Dates and Times 628 1isp Machine Manual

31. Dates and Times

The time: package contains a sct of functions for manipulating dates and times: finding the
current time, reading and printing dates and times, converting between formats, and other
miscellany regarding peculiaritics of the calendar system. It also includes functions for accessing
the Lisp Machine’s microsecond timer.

Times are represented in two different formats by the functions in the time package. One
way is 1o represent a time by many numbers, indicating a year. a month, a date, an hour, a
minute, and a sccond (plus, sometimes, a day of the week and timezone). The year is relative to
1900 (that is, if it is 1983, the year value would be 83); however, the functions that take a year
as an argument will accept cither form. ‘The month is 1 for January, 2 for February, etc. The
date is 1 for the first day of a month. The hour is a number from 0 to 23. The minute and
second are numbers from 0 to 59. Days of the week are fixnums, where 0 mcans Monday, 1
means Tucsday, and so on. A timezone is specified as the number of hours west of GMT: thus
in Massachusctts the timezone is 5. Any adjustment for daylight savings time is separate from
this.

This "decoded” format is convenient for printing out times into a rcadable notation, but it is
inconvenient for programs to make sense of these numbers and pass them around as arguments
(since there are so many of them). So there is a sccond representation, called Universal Time,
which mcasures a time as the number of seconds since January 1, 1900, at midnight GMT. This
"cncoded” format is casy to deal with inside programs, although it docsn’t make much sense to
look at (it looks like a huge integer). So both formats are provided; there are functions to
convert between the two formats; and many functions exist in two forms, one for each format.

The Lisp Machine hardware includes a timer that counts once every microsecond. It is
controlled by a crystal and so is fairly accurate. The absolute value of this timer doesn’t mean
anything uscful, since it is initialized randomly; what you do with the timer is to read it at the
beginning and end of an interval. and subtract the two values to get the length of the interval in
microseconds. These relative times allow you to time intervals of up to an hour (32 bits) with
microsecond accuracy.

The Lisp Machine keeps track of the time of day by maintaining a "timebase”, using the
microsccond clock to count off the seconds. When the machine first comes up, the timebase is
initialized by querying hosts on the Chaosnet to find out the current time.

There is a similar timer that counts in 60ths of a second rather than microscconds; it is useful
for measuring intervals of a few seconds or minutes with less accuracy. Periodic housekeeping
functions of the system are scheduled based on this timer.

SRCKLMAN>TIME.TEXT.29 24-JAN-83

Lisp Machinc Manual 629 Getting and Sctting the Time

31.1 Getting and Setting the Time

time:get-time
Get the current time, in decoded form. Return scconds, minutes, hours, date, month,
year, day-of-the-week, and daylight-savings-ime-p, with the same meanings as
time:decode-universal-time (sce page 633).

time:get-universal-time
Returns the current time in Universal Time form.

time:set-local-time &optional new-time
Sct the local time to new-time. If new-time is supplied, it must be cither a universal time
or a suitable argument to time:parse (scc page 631). If it is not supplied, or if there is
an crror parsing the argument, you will be prompted for the new time. Note that you
will not normally nced to call this function; it is useful mainly when the timebase gets
screwed up for one reason or another. “

31.1.1 Elapsed Time in 60ths of a Second

The following functions deal with a different kind of time. These are not calendrical
date/times, but simply elapsed time in 60ths of a second. These times are used for many internal
purposes where the idea is to measure a small interval accurately, not to depend on the time of
day or day of month.

time
Returns a number that increases by 1 every 1/60 of a second. The value wraps around
roughly once a day. Usc the time-lessp and time-difference functions to avoid getting
in trouble duc to the wrap-around. time is compleicly incompatible with the Maclisp
function of the same name.

time-lessp timel time2
t if timel is earlier than fime2, compensating for wrap-around, otherwise nil.

time-difference timel time
Assuming timel is later than time2, returns the number of 60ths of a sccond difference
between them, compensating for wrap-around.

time-increment fime interval
Increments time by interval, wrapping around if appropriate.

SRCKLMAN>TIME.TEXT.29 24-JAN-83

Printing Dates and Times 630 Lisp Machine Manual

31.1.2 Elapsed Time in Microseconds

time:microsecond-time
Returns the value of the microsecond timer, as a bignum. The values returned by this
function "wrap around” about once per hour.

time:fixnum-microsecond-time

Returns as a fixnum the value of the low 23 bits of the microsccond timer. 'This is like
time:microsecond-time, with the advantage that it returns a value in the same format as
the time function, cxcept in microscconds rather than 60ths of a sccond. This means that
you can compare fixnum-microsecond-times with time-lessp and time-difference.
time:fixnum-microsecond-time is also a bit faster, but has the disadvantage that since
you only see the low bits of the clock, the value can "wrap around” more quickly (about
every cight seconds). Note that the Lisp Machine garbage collector is so designed that the
bignums produced by time:microsecond-time arc garbage-collected quickly and efficiently,
so the overhead for creating the bignums is really not high.

31.2 Printing Dates and Times

The functions in this section crcate printed representations of times and dates in various
formats and send the characters to a strcam. To any of these functions, you may pass nil as the
stream parameter and the function will return a string containing the printed representation of the
time, instead of printing the characters to any stream.

time:print-current-time &optional (stream standard-output)
Prints the current time, formatted as in 11/25/80 14:50:02, to the specified stream.

time:print-time seconds minutes hours date month year &optional
(stream standard -output)
Prints the specified time, formatted as in 11/25/80 14:50:02, to the specified stream.

time:print-universal-time universal-time &optional (siream standard-output)
(timezone time: *timezone*)
Prints the specified time, formatted as in 11/25/80 14:50:02, to the specified stream.

time:print-current-date &optional (stream standard-output)
Prints the current time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the specified stream.

time:print-date seconds minutes hours date month year day-of-ihe-week &optional
(stream standard -output)
Prints the specified time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the specified stream.

SRCKLMAN>TIME.TEXT.29 24-JAN-83

Lisp Machine Manual 631 Rcading Dates and Times

time:print-universal-date universal-time &optional (stream standard-output)
(timezone time:*timezone*)
Prints the specified time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the specified stream.

time:print-brief-universal-time universal-time &optional (stream standard-output)
reference-time -

This is like time:print-universal-time except that it omits seconds and only prints those
parts of universal-time that differ from reference-time, a universal time that defaults to the
current time. Thus the output will be in onc of the following three forms:

02:59 ; the same day

3/4 14:01 ;a different day in the same year

8/17/74 15:30 ; a different year

31.3 Reading Dates and Times

These functions will accept most reasonable printed representations of date and time and
convert them to the standard internal forms. The following are representative formats that are
accepted by the parser.

*March 15, 1960%" *15 March 1960" "3//15//60"
"15//3//60" "3//15//1960" "3-15-60" "15-3-1960"
"3-15" "15-March-60" "15-Mar-60" "March-15-60"
"1130." "11:30" "11:30:17" "11:30 pm"

"11:30 AM" "1130" "113000"

"11.30" "11.30.00" "11.3" "11 pm" "12 noon"
“midnight® "m" "Friday, March 15, 1980" "6:00 gmt" "3:00 pdt”
"15 March 60" "15 march 60 seconds”

"Fifteen March 60" "The Fifteenth of March, 1960;"
"One minute after March 3, 1960"

"Two days after March 3, 1960"

"Three minutes after 23:59:59 Dec 31, 1959"

"Now" "Today" "Yesterday" "two days after tomorrow”
"one day before yesterday" "the day after tomorrow”
"five days ago"

time:parse string &optional (start0) (endnil) (futurept) base-time must-have-time
date-must-have-year time-must-have-second (day-must-be-validt)
Interpret string as a date and/or time, and return seconds, minutes, hours, date, month,
year, day-of-the-weck, daylight-savings-time-p, and relative-p. start and end delimit a
substring of the string; if end is nil, the end of the string is used. must-have-time means
that string must not be empiy. daie-musi-have-year means that a ycar must be explicitly
specified. time-must-have-second means that the second must be specified. day-must-be-
valid means that if a day of the week is given, then it must actually be the day that
corresponds to the date. base-time provides the defaults for unspecified components; if it
is nil, the current time is used. futurep means that the time should be interpreted as
being in the future; for example, if the base time is 5:00 and the string refers to the
time 3:00, that means the next day if futurep is non-nil, but it means two hours ago if

SRCKIL.MAN>TIME.TEXT.29 24-JAN-83

Reading and Printing Time Intervals 632 Lisp Machine Manual

Juturep is nil. The relative-p returned value is t if the string included a relative part, such
as "one minute after” or "two days before™ or "tomorrow” or "now': otherwisc, it is nil.

time:parse-universal-time swing &optional (siart0) (endnil) (futurept) base-time
nust-have-time - date-must-have-year time-nuist-have-second (day-must-be-validt)
This is the same as time:parse except that it returns one integer, representing the time in
Universal Time, and the relative-p value.

31.4 Reading and Printing Time Intervals

In addition to the functions for rcading and printing instants of time, therc are other
functions specifically for printing time intervals. A time interval is cither a number (measured in
scconds) or nil, meaning "mever”. The prinied representations used look like "3 minutes 23
scconds” for actual intervals, or "Never" for nil (somc other synonyms and abbreviations for

"never” are accepted as input).

time:print-interval-or-never interval &optional (stream standard-output)
interval should be a non-ncgative fixnum or nil. Its printed representation as a time
interval is written onto sfream.

time:parse-interval-or-never swring &optional start end
Converts string, a printed representation for a time interval, into a number of nil. start
and end may be used to specify a portion of string w be used; the default is to use all of
string. 1t is an error if the contents of string do not look like a rcasonable time interval.
Here are some examples of acceptable strings:

"4 seconds" "4 secs" "4 s"

"5 mins 23 secs" "5 m 23 s" "23 SECONDS 5 M"
"3 yrs 1 week 1 hr 2 mins 1 sec"

"never" "not ever" Hno" "y

Note that several abbreviations are understood, the components may be in any order, and
case (upper versus lower) is ignored. Also, "months” are not recognized, since various
months have different lengths and there is no way to know which month is being spoken
of. This function will always accept anything that was produced by time:print-interval-
or-never. furthermore, it will return exactly the same fixnum (or nil) that was printed.

time:read-interval-or-never &optional (stream standard-input)
This function reads a line of input from strean (using readline) and then calls
time:parse-interval-or-never on the resulting string.

SRC:KLMAN>TIME.TEXT.29 24-JAN-83

Lisp Machine Manual 633 Time Conversions

31.5 Time Conversions

time:decode-universal-time universal-time &optional (timezonetime:*timezone*)
Converts universal-time into its decoded representation. The following values are returned:
scconds, minutes, hours, datc. month, year, day-of-the-week, daylight-savings-time-p.
daylight-savings-time-p tells you whether or not daylight savings time is in cffect; if so, the
value of hour has been adjusted accordingly. You can specify timezone explicitly if you
want to know the cquivalent representation for this time in other parts of the world.

time:encode-universal-time seconds minutes hours date month year &optional timezone
Converts the decoded time into Universal Time format, and return the Universal Time as
an integer. If you don’t specify timezone, it defaults to the current timezone adjusted for
daylight savings time; if you provide it explicitly, it is not adjusted for daylight savings
time. year may be absolute or relative to 1900 (that is, 81 and 1981 both work).

time:*timezone* Variable
The value of time:*timezone* is the time zone in which this Lisp Machine resides,
expressed in terms of the number of hours west of GMT this time zone is. This value
does not change to reflect daylight savings time; it tells you about standard time in your
part of the world.

31.6 Internal Functions

These functions provide support for those listed above. Some user programs may nced to call
them directly, so they arc documented here.

time:initialize-timebase
Initialize the timebase by querying Chaosnet hosts to find out the current time. This is
called automatically during system initialization. You may want to call it yourself to
correct the time if it appears to be inaccurate or downright wrong. See also time:set-
local-time, page 629.

time:daylight-savings-time-p hours date month year
Return t if daylight savings time is in effect for the specified hour; otherwise, return nil.
year may be absolute or relative to 1900 (that is, 83 and 1983 both work).

time:daylight-savings-p
Return t if daylight savings time is currently in effect; otherwise, return nil.

time:month-length month year
Return the number of days in the specified month; you must supply a year in case the
month is February (which has a different length during leap years). year may be absolute
or relative to 1900 (that is, 83 and 1983 both work).

SRCKILMAN>TIME. TEXT.29 24-JAN-83

Internal Functions 634 1.isp Machine Manual

time:leap-year-p year
Return t if year is a leap year; otherwise return nil. year may be absolute or relative to
1900 (that is, 83 and 1983 both work).

time:verify-date date monih year day-of-the-week
If the day of the weck of the date specified by date, month, and year is the same as day-
of-the-week, rteturn nil; otherwise, return a string that contains a suitable crror message.
year may be absolute or relative to 1900 (that is, 83 and 1983 both work).

time:day-of-the-week-string day-of-the-weeck &optional (mode':long)
Recturns a string representing the day of the week. As usual, 0 means Monday, 1 means
Tuesday, and so on. Possible values of mode are:

slong Returns the full English name, such as "Monday”, "Tuesday", etc. This
is the default. '

:short Returns a three-letter abbreviation, such as "Mon", "Tue", etc.

:medium Same as :short, but use "Tues" and "Thurs".

:french Returns the French name, such as "Lundi", "Mardi", etc.

:german Returns the German name, such as "Montag”, "Dienstag"”, etc.

time:month-string month &optional (mode':long)
Returns a string representing the month of the year. As usual, 1 means January, 2
means February, etc. Possible values of mode are:

slong Returns the full English name, such as "January", "February", etc.
This is the default.

:short Returns a three-letter abbreviation, such as "Jan", "Feb", etc.

:medium Same as :short, but use "Sept”, "Novem", and "Decem".

:roman Returns the Roman numeral for month (this convention is used in
Europe).

:french Returns the French name, such as "Janvier”, "Fevrier", etc.

german Returns the German name, such as "Januar”, "Februar", etc.

time:timezone-string &optional (zimezonetime:*timezone®)
(daylight-savings-p (time:daylight-savings-p))
Return the three-letter abbreviation for this time zone. For example, if timezone is 5,
then cither "EST" (Eastern Standard Time) or "CDT" (Central Daylight Time) will be
used, depending on daylight-savings-p.

SRCKL.MAN>TIME.TEXT.29 24-JAN-83

	628
	629
	630
	631
	632
	633
	634

