How to Read Assembly I.anguage 602 [.isp Machine Manual

28. How to Read Assembly Language

Sometimes it is uscful to study the machine language code produced by the Lisp Machine's
compiler, usually in order to analyze an crror, or sometimes to check for a suspected compiler
problem. 'This chapter cxplains how the Lisp Machines instruction sct works and how to
understand what code written in that instruction set is doing. Fortunately, the translation between
Lisp and this instruction set is very simple: after you get the hang of it, you can move back and
forth between the two representations without imuch trouble. ‘The following text does not assume
any special knowledge about the Lisp Machine, although it somctimes assumes some general
computer science background knowledge.

28.1 Introduction

Nobody looks at machine language code by trying to interpret octal numbers by hand.
Instead, there is a program called the Disassembler which converts the numeric representation of
the instruction set into a more readable textual representation. It is called the Disassembler
because it docs the opposite of what an Assembler would do; however, there isn’t actually any
assembler that accepts this input format. since there is never any nced to manually write assembly
language for the lisp Machine.

The simplest way to invoke the Disassembler is with the Lisp function disassemble. Here is
a simple example. Suppose we type:

(defun foo (x)
(assq 'key (get x ‘propname)))

(compile ’'foo)
(disassemble 'foo)

This defines the function foo, compiles it, and invokes the Disassembler to print out the
textual representation of the result of the compilation. Here is what it looks like:

22 MOVE D-PDL FEF|6 ;"KEY
23 MOVE D-PDL ARG |0 X
24 MOVE D-PDL FEF|7 ;' PROPNAME

25 (MISC) GET D-PDL
26 (MISC) ASSQ D-RETURN

The Disassembler is also used by the Error Handler and the Inspector. When you see stuff
like the above while using one of these programs, it is disassembled code, in the same format as
the disassemble function uses. Inspecting a compiled code object shows the disassembled code.

Now, what does this mean? Before we get started, there is just a little bit of jargon to learn.

SRCKL.MAN>CODE.TEXT.31 24-JAN-83

Lisp Machine Manual 603 Introduction

The acronym PDL. stands for Push Down List, and means the same thing as Stack: a last-in
first-out memory. The terms PDI. and stack will be used interchangeably. The Lisp Machine’s
architecture is rather typical of "stack machines”; there is a stack that most instructions deal with,
and it is used to hoid values being computed. arguments, and local variables, as well as flow-of-
control information. An important use of the stack is to pass arguments to instructions, though

not all instructions take their arguments from the stack.

The acronym "FEF" stands for Function Entry Frame. A FEF is a compiled code object
produced by the compiler. After the defun form above was cvaluated, the function ccll of the
symbol foo contained a lambda expression. Then we compiled the function foo, and the contents
of the function cell were replaced by a "FEF" object. The printed representation of the "FEF”

object for foo looks like this:

" #<DTP-FEF-POINTER 11464337 F00>

The FEF has three parts (this is a simplified explanation): a hecader with various fixed-format
fields; a part holding constants and invisible pointers, and the main body, holding the machine
language instructions. The first part of the FEF, the header, is not very interesting and is not
documented here (you can look at it with describe but it won’t be casy to understand). The
second part of the FEF holds various constants referred to by the function: for cxample, our
function foo references two constants (the symbols key and propname), and so (pointers to) those
symbols are stored in the FEF. This part of the FEF also holds invisible pointers to the value
cells of all symbols that the function uses as variables, and invisible pointers to the function cells
of all symbols that the function calls as functions. The third part of the FEF holds the machine
language code itself.

Now we can read the disassembled code. The first instruction looked like this:
22 MOVE D-PDL FEF|6 s "KEY

This instruction has several parts. The 22 is the address of this instruction. The Disassembler
prints out the address of cach instruction before it prints out the instruction, so that you can
interpret branching instructions when you sce them (we haven't seen onc of these yet, but we will
later). The MOVE is an opcode: this is a MOVE instruction, which moves a datum from one
place to another. The D-PDL is a destination specification. The D stands for "Destination”, and
so D-PDL means "Destination-PDL": the destination of the datum being moved is the PDL.
This means that the result will be pushed onto the PDL, rather than just moved to the top; this
instruction is pushing a datum onto the stack. The next field of the instruction is FEF|6. This is
an address, and it specifies where the datum is coming from. The vertical bar serves to separate
the two parts of the address. The part before the vertical bar can be thought of as a base
register, and the part after the bar can be thought of as being an offset from that register. FEF
as a base register means the address of the FEF that we are disassembling, and so this address
means the location six words into the FEF. So what this instruction docs is to take the datum
located six words into the FEF, and push it onto the PDL. The instruction is followed by a
"comment” field, which looks like KEY. This is not a comment that any person wrote; the
disassembler produces these to explain what is going on. The semicolon just serves to start the
comment, the way semicolons in Lisp code do. In this case, the body of the comment, 'KEY, is
telling us that the address ficld (FEF|6) is addressing a constant (that is what the single-quote in
’KEY means), and that the printed representation of that constant is KEY. With the help of this

SRCKI.MAN>CODE.TEXT.31 24-JAN-83

Introduction 604 Lisp Machine Manual

"comment” we finally get the real story about what this instruction is doing: it is pushing (a
pointer to) the symbol key onto the stack.

The next instruction looks like this:
23 MOVE D-PDL ARG|0 : X

This is a lot like the previous instruction; the only difference is that a different "base register”
is being used in the address. The ARG “base register” is used for addressing your arguments:
ARG|0 means that the datum being addressed is the zeroth argument. Again, ‘the "comment”
ficld cxplains what that means: the value of X (which was the zeroth argument) is being pushed
onto the stack.

The third instruction is just like the first one; it pushes the symbol propname onto the stack.
The fourth instruction is something new:
25 (MISC) GET D-PDL

The first thing we see herec is (MISC). This means that this is one of the so-called
miscellaneous instructions. There are quite a few of these instructions. With some exceptions,
cach miscellancous instruction corresponds to a Lisp function and has the same name as that Lisp
function. If a Lisp function has a corresponding miscellaneous instruction, then that function is
hand-coded in Lisp Machine microcode.

Miscellaneous instructions only have a destination field: they don't have any address field.
The inputs to the instruction come from the stack: the top n elements on the stack are used as
inputs to the instruction and popped off the stack, where n is the number of arguments taken by
the function. The result of the function is stored wherever the destination ficld says. In our case,
the function being exccuted is get, a Lisp function of two arguments. The top two values will be
popped off the stack and used as the arguments to get (the value pushed first is the first
argument, the value pushed second is the second argument, and so on). The result of the call to
get will be sent to the destination D-PDL; that is, it will be pushed onto the stack. (In case you
were wondering about how we handle optional arguments and multiple-value returns, the answer
is very simple: functions that use cither of those features cannot be miscellancous instructions! If
you are curious as to what functions are hand-microcoded and thus available as miscellaneous
instructions, you can look at the defmic forms in the file SYS: SYS; DEFMIC LISP.)

The fifth and last instruction is similar to the fourth:
26 (MISC) ASSQ D-RETURN

What is new here is the new value of the destination field. This one is called D-RETURN,
and it can be used anywhere destination fields in general can be used (like in MOVE instructions).
Sending something to "Destination-Return” means that this value should be the returned value of
the function, and that we should return from this function. This is a bit unusual in instruction
sets; rather than having a "return” instruction, we have a destination that, when stored into,
returns from the function. What this instruction does, then, is to invoke the Lisp function assq
on the top two elements of the stack and return the result of assq as the result of this function.

SRCKL.MAN>CODE.TEXT.31 24-JAN-83

[.isp Machine Manual 605 A More Advanced Example

Now, let’s look at the program as a whole and sce what it did:

22 MOVE D-PDL FEF|6 ; "KEY
23 MOVE D-PDL ARG|O i X
24 MOVE D-PDL FEF]7 ; " PROPNAME

25 (MISC) GET D-PDL
26 (MISC) ASSQ D-RETURN

First it pushes the symbol key. Then it pushes the value of x. Then it pushes the symbol
~ propname. ‘Then it invokes get, which pops the value of x and the symbol propname off the
stack and uses them as arguments, thus doing the cquivalent of cvaluating the form (get x
'propname). The result is left on the stack: the stack now contains the result of the get on top,
and the symbol key underncath that. Next, it invokes assq on these two values, thus doing the
equivalent of cvaluating (assq 'key (get x 'propname)). Finally, it returns the value produced
by assq. Now, the original Lisp program we compiled was:

{(defun foo (x)
(assq 'key (get x ‘propname}))

We can see that the code produced by the compiler is correct: it will do the same thing as
the function we defined will do.

In summary, we have scen two kinds of instructions so far: the MOVE instruction, which
takes a destination and an address, and two of the large sct of miscellancous instructions, which
take only a destination, and implicitly get their inputs from the stack. We have seen two
destinations (D-PDL and D-RETURN), and two forms of address (FEF addressing and ARG
addressing).

28.2 A More Advanced Example

Here is a more complex Lisp function, demonstrating local variables, function calling,
conditional branching, and some other new instructions.

(defun bar (y)

(let ((z (car y)))
(cond ((atom z)

(setq z (cdr y))
(foo y))

(t

nil))))

The disassembled code looks like this:

SRCKI.MAN>CODE.TEXT.31 24-JAN-83

A More Advanced Example 606 Lisp Machine Manual

20 CAR D-PDL ARG|0 ;Y
21 POP LOCAL|O .7
22 MOVE D-IGNORE LOCAL|O iz

23 BR-NOT-ATOM 30

24 CDR D-PDL ARG|0 ;
25 POP LOCAL|0O

26 CALL D-RETURN FEF|6
27 MOVE D-LAST ARG|0 :
30 MOVE D-RETURN 'NIL

. we

< N =<
-
o
o

The first instruction here is a CAR instruction. It has the same format as MOVE: there is a
destination and an address. The CAR instruction reads the datum addressed by the address, takes
the car of it, and stores the result into the destination. In our cxample, the first instruction
addresses the zeroth argument, and so it computes (car y); then it pushes the result onto the
stack.

i The next instruction is something new: the POP instruction. It has an address field, but it
uses it as a destination rather than as a source. The POP instruction pops the top value off the
stack. and stores that value into the address specified by the address field. In our example, the
value on the top of the stack is popped off and stored into address LOCAL|O. This is a new
form of address; it means the zeroth local variable. The ordering of the local variables is chosen
by the compiler, and so it is not fully predictable, although it tends to be by order of appearance
in the code; fortunately you never have to look at these numbers, because the "comment” field
explains what is going on. In this case, the variable being addressed is z. So this instruction
pops the top value on the stack into the variable z. The first (wo instructions work together to
take the car of y and store it into z, which is indeed the first thing the function bar ought to do.
(If you have two local variables with the same name, then the "comment” field won't tell you
which-of the two you're talking about; you’ll have to figure that out yoursclf. You can tell two
local variables with the same name apart by looking at the number in the address.)

The next instruction is a familiar MOVE instruction, but it uses a new destination: D-
IGNORE. This mcans that the datum being addressed isn’t moved anywhere. If so, then why
bother doing this instruction? The reason is that there is conceptually a set of indicator bits, as in
the PDP-11. Every instruction that moves or produces a datum sets the "indicator” bits from that
datum so that following instructions can test them. So the reason that the MOVE instruction is
being done is so that someone can test the "indicators" set up by the value that was moved,
namely the value of z.

All instructions except the branch instructions set the "indicator” bits from the result produced
and/or stored by that instruction. (In fact, the POP in instruction 21 set the "indicators"
properly, and so the MOVE at instruction 22 is supecrfluous and the compiler would eliminate it.)

The next instruction is a conditional branch; it changes the flow of control, based on the
valucs in the "indicator” bits. The instruction is BR-NOT-ATOM 30, which means "Branch, if
the quantity was not an atom, to location 30; otherwise procced with execution™. If z was an
atom, the Lisp Machinc branches to location 30, and exccution procecds there. (As you can see
by skipping ahead, location 30 just contains a MOVE instruction, which will cause the function to
return nil.)

SRCKLMAN>CODE.TEXT.31 24-JAN-83

Lisp Machine Manual 607 A More Advanced ixample

If z is not an atom. the program keeps going, and the CDR instruction is next. 'This is just
like the CAR instruction except that it takes the cdr; this instruction pushes the value of (cdr y)
onto the stack. The next onc pops that valuc off into the variable z.

There are just two more instructions left. These two instructions will be our first cxample of
how function calling is compiled. It is the only really tricky thing in the instruction set. Here is
how it works in our example:

26 CALL D-RETURN FEF|6 ;#'FOO
27 MOVE D-LAST ARG|O ;Y

The form being compiled here is (foo y). This means we are applying the function which is
in the function cell of the symbol foo, and passing it one argument, the value of y. The way
function calling works is in the following three steps. First of all, there is a CALL instruction
that specifies the function object being applied to arguments. This creates a new stack frame on
the stack, and stores the function object there. Secondly, all the arguments being passed except
the last one are pushed onto the stack. Thirdly and lastly, the last argument is sent to a special
destination, called D-LAST, meaning "this is the last argument”. Storing to this destination is
what actually calls the function, not the CALL instruction itself.

There are two things you might wonder about this. First of all, when the function returns,
what happens to the returned value? Well, this is what we usc the destination ficld of the CALL
instruction for. The destination of the CALL is not stored into at the time the CALL instruction
is executed; instead, it is saved on the stack along with the function operation (in the stack frame
created by the CALL instruction). Then, when the function actually returns, its result is stored
into that destination.

The other question is what happens when there isn’t any last argument; that is, when there is
a call with no arguments at all? This is handled by a special instruction called CALLO. The
address of CALLO addresses the function object to be called; the call takes place immediately and
the result is stored into the destination specified by the destination field of the CALLO instruction.

So, let’s look at the two-instruction scquence above. The first instruction is a CALL; the
function object it specifies is at FEF|6, which the comment tells us is the contents of the function
cell of foo (the FEF contains an invisible pointer to that function cell). The destination field of
the CALL is D-RETURN, but we aren’t going to store into it yet; we will save it away in the
stack frame and use it later. So the function doesn’t return at this point, even though it says D-
RETURN in the instruction; this is the tricky part.

Next we have to push all the arguments except the last one. Well, there’s only one
argument, so nothing needs to be done here. Finally, we move the last argument (that is, the
only argument: the value of y) to D-LAST, using the MOVE instruction. Moving to D-LAST is
what actually invokes the function, so at this point the function foo is invoked. When it returms,
its result is sent to the destination stored in the stack frame: D-RETURN. Thercfore, the value
returned by the call to foo will be returned as the value of the function bar. Sure enough, this
is what the original Lisp code says to do.

SRCKL.MAN>CODE.TEXT.31 24-JAN-83

‘The Rest of the Instructions 608 Lisp Machine Manual

When the compiler pushes arguments to a function call, it sometimes docs it by sending the
values to a destination called D-NEXT (meaning the "next” argument). This is cxactly the same
as D-PDL when producing a compiled function. The distinction is important when the compiler
output is passed to the microcompiler to generate microcode.

Here is another example to illustrate function calling. This Lisp function calls one function on
the results of another function.

(defun a (x y)
(b (c xy)y))

The disassembled code looks like this:

22 CALL D-RETURN FEF|6 ;#°'B
23 CALL D-PDL FEF}7 ;#°C
24 MOVE D-PDL ARG}O ; X
25 MOVE D-LAST ARG|1 ;Y
26 MOVE D-LAST ARG|1 ;Y

The first instruction starts off the call to the function b. The destination field is saved for
later: when this function returns. we will return its result as a’s result. Next, the call to ¢ is
started. Its destination field. too, is saved for later: when ¢ returns. its result should be pushed
onto the stack, so that it will be the next argument to b. Next, the first and sccond arguments
to ¢ arc passed: the sccond onc is sent to D-LAST and so the function ¢ is called. Its result, as
we said, will be pushed onto the stack, and thus become the first argument to b. Finally, the
second argument to b is passed, by storing in D-LAST; b gets called, and its result is sent to
D-RETURN and is returned from a.

28.3 The Rest of the Instructions

Now that we've gotten some of the feel for what is going on, 1 will start enumerating the
instructions in the instruction set. The instructions fall into four classes. Class I instructions have
both a destination and an address. Class Il instructions have an address. but no destination.
Class 111 instructions are the branch instructions, which contain a branch address rather than a
genceral basc-and-offset address. Class 1V instructions have a destination, but no address; these
arc the miscellancous instructions. :

We have already seen just about all the Class 1 instructions. There are nine of them in all:
MOVE, CALL, CALLO, CAR, CDR., CAAR, CADR, CDAR, and CDDR. MOVE just moves a
datum from an address to a destination; the CxR and CxxR instructions are the same but
perform the function on the value before sending it to the destination; CALL starts off a call to a
function with some arguments; CALLO performs a call to a function with no arguments.

We've seen most of the possible forms of address. So far we have scen the FEF, ARG, and
LOCAL base registers. There are two other kinds of addresses. One uses a "constant" base
register, which addresses a set of standard constants: NIL, T, 0, 1, and 2. The disassembler
docsn’t even bother to print out CONSTANT|n, since the number n would not be cven slightly
interesting; it just prints out 'NIL or '1 or whatever. The other kind of address is a special one

SRC:KL.MAN>CODE.TEXT.31 24-JAN-83

Lisp Machine Manual 609 The Rest of the Instructions

printed as PDL-POP, which means that to rcad the value at this address, an object should be
popped off the top of the stack.

There is a higher number of Class I instructions. The only one we've scen so far is POP,
which pops a valuc off the stack and stores it into the specified address. There is another
instruction called MOVEM (from the PDP-10 opcode name, meaning MOVE to Memory), which
stores the top clement of the stack into the specified address, but doesn’t pop it off the stack.

Then there are seven Class 11 instructions to implement heavily-used two-argument functions:
+, -, % /, LOGAND. LOGXOR, and LOGIOR. These instructions take their first argument
from the top of the stack (popping them off) and their second argument from the specified
address, and they push their result on the stack. Thus the stack level does not change due to
these instructions.

Here is a small function that shows some of these new things:

(defun foo (x y)
(setq x (logxor y (- x 2))))

The disassembled code looks like this:

16 MOVE D-PDL ARG|1 ;Y
17 MOVE D-PDL ARG|O i X
20 - 2

21 LOGXOR PDL-POP

22 MOVEM ARG|O ;X

23 MOVE D-RETURN PDL-POP

Instructions 20 and 21 use two of the new Class II instructions: the - and LOGXOR
instructions. Instructions 21 and 23 use the PDL-POP address type, and instruction 20 uses the
"constant” base register to get to a fixnum 2. Finally, instruction 22 uses the MOVEM
instruction; the compiler wants to use the top value of the stack to store it into the value of x,
but it doesn’t want to pop it off the stack because it has another use for it: to return it from the
function.

Another four Class 11 instructions implement some commonly used predicates: =, >, £, and
EQ. The two arguments come from the top of the stack and the specified address; the stack is
popped, the predicate is applied to-the two objects, and the result is left in the "indicators™ so
that a branch instruction can test it, and branch based on the result of the comparison. These
instructions remove the top item on the stack and don’t put anything back, unlike the previous
set, which put their results back on the stack.

Next, there are four Class 1T instructions to read, modify, and write a quantity in ways that
are common in Lisp code. These instructions are called SETE-CDR, SETE-CDDR, SETE-1+,
and SETE-1-. The SETE- means to sct the addressed value to the result of applying the
specified one-argument function to the present value. For example, SETE-CDR means to read
the value addressed, apply cdr to it, and store the result back in the specified address. This is
used when compiling (setq x (cdr x)), which commonly occurs in loops; the other functions are
used frequently in loops, too.

SRC:KL.MAN>CODE.TEXT.31 24-JAN-83

‘The Rest of the Instructions 610 Lisp Machine Manual

There are two instructions used to bind special variables. ‘The first is BIND-NIL, which binds
the cell addressed by the address field to nil; the second is BIND-POP, which binds the cell to
an object popped off the stack rather than nil. ‘The latter instruction pops a value off the stack;
the former does not use the stack at all.

There are two instructions to store common values into addressed cells. SET-NIL stores nil
into the cell specified by the address field; SET-ZERO stores 0. Neither instruction uses the
stack at all.

Finally, the PUSH-E instruction creates a locative pointer to the cell addressed by the
specified address, and pushes it onto the stack. This is used in compiling (value-celi-location
'z) where z is an argument or a local variable, rather than a symbol (special variable).

Those are all of the Class II instructions. Here is a contrived cxample that uses some of the
ones we haven't scen, just to show you what they look like:

(declare (special *foo* xbars))

(defun weird (x y)
{(cond ((= x ¥y)
(1et ((*foo* nil) (*bar* 5))
(setq x (cdr x)))
nil)
(t
(setq x nil)
(caar (value-celi-location 'y)))))

The disassembled code looks like this:

24 MOVE D-PDL ARG]|O i X

25 = ARG|1 ;Y

26 BR-NIL 35

27 BIND-NIL FEF|6 s #FO0*
30 MOVE D-PDL FEF|8 ;5

31 BIND-POP FEF|7 ; #BAR*
32 SETE-CDR ARG|0 ;X

33 (MISC) UNBIND 2 bindings

34 MOVE D-RETURN 'NIL

35 SET-NIL ARG[O ;X
36 PUSH-E ARG|1 LY
37 CAAR D-RETURN PDL-POP

Instruction 25 is an = instruction; it numerically compares the top of the stack, x, with the
addressed quantity, y. The x is popped off the stack, and the indicators are set to the result of
the equality test. Instruction 26 checks the indicators, branching to 35 if the result of the call to
= was NIL; that is, the machine will branch to 35 if the two values were not equal. Instruction
27 binds *foo* to nil; instructions 30 and 31 bind *bar* to 5. Instruction 32 demonstrates the
use of SETE-CDR to compile (setq x (cdr x)), and instruction 35 demonstrates the use of SET-
NIL to compile (setq x nil). Instruction 36 demonstrates the use of PUSH-E to compile (value-

SRC:(I,.MAN>COI)E.TEXT.31 24-JAN-83

|.isp Machine Manual 611 Function Entry

celi-location ’y).

The next class of instructions, Class 111, arc the branching instructions. These have neither
addresses nor destinations of the usual sort. Instcad, they have branch-addresses; they say where

conditions under which they branch and whether they pop the stack. Branch-addresses are stored
internally as sclf-relative addresses. to make Lisp Machine code relocatable, but the disassembler
docs the addition for you and prints out FEF-relative addresses so that you can casily sce where
the branch is going to.

The branch instructions we have seen so far decide whether to branch on the basis of the "nil
indicator”, that is, whether the last value dealt with was nil or non-nil. BR-NIL branches if it
was nil, and BR~NOT-NIL branches if it was not nil. There arc two more instructions that test
the result of the atom predicate on the last value dealt with. BR-ATOM branches if the value
was an atom (that is. if it was anything besides a cons). and BR-NOT-ATOM branches if the
value was not an atom (that is, if it was a cons). The BR instruction is an unconditional branch
(it always branches).

None of the above branching instructions deal with the stack. There are two more
instructions called BR-NIL-POP and BR-NOT-NIL-POP, which are the same as BR-NIL and
BR-NOT-NIL cxcept that if the branch is not done, the top value on the stack is popped off the
stack. 'These arc used for compiling and and or special forms.

Finally, there are the Class 1V instructions, most of which are miscellancous hand-microcoded
Lisp functions. The file SYS: SYS; DEFMIC LISP has a list of all the miscellancous
instructions. Most correspond to Lisp functions, including the subprimitives, -although some of
these functions are very low level internals that may not be documented anywhere (don’t be
disappointed if you don’t understand all of them). Please do not look at this file in hopes of
finding obscure functions that you think you can use to speed up your programs; in fact, the
~ compiler automatically uses these things when it can, and directly calling weird internal functions
will only serve to make your code hard to read, without making it any faster. In fact, we don’t
guarantee that calling undocumented functions will continue to work in the future.

The DEFMIC file can be useful for determining if a given function is in microcode, although
the only definitive way to tell is to compile some code that uses it and look at the results, since
sometimes the compiler converts a documented function with one name into an undocumented
one with another name.

28.4 Function Entry

When a function is first entered in the Lisp Machine, interesting things can happen because

inrrnenda

. : " "
n1C 2 Yavwnrdc Tha m narfarme
of the features that are invoked by use of the various "&" keywords. The microcode performs

various services when a function is entered, even before the first instruction of the function is
exccuted. These services are called for by various fields of the header portion of the FEF,
including a list called the Argument Descriptor List, or ADL. We won't go into the detailed
format of any of this, as it is complex and the details are not too interesting. Disassembling a
function that makes use of the ADL prints a summary of what the ADL says to do, before the

beginning of the code.

SRCKILMAN>CODE.TEXT.31 24-JAN-83

Function Entry 612 Lisp Machinc Manual

‘The function-entry services include the initialization of unsupplicd optional arguments and of
&AUX variables. ‘The ADIL. has a little instruction sct of its own, and if the form that computes
the initial value is somcthing simple. such as a constant or a variable. then the ADIL. can handle
things itself. However, if things get too complicated. instructions are needed, and the compiler
generates some instructions at the front of the function to initialize the unsupplicd variables. In
this case, the ADL specifics several different starting addresses for the function, depending on
which optional arguments have been supplied and which have been omitted. If all the optional
arguments are supplied, then the ADL starts the function off after all the instructions that would
have initialized the optional arguments; since the arguments were supplied, their values should
not be set, and so all these instructions are skipped over. Herc's an example:

(declare (special #*y*))

(defun foo (&optional (x (car #*y*)}) (z (* x 3)))
(cons x z)

The disassembled code looks like this:

Arg 0 (X) is optional, local,
initialized by the code up to pc 34.

Arg 1 (Z) is optional, local,
initialized by the code up to pc 37.

32 CAR D-PDL FEF|6 saYs
33 POP ARG|0O i X
34 MOVE D-PDL ARG|O i X
35 = FEF|11 ;'3
36 POP ARG|1 iz
37 MOVE D-PDL ARG|0 X
40 MOVE D-PDL ARG|1 iz

41 (MISC) CONS D-RETURN

If no arguments are supplicd, the function will be started at instruction 32; if only one
argument is supplicd, it will be started at instruction 34; if both arguments are supplied, it will
be started at instruction 37.

The thing to keep in mind here is that when there is initialization of variables, you may see
it as code at the beginning of the function, or you may not, depending upon whether it is too
complex for the ADL to handle. This is true of &aux variables as well as unsupplied &optional
arguments.

When there is a &rest argument, it is passed to the function as the zeroth local variable,
rather than as any of the arguments. This is not really so confusing as it might scem, since a
&rest argument is not an argument passed by the caller; rather it is a list of some of the
arguments, created by the function-entry microcode services. In any case the "comment" tells you
what is going on. In fact, one hardly cver looks much at the address fields in disassembled code,
since the "comment” tells you the right thing anyway. Here is a silly example of the use of a
&rest argument:

SRCKI.MAN>CODE.TEXT.31 24-JAN-83

[.isp Machinec Manual 613 Special Class 1V Instructions

(defun prod (&rest values)
(appiy #'* values))

The disassembled code looks like this:

20 MOVE D-PDL FEF|6 H e
21 MOVE D-PDL LOCAL|0 ; VALUES
22 (MISC) APPLY D-RETURN

As can be scen, values is referred to as LOCALJO.

Another thing the microcode does at function entry is to bind the values of any arguments or
&aux variables that are special. Thus, you won’t see BIND instructions doing this, but it is still
being done.

28.5 Special Class IV Instructions

We said earlier that most of the Class 1V instructions are miscellancous hand-microcoded Lisp
functions. However, a few of them are not Lisp functions at all. There are two instructions that
are printed as UNBIND 3 bindings or POP 7 values; the number can be anything up to 16
(these numbers are printed in decimal). These instructions just do what they say, unbinding the
last # values that were bound or popping the top » values off the stack.

The array referencing functions—aref, aset, and aloc—take a variable number of arguments,
but they are handled differently depending on how many there are. For one-, two-, and three-
dimensional arrays, these functions are turned into internal functions with names ar-1, as-1, and
ap-1 (with the number of dimensions substituted for 1). Again, there is no point in using these
functions yourself: it would only make your code harder to understand but not any faster at ail.
When there are more than three dimensions, the functions aref, aset and aloc are called in the
ordinary manner.

When you call a function and expect to get more than one value back, a slightly different
kind of function calling is used. Here is an cxample that uses multiple-value to get two values
back from a function call:

(defun foo (x)
(let (y z) ,
(multiple-value (y z)
(bar 3))
(+ x y 2)))

The disassembled code looks like this:

SRCKL.MAN>CODETEXT.31 24-JAN-83

Speciat Class 1V Instructions 614 Lisp Machine Manual

22 MOVE D-PDL FEF|6 ; #°BAR
23 MOVE D-PDL 2
24 (MISC) %CALL-MULT-VALUE D-IGNORE

25 MOVE D-LAST FEF|7 ;3
26 POP LOCAL|1 iz
27 POP LOCAL|0O ;Y
30 MOVE D-PDL ARG|0 ;X
31 + LOCAL|O ;Y
32 + LOCAL|1 iz

33 MOVE D-RETURN PDL-POP

A %CALL-MULT-VALUE instruction is used instcad of a CALL instruction. The destination
field of %CALL-MULT-VALUE is unused and will always be D-IGNORE. %CALL-MULT-
VALUE takes two "arguments”, which it finds on the stack: it pops both of them. The first one
is the function object to be applied; the sccond is the number of return values that are expected.
The rest of the call proceeds as usual, but when the call returns. the returned values are left on
the stack. The number of objects left on the stack is always the same as the sccond “"argument”
10 %CALL-MULT-VALUE. In our cxample, the two values returned are left on the stack, and
they are immediately popped off into z and y. There is also a %CALLO-MULT-VALUE
instruction, for the same reason CALLO exists.

‘The multiple-value-bind form works similarly; here is an example:

(defun foo (x)
(multiple-value-bind (y »foo* z)
(bar 3)
(+ xy z)))

The disassembled code looks like this:

24 MOVE D-PDL FEF|8 :#'BAR
25 MOVE D-PDL FEF|7 ;'3

26 (MISC) %CALL-MULT-VALUE D-IGNORE

27 MOVE D-LAST FEF|7 ;"3

30 POP LOCAL|1 1z

31 BIND-POP FEF|6 ; #+FOO»
32 POP LOCAL|0 ;Y

33 MOVE D-PDL ARG|0 i X

34 + LOCAL|O ;Y

35 + LOCAL|1 1z

36 MOVE D-RETURN PDL-POP

The %CALL-MULT-VALUE instruction is still used, leaving the results on the stack; these
results arc used to bind the variables,

Calls done with multiple-value-list work with the %CALL-MULT-VALUE-LIST instruction.
It takes one "argument” on the stack: the function object to apply. When the function returns,
the list of values is left on the top of the stack. Here is an example:

SRCKI.MAN>CODE.TEXT.31 24-JAN-83

ILisp Machine Manual 615 Special Class IV Instructions

(defun foo (x y)
(multipie-value-list (foo 3 y x}))

The disassembled code looks like this:

22 MOVE D-PDL FEF|6 J#°FO0

23 (MISC) %CALL-MULT-VALUE-LIST D-IGNORE
24 MOVE D-PDL FEF|7 373

25 MOVE D-PDL ARG}1 ;Y

26 MOVE D-LAST ARG|O ;X

27 MOVE D-RETURN PDL-POP

Returning of more than one value from a function is handled by special miscellancous
instructions. %RETURN-2 and %RETURN-3 arc used to return two or three valucs; these
instructions take two and three arguments, respectively, on the stack and return from the current
function just as storing to D-RETURN would. If there arc more than three return values, they
are all pushed, then the number that there were is pushed, and then the %RETURN-N
instruction is executed. None of these instructions use their destination field. Note: the return-
list function is just an ordinary miscellancous instruction; it takes the list of values to return as an
argument on the stack and returns those values from the current function.

The function lexpr-funcall is compiled using a special instruction called %SPREAD to iterate
over the clements of its last argument, which should be a list. %SPREAD takes onc argument
(on the stack), which is a list of values to be passed as arguments (pushed on the stack). If the
destination of %SPREAD is D-PDL (or D-NEXT), then the values are just pushed; if it is D-
LAST, then after the values are pushed, the function is invoked. lexpr-funcall will always
compile using a %SPREAD whose destination is D-LAST. Herc is an example:

(defun foo (a b &rest c)
(1expr-funcall #'format t a c)
b)

The disassembled code looks like this:

20 CALL D-IGNORE FEF|6 ; #' FORMAT
21 MOVE D-PDL °'T

22 MOVE D-PDL ARG|0 ;A

23 MOVE D-PDL LOCAL]|O ;C

24 (MISC) %SPREAD D-LAST

25 MOVE D-RETURN ARG|1 ;B

Note that in instruction 23, the address LOCAL|O is used to access the &rest argument.

The *catch special form is also handled specially by the compiler. Here is a simple example
of *catch:

(defun a ()
(#catch 'foo (bar)))

SRC:KLMAN>CODE.TEXT.31 24-JAN-83

Estimating Run Time 616 Lisp Machine Manual

The disassembled code looks like this:

22 MOVE D-PDL FEF|6 ;26
23 (MISC) %CATCH-OPEN D-PDL

24 MOVE D-PDL FEF|7 :*FOO
25 CALLO D-LAST FEF|8 ;#’BAR

26 MOVE D-RETURN PDL-POP

The %CATCH-OPEN instruction is like the CALL instruction; it starts a call to the *catch
function. 1t takes onc "argument™ on the stack. which is the location in the program that should
be branched to if this *catch is *thrown to. In addition to saving that program location, the
instruction saves the state of the stack and of special-variable binding so that they can be restored
in the event of a *throw. So instructions 22 and 23 start a *catch block, and the rest of the
function passes its two arguments. The *catch function itsclf simply returns its second argument;
but if a *throw happens during the evaluation of the (bar) form. then the stack will be unwound
and cxccution will resume at instruction 26. The destination ficld of %CATCH-OPEN is like that
of CALL; it is saved on the stack, and controls what will be done with the result of the call to
the *catch. Notc that even though *catch is really a Lisp special form, it is compiled more or
less as if it were a function of two arguments.

To allow compilation of (multiple-value (...) (*catch ...)), there is a special instruction called
%CATCH-OPEN-MULT-VALUE, which is a cross betwecen %CATCH-OPEN and %CALL-
MULT-VALUE. multiple-value-list with *catch works by asking for all four values and passing
them to the function list.

28.6 Estimating Run Time

You may sometimes want to ecstimate the speed at which a function will execute by
examination of the compiled code. This section gives some rough guidelines to the relative cost of
various instructions; the actual specd may vary from thesc estimates by as much as a factor of
two. Somec of these speeds vary with time; they speed up as work is done to improve system
efficiency and slow down sometimes when sweeping changes are made (for instance, when garbage
collection was introduced it slowed down some operations even when garbage collection is not
turned on). However these changes are usually much less than a factor of two.

It is also important to realize that in many programs the exccution time is determined by
paging rather than by CPU run time. The cost of paging is unfortunately harder to estimate than
run time, because it depends on dynamic program behavior and locality of data structure.

On a conventional computer such as the PDP-10, rough estimates of the run time of compiled
code are fairly easy to make. It is a reasonable approximation to assume that all machine
instructions take about the same amount of time to execute. When the compiler generates a call
to a runtime support routine, the user can estimate the speed of that routine since it is
implemented in the same instructions as the user’'s compiled program. Actual speeds can vary
widely because of data dependencies; for example, when using the plus function the operation
will be much slower if an argument is a bignum than if the arguments arc all fixnums. However,
in Maclisp most performance-critical functions use declarations to remove such data dependencies,
because generic, data-dependent operations are so much slower than type-specific operations.

SRC:KL.MAN>CODE.TEXT.31 24-JAN-83

[isp Machine Manual 617 Estimating Run Time

Things are different in the Lisp Machine. The instruction set we have just seen is a high-level
instruction set. Rather than specifying cach individual machine operation, the compiler calls for
higher-level Lisp operations such as cdr or memq. ‘This means that some instructions take many
times longer to cxccute than others. Furthermore, in the Lisp machine we do not use data-type
declarations. Instead the machine is designed so that all instructions can be generic: that is, they
determiric the types of their operands at run time. This means that there are data dependencies
that can have major cffects on the speed of cxccution of an instruction. For instance, the +
instruction is quite fast if both opcrands turn out to be fixnums, but much slower if they are
bignums.

The Lisp machine also has a large amount of microcode, both to implement certain Lisp
functions and to assist with common operations such as function calling. It is not as easy for a
user to read microcode and estimate its speed as it is with compiled code, although the Lisp
machine has a much more readable microcode than most computers.

In this section we give some estimates of the speed of various operations. There are also
facilities for measuring the actual achieved spced of a program. 'These will not be documented
here as they are currently being changed.

We will express all times in terms of the time to execute the simplest instruction, MOVE D-
PDL ARG|0. This time is about two microseconds and will be called a "unit".

MOVE takes the same amount of time if the destination is D-IGNORE or D-NEXT, or if the
address is a LOCAL or PDL-POP rather than an ARG. A MOVE that references a constant, via
cither the FEF base register or the CONSTANT base register, takes about two units. A MOVE
that references a special variable by means of the FEF base register and an invisible pointer takes
closer to three units.

Use of a complex destination (D-LAST, D-RETURN, or D-NEXT-LIST) takes extra time
because of the extra work it has to do: calling a function, returning from a function, or doing
the bookkeeping associated with forming a list. These costs will be discussed a bit later.

The other Class I instructions take longer than MOVE. Each memory reference required by
car/cdr operations costs about onc unit. Note that cdr requires one memory cycle if the list is
compactly cdr-coded and two cycles if it is not. The CALL instruction takes thrce units. The
CALLO instruction takes more, of course, since it actually calls the function.

The Class 11 (no destination) instructions vary. The MOVEM and POP operations take about
one unit. (Of course they take more if FEF or CONSTANT addressing is used.) The arithmetic
and logical operations and the predicates take two units when applied to fixnums, except for
multiplication and division which take five. The SETE-1+ and SETE-1- instructions take two
units, the same time as a push followed by a pop; ie. (setgq x (1+ x)) takes the same amount
of time as (setq x y). The SET-NIL and SET-ZERO instructions take one unit. The speciai-
variable binding instructions take several units.

A branch takes between one and two units.

SRCKLLMAN>CODE.TEXT.31 24-JAN-83

Estimating Run Time 618 [.isp Machinc Manual

The cost of calling a function with no arguments and no local variables that doesn’t do
anything but return nil is about 15 units (7 cdrs or additions). 'This is the cost of a CALL FEF|n
instruction, a MOVE to D-LAST. the simplest form of function-entry services, and a MOVE to
D-RETURN. If the function takes arguments the cost of calling the function includes the cost of
the instructions in the caller that compute the arguments. If the function has local variables
initialized to nil or optional arguments defaulted to nil there is a negligible additional cost. The
cost of having a &rest argument is less than one additional unit. But if the function binds special
variables there is an additional cost of 8 units per variable (this includes both binding the
variables on entry and unbinding them on return).

If the function needs an ADL., typically because of complex optional-argument initializations,
the cost goes up substantially. It's hard to characterize just how much it goes up by, since this
depends on what you do. Also calling for multiple values is more expensive than simple calling.

We consider the cost of calling functions to be somewhat higher than it should be, and would
like to improve it. But this might require incompatible system architccture changes and probably
_ will not happen, at least not soon.

Flonum and bignum arithmetic are naturally slower than fixnum arithmetic. For instance,
flonum addition takes 8 units more than fixnum addition, and addition of 60-bit bignums takes 15
units more. Note that these times include some garbage-collection overhead for the intermediate
results which have to be created in memory. Fixnums and small flonums do not take up any
memory and avoid this overhead. Thus small-flonum addition takes only about 2 units more than
fixnum addition. This garbage-collection overhead is of the "extra-pdl-area™ sort rather than the
full Baker garbage collector sort; if you don’t undersitand this don’t worry about it for now.

Floating-point subtraction, multiplication, and division take just about the same time as
floating-point addition. Floating-point exccution times can bc as many as 3 units longer depending
on the arguments.

The run time of a Class IV (or misccllaneous) instruction depends on the instruction and its
arguments. The simplest instructions, predicates such as atom and numberp, take 2 units. This
is basically the overhead for doing a Class IV instruction. The cost of a more complex instruction
can be cstimated by looking at what it has to do. You can get a rcasonable estimate by charging
onc unit per memory reference, car operation, or cdr-coded cdr operation. A non-cdr-coded cdr
operation takes two units. For instance, (memq ’nil '(a b c)) takes 13 units, of which 4 are
pushing the arguments on the stack, 2 are Class IV instruction overhead, 6 are accounted for by
cars and cdrs, and 1 is "left over”.

The cost of array accessing depends on the type of array and the number of dimensions. aref
of a 1-dimensional non-indirect art-q array takes 6 units and aset takes 5 units, not counting
pushing the arguments onto the stack. (These are the costs of the AR-1 and AS-1 instructions.)
A 2-dimensional array takes 6 units more. aref of a numeric array takes the same amount of
time as aref of an art-q array. aset takes 1 unit longer. aref of an art-float array takes 5 units
longer than aref of an art-q array. aset takes 3 units longer.

The functions copy-array-contents and copy-array-portion optimize their array accessing to
remove overhcad from the inner loop. copy-array-contents of an art-q array has a startup
overhead of 8 units, not including pushing the arguments, then costs just over 2 units per array

SRCKL.MAN>CODE.TEXT.31 24-JAN-83

Lisp Machinc Manual 619 Estimating Run Time

clement.

The cons function takes 7 units if garbage collection is turned off. (list a b ¢ d) takes 24
units, which includes 4 units for getting the local variables a, b, ¢, and d.

SRCKI.MAN>CODE.TEXT.31 24-JAN-83

	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619

