Lisp Machine Manual 1 Introduction

1. Introduction

1.1 General Information

The Lisp Machine is a new computer system designed to provide a high-performance and
cconomical implementation of the Lisp language. It is a personal computation system, which
means that processors and main memorics are not time-multiplexed: when using a Lisp Machine,
you get your own processor and memory system for the duration of the sesston. 1t is designed
this way to relieve the problems of running large lisp programs on time-sharing systems.
Everything on the Lisp Machine is written in Lisp, including all system programs: there is never
any neced to program in machine language. ‘The system is highly interactive.

The Lisp Machine cxccutes a new dialect of Lisp called Zetalisp, developed at the M.LT.
Artificial Intelligence lLaboratory for usc in artificial intelligence rescarch and related ficlds. It was
originally: based on the Maclisp dialect, and attempts to maintain a good degree of compatibility
with Maclisp, while also providing many improvements and new features. Maclisp, in turn, was
based on Lisp ‘LS.

Common Lisp is a Lisp dialect designed to standardize all the various Lisp systems derived
from Maclisp. Zetalisp today is ncarly a supersct of Common Lisp, but there are a few important
incompatibilitics between them, in places where Common Lisp involves an incompatible change
which is deemed to severe to impose on traditional Zetalisp users. There is a spccial mode which
provides strict Common Lisp compatibility. Sce scction 1.4, page 7 for more information.

This document is the reference manual for the Zetalisp language. This document is not a
tutorial, and it somctimes refers to functions and concepts that arc not cxplained until later in the
manual. It is assumed that you have a basic working knowledge of some Lisp dialect; you will
be able to figure out the rest of the language from this manual.

There are also facilitics explained in this manual that are not really part of the Lisp language.
Some of these are subroutine packages of gencral use, and others arc tools used in writing
programs. The Lisp Machine window systcm and the major utility programs are, or ought to be,
documented in other manuals.

1.2 Structure of the Manual

'The manual starts out with an explanation of the language. Chapter 2 explains the different
primitive typcs of lisp object and presents some basic predicate functions for testing types.
Chapter 3 explains the process of evaluation, which is the heart of the Lisp language. Chapter 4
introduces the basic Lisp control structures.

The next scveral chapters cxplain the details of the various primitive data-types of the
language and the functions that deal with them. Chapter 5 deals with conses and the higher-level
structures that can be built out of them, such as trees, lists, association lists, and property lists.
Chapter 6 dcals with symbols, chapter 7 with the various kinds of numbers, and chapter 8 with
arrays. Chapter 10 explains character strings, which are a special kind of array.

PS:KI.MAN>INTRO.TEXT.18 8-JUN-84

Structure of the Manual 2 1 isp Machine Manual

Afier this there are some chapters that explain more about functions, function-calling. and
related matters. Chapter 11 presents all the kinds of functions in the language. explains function-
spees, and tells how 1o manipulate definitions of functions. Chapters 12 and 13 discuss closures
and stack-groups, two facilities usctul for creating coroutines and other advanced control and
access structures.

Next, a few lower-level issues are dealt with, Chapter 14 cxplains locatives, which are a kind
of pointer to memory cells, Chapter 15 explains the “subprimitive™ functions, which arc primarily
useful for implementation of the Lisp language itself and the Lisp Machine’s operating system.
Chapter 16 discusses arcas, which give you control over storage allocation and locality of
reference.

Chapter 17 discusses the Lisp compiler. which converts Lisp programs into “machine
language™ or “macrocode™. Chapter 18 explains the Lisp macro facility, which allows users to
write their own extensions o Lisp, extending both the interpreter and the compiler. The next two
chapters go into detail about two such extensions, onc that provides a powerful iteration control
structure (chapter 19). and one that provides a powerful data structure facility (chapter 20).

Chapter 21 documents flavors, a language facility to provide generic functions using the
paradigm used in Smalltalk and related languages, called “objcct-oriented programming” or
“message passing”. Flavors are widely used by the system programs of the Lisp Machine, as well
as being available to the user as a language feature.

The next few chapters discuss 1/0: chapter 22 cxplains 1/0 strcams and character and line
level operations; chapter 23 explains reading and printing symbolic expressions; chapter 24
explains naming of files; chapter 25 cxplains input and output to files. Chapter 26 describes the
use of the Chaosnet.

Chapter 27 describes the package system, which allows many name spaces within a single Lisp
environment. Chapter 28 documents the “system™ facility that helps you create and maintain
systems, which are programs that reside in many files.

Chapter 29 discusses the facilities for multiple processes and how to write programs that use
concurrent computation. Chapter 30 explains how exceptional conditions (errors) can be handled
by programs, handled by usecrs, and debugged. Chapter 31 explains the instruction set of the
Lisp Machine and tells you how to examine the output of the compiler. Chapter 32 documents
some functions for querying the user, chapter 34 explains some functions for manipulating dates
and times, and chapter 35 contains other misccllancous functions and facilities.

PS:KLLMANDINTRO.TEXT.18 8-JUN-84

[isp Machine Manual 3 Notational Conventions and Helpful Notes

1.3 Notational Conventions and Helpful Notes

There are several conventions of notation and various points that should be understood before
reading the manual. ‘This section explains those conventions.

The symbol *=>" is used to indicate evaluation in examples. Thus, when you sce ‘foo =>
nil’, this means that “the result of cvaluating foo is (or would have been) nil™.

The symbol ‘==>"is used to indicatc macro expansion in cxamples. ‘This, when you sce
‘(foo bar) = => (aref bar 0)". this means that “the result of macro-expanding (foo bar) is (or
would have been) (aref bar 0)”.

A typical description of a Lisp function looks like this:

function-name arg! arg? &optional argd (argd argl)
The function-name function adds together argl and arg2, and then multiplies the result
by arg3. If argd is not provided, the multiplication isn't done. function-name then
returns a list whose first clement is this result and whose sccond clement is argd.
Examples: :
(function-name 3 4) => (7 4)
(function-name 1 2 2 ’'bar) => (6 bar)

Note the use of fonts (typefaces). The name of the function is in bold-face in the first line of
the description, and the arguments arc in italics. Within the text, printed representations of Lisp
objects are in a different bold-face font, as in (+ foo 56). and argument references are italicized,
as in argl and arg2. A different, fixed-width font, as in function-name, is used for Lisp
examples that are set off from the text. Other font conventions arc that filenames are in bold-
face, all upper case (as in SYS: SYS; SYSDCL LISP) while keys on the keyboard are in bold-
face and capitalized (as in Help, Return and Meta).

‘Car’, ‘cdr and ‘cons arc in bold-face when the actual Lisp objects are being mentioned, but
in the normal text font when used as words.

The word ‘&optional’ in the list of arguments tells you that all of the arguments past this
point arc optional. The default value can be specified explicitly, as with arg4 whose default value
is the result of evaluating the form (foo 8). If no dcfault value is specified, it is the symbol nil.
This syntax is used in lambda-lists in the language, which are explained in section 3.3, page 38.
Argument lists may also contain ‘&rest’ and ‘&key’ to indicate rest and keyword arguments.

The descriptions of special forms and macros look like this:

do-three-times form Special form
This evaluates form three times and returns the result of the third cvaluation.

- with-foo-bound-to-nil form... : Macro
This cvaluates the forms with the symbol foo bound to nil. It expands as follows:

PSKILMANDINTRO.TEXT.18 | 8-JUN-84

Notational Conventions and Helptul Notes 4 Lisp Machine Manual

(with-foo-bound-to-nil
Jorml
Jorm2 . ..) ==>
(let ((foo nil))
Jorml
Jorm2 ...)

Since special forms and macros are the mechanism by which the syntax of Lisp is extended,
their descriptions must describe both their syntax and their semantics: functions follow a simple
consistent set of rules, but cach special form is idiosyncratic. The syntax is displayved on the first
line of the description using the following conventions. Halicized words are names of parts of the
form which are referred 1o in the descriptive text. ‘They are not arguments, cven though they
resemble the italicized words in the first line of a function description. Parentheses (((C and °))
stand for themselves. Square brackets (" and '1) indicate that what they enclose is optional,
Ellipses (°...") indicate that the subform (italicized word or parenthesized list) that precedes them
may be ‘repeated any number of times (possibly no times at all). Curly brackets followed by
cllipses ({" and °‘}...") indicate that what they enclose may be repeated any number of times.
‘Thus the first line of the description of a special form is a “template™ for what an instance of that
special form would look like, with the surrounding parentheses removed. The syntax of some
special forms is sufficiently complicated that it does not fit comfortably into this style; the first
linc of the description of such a special form contains only the name, and the syntax is given by
example in the body of the description.

‘The semantics of a special form includes not only what it “does for a living”, but also which
subforms are evaluated and what the returned valuc is. Usually this will be clarified with one or
more ¢xamples.

A convention used by many special forms is that all of their subforms after the first few are
described as ‘body..". This means that the rcmaining subforms constitute the “body” of this
special form; they are Lisp forms that arc cvaluated onc after another in some environment
cstablished by the special form.

This ridiculous special form exhibits all of the syntactic features:

twiddle-frob [(ffob option..)] {parameter value}... Special form

This twiddles the parameters of frob, which defaults to default-frob if not specified.
Each parameter is the name of onc of the adjustable parameters of a frob; cach value is
what valuc to set that parameter to. Any number of parameter/value pairs may be
specified. If any options are spccificd, they arc keywords that sclect which safety checks
to override while twiddling the parameters. If ncither frob nor any oprions are spccified,
the list of them may be omitted and the form may begin directly with the first parameter
name.

frob and the values arc evaluated; the parameters and options are syntactic keywords and
not cvaluated. The returned valuc is the frob whose paramcters were adjusted. An error
is signaled if any safety checks are violated.

PS:KLLMAN>INTRO.TEXT.18 8-JUN-84

Lisp Machine Manual 5 Notational Conventions and Helpful Notes

Opcrations, the message-passing cquivalent of ordinary Lisp's functions, arc described in this
style: :

:operation-name arg/ arg? &optional arg3 Operation on flavor-name
This is the documentation of the effect of performing operation :operation-name (or,
sending a message named :operation-name), with arguments argl, arg?, and arg3, on
~an instance of flavor flavor-name.

Descriptions of variables (“globally special™ variables) look like this:

typical-variable : Variable
The variable typical-variable has a typical value.... :

If the description says ‘Constant’ rather than ‘Variable’, it means that the value is never sct by
the system and should not be set by you. In some cases the valuc is an array or other structure
whose contents may be changed by the system or by you.

Most numbers in this manual are decimal; octal numbers are labelled as such, using #o if
they appear in examples. Currently the default radix for the Lisp Machine system is cight, but
this will be changed in the ncar futurc. If you wish to change to base ten now, sce the
documentation on the variables *read-base* and *print-base* (page 517).

All uscs of the phrase ‘Lisp rcader’, unless further qualified, refer to the part of Lisp that
reads characters from 1/0 streams (the read function), and not the person reading this manual.

There arc several terms that are used widely in other references on Lisp, but are not used
much in this document since they have become largely obsolete and misleading. For the benefit
of those who may have scen them before, they arc: ‘s-expression’, which means a Lisp object;
‘dotted pair’, which means a cons; and ‘atom’, which means, roughly, symbols and numbers and
sometimes other things, but not conses. The terms ‘list” and ‘trec’ are defined in chapter 5, page
86.

The characters acute accent (') (also called "single quote™) and semicolon (') have special
meanings when typed to Lisp; they are cxamples of what are called macro characters. Though
the mechanism of macro characters is not of immediate interest to the new user, it is important to
understand the effect of these two, which are used in the examples.

When the Lisp reader encounters a "' ", it reads in the next Lisp object and encloses it in a
quote special form. That is, 'foo-symbol turns into (quote foo-symbol), and ’(cons 'a 'b)
turns into (quote (cons (quote a) (quote b))). The reason for this is that quote would otherwise
- have to be typed in very frequently, and would look ugly. :

The semicolon is used as a commenting character. When the Lisp reader sces one, the
remainder of the line is discarded.

The character */° is uscd for quoting strange characters so that they are not interpreted in
their usual way by the Lisp rcader, but rather are trcated the way normal alphabetic characters
arc treated. So. for cxample, in order to give a ‘/’ to the rcader, you must type ‘//°, the first
‘/* quoting the sccond one. When a character is preceded by a */° it is said to be escaped.
Escaping also turns off the cffects of macro characters such as "' " and I

PS:KLLMAN>INTRO.TEXT.18 ' 8-JUN-84

Notationat Conventions and Helpful Notes 6 1isp Machine Manual

If you select Common Lisp syntax, cscaping is done with *\" instcad, and '/’ has no special
syntactic significance. The manual uses traditional syntax throughout, however.

The following characters also have special meanings and may not be used in symbols without
escaping. Thesce characters are explained in detail in the section on printed representation (section
23.3, page 516).

" Double-quote delimits character strings.
Sharp-sign introduces miscellancous rcader macros.
) Backquote is used to construct list structure.

Comma is used in conjunction with backquote.,
Colon is the package prefix.
Characters between pairs of vertical-bars are escaped.

@ Circle-cross Icts you type in characters using their octal codcs.

All Lisp code in this manual is written in lower casc. In fact, the reader turns all symbols
into upper case, and conscquently everything prints out in upper case. You may writc programs
in whichever casc you prefer.

You will see various symbols that have the colon (i) character in their names. The colon and
the characters preceding it are not actually part “of the symbol name, but in early stages of
lcarning the system you can pretend that they are. Actually they are a package prefix. See
chapter 27 for an explanation of packages and what package prefixes really do.

Symbols whose names start with si: arc internal to the system. These functions and variables
arc documented here because they are things you sometimes need to know about. However, they
are subject to change with little concern for compatibility for users.

Zetalisp is descended from Maclisp, and a good deal of cffort was expended to try to allow
Maclisp programs to run in Zetalisp. Throughout the manual, there are notes about differences
between the dialects. For the new uscr, it is important to note that many functions herein exist
solely for Maclisp compatibility; they should nor be used in new programs. Such functions are
clcarly marked in the text.

The Lisp Machine character set is not quite the same as that used on 1.T.S. nor on Multics;
it is described in full detail in section 10.1.1, page 205. The important thing to note for now is
that the character “newline” is the same as Return, and is represented by the number 215 octal.
(This number should not be built into any programs.)

When the text speaks of “typing Control-Q™ (for cxample), this means to hold down the
Control key on the keyboard (cither of the two keys labeled ‘CTRL’), and, while holding it
down, to strike the Q key. Similarly, to type Meta-P, hold down cither of the Meta keys and
strike P. To type Control-Meta-T hold down both Control and Meta. Unlike ASCII, the Lisp
machine character sct docs not simply label a few of the characters as “control characters™:
Control and Meta (and Super and Hyper) arc modificrs that can be attached to any character
and are represented as separaie bits. These modifier bits are not present in characters in strings or

files.

PS:KL.LMAN>INTRO.TEX'T.18 8-JUN-84

Lisp Machine Manual ' 7 Common Lisp Support

.

Many of the functions refer to “arcas™. The area feature is of interest only to writers of large
systems and can bhe safely disregarded by the casual user. Tt is described in chapter 16,

1.4 Common Lisp Support

Common Lisp is the namc of a standardization project whose goal was (o cstablish a
compatible subsct for Lisp systems descended from Maclisp.

Originally it was hoped that Zctalisp and the Lisp Machine system could be changed to
become a superset of Common. Lisp; but this proved impossible because the final Common Lisp
design includes several incompatible changes to widely used functions, which, while of no
fundamental importance, would make most user programs fail 10 work., Therefore it was nccessary
to make Common Lisp a separatec mode of operation. "The incompatibilities fall into two classcs:

* Recad syntax: Common Lisp specifics *\" ‘as the single-character escape character rather than
the traditional ‘/". A few other constructs, such as character objects and complex numbers,
arc also written incompatibly.

* Specific functions: many Lisp functions of ancient pedigree, including member, assoc,
subst, union, terpri, close and // arc specified to be incompatible with their traditional
behavior.

The read syntax incompatibilitics have been decalt with by having scparate rcadtables for
traditional and Comumon Lisp syntax. The incompatibilities in functions have been dealt with by
means of reader symbol substitutions. For cach function changed incompatibly, such as member,
a new, distinct symbol exists in a package cafled cli (“Common Lisp Incompatible™); for cxample,
cli:member. The function definition of the symbol member is the traditional definition, while
that of climember is the Common Lisp dcfinition. In Common Lisp programs, the reader is
directed to rteplace member with cliimember wherever it is scen. So traditional and Common
Lisp programs both get the member functions they expect. Programs written in traditional syntax
can refer to the new cli functions with explicit cli: package prefixes. Programs written in
Common Lisp syntax can refer to the traditional symbols with cxplicit global: packagc prefixes,
but this is not expected to be necessary in code.

The symbol replacements are under control of the current readtable, so that the Common
Lisp readtable is responsible for causing cli:close to replace close and so on.

In this manual, thc incompatible Common Lisp functions arc documented under names
starting with cli;, the names by which a traditional program could refer to them. Keep in mind
that, in Common Lisp programs, the cli: would be omitted. A list of symbols which have
incompatible Common Lisp substitutes can be found by looking up clii in the function and
variable indices. '

Traditional read syntax is used nearly cverywhere in the manual. ‘This includes the use of /°
as an cscapc character, the cscaping of */° itself, and not cscaping the character *\’, which in
traditional syntax is not special. It is up to the user to make appropriate modifications to express
the same Lisp object in Common Lisp syntax when necessary.

PS:KLLMANDINTRO.TEXT.18 8-JUN-84

Common Lisp Support 8 [isp Machine Manual

The majority of Common Lisp changes. those that are upward compatible, have been
incorporated directly into Zetalisp and are documented in this manual with no special notice.

Common Lisp read syntax and function definitions may be used cither in files or interactively.

For listen loops. including Lisp Listener windows, break loops and the debugger. the choice
of syntax and function semantics is made by sctting the variable readtable to the appropriate
readtable (sec page 536) or most simply by calling the function common-lisp.

common-1isp flag
If flag is t, sclects Common Lisp syntax and function definitions. If flag is nil, selects
traditional syntax and function definitions.

In cither case, this controls the reading of the following expressions that you type in the
same process. It works by sctting readtable.

In a file, Common Lisp is requested by writing the attribute Readtable: Common-Lisp; in
the -#- file's line. This controls both loading or compiling the file and evaluation or compilation
in the editor while visiting the file. Readtable: Traditional; specifics the usc of traditional syntax
and function definitions. 1f neither attribute is present. the file is processed using whatever syntax
is sclected in the process that loads it. Sce section 25.5, page 594.

Reading and printing done by programs are controlled by the same things that control reading
of programs. They can also be controlled explicitly by binding the variable readtable.

PS:KI.MANDINTRO.TEXT.18 8-JUN-84

	001_Intro
	002_Intro
	003_Intro
	004_Intro
	005_Intro
	006_Intro
	007_Intro
	008_Intro

