intended for
temporary changes to a function to give the user information about when and how the function is
called and when and with what value it returns. Advising is intended for semi-permanent changes
to what a function actually does. The differences between tracmg and advising are motivated by
this difference in goals.

Advice can be used for testing out a change to a function in a way that is easy to retract. In
this case, you would call advise from the terminal. It can also be used for customizing a
function that is part of a program written by someone else. In this case you would be likely to
put a call to advise in onc of your source files or your login init file (see page 648), rather than
modifying the other person’s source code.

SRC:KLLMAN>DB-AID.TEXT.5 24-JAN-83

Lisp Machine Manual 593 Advising a Function

Advising is |mn|cmnnrgd with nncansulg[um (see tion 10.
L

redefined (e.g. with defun or by loading it from a QFAS
from the old definition to the new definition.

0, page 175), so if the function is
le

1
file) the advice will be transferred

advise Special Form
A function is advised by the special form
(advise function class name position
forml form2...)

None of this is evaluated. function is the function to put the advice on. It is usually a
symbol, but any function spec is allowed (see section 10.2, page 154). The forms arc the
advice; they get evaluated when the function is called. class should be cither :before,
:after, or :around, and says when to cxecute the advice (before, after, or around the
execution of the definition of the function). The meaning of :around advice is explained
a couple of sections below.

name is used to keep track of multiple picces of advice on the same function. name is an
arbitrary symbol that is remembered as the name of this particular picce of advice. If you
have no name in mind, use nil; then we say the piecc of advice is anonymous. A given
function and class can have any number of pieces of anonymous advice, but it can have
only onc piece of named advice for any one name. If you try to define a sccond one, it
replaces the first. Advice for testing purposes is usually anonymous. Advice used for
customizing someone else’s program should usually be named so that multiple
customizations to one function have scparate names. Then, if you reload a customization
that is already loaded, it does not get put on twice.

position says where to put this piece of advice in relation to others of the same class
already present on the same function. If position is nil, the new advice goes in the
default position: it usually goes at the beginning (where it is cxccuted before the other
advice), but if it is replacing another picce of advice with the same name, it goes in the
same place that the old piece of advice was in.

If you wish to specify the position, position can be the numcrical index of which existing
piece of advice to insert this one before. Zero means at the beginning; a very large
number means at the end. Or, position can be the name of an existing piece of advice of
the same class on the same function; the new advice is inserted before that one.

For example,
(advise factorial :before negative-arg-check nil
(if (minusp (first arglist))
(ferror nil "factorial of negative argument™)))
This modifies the factorial function so that if it is called with a ncgative argument it
signals an error instead of running forever.

unadvise Special Form
(unadvise function class position)
removes picces of advice. None of its "arguments” are evaluated. function and class have
the same meaning as they do in the function advise. position specifies which piece of
advice to remove. It can be the numeric index (zero means the first one) or it can be the
name of the picce of advice.

SRCKLL.MAN>DB-AID.TEXT.5 24-JAN-83

Advising a Function 594 lisp Machine Manual

unadvise can remove more than one picce of advice if some of its arguments arc missing.
If position is missing or nil, then all advice of the specified class on the specified function
is removed. If class is missing or nil as well, then all advice on the specified function is
removed. (unadvise) removes all advice on all functions, since function is not specified.

The following are the primitive functions for adding and removing advice. Unlike the above
special forms, these are functions and can be conveniently used by programs. advise and
unadvise are actually macros that expand into calls to these two.

si:advise-1 function class name position forms
Adds advice. The arguments have the same meaning as in advise. Note that the forms
argument is not a &rest argument.

si:unadvise-1 function &optional class position v
Removes advice. If class or position is nil or unspecified, all classes of advice or advice at
all positions are removed.

You can find out manually what advice a function has with grindef. which grinds the advice
on the function as forms that arc calls to advise. These are in addition to the definition of the
function.

To poke around in the advice structure with a program, you must work with the
encapsulation mechanism’s primitives. Sec section 10.10, page 175.

To cause the advice to be compiled, call compile-encapsulations or set compile-
encapsulations-flag non-nil. See page 229.

si:advised-functions Variable
A list of all functions which have been advised.

27.10.1 Designing the Advice

For advice to interact uscfully with the definition and intended purpose of the function, it
must be able to interface to the data flow and control flow through the function. We provide
conventions for doing this.

The list of the arguments to the function can be found in the variable arglist. :before advice
can replace this list, or an element of it, to change the arguments passed to the definition itself.
If you replace an element, it is wise to copy the whole list first with

(setq arglist (copylist arglist))
After the function’s definition has been executed, the list of the values it returned can be found
in the variable values. :after advice can set this variable or replace its elements to cause different
values to be returned.

All the advice is exccuted within a prog, so any piece of advice can exit the entire function
with return. The arguments of the return will be returned as the values of the function. No
further advice will be executed. If a piece of :before advice docs this, then the function’s
definition will not even be called.

SRCKILLMAN>DB-AID.TEXT.S 24-JAN-83

Lisp Machine Manual 595 Advising a Function

27.10.2 :around Advice

A picce of :before or :after advice is cxecuted entircly before or entirely after the definition
of the function. :around advice is wrapped around the definition; that is, the call to the original
definition of the function is done at a specified place inside the piece of :around advice. You
specify where by putting the symbol :do-it in that place.

For example, (+ 5 :do-it) as a piece of :around advice would add 5 to the value returned
by the function. This could also be done by (setq values (list (+ 5 (car values)))) as :after
advice.

When there is more than one piece of :around advice, the pieces arc stored in a sequence
just like :before and :after advice. Then, the first piece of advice in the sequence is the one
started first. The sccond piece is substituted for :do-it in the first one. The third one is
substituted for :do-it in the second one. The original definition is substituted for :do-it in the
last piece of advice.

-around advice can access arglist, but values is not set up until the outermost :around
advice returns. At that time, it is set to the value returned by the :around advice. It is
reasonable for the advice to receive the values of the :do-it (c.g. with multiple-value-list) and
fool with them before returning them (e.g. with values-list).

-around advice can return from the prog at any time, whether the original definition has
been executed yet or not. It can also override the original definition by failing to contain :do-it.
Containing two instances of :do-it may be useful under peculiar circumstances. If you are
carcless, the original definition may be called twice, but something like

(if (foo) (+ b :do-it) (* 2 :do-it))
will certainly work reasonably.

27.10.3 Advising One Function Within Another

It is possible to advise the function foo only for when it is called directly from a specific
other function bar. You do this by advising the function specifier (:within bar foo). That works
by finding all occurrences of foo in the definition of bar and replacing them with altered-foo-
within-bar. This can be done even if bar's definition is compiled code. The symbol altered-
foo-within-bar starts off with the symbol foo as its definition; then the symbol altered-foo-
within-bar, rather than foo itself, is advised. The system remembers that foo has been replaced
inside bar, so that if you change the definition of bar, or advise it, then the replacement is
propagated to the new definition or to the advice. If you remove all the advice on (:within bar
fo0), so that its definition becomes the symbol foo again, then the replacement is unmade and
everything returns to its original state.

(grindef bar) will print foo where it originally appeared, rather than altered-foo-within-bar,
so the replacement will not be seen. Instead, grindef will print out calls to advise to describe all
the advice that has been put on foo or anything eclse within bar.

An alternate way of putting on this sort of advice is to use advise-within.

SRC:A{LMAN>DB-AID.TEXT.S 24-JAN-83

Stepping Through an Evaluation 596 Lisp Machine Manual

advise-within Special Form
(advise-within within-function function-to-advise
class name position
Jorms...)
advises function-to-advise only when called dircctly from the function within-function. The
other arguments mean the same thing as with advise. Nonc of them are evaluated.

To remove advice from (:within bar foo), you can use unadvise on that function specifier.
Alternatively, you can use unadvise-within,

unadvise-within : Special Form

(unadvise-within within-function function-to-advise class position)
removes advice that has been placed on (:within within-function function-to-advise). The
arguments class and position arc interpereted as for unadvise. For example, if those two
are omitted, then all advice placed on function-to-advise within within-function is removed.
Additionally, if function-to-advise is omitted, all advice on any function within within-
JSunction is removed. If there arc no arguments, than all advice on one function within
another is removed. Other piceces of advice, which have been placed on one function and
not limited to within another, are not removed.

(unadvise) removes absolutely all advice, including advice for one function within another.

The function versions of advise-within and unadvise-within are called si:advise-within-1
and si:unadvise-within-1. advise-within and unadvise-within arc macros that expand into calls
to the other two.

27.11 Stepping Through an Evaluation

The Step facility gives you the ability to follow every step of the cvaluation of a form, and
examine what is going on. It is analogous to a single-step proceed facility often found in
machinec-language debuggers. If your program is doing somecthing strange, and it isn’t obvious
how it's getting into its strange state, then the stepper is for you.

There are two ways to enter the stepper. One is by use of the step function.

step form
This evaluates form with singlc_ stepping. It returns the value of form.

For example, if you have a function named foo, and typical arguments to it might be t and
3, you could say
(step *(foo t 3))
and the form (foo t 3) will be evaluated with single stepping.

The other way to get into the stepper is to usc the :step option of trace (sec page 588). If a

function is traced with the :step option, then whenever that function is called it will be single
stepped.

SRCKLMAN>DB-AID.TEXT.S 24-JAN-83

Lisp Machine Manual 597 Stepping Through an Evaluation

Note that any function to be stepped must be interpreted; that is, it must be a lambda-
expression. Compiled code cannot be stepped by the stepper.

When evaluation is procceding with single stepping, before any form is evaluated, it is
(partially) printed out, preceded by a forward arrow (») character When a macro is expanded, the
expansion is printed out preceded by a double arrow () character. When a form returns a value,
the form and the values are printed out preceded by a backwards arrow («) character; if there is
more than onc value being returned, an and-sign (A) character is printed between the values.
When the stepper has evaluated the args to a form and is about to apply the function, it prints a

lambda (A) because cntering the lambda is the next thing to be done.

Since the forms may be very long, the stepper does not print all of a form; it truncates the
printed representation after a certain number of characters. Also, to show the recursion pattern of
who calls whom in a graphic fashion, it indents each form proportionally to its level of recursion.

After the stepper prints any of these things, it waits for a command from the user. There are
several commands to tell the stepper how to proceed, or to look at what is happening. The
commands are:

Control-N (Next)
Step to the Next thing. The stepper continues until the next thing to print out, and it
accepts another command.

Space
Go to the next thing at this level. In other words, continue to evaluate at this level, but
don’t step anything at lower levels. This is a good way to skip over parts of the
evaluation that don’t interest you.

Control-A {Args)
Skip over the evaluation of the arguments of this form, but pause in the stepper before
calling the function that is the car of the form.

Control-U (Up)
Continue evaluating until we go up one level. This is like the space command, only more
so; it skips over anything on the current level as well as lower levels.

Control-X (eXit)
Exit; finish evaluating without any more stepping.

Control-T (Type)
Retype the current form in full (without truncation).

Control-G (Grind)
Grind (i.e. prettyprint) the current form.

Control-E (Editor)
Switch windows, to the editor.

Control-B (Breakpoint)
Breakpoint. This command puts you into a breakpoint (i.e. a read-eval-print loop) from
which you can cxamine the values of variables and other aspects of the current
environment. From within this loop, the following variables are available:

SRCKLMAN>DB-AID.TEXT.S 24-JAN-33

Fvalhook 598 1.isp Machine Manual

step-form which is the current form.
step-values which is the list of returned values.

step-value which is the first returned value.
If you change the values of these variables, you will affect exccution.

Control-L
Clear the screen and redisplay the last 10. pending forms (forms that are being
cvaluated).

Meta-L
Like Control-L, but doesn’t clear the screen.

Control-Meta-L
Likc Control-L, but redisplays all pending forms.

?or Help
Prints documentation on thesc commands.

It is strongly suggested that you write some little function and try the stepper on it. If you
get a feel for what the stepper docs and how it works, you will be able to tell when it is the
right thing to use to find bugs.

27.12 Evalhook

The evalhook facility provides a "hook™ into the evaluator; it is a way you can get a Lisp
form of your choice to be exccuted whenever the evaluator is called. The stepper uses evalhook,
and usually it is the only thing that ever nceds to. However, if you want to write your own
stepper or something similar, this is the primitive facility that you can use to do so. The way this
works is a bit hairy, but unless you need to write your own stcpper you don’t have to worry
about it.

evalhook Variable
If the value of evalhook is non-nil, then special things happen in the evaluator. When a
form (any form, even a number or a symbol) is to be cvaluated, evalhook is bound to
nil and the function that was evalhook’s value is applied to one argument—the form that
was trying to be evaluated. The value it returns is then returned from the evaluator.

si:applyhook . Variable
If the value of si:applyhook is non-nil, it is used rather than apply the next time the
interpreter is about to apply a function to its evaluated arguments.

When either the evalhook or the applyhook is called, both variables are bound to nil. They
are also rcbound to nil by break and by the debugger, and setqed to nil when errors are
dismissed by throwing to the Lisp top level loop. This provides the ability to escape from this
mode if something bad happens.

In order not to impair the efficiency of the Lisp interpreter, several restrictions are imposed
on the evalhook and applyhook. They apply only to evaluation—whether in a read-eval-print
loop, internally in cvaluating arguments in forms, or by explicit use of the function eval. They
do not have any effect on compiled function references, on use of the function apply, or on the

SRCKL.MANDDB-AID.TEXT.S 24-JAN-83

Lisp Machinc Manual 599 The MAR

"mapping” functions. (In Zetalisp. as opposed to Maclisp, it is not necessary to do (*rset t) or
(sstatus evalhook t). Also, Maclisp’s special-case check for store is not implemented.)

evalhook form evalhook &optional applyhook
evathook is a function that helps exploit the evalthook feature. The form is cvaluated
with evalhook lambda-bound to the function evalhook, and with si:applyhook lambda-
bound to the function applyhook. The checking of the hooks is bypassed in the
evaluation of form itsclf, but not in any subsidiary cvaluations, for instance of arguments
in the form. This is like a "one-instruction proceed” in a machine-language debugger.
Example:
:; This function evaluates a form while printing debugging information.
(defun hook (x)
(terpri)
(evalhook x "hook-function))

:: Notice how this function calls evalhook to evaluate the form f,
.2 so as-to hook the sub-forms.
(defun hook-function (f)
(let ((v (evalhook f ’'hook-function)))
(format t "form: ~s~%value: ~s~%" f v)

v))

:; This isn’t a very good program, since if f uses multiple
:; values, it will not work.

The following output might be seen from (hook '(cons (car ’(a . b)) ’c)):
form: (quote (a . b))
value: {a . b)
form: (car (quote (a . b)))
value: a
form: (quote c)
value: ¢

(a . c)

27.13 The MAR

The MAR facility allows any word or contiguous set of words to be monitored constantly,
and can cause an error if the words are referenced in a specified manner. The name MAR is
from the similar device on the ITS PDP-10’s; it is an acronym for "Memory Address Register”.
The MAR checking is done by the Lisp Machine’s memory management hardware, so the speed
of general exccution is not significantly slowed down when the MAR is enabled. However, the
speed of accessing pages of memory containing the locations being checked is slowed down
somewhat, since cvery reference involves a microcode trap.

These are the functions that control the MAR:

SRCKLMAN>DB-AID.TEXT.S 24-JAN-83

The MAR 600 Lisp Machine Manual

sat-mar location cycle-iype &optional n-words
The set-mar function clears any previous setting of the MAR, and scts the MAR on »-
words words, starting at location. location may be any object. Often it will be a locative
pointer to a cell. probably created with the locf special form. n-words currently defaults
to 1, but eventually it may default to the size of the object. cycle-type says under what
conditions to trap. :read mecans that only reading the location should cause an error,
:write means that only writing the location should, t means that both should. To sct the
MAR to detect setq (and binding) of the variable foo, use
(set-mar (value-cell-location 'foo) ':write)

clear-mar
This turns off the MAR. Warm-booting the machine disables the MAR but docs not turn
it off, ic. references to the MARed pages are still slowed down. clear-mar does not
currently speed things back up until the next time the pages arc swapped out; this may
be fixed some day.

_mar-mode
(mar-mode) returns a symbol indicating the current state of the MAR. It returns one of:
nil The MAR is not set.
read The MAR will cause an error if there is a read.
‘write The MAR will cause an crror if there is a write.
t The MAR will cause an error if there is any reference.

Note that using the MAR makés the pages on which it is sct somewhat slower to access, until
the next time they are swapped out and back in again after the MAR is shut off. Also, use of
the MAR currently breaks the read-only feature if those pages were read-only.

Procecding from a MAR break allows the memory reference that got an crror to take place,
and continues the program with the MAR still effective. When proceeding from a write, you
have the choice of whether to allow the write to take place or to inhibit it, leaving the location
with its old contents.

sys:mar-break (condition) Condition
This is the condition, not an error, signaled by a MAR break.

The condition instance supports these operations:

:object The object one of whose words was being referenced.
:offset The offset within the object of the word being referenced.
wvalue The value read, or to be written._

«direction Either :read or :write.

The proceed type :no-action simply proceeds, continuing with the interrupted program as
if the MAR had not been set. If the trap was due to writing, the proceed type
‘proceed-no-write is also provided, and causes the program to proceed but docs not
store the value in the memory location.

SRCKL.MAN>DB-AID.TEXT.S 24-JAN-83

Lisp Machine Manual 601 Variable Monitoring

Most—but not all—write operations first do a rcad. setq and rplaca arc cxamples. 'This
means that if the MAR is in read mode it will catch writes as weil as rcads; however, they will
trap during the rcading phase, and conscquently the data to be written will not be displayed.
This also means that sctting thc MAR to t mode causcs most writes to trap twice, first for a read

a read at the hardware level, which may not look like a read in your program.

27.14 Variable Monitoring

monitor-variable var &optional current-value-cell-only-p monitor-function
Calls a given function just after a given speccial variable is setg’ed (by compiled code or
otherwise). Does not trigger on binding of the variable. ‘The function is given both the
old and new valucs as arguments. It does not get the name of the variable as an
argument, so it is usually neccessary to use a closure as monitor-function in order to
remember this. The old value will be nil if the variable had been unbound.

The default monitoring function just prints the symbol and the old and new values. This
behavior can be changed by specifying the monitor-function argument.

Normally this feature applies to all setq’s, but if current-value-cell-only-p is specified non-
nil, it applies only to those setq’s which would alter the variable’s currently active value
cell. This is only relevant when var is subject to a closure.

Don’t try to use this with variables that are forwarded to A memory (e.g. inhibit-
scheduling-flag).

unmonitor-variabie &optionai var

If var is being monitored, it is restored to normal. If no var is specified, all variables
that have been monitored are unmonitored.

SRCKL.MAN>DB-AID.TEXT.S 24-JAN-83

	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601

