Initializations 624 Lisp Machine Manual

30. Initializations

There are a number of programs and facilitics in the Lisp Machine that require that
"initialization routines” be run cither when the facility is first loaded, or when the system is
booted, or both. These initialization routines may sct up data structures, Start processcs running,
open network connections, and so on.

An initialization that nceds to be done once. when a file is loaded, can be dong simply by
putting the Lisp forms to do it in that file; when the file is loaded the forms will be cvaluated.
However, some initializations need to be done cach time the system is booted, and some
initializations depend on several files having been loaded before they can work.

The system provides a consistent scheme for managing these initializations. Rather than
having a magic function that runs when the system is started and knows everything that needs to
be initialized, cach thing that nceds initialization contains its own initialization routine. The
system keeps track of all the initializations through a set of functions and conventions, and
.executes all the initialization routines when necessary. The system also avoids re-exccuting
initializations if a program file is loaded again after it has alrcady been loaded and initialized.

There is something called an initialization list. This is a symbol whose value is an ordered
list of initializations. FEach initialization has a name, a form to be evaluated, a flag saying
whether the form has yet been cvaluated, and the source file of the initialization, if any. When
the time comes, initializations are evaluated in the order that they were added to the list. The
namc is a string and lies in the car of an initialization; thus assoc may be used on initialization
lists. All initialization lists also have a si:initialization-list property of t. This is mainly for
internal use.

add-initialization name form &optional list-of keywords initialization-list-name
Adds an initialization called name with the form form to the initialization list specified
cither by initialization-list-name or by keyword. If the initialization list alrcady contains an
initialization called name, change its form to form.

initialization-list-name, if specified, is a symbol that has as its value the initialization list.
If it is unbound, it is initialized (!) to nil, and is given a siinitialization-list property of
t. If a keyword specifies an initialization list, initialization-list-name is ignored and should
not be specified.

The keywords allowed in list-of keywords are of two kinds. These specify what
initialization list to use:

:cold Use the standard cold-boot list (see below).

:warm Use the standard warm-boot list (see below). This is the default.
‘before-cold Use the standard before-disk-save list (see below).

:once Use the oncec-only list (see below).

system Use the system list (see below).

SRC:KLL.MAN>INIT.TEXT.12 24-JAN-83

lisp Machine Manual 625 Initializations

Jlogin Use the login list (sce below).
:logout Use the logout list (sce below).
site Use the site list (see below).

'site-option Usc the site-option Iist (sce below).

full-gc Use the full-ge list (sce below).

These specify when to evaluate form:

:normal Only place the form on the list. Do not cvaluate it until the time comes
to do this kind of inidalization. This is the default unless :system or
:once is specified.

‘Now Evaluate the form now as well as adding it to the list.

first Evaluate the form now if it is not flagged as having been evaluated
before. This is the default if :system or :once is specified.

redo Do not evaluate the form now, but set the flag to nil even if the
initialization is alrcady in the list and flagged t.

Actually, the keywords are compared with string-equal and may be in any package. If
both kinds of keywords are used, the list keyword should come before the when keyword
in list-of kevwords; otherwise the list keyword may override the when keyword.

The add-initialization function keeps each list ordered so that initializations added first
are at the front of the list. Therefore, by controlling the order of exccution of the
additions, you can control explicit dependencies on order of initialization. Typically, the
order of additions is controlled by the loading order of files. The system list {sce below)
is the most critically ordered of the pre-defined lists.

The add-initialization keywords that specify an initialization list are defined by a variable;
you can add new keywords to it.

si:initialization-keywords Variable

Each element on this list defines the keyword for one initialization list. Each element is a
list of two or three elements. The first is the keyword symbol that names the initialization
list. The second is a special variable, whose value is the initialization list itself. The
third, if present, is a symbol defining the default "time™ at which initializations added to
this Hist should be evaluated: it should be si:normal, si:now, sitfirst, or sicredo. This
third element just acts as a default; if the list of keywords passed to add-initialization
contains one of the keywords normal, now, first, or redo, it will override this default.
If the third element is not present, it is as if the third element were si:normal.

delete-initialization name &optional keywords initialization-list-name

Removes the specified initialization from the specified initialization list. Keywords may be
any of the list options allowed by add-initialization.

SRCKLMANDINIT.TEXT.12 24-JAN-83

System Initialization Lists 626 Lisp Machine Manual

initializations initialization-list-name &optional redo-flag flag-value

Perform the initializations in the specified list. redo-flag controls whether initializations that
have alrcady been performed are re-performed: nil means no, non-nil is yes, and the
default is nil. flag-value is the value to be bashed into the flag slot of an cntry. If it is
unspecified, it defaults to ¢, meaning that the system should remember that the
initialization has been done. The rcason that there is no convenient way for you to
specify one of the specially-known-about lists is that you shouldn’t be calling initializations
on them.

reset-initializations initialization-list-name
Bashes the flag of all entrics in the specified list to nil. thereby causing them to get rerun
_the next time the function initializations is called on the initialization list.

30.1 System Initialization Lists

The special initialization lists that are known about by the above functions allow you to have
your subsystems initialized at various critical times without modifying any system code to know
about your particular subsystems. This also allows only a subset of all possible subsystems to be
loaded without necessitating either modifying system code (such as lisp-reinitialize) or such
kludgy mecthods as using fboundp to check whether or not something is loaded.

The :once initialization list is used for initializations that need to be done only once when the
subsystem is loaded and must never be done again. For example, there arc some databases that
need to be initialized the first time the subsystem is loaded, but should not be reinitialized every
time a new version of the software is loaded into a currently running system. This list is for that
purpose. The initializations function is never run over it; its "when" keyword defaults to :first
and so the form is normally only evaluated at load-time, and only if it has not been evaluated
before. The :once initialization list scrves a similar purpose to the defvar special form (see page
19), which sets a variable only if it is unbound.

The :system initialization list is for things that nced to be done before other initializations
stand any chance of working. Initializing the process and window systems, the file system, and
the ChaosNet NCP falls in this category. The initializations on this list are run every time the
machine is cold or warm booted, as wcll as when the subsystem is loaded unless explicitly
overridden by a :normal option in the keywords list. In general, the system list should not be
touched by user subsystems, though there may be cases when it is necessary to do so.

The :cold initialization list is used for things that must be run once at cold-boot time. The
initializations on this list are run aftcr the ones on :system but before the ones on the :warm list.
They are run only once, but are reset by disk-save thus giving the appearance of being run only
at cold-boot time.

The :warm initialization list is used for things which must be run every time the machine is

booted, including warm boots. The function that prints the greeting, for example, is on this list.
Unlike the :cold list, the :warm list initializations are run regardless of their flags.

SRCKL.MAN>INIT.TEXT.12 24-JAN-83

I.isp Machinc Manual 627 System [nitialization Lists

The before-cold initialization list is a variant of the :cold list. These initializations are run
before the world is saved out by disk-save. Thus they happen cssentially at cold boot time, but
only once when the world is saved, not cach time it is started up.

The -site initialization list is run every time a new sitc table and host table arc loaded by
update-site-configuration-info. The keyword :site implies :now unless overridden.

The :site-option initialization list is run cvery time the sitc options may have changed; that
is. when a new site tables arc loaded or after a cold boot (to sce the per-machine options of the
machine being booted on).

The :full-gc initialization list is run by the function si:full-gc just before garbage collecting.
Initializations might be put on this list to discard pointers to bulky objects, or to turn copy lists
into cdr-coded form so that they will remain permanently localized.

The :login and :logout lists are run by the login and logout functions (sce page 648)
respectively. Note that disk-save calls logout. Also note that often pecople don't call logout;
they often just cold-boot the machine.

User programs are free to create their own initialization lists to be run at their own times.

Some system programs, such as the cditor, have their own initialization list for their own
purposes.

SRCKL.MAN>INIT.TEXT.12 24-JAN-83

	624
	625
	626
	627

