1 .isp Machine Manual 635 Miscellancous Useful Functions

32. Miscellaneous Useful Functions

This chapter describes a number of functions that don't logically fit in anywhere clse. Most of
these functions are not normally used in programs, but arc "commands”. i.c. things that you type
directly at Lisp.

32.1 Hardcopy

The hardcopy functions allow you to specify the printer to use on cach call. The default is
set up by the site files for your site, but can be overridden for a particular machine in the
LMLOCS file or by a user in his INIT file. Any kind of printer can be used, no matter how it
is actually driven, if it is hooked into the software properly as described below.

A printer-type is a keyword that has appropriate propertics; a printer is either a printer-type or
a list starting with one. The rest of the list can specify which printer of that type you want to
use (perhaps with a host name or filename).

The printer types defined by the system are:
:dover This printer type is used by itself as a printer, and refers to the Dover at MIT.

:Xgp This printer type indicates a printer that is accessed by writing spool files in MIT
XGP format. A printer would be specified as a list, (:xgp filename), specifying
where to write the spool file.

:press-file This printer type is used in a list together with a file name, as in (:press-file
"0Z:<RMS>FOO.PRESS"). Somecthing is "printed” on such a printer by being
converted to a press file and written under that name.

hardcopy-file flename &rest options
Print the file filename in hard copy on the specified printer or the default printer. options
is a list of keyword argument names and values. There are only two keywords that are
always meaningful: :format and :printer. Everything else is up to the individual printer
to interpret. The list here is only a standard/suggestion.

:printer The value is the printer to use. The default is the value of si:*default-
printer*.
format The value is a keyword that specifies the format of file to be parsed. The

standard possibilitics arc :text (an ordinary file of text), :xgp (a file of the
sort once used by the XGP at MIT), :press (a Xerox-style press file) and
-suds-plot (a file produced by the Stanford drawing program). However,
each kind of printer may define its own format keywords.

:font

font-list The value of font is the name of a font to print the file in (a string).
Alternatively, you can give :font-list and specify a list of such font names,
for use if the file contains foni-change commands. The interpretation of a
font name is dependent on the printer being used. There is no necessary
relation to Lisp machine dispiay fonts. However, printers are encouraged

SRCKL.MAN>FD-HAC.TEXT.13 24-JAN-83

Hardcopy 636 i.isp Machine Manual

to use, by default, fonts that arc similar in appecarance to the Lisp
machine fonts listed in the file’s attribute list, if it is a text file.

‘heading-font The valuc is the name of the font for use in page headers, if there are
any.

:page-headings
If the value is non-nil, a heading is added to cach page.

:copies The value is the number of copics to print.

:spool If the printer provides optional spooling, this argument says whether to
spool (default is nil). Some printers may intrinsically always spool; others
may have no way to spool.

hardcopy-stream siream &rest options
Like hardcopy-file but uses the text read from stream rather than opening a file. The
:format option is not allowed (since implementing it requircs the ability to open the file
with unusual open options).

hardcopy-bit-array array left top right bottom &rest options
Print all or part of the bit-array array on the specified or default printer. options is a list
of keyword argument names and values; the only standard option is :printer, which
specifies the printer to use. The default printer is si:*default-bit-array-printer*, or, if
that is nil, si:*default-printer.

left, top, right and bottom specify the subrectangle of the array to be printed. All four
numbers measure from the top left corner (which is clement 0, 0).

hardcopy-status &optional printer (stream standard-output)
Prints the status of printer, or the default printer. This should include if possible such
things as whether the printer has paper and what is in the queue.

si:*default-printer® Variable
This is the default printer. It is set from the :default-printer site option.

si:*default-bit-array-printer® Variable
If non-nil, this is the default printer for printing bit arrays, overriding si:*default-
printer*. A scparate default is provided for bit arrays since some printers that can print
files cannot print bit arrays. This variable is sct initially from the :default-bit-array-
printer site option.

Defining a printer type:
A printer type is any keyword that has suitable functions on the appropriate properties.

To be used with the function hardcopy-file, the printer type must have a si:print-file
property. To be used with hardcopy-stream, the printer type must have a si:print-stream
property. hardcopy-bit-array uses the si:print-bit-array property. hardcopy-status uses the
si:print-status property. (The hardcopy functions’ names themselves are not used simply to avoid
using a symbol in the global package as a property name of a symbol that might be in the global

SRCKI.MAN>FD-HAC.TEXT.13 24-JAN-83

Lisp Machinc Manual 637 Metering

package as well).

Each property, to be used, should be a function whose first argument will be the printer and
whose remaining arguments will fit the same pattern as those of the hardcopy function the user
called. {They will not nccessarily be the same arguments, as some additional keywords may be

added to the Tist of kevword arguments; but they will fit the same description.)

For example,
(hardcopy-file "foo"™ ’:printer ’(:press-file "bar.press"))
will result in the execution of '
(funcall (get ’:press-file ’si:print-file)
"(:press-file "bar.press")
"foo" ’:printer ’(:press-file "bar.press"))

A printer type need not support operations that make no sense on it. For example, there is
no si:print-status property on :press-file.

32.2 Metering

The metering system is a way of finding out what parts of your program use up the most
time. When you run your program with metering, every function call and return is recorded,
together with the time at which it took place. Page faults are also recorded. Afterward, the
metering system will analyze the records and tell you how much time was spent executing withain
cach function. Because the records are stored in the disk partition called METR, there is room
for a lot of data.

Before you meter a program, you must enable metering in some or all stack groups.
meter-enable is used for this. Then you evaluate one or more forms with metering, perhaps by
using meter:test or meter:run. Finally, you use meter:analyze to summarize and print the
metering data.

There are two parameters that control whether metering data are recorded. First of all, the
variable sys:%meter-microcode-enables contains bits that enable recording of various kinds of
events. Sccondly, each stack group has a flag that controls whether events are recorded while
running in that stack group.

sys:%meter-microcode-enables Variable
Enables recording of metering data. Each bit controls recording of one kind of event.
1 This bit enables recording of page faults.
2 This bit enables recording of consing.
4 This bit enables recording of function entry and exit.
10 This bit enables recording of stack group switching.

The value is normally zero, which turns off all recording.

SRC:<I.MAN>FD-HAC.TEXT.13 24-JAN-83

Metering 638 Lisp Machinc Manual

These are the functions used to control which stack groups do metering:

meter:enable &rest things
Enables metering in the stack groups specified by rhings. Fach thing in things may be a
stack group, a process (which specifies the process's stack group), or a window (which
specifies the window’s process's stack group). t is also allowed. It cnables metering in all
stack groups.

meter:disable &rest rhings
Disables metering in the stack groups specified by things. The arguments allowed are the
same as for meter:ienable. (meter:disable t) turns off (meter:enable 1), but does not
disable stack groups cnabled individually. (meter:disable) disables all stack groups no
matter how you specified to enable them.

meter:metered-objects Variable
This is a list of all the things you have enabled with meter:enable and not disabled.

These are the functions to evaluate forms with metering:

meter:run jforms
Clears out the metering data and cvaluates the forms with sys:%meter-microcode-
enables bound to 14 octal (record function entry and cxit, and stack group switching).
Any of the evaluation that takes place in cnabled stack groups will record metering data.

meter:test form (enables14)
Clears out the metering data, cnables metering for the current stack group only, and
evaluates form with sys:%meter-microcode-enables bound to enables.

This is how you print the results:

meter:analyze &kcy &optional analyzer stream file buffer return info
Analyzes the data recorded by metering. analyzer is a keyword specifies a kind of
analysis. :tree is the default. Another useful alternative is :list-events. Particular
analyzers handle other keyword arguments in addition to those listed above.

The output is printed on stream, written to a file named file, or put in an editor buffer
named buffer (at most one of these threc arguments should be specified). The default is
to print on standard-output.

Analyzing the metering data involves creating a large intermediate data base. Normally
this is created afresh each time meter:analyzeis called. If you specify a non-nil value for
return, the intermediate data structure is returned by meter:analyze, and can be passed
in on another call as the info argument. This can save time. But you can only do this if
you usc the same analyzer each time, as different analyzers usc different termporary data
structures,

The default analyzer :tree prints out the amount of run time and real time spent executing
each function that was called. The real time includes time spend waiting and time spent writing
metering data to disk; for computational tasks, the latter makes the real time less uscful than the

SRC:KLMAN>FD-HAC.TEXT.13 24-JAN-83

[.isp Machine Manual 639 Metering

run time. :tree handles these additional keyword arguments to meter:analyze:

find-callers

:stack-group

:sort-function

:summarize

sinciusive

The argument for this keyword is a function spec or a list of function specs. A
list of who called the specified functions, and how often, is printed instead of the
ysual output.

The argument is a stack group or a list of them; only the activities in thosc stack
groups are printed.

The argument is the name of a suitable sorting function that is used to sort the
items for the various functions that were called. Sorting functions provided
include meter:max-page-faults, meter:max-calls, meter:max-run-time (the
default). meter:max-real-time, and meter:max-run-time-per-call.

The argument is a function spec or a list of function specs; only those functions
statistics are printed.

If this is non-nil, the times for each function include the time spent in executing
subroutines called from the function.

Note: if a function is called recursively, the time spent in the inner call(s) will be
counted twice (or more).

The analyzer :list-events prints out one line about each cvent recorded. The line contains
the run time and real time (in microseconds), the running count of page faults, the stack group
name, the function that was running, the stack depth, the type of event, and a piece of data.

For example:

0 0 0 ZMACS-WINDOWS METER:TEST 202 CALL SI:*EVAL
115 43 0 ZMACS-WINDOWS METER:TEST 202 RET SI:=EVAL
1806 87 0 ZMACS-WINDOWS METER:TEST 202 RET =*CATCH

real run pf stack-group function stack event data
time time level type

list-events is often useful with recording of page faults (sys:%meter-microcode-enables set

to 1).

meter:reset

Clears out all metering data.

Because metering records pointers to Lisp objects in a disk partition which is not part of the
Lisp address space, garbage collection is turned off (by arresting the gc process) when you turn

on metering.

meter:resume-gc-process
Allows garbage collection to continue (if it is on) by unarresting it.

SRC:KLMAN>FD-HAC.TEXT.13 24-JAN-83

Poking Around in the Lisp World 640 LLisp Machine Manual

32.3 Poking Around in the Lisp World

who-calls x &optional package
who-uses x &optional package
X must be a symbol or a list of symbols. who-calls trics to find all of the functions in
the Lisp world that call x as a function, use x as a variable, or use x as a constant. (1t
- won't find things that use constants that contain x, such as a list one of whose clements
is x; it will only find it if x itsclf is used as a constant.) It trics to find all of the
functions by scarching all of the function cells of all of the symbols on package and
package’s descendants. package defaults to the global package, and so normally all
packages are checked.

If who-calls encounters an interpreted function definition, it simply tells you if x appears
anywhere in the interpreted code. who-calls is smarter about compiled code, since it has
been nicely predigested by the compiler.

If x is a list of symbols, who-calls does them all simultancously, which is faster than
doing them one at a time.

who-uses is an obsolete name for who-calls.
'The editor has a command, Meta-X List Callers, which is similar to who-calls.

The symbol unbound-function is treated specially by who-calls. (who-calls 'unbound-
function) will search the compiled code for any calls through a symbol that is not
currently defined as a function. This is useful for finding errors such as functions you
misspelied the names of or forgot to write.

who-calls prints one line of information for each caller it finds. It also returns a list of
the names of all the callers.

what-files-call x &optional package
Similar to who-calls but returns a list of the pathnames of all the files that contain
functions that who-calls would have printed out. This is useful if you need to recompile
and/or edit all of those files.

apropos substring &key &optional package (inferiorst) superiors dont-print predicate
(apropos substring) tries to find all symbols whose print-names contain substring as a
substring. Whenever it finds a symbol, it prints out the symbol's name: if the symbol is
defined as a function and/or bound to a value, it tells you so and prints the names of the
arguments (if any) to the function.

If predicate is non-nil, it should be a function; only symbols on which the function
returns non-nil are counted.

apropos looks for symbols on package, and package’s decendants (unless inferiors is nil).

If superiors is t, the supcrpackages of the specified package are scarched as well. package
defaults to the global package, so normally all packages are searched.

SRCKILMAN>FD-HAC.TEXT.13 24-JAN-83

Lisp Machinc Manual 641 Poking Around in the Lisp World

apropos returns a list of all the symbols it finds. If dont-print is non-nil, that is all it
does.

sub-apropos substring starting-list &key &optional predicate dont-print
Finds all symbols in starting-lisi whose namcs contain subsiring, and that satisfy predicate.
If predicate is nil, the substring is the only condition. The symbols arc printed if dont-
print is nil. A list of the symbols found is returned, in any case.

This function is most useful when applied to the value of *, after apropos has returned a
long list.

where-1is pname &optional package
Prints the names of all packages that contain a symbol with the print-name pname. If
pname is a string it gets upper-cased. The package package and all its sub-packages are
searched; package defaults to the global package, which causes all packages to be
searched. where-is returns a list of all the symbols it finds.

describe x

describe tries to tell you all of the interesting information about any object x (except for
array contents). describe knows about arrays, symbols, flonums, packages, stack groups,
closures, and FEFs. and prints out the attributes of cach in human-rcadable form.
Sometimes it will describe something that it finds inside something clse; such recursive
descriptions arc indented appropriately. For instance, describe of a symbol will tell you
about the symbol's value, its definition, and each of its propertics. describe of a flonum
(regular or small) will show you its internal representation in a way that is useful for
tracking down roundoff errors and the like.

If x is a named-structure, describe handles it specially. To understand this, you should
read the section on named structures (see page 312). First it gets the named-structure
symbol, and sees whether its function knows about the :describe operation. If the
operation is known, it applics the function to two arguments: the symbol :describe, and
the named-structure itself. Otherwise, it looks on the named-structure symbol for
information that might have been left by defstruct; this information would tell it what
the symbolic names for the entries in the structure are, and describe knows how to use
the names to print out what each field’s name and contents is.

describe always returns its argument, in case you want to do something else to it.

inspect x
A window-oriented version of describe. Sce the window system documentation for
details, or try it and type Help.

disassembie function
function should be a FEF, or a symbol that is decfined as a FEF. This prints out a

human-readable version of the macro-instructions in function. The macro-code instruction
set is explained in chapter 28, page 602.

The grindef function (see page 426) may be used to display the definition of a non-compiled
function.

SRCKL.MAN>FD-HAC.TEXT.13 24-JAN-83

Uity Programs 642 Lisp Machine Manual

room &rcst areas

room tells you the amount of physical memory on the machine, the amount of available
virtual memory not yet filled with data (that is, the portion of the available virtual
memory that has not yet been allocated to any region of any arca). and the amount of
"wired" physical memory (i.. memory not available for paging). Then it tells you how
much room is left in some arcas. For cach arca it tells you about, it prints out the name
of the arca, the number of regions that currently make up the arca, the current size of
the arca in kilowords, and the amount of the arca that has been allocated, also in
kilowords. If the arca cannot grow, the percentage that is free is displayed.

(room) tells you about those arcas that arc in the list that is the value of the variable
room. These are the most interesting ones.

(room areal area?...) tells you about those areas, which can be either the names or the
numbers.

(room 1) tells you about all the areas.

(room nil) does not tell you about any arcas; it only prints the header. This is useful if
you just want to know how much memory is on the machine or how much virtual
memory is available,

room Variable
The value of room is a list of areca names and/or area numbers, denoting the areas that
the function room will describe if given no arguments. Its initial value is:
(working-storage-area macro-compiled-program)

32.4 Utility Programs
ed &optional x
ed is the main function for getting into the editor, Zwei. Zwei is not yet documented in

this manual, but the commands are very similar to Emacs.

(ed) or (ed nil) simply cnters the editor, leaving you in the same buffer as the last time
you were in the editor.

(ed 1) puts you in a fresh buffer with a gencrated name (like BUFFER-4).
(ed pathname) edits that file. pathname may be an actual pathname or a string.

(ed ’foo) tries hard to edit the definition of the foo function. It will find a buffer or file
containing the source code for foo and position the cursor at the beginning of the code.
In general, foo can be any function-spec (sce section 10.2, page 154).

(ed 'zweireload) reinitializes the editor. It will forget about all existing buffers, so use
this only as a last resort.

SRCKLMAN>FD-HAC.TEXT.13 24-JAN-83

Iisp Machine Manual 643 ' Utility Programs

zwei:save-all-files

dired

This function is useful in emergencies in which you have modified material in Zmacs
buffers that needs to be saved, but the editor is partially broken. This function does what
the editor's Save All Files command does, but it stays away from redisplay and other
advanced facilitics so that it might work if other things arc broken.

&optional pathname

Puts up a window and edits the dircctory named by pathname, which defaults to the last
file opened. While cditing a dircctory you may view, cdit, compare, hardcopy, and
delete the files it contains. While in the directory cditor type the HELP key for further
information.

mail &optional user ftext call-editor-anyway

Sends the string rext as mail to user. uwser should also be a string, of the form
"username@hostname". Multiple recipients separated by commas are also allowed.

If you do not provide two arguments, mail puts up an editor window in which you may
compose the mail. Type the End key to send the mail and return from the mail function.

The window is also used if call-editor-anyway is non-nil.

bug &optional twpic text call-editor-anyway

Reports a bug. fopic is the name of the faulty program (a symbol or a string). It defaults
to lispm (the Lisp Machine system itself). text is a string which contains the information
to report. If you do not provide two arguments, or if call-editor-anyway is non-nil, a
window will be put up for you to compose the mail.

bug is like mail but includes information about the system version and what machine you
are on in the text of the message. This information is important to the maintainers of the
faulty program; it aids them in reproducing the bug and in determining whether it is one
that is already being worked on or has alrcady been fixed.

print-notifications

Reprints any notifications that have been received. The difference between notifications
and sends is that sends come from other users, while notifications arc usually
asynchronous messages from the Lisp Machine system itself. However, the default way
for the system to inform you about a send is to make a notification! So print-
notifications will normally include all sends as well.

si:print-disk-error-log

Prints information about the half dozen most recent disk errors (since the last cold boot).

peek &optional characier

peek is similar to the ITS program of the same name. It displays various information
about the system, periodically updating it. Like ITS PEEK, it has several modes, which
are entered by typing a single key which is the name of the mode. The initial mode is
selected by the argument, character. 1f no argument is given, peek starts out by
explaining what its modes are.

SRCKL.MAN>FD-HAC.TEXT.13 24-JAN-83

The Lisp Top Level 644 : I.isp Machine Manual

32.5 The Lisp Top Level

These functions constitute the Lisp top level and its associated functions.

si:lisp-top-level
This is the first function called in the initial Lisp environment. It calls lisp-reinitialize,
clears the screen, and calls si:lisp-top-levell.

lisp-reinitialize
This function docs a wide varicty of things, such as resetting the values of various global
constants and initializing the error system.

si:1isp-top-levell fterminal-io
This is the actual top level loop. It reads a form from standard-input, evaluates it
prints the result (with slashification) to standard-output, and repeats indefinitely. If
several values are returned by the form all of them will be printed. Also the values of *,
+, =, //, ++, **, +++, and *** arc maintained (sec below).

break [rag] [conditional-form] Special Form
break is used to cnter a breakpoint loop, which is similar to a Lisp top level loop.
(break tag) will always cnter the loop; (break tag conditional-form) will evaluate
conditional-form and only enter the break loop if it returns non-nil. If the break loop is
entered, break prints out
:Breakpoint ag: Resume to continue, Abort to quit.

and then enters a loop reading, evaluating, and printing forms. A difference between a
break loop and the top level loop is that when reading a form, break checks for the
following special cases: If the Abort key is typed, control is returned to the previous
break or crror-handler, or to top-level if there is none. If the Resume key is typed,
break rcturns nil. If the symbol ¢p is typed, break returns nil. If the list (return form)
is typed, break cvaluates form and returns the result.

Inside the break loop, the streams standard-output, standard-input, and query-io are
bound to be synonymous to terminal-io; terminal-io itself is not rcbound. Several other
internal system variables are bound, and you can add your own symbols to be bound by
pushing clements onto the value of the variable sys:*break-bindings* (sce page 645).

If tag is omitted, it defaults to nil.

prinl Variable

The value of this variable is normally nil. If it is non-nil, then the read-eval-print loop
will use its value instcad of the definition of prin1 to print the values returned by
functions. This hook lets you control how things arc printed by all read-eval-print
loops—the Lisp top level, the break function, and any utility programs that include a
read-eval-print loop. It does not affect output from programs that call the prin1 function
or any of its rclatives such as print and format; if you want to do that, read about
customizing the printer, on section 21.2.1, page 370. If you sct prin1 to a new function,
remember that the read-cval-print loop expects the function to print the value but not to
output a return character or any other delimiters.

SRC:ALMANDFD-HAC.TEXT.13 , 24-JAN-83

Lisp Machine Manual 645 : The Lisp Top Level

Variable
While a form is being evaluated by a read-cval-print loop, - is bound to the form itself.

+ Variable
While a form is being cvaluated by a read-evai-print loop, + is bound to the previous
form that was rcad by the loop.

* Variable
While a form is being evaluated by a read-eval-print loop, * is bound to the result
printed the last time through the loop. If there were several values printed (because of a
multiple-value return), * is bound to the first value.

// Variable
While a form is being evaluated by a read-cval-print loop, // is bound to a list of the
results printed the last time through the loop.

++ , Variable
+ + holds the previous value of +, that is, the form evaluated two interactions ago.

+++ Variable
+ + + holds the previous value of + +.

se Variable
** holds the previous value of *, that is, the result of the form evaluated two interactions
ago.

s Variable
*** holds the previous value of **.

sys:*break-bindings* Variable
When break is called, it binds some special variables under control of the list which is
the value of sys:*break-bindings*. FEach clement of the list is a list of two elements: a
variable and a form that is evaluated to produce the value to bind it to. The bindings
happen scquentially. Users may push things on this list (adding to the front of it), but
should not replace the list wholesale since several of the variable bindings on this list are
essential to the operation of break.

lisp-crash-1ist Variable

The value of lisp-crash-list is a list of forms. lisp-reinitialize sequentially evaluates
these forms, and then sets lisp-crash-list to nil.

In most cases, the initialization facility should be used rather than lisp-crash-list. Refer
to chapter 30, page 624.

SRCKLLMANDFD-HAC.TEXT.13 24-JAN-83

The Garbage Collector 646 , Lisp Machine Manual

32.6 The Garbage Collector

gc-on
Turns automatic garbage collection on. Garbage collection will happen when and as
nceded. Automatic garbage collection is off by default.

Since garbage collection works by copying, you will be asked for confirmation if there
may not be cnough space to complete a garbage collection even if it is started
immediately.

gc-off
Turns automatic garbage collection off.

Normally, automatic garbage coliection happens in incremental mode; that is, scavenging
happens in parallel with computation. Each consing operation scavenges or copies four words per
word consed. In addition, scavenging goes on whenever the machine appears idle.

If you are running a noninteractive crunching program, the incremental nature of garbage
collection may be of no value. Then you can make garbage collection more cfficient by making it
a batch process.

si:gc-reclaim-immediately Variable

If this variable is non-nil, automatic garbage collection is done as a batch operation:
when the garbage collection process decides that the time has come, it copies all the
uscful data and discards the old address space, running full blast. (It is still possible to
use the machine while this is going on, but it is slow.) More specifically, the garbage
collection process scavenges and reclaims oldspace immediately right after a flip happens,
using all of the machine’s physical memory. This variable is only relevant if you have
turned on automatic garbage collection with (si:gc-on).

A batch garbage collection requires less free space than an incremental one. If there is
not cnough space to complete an incremental garbage collection, you may be able to win
by sclecting batch garbage collection instead.

si:gc-flip-ratio . Variable
This variable tells the garbage collector what fraction of the data it should expect to have
to copy, after each flip. It should be a positive number no larger than one. By default,
it is one. But if your program is consing considerable amounts of garbage, a value less
than one may be safe. The garbage collector uses this variable to figure how much space
it will need to copy all the living data, and therefore indirectly how often garbage
collection must be done.

Garbage collection is turned off if it appears to be about to run out of memory. You get a
notification if this happens. You should also get a notification when you are nearly at the point
of not having enough space to guarantec garbage collecting successfully.

In addition to turning on automatic garbage collection, you can also manually request one
immediate complete collection with the function si:full-gc. The usual reason for doing this is to
make a band smaller before saving it. si:full-gc also rescts all temporary arcas (sec si:reset-

SRCKL.MAN>FD-HAC.TEXT.13 24-JAN-83

Lisp Machinc Manual 647 o The Garbage Collector

temporary-area, page 226).

si:full-gc
Performs a complete garbage collection immediately. This does not turn automatic garbage
collection on or off; it performs the garbage collection in the process you call it in. A
full gc of the standard system takes about 7 minutes, currently.

si:clean-up-static-area area-number
This is a more sclective way of causing static arcas to be garbage collected once. The
argument is the arca number of a static arca; that particular arca will be garbage collected
the next time a garbage collection is done (more precisely, it will be scavenged after the
next flip). If you then call si:full-ge, it will happen then.

gc-status
The function gc-status prints information related to garbage collection. When scavenging
is in progress, it tells you how the task is progressing. While scavenging is not in
progress and oldspace does not exist, it prints information about how soon a new flip will
be required.

While a garbage collection is not in progress, the output from gc-status looks like this:
Garbage collector process state: Await Flip
Dynamic (new+copy) space 3614383, 01d space 0, Static 1785534,
Free space 9322496, committed 8308770, plus fudge 262144,
times ratio (1.0) gives 8570914, leaving 751582 before flip.
Scavenging during cons: On, Idle scavenging: On
GC Flip Ratio: 1, GC Reclaim Immediately: Off

The "dynamic space” figure is the amount of garbage collectable space and the “static” figure
is the amount of static space used. There is no old space since an old space only exists during
garbage collection.

The "committed guess” plus the "fudge” is the estimate (on the high side) for the amount of
free space that would be needed to complete a garbage collection. The difference between the
free space and that amount is how much consing you can do before a garbage collection will
begin (if automatic garbage collection is on).

The amount nceded for a garbage collection will depend on the value of si:*gc-reclaim-
immediately*; more if it is nil.

While a garbage collection is in progress, the output looks like this:
Garbage collector process state: Await Scavenge
Dynamic space 66647, 01d space 2802957, Static 2600029,
Max scavenging remaining 5372456, minimum 2635830,
Free space 8060928 2736826 might be needed for copying)
Ratio scavenging work/free space = 1.00908s0.
Scavenging during cons: On, Idle scavenging: On
GC Flip Ratio: 1, GC Reclaim Immediately: Off

SRCKI.MAN>FD-HAC.TEXT.13 24-]JAN-83

l.ogging In 648 Lisp Machinc Manual

Notice that most of the dynamic space has become old space and new space is small. Not
much has been copied since the flip took place. The maximum and minimum cstimates for the
amount of scavenging arc based on different limits for how much of old space may nced to be
copied; as scavenging progresses, the maximum will decrease steadily, but the minimum may
increase.

si:set-scavenger-ws number-of-pages
Incremental scavenging is restricted to a fixed amount of physical memory to reduce its
interference with your other activities.

‘This function spccifies the number of pages of memory that incremental garbage collection
can usc. 400 (256.) is a good value for a 256k machine. If the garbage collector gets very
poor paging performance, use of this function may fix it.

32.7 Logging In

logging in tells the Lisp Machine who you are, so that other users can sce who is logged in,
you can receive messages, and your INIT file can be run. An INIT file is a Lisp program which
gets loaded when you log in; it can be used to set up a personalized environment.

When you log out, it should be possible to undo any personalizations you have made so that
they do not affect the next user of the machine. 'Therefore, anything done by an INIT file
should be undoable. In order to do this, for every form in the INIT file, a Lisp form to undo
its cffects should be added to the list that is the value of logout-list. The functions login-setq
and login-eval help make this easy; sce below.

user-1id Variable
The value of user-id is either the name of the logged in user, as a string, or else an
empty string if there is no uscr logged in. It appears in the who-line.

lTogout-1ist Variable
The value of logout-list is a list of forms to be evaluated when the user logs out.

login name &optional host inhibit-init-file
Sets your name (the variable user-id) to name and logs in a file server on host. host also
becomes your default file host. 1f host requires passwords for logging in you will be asked
for a password. When logging in to a TOPS-20 host, typing an asterisk before your
password will enable any special capabilitics you may be authorized to use. The default
value of host depends on which Lisp Machine you use using; it is called the associated
machine (sec page 662). login also runs the :login initialization list (sce page 627).

Unless inhibit-init-file is specified as non-nil, login will load your init file if it exists. On
ITS, your init file is name LISPM on your home directory. On TOPS-20 your init file is
LISPM.INIT on your directory.

If anyone is logged into the machine already, login logs him out before logging in name.
(Sce logout.) Init files should be written using the login-setq and login-eval functions
below so that logout can undo them. Usually, however, you cold-boot the machine
before logging in, to remove any traces of the previous uscr. login returns t.

SRCKILL.MAN>FD-HAC.TEXT.13 24-JAN-83

Lisp Machine Manual 649 : Dribble Files

logl &rest options
Like login but the arguments arc specified differently. options is a list of keywords and
values; the keywords :host and :init specify the host to log in on and whether to load the
init file if any. Any other keywords arc also allowed. log1 itself will ignore them, but
the init file can act on them. The purpose of iogi, as opposed to iogin, is to cnabie you
to specify other keywords for your init file’s sake.

si:user-init-options Variable
During the exccution of the user’s init file, inside log1, this variable contains the
arguments given to log1. Options not meaningful to log1 itself can be specified, so that
the init file can find them here and act on them.

Togout
First, logout cvaluates the forms on logout-list. Then it scts user-id to an empty string
and logout-list to nil. Then it runs the :logout initialization list (sce page 627), and
returns t.

login-setq {variable value}... Special Form
login-setq is like setq cxcept that it puts a setq form on logout-list to sct the variables
to their previous values.

login-eval x
login-eval is used for functions that arc "meant to be called” from INIT files, such as
zwei:set-comtab-return-undo, which conveniently return a form to undo what they did.
login-eval adds the result of the form x to the logout-list.

32.8 Dribble Files

dribble-start filename &optional editor-p
dribble-start opens filename as a "dribble file" (also known as a "wallpaper file”). It
rebinds standard-input and standard-output so that all of the terminal interaction is
directed to the file as well as the terminal. If editor-p is non-nil, then instead of opening
filename on the file computer, dribble-start dribbles into a Zmacs buffer whose name is
filename, creating it if it doesn’t exist.

dribble-all filename &optional editor-p
dribble-all is like dribble-start except that all input and output goes to the dribble file,
including break loops, queries, warnings and sessions in the debugger. This works by
binding terminal-io instead of standard-output and standard-input.

dribble-end
This closes the file opened by dribbie-start and resets the 1/0 streams.

SRCALMAN>FD-HAC.TEXT.13 24-JAN-83

Status and SStatus 650 Lisp Machine Manual

32.9 Status and SStatus

The status and sstatus special forms exist for compatibility with Maclisp. Programs that wish
to run in both Maclisp and Zctalisp can use status to determine which of these they are running
in. Also, (sstatus feature ...) can be used as it is in Maclisp.

status Special Form

(status features) returns a list of symbols indicating featurcs of the Lisp environment.
"The complete list of all symbols that may appear on this list, and their meanings, is given
in the Maclisp manual. The default list for the 1isp Machine is:

(loop defstruct Tispm cadr mit chaos sort fasload string

newio roman trace grindef grind)
The value of this list will be kept up to date as features are added or removed from the
Lisp Machine system. Most important is the symbol lispm; this indicates that the
program is cxeccuting on the Lisp Machine. cadr indicates the type of hardware, mit
which version of the Lisp machine operating system, and chaos that the chaosnet
protocol is used. The order of this list should not be depended on, and may be different
from that shown above.

This features list is used by the # + read-time conditionalization syntax. Sce page 377.
(status feature symbol) returns t if symbol is on the (status features) list, otherwise nil.

(status nofeature symbol) returns t if symbol is not on the (status features) list,
otherwise nil.

(status userid) returns the name of the logged-in user.

(status tabsize) returns the number of spaces per tab stop (always 8). Note that this can
actually be changed on a per-window basis, however the status function always returns
the default value of 8.

(status opsys) returns the name of the operating system, always the symbol :lispm.

(status site) returns the name of the local machine, e.g. "MIT-LISPM-6". Note that this
is not the site as described above, under (status features).

(status status) returns a list of all status operations.
(status sstatus) recturns a list of all sstatus operations.

sstatus Special Form
(sstatus feature symbol) adds symbol to the list of features.

(sstatus nofeature symbol) removes symbol from the list of features.

SRCKL.MAN>FD-HAC.TEXT.13 24-JAN-83

Lisp Machine Manual 651 ' Booting and Disk Partitions

32.10 Booting and Disk Partitions

A Lisp Machine disk is divided into several named partitions (also called "bands” somectimes).
Partitions can be used for many things. FEvery disk has a partition named PAGE, which is used
to implement the virtual memory of the Lisp Machine. When you run Lisp, this is where the
Lisp world actually resides. There are also partitions that hold saved images of the lisp Machine
microcode, conventionally named MCRn (where n is a digit), and partitions that hold saved
images of Lisp worlds, conventionally named LODn. A saved image of a lLisp world is also
called a "virtual memory load" or "system load".

The directory of partitions is in a special block on the disk called the label. When you "cold-
boot" a Lisp Machine by typing Control-Meta-Control-Meta-Rubout, the machine checks the
label to sec which two partitions arc flagged as being the current microcode and the current
system load. These arc kept scparate so that the microcode can be casily changed without going
through the time-consuming process of generating a new system load. When you “cold-boot”, the
contents of the current microcode band are loaded into the microcode memory, and then the
contents of the current saved image of the Lisp world is copied into the PAGE partition. Then
Lisp starts running. When you "warm-boot”, the contents of the current microcode band are
loaded, but Lisp starts running using the data already in the PAGE partition.

For each partition, the dircctory of partitions contains a brief textual description of the
contents of the partition. For microcode partitions, a typical description might be "UCADR 204";
this means that version 204 of the microcode is in the partition. For saved Lisp images, it is a
little more complicated. Ideally, the description would say which versions of which systems are
loaded into the band. Unfortunately, there isn’t enough room for that in most cases. A typical
description is "92.20 Daed 1.4", meaning that this band contains version 92.20 of System and
version 1.4 of Daedalus. The description is created when a Lisp world is saved away by disk-
save (see below).

32.10.1 Manipulating the Label

print-disk-label &optional (urnit0) (stream standard-output)
Print a description of the label of the disk specified by unit onto stream. The description
starts with the name of the disk pack, various information about the disk that is generally
uninteresting, and the names of the two current load partitions (microcode and saved Lisp
image). This is followed by one line of description for cach partition. Each one has a
name, disk address, size, and textual description. The two partitions that are the current
load partitions, used when you cold-boot, are preceeded by asterisks.

unit may be the unit number of the disk (most Lisp machines just have one unit,
numbered 0), or the "host name” of another Lisp Machine on the Chaosnet, as a string

{in which case the label of unit 0 on that machine will be printed, and the user of that
machine will be notified that you are looking at his label), or the string "CC" (which will
print the label of unit O of the machine connected to this machine’s debugging hardware).

Use of "CC" as the unit is the way to examine or fix up the label of a machine which
cannot work because of problems with the label.

SRCKLMAN>FD-HAC.TEXT.13 24-JAN-83

Booting and Disk Partitions 652 [isp Machine Manual

set-current-band partition-name &optional (unit0)
Set the current saved Lisp image partition to be partition-name. 1f parlition-name is a
number, the name LODn will be used.

unit can be a disk drive number, the host name of another Lisp machine, or the string
"CC". Sce the comments under print-disk-label, above.

If the partition you specify goes with a version of microcode different from the one that is
current, this function will offer to select the an appropriate microcode partition as well.
Normally you should answer Y.

set-current-microload pariition-name &optional (unit 0)
Sct the current microcode partition to be partition-name. 1f partition-name is a number,
the name MCR# will be used.

unif can be a disk drive number. the host name of another Lisp machine, or the string
"CC". Sce the comments under print-disk-label, above.

si:current-band &optional (unit0)
si:current-microload &optional (unit0)
Returns the name of the current band (current microload) on the specified unit.

When using the functions to set the current load partitions, be extra sure that you are
specifying the correct partition. Having donc it, cold-booting the machine will reload from those
partitions. Some versions of the microcode will not work with some versions of the Lisp system,
and if you sct the two current partitions incompatibly, cold-booting the machine will fail: this will
need to be fixed using another machine’s debugging hardware, giving "CC" as the unir argument
to the functions above.

si:edit-disk-1abel unir &optional init-p
This runs an interactive label cditor on the specified unit. This cditor allows you to
change any field in the label. The Help key documents the commands. You have to be
an cxpert to nced this and to understand what it does, so the commands are not
documented here. Ask someonc if you need help.

print-herald &optional format-dest
Tells you what system versions you are currently running. This includes where it came
from on the disk and what version of each system is present in your Lisp environment.
Jormat-dest defaults to t; if it is nil the answer will be returned as a string rather than
printed out.

disk-restore &optional partition
Allows booting from a band other than the current one. partition may be the name or
the number of a disk partition containing a virtual-memory load, or nil or omitted,
meaning to use the current partition. The specified partition is copied into the paging
area of the disk and then started.

Although you can use this to boot a different Lisp image than the installed one, this does
not provide a way to boot a different microcode image. disk-restore brings up the new

LA
s

-

P
co
s

[.isp Machinc Manual 653 - Booting and Disk Partitions

band with the currently running microcode.
disk-restore asks the user for confirmation before doing it.

describe-partition partition &optional unit
Tells you various uscful things about a partition.

To begin with, it tells you where on disk the partition begins, and how long it is.

If you specify a saved Lisp system partition, such as LOD3, it also tells you important
information about the contents of the partition: the microcode version which the partition
goes with, the size of the data in the partition and the hightes virtual address used. The
size of the partition tells how large a partition you need to make a copy of this onc, and
the highest virtual address used (which is measured in units of disk blocks) tells you how
large a PAGE partition you need in order to run this partition.

32.10.2 Updating Software

Of all the procedures described in this section, the most common one is to take a partition
containing a lLisp image, updatc it to have all the latest patches, and save it away into a
partition. The function load-and-save-patches does it all conveniently for you.

load-and-save-patches
load patches and saves a band, with a simple user interface. Run this function
immediately after cold booting, without logging in first; it will log in as LISPM (or
whatever is specified in the site files). After loading all patches without queries, it prints
the disk label and asks what band to save in. Then it saves.

If you wish to do somecthing other than loading all and only the latest patches, you must do
the steps by hand. Start by cold-booting the machine, to get a fresh, empty system. Next, you
must log in as something whose INIT file docs not affect the Lisp world noticably (so that when
you save away the Lisp image, the side-effects of the INIT file won't get saved too); on MIT-OZ,
you can log in as LISPM with password LISPM. Now you can load in any new software you
want; usually you should also do (load-patches) for good measure. You may also want to call
si:set-system-status to change the relcase status of the system.

When you're done loading everything, do (print-disk-label) to find a band in which to save
your new Lisp world. It is best not to reuse the current band, since if something goes wrong
during the saving of the partition, while you have written, say, half of the band that is current,
it may be impossible to cold-boot the machine. Once you have found the partition, you use the
disk-save function to save everything into that partition.

disk-save partition-name
Save the current Lisp world in the designated partition. partition-name may be a partition
name (a string), or it may be a number in which case the name LODn is used.

It first asks you for yes-or-no confirmation that you really want to reuse the named

partition. Then it tries to figure out what to put into the textual description of the label.
It starts with the brief version of si:system-version-info (see page 533). Then it asks

SRCKLMAN>FD-HAC.TEXT.13 24-JAN-83

Booting and Disk Partitions 654 Lisp Machince Manual

you for an "additional comment” to append to this; usually you just type a return here,
but you can also add a comment that will be returned by si:system-version-info (and
thus printed when the system is booted) from then on. If this doesn't fit into the fixed
size available for the textual description, it asks you to retype the whole thing (the version
info as well as your comment) in a compressed form that will fit. The compressed version
will appear in the textual description in print-disk -label.

The Lisp cnvironment is then saved away into the designated partition, and then the
cquivalent of a cold-boot from that partition is done.

Once the patched system has been successfully saved and the systern comes back up, you can
make it current with set-current-band.

Picase don’t save patched systems after running the cditor or the compiler. This works, but it
makes the saved system a lot bigger. In order to produce a clean saved cenvironment, you should
try to do as little as possible between the time you cold-boot and the time you save the partition.

si:login-history Variable
The value of siclogin-history is a list of entrics, one for cach person who has logged into
this world since it was created. This makes it possible to tell who disk-saved a band
with something broken in it. Fach entry is a list of the user 11), the host logged into,
the Lisp machine on which the world was being executed, and the date and time.

32.10.3 Garbage Collecting to Compress Bands

When you do a disk-save, it may tell you that the band you wish to save in is not big
enough to hold all the data in your current world. It may be possible for you to reduce the size
of the data so that it will fit in that band, by garbage collecting. Simply do (si:full-gc).

When you garbage collect to reduce the size of a band, it is best to do two garbage
collections. If you process any static arcas (for example, if you use si:clean-up-static-area),
you should process the same sct of static areas both times. This is to keep the data compacted
toward the bottom of the virtual address space, which makes it possible to run the saved band in
small PAGE partitions. Here is why it works:

The saved system band occupics a necarly contiguous range of virtual memory, at the bottom
of the address space. Doing one garbage collection copies all the useful data. Since the lowest
addresses were already in use before, the copy has to occupy higher addresses. The low addresses
become a hole. The highest used address is now much higher than before.

The second garbage collection copies everything again. Assuming that the first garbage
collection actually freed some data, the copy will fit into the hole left by the first garbage
collection. The high addresses used after the first collection are now free, and the highest used
address is back down to its original value.

If you do only one garbage collection and then load in more data, another garbage collection
later will not have a neat hole to copy into. Fragmentation may develop. As long as two garbage
collections are done in a row, there should be no problem. In any case, problems will only
occur with PAGE partitions smaller than 36000 blocks.

SRCKI.MAN>FD-HAC.TEXT.13 24-JAN-83

[Lisp Machine Manual 655 o Booting and Disk Partitions

32.10.4 Installing New Software

The version numbers of the current microcode and system are announced to the INFO-1LISPM
mailing list. When a new system becomes available, mail is sent to the list explaining where to
find the new system and what is new about it. Somectimes a microcode and a system go together,
and the new system will not work with the old microcode and vice versa. When this happens
extra care is required to avoid getting incompatible loads current at the same time so that the
machine will not be able to boot itself.

All of the extant microcode versions can be found on the SYS: UBIN; directory. Microcode
version ana is in SYS: UBIN; UCADR MCR nnn. To copy a new microcode version into one of
the microcode load partitions, first do a (print-disk-label) to cnsure that the partition you intend
to bash is not the current one: if it was, and something went wrong in the middle of loading the
new microcode, it would be impossible to cold-boot, and this is hard to fix.

Then, install the microcode (on the non-current partition) by using si:load-mcr-file.

si:1oad-mcr-file microcode-file partition
Load the contents of the file microcode-file into the designated partition. microcode-file is
cither the version number of the system microcode to be loaded, or the pathname of a
file containing microcode (in "MCR" format), normally SYS: UBIN; UCADR MCR.
partition is cither the number of a MCR partition, or the name of one, such as "MCR1".
This takes about 30 seconds.

The system load, unlike the microcode load, is much too large to fit in a file. Therefore, the
only way to install an updated system on a machine is to copy it from another machine that
already has it. So the first step is to find a machine that is not in use and has the desired
system. We will call this the source machine. The machine where the new system will be
installed is the target machine. You can see who is logged into which machines, sce which ones
are free, and use print-disk-label with an argument to examine the label of that machine’s disk
and see if it has the system you want.

The function for actually copying a system load partition off of another machine is called as
follows. Before doing this, double-check the partition names by printing the labels of both
machines, and make sure no one is using the source machine.

si:receive-band source-host source-band target-band &optional subset-start subsel-size
Copy the partition on source-host’s partition named source-band onto the local machine’s
partition named target-band. ("Band” means "partition”.) This takes about ten minutes. It
types out the size of the partition in pages, and types a number every 100 pages telling
how far it has gotten. It puts up a notification on the remote machine saying what’s
going on.

The subset-start and subset-size arguments can be used to transfer only part of a partition.
They are measured in blocks. The default for the first is zero, and the default for the
second is up till the end of the data in the band. 'These are most often useful for
restarting a transfer that was aborted due to network problems or a crash, based on the
count of hundreds of blocks that is printed out during the transfer.

SRCKLMAN>FD-HAC.TEXT.13 24-JAN-83

Booting and Disk Partitions 656 I.isp Machine Manual

To go the other direction, usc si:transmit-band.

si:transmit-band source-band target-host target-band &optional subset-start subset-size
This is just like si:receive-band, cxcept you usc it on the source machine instead of the
target machine. It copies the local machine’s partition named source-band onto target-
machine’s partition named target-band.

It is preferable to use si:receive-partition so that you are present at the machine being
written on.

After wansferring the band, it is good practice to make sure that it rcally was copied
successfully by comparing the original and the copy. All of the known reasons for errors during
band transfer have (of course) been corrected, but peace of mind is valuable. If the copy was not
perfectly faithful, you might not find out about it until a long time later, when you use whatever
part of the system that had not been copied properly.

si:compare-band source-host source-band target-band &optional subset-start subset-size
) ‘This is like sireceive-band, except that it does not change anything. It compares the
two bands and complains about any differences.

Having gotten the current microcode load and system load copied into partitions on your
machine, you can make them current using set-current-microload and set-current-band.
Double-check everything with print-disk-label. Then cold-boot the machine, and the new system
should come up in a half-minute or so.

If the microcode you installed is not the same version as was installed on the source machine
from which you got the system load. you will nced to follow the procedure given below under
"installing new microcode”. This can happen if someone hasn’t installed the current microcode yet
on that other machine.

32.10.5 Installing New Microcode

When an existing systemn is to be used with a new microcode, certain changes need to be
made to the system, and it should then be dumped back out with the changes. The error handler
has a table of errors that are detected by microcode. The hardware/microcode debugger (CC) has
a microcode symbol table. These symbols are used when debugging other machines, and are also
used by certain metering programs. These tables should be updated when a new microcode is
installed.

The error-handler will automatically update its table (from a file on the SYS: UBIN; directory)
when the machine is booted with the new microcode. The CC symbol table is updated
automatically when you do a disk-save; you can also do so by hand as follows:

(login ’'lispm)

(pkg-goto ’cadr)

(cc-load-ucode-symbols "SYS: UBIN; UCADR SYM nnn")

(pkg-goto)
where nnn is the microcode version number. This operation will take a minute or two; after it
has read in most of the file the machinc will stop for a long time while it sorts the symbols. It

SRC:KLMAN>FD-HAC.TEXT.13 24-JAN-83

Lisp Machine Manual 657 ' Site Options and Host Table

will look like it has crashed, but it hasn’t, really, and will eventually come back.

After booting the system with the new microcode and following the above procedure, the
updated system should be saved with disk-save as explained above. Note that this opcration
does not change the system version number. Once the new band is verified to work, the old

band can be removed from the label with si:edit-disk-label if desired.

32.11 Site Options and Host Table

The Lisp machine system has options that are set at cach site. These include the network
addresses of other hosts, which hosts have file servers, which host to find the system source files
and patch files on, where to send bug reports, what timezone the site is located in, and many
other things.

The per-site information is defined by three files: SYS: SITE; SITE LISP, SYS: SITE;
LMLOCS LISP. and SYS: CHAQOS; HOSTS TXT.

SYS: CHAOS; HOSTS TXT is the network host table. It gives the names and addresses of
all hosts that are to be known to the Lisp machine for any purposes. It also says what type of
machine the host is, and what operating system runs on it.

SYS: SITE; LMLOCS LISP specifies various information about the Lisp machines at your
site, including its name, where it is physically located, and what the default machine for logging
in should be.

SYS: SITE; SITE LISP specifies all other site-specific information. Primarily, this is
contained in a call to the special form defsite.

defsite site-name (site-option value)... Special Form
This special form defines the values of site-specific options, and also gives the name of
the site. Each site-option is a symbol, normally in the keyword package, which is the
name of some site option. value is the value for that option; it is evaluated. Here is a
list of standardly defined site options:

:sys-host The value is a string, the name of the host on which the system source
files are stored. This is the host into which the logical host SYS will
translate.

:sys-host-translation-alist
The value is an alist mapping host names into translation-list variables.
Each translation list variable’s value should be an alist suitable for being
the third argument to fs:add-logical-pathname-host (sce page 478).
The car of an element may be nil instcad of a host name; then this
element applies to all hosts not mentioned.

The normal place to find the system sources is on the host specified by
the :sys-host keyword, in the dircctories specified by the translation list
variable found by looking that host up in the value of the :sys-host-
translation-alist keyword. If you spccify a different host as the system
host with si:set-sys-host, that host will also be looked up in this alist to

SRCKLMAN>FD-HAC.TEXT.13 24-JAN-83

Site Options and Host Table 658 Lisp Machine Manual

find out what directories to use there.
Here is what is used at MIT;
(defsite :mit

(:sys-host-translation-alist

"(("AI" . its-sys-pathname-translations)
("0Z" . oz-sys-pathname-translations)
("FS" . its-sys-pathname-transliations)
("LM" . its-sys-pathname-translations)
(ni1 . its-sys-pathname-transliations)))

)

(defconst oz-sys-pathname-transiations
(("CC" "SRC:<L.CC>")
("CHAOS" "SRC:<L.CHAQS>")
("DEMO" "SRC:<L.DEMO>")

("SITE" "SRC:<L.SITE>")
("SYS" "SRC:<L.SYS>")
("SYS2" "SRC:<L.SYS2>")

("ZMAIL" "SRC:<L.ZMAIL>")
("ZWEI" "SRC:<L.ZWEI>")

))

:sys-login-name

:sys-login-password
These specify the username and password to usce to log in automatically to
read system patch files, microcode symbol tables and error tables. The
values should be strings.

:chaos This should be t if there is a chaosnet, nil if not.
:ether This should be t if the Lisp machine is on an cthernet, nil if not.

:chaos-file-server-hosts
This should be a list of names of hosts that have file servers.

:chaos-time -server-hosts
This should be a list of names of hosts that support TIME servers. These
are hosts that the Lisp machine can ask the time of day from when you
boot.

:chaos-host-table-server-hosts
This should be a list of names of hosts that support host-table servers,
which can be used to inquire about hosts on networks that the Lisp
machine does not know about in its own host table.

:chaos-mail-server-hosts
This should be a list of names of hosts that support mail servers which
are capable of forwarding mail to any known host.

SRCKILLMAN>FD-HAC.TEXT.13 24-JAN-83

I.isp Machine Manual 659 Site Options and Host Table

timezone This should be a number, the number of hours carlier than GMT of the
timezone where this site is located.

‘host-for-bug-reports
This should be a string, the name of the host at which bug-report
mailboxes are located.

:local-mail-hosts
This should be a list of names of hosts that ZMAIL. should consider
"local" and omit from its summary display.

:spell-server-hosts
This should be a list of hosts that have spelling corrector servers.

:comsat This should be t if mail can be sent through the COMSAT mail demon.
This is true only at MIT.

.default-mail-mode
This should be the default mode for use in sending mail. The options are
file (use COMSAT), :chaos (use onc of the :chaos-mail-server-hosts),
or :chaos-direct (like :chaos, but go direct to the host that the mail is
addressed to whenever possible).

:gmsgs This should be t if GMSGS servers are available.

:arpa-gateways
This should be a list of names of hosts that can be used as gateways to
the Arpanet. These hosts must provide a suitable chaosnet server which
will make Arpanet connections. It should be nil if your site does not have
an Arpanet connection.

:arpa-contact-name
If you have Arpanet gateways, this is the chaosnet contact name to use.
Nowadays, it should be "TCP".

dover This should be t if your site has a Dover printer.

.default-printer
This should be a keyword which describes the default printer for hardcopy
commands and functions to use. Possible values include :dover and nil.

:default-bit-array-printer
Like :default-printer, but this is the defauit for only hardcopy-bit-array
to use.

:esc-f-arg-alist
This says what various numeric arguments to the Terminal F command
mean. It is a list of elements, one for cach possible argument. The car
of an element is either a number or nil {which applies o Terminal F with
no argument). The cdr is cither :login (finger the login host), :lisp-
machines (finger all Lisp machines at this site), :read (read some hosts

from the keyboard), or a list of host names.

:machines-with-local-file-systems
This should be a list of names of lisp machines that normally have Local-

SRCKL.MAN>FD-HAC.TEXT.13 24-JAN-83

Sitc Options and Host Table 660 Lisp Machine Manual

File systems.

Other site options are allowed, and your own software can look for them.

32.11.1 Updating Site Information

To update the site files, you must first recompile the sources. Do this by
(make-system ’site “compile)
This also loads the site files.

To just load the site files, assuming they are compiled, do
(make-system ’site)

You should never load any site file directly. All the files must be loaded in the proper
fashion and scquence, or the machine may stop working.

32.11.2 Accessing Site Options
Programs examine the site options using these variables and functions:

site-name Variable
The value of this variable is the name of the site you arc running at, as defined in the
defsite in the SITE file. You can use this in run-time conditionals for various sites.

get-site-option keyword
Returns the valuc of the site option keyword. The value is nil if keyword is not
mentioned in the SITE file.

define-site-variable variable keyword [documentation) Special Form
Defines a variable named variable whose value is always the same as that of the site
option keyword. When new site files are loaded, the variable’s value is updated.
documentation is the variable’s documentation string, as in defvar.

define-site-host-11ist variable keyword [documentation] Special Form
Defines a variable named variable whose value is a list of host objects specified by the site
option keyword. The value actually specified in the SITE file should be a list of host
names. When new site files are loaded, the variable’s value is updated. documentation is
the variable's documentation string, as in defvar.

SRC:KLMANSFD-HAC.TEXT.13 24-JAN-83

Lisp Machine Manual 661 Site Options and Host Table

32.11.3 The LMLOCS File

The LMLOCS file contains an entry for cach Lisp machine at your site, and tells the system
whatever it needs to know about the particular machine it is running on. It contains onc form, a
defconst for the variable machine-location-alist. The value should have an clement for each
Lisp machine, of this form:

{("MIT-LISPM-1" "Lisp Machine One"
"g07 [Son of CONS] CADR1’s Room x6765"
(MIT-NE43 9) "OZ" ((:default-printer ’:dover)))

The general pattern is

(host-full-name pretty-name
location-string
(building floor) associated-machine site-options)

The host-full-name is the same as in the host table.
The pretry-name is simply for printing out for users on certain occasions.

The location-string should say where to find the machine’s console, preferably with a
telephone number. This is for the FINGER server to provide to other hosts.

The building and floor are a somewhat machine-understandable version of the location.
The associated-machine is the default file server host name for login on this Lisp machine.

site-options is a list of site options, just like what goes in the defsite. These site options
apply only to the particular machine, overriding what is present in the SITE file. In our example,
the site option :default-printer is specified as being :dover, on this machine only.

si:associated-machine Variable
The host object for the associated machine of this Lisp machine.

32.11.4 Initializing a Band at a New Site

To initialize the Lisp machine system after moving to a new site, it is best to bring the
system on a disk with a local file system. Copy a sct of site files to a directory on the local file
system before you leave the old site. Although the system band will not know about any of the
hosts at the new site, the local file system will run properly.

Log in on host LM and cdit the sitc files there so that they are correct for the new site.
Then use si:set-sys-host to make LM the SYS host, specifying the directory on which the
edited site files reside. Then (make-system 'site 'compile) will compile and load the new site
files. At this point, the new site’s hosts will be accessible, and the SYS host will be set
according to the site files.

SRCKLMAN>FD-HAC.TEXT.13 24-JAN-83

Site Options and Host Table 662 Lisp Machinc Manual

Alternatively, you can usc siiset-sys-host to specify some other host at the new site, even
though it is not known in the host table. To do this, specify the chaosnet address of the host as
the host-address argument. Then the system will not mind that it does not know any host by the
specificd name. You must also specify the operating-system-type argument, a keyword such as
tops20. :vms or :unix. This is because the system cannot determine the type of filename syntax
to use for the host from the host table, as it usually does. site-file-directory must also be
specified.

Now you can refer to the site files on that host using pathnames such as SYS: SITE; SITE
LISP. Update the files, do make-system as above, and you are done.

si:set-sys-host host-name &optional operating-system-type host-address site-file-directory
default-device
Specify the host for the SYS logical host to translate into; this is the host on which
system source files, site files, patch files, error tables and microcode symbols will be
found.

Normally it is enough to specify just the host name. Specifying more than one argument
is uscful mainly when you are operating at a new site and do not have correct host tables
loaded. The additional arguments allow you to specify the information that would
normally be obtained by looking for the host name in the host table. This gets you far
cnough to load site files from that host. which will set things up properly.

SRC:KLMANIFI)-HAC.TEXT.13 24-JAN-83

	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662

