Iisp Machine Manual 9 Primitive Object Types

2. Primitive Object Types

2.1 Data Types

This section cnumerates some of the various different primitive types of objects in Zetalisp.
The types explained below include symbols, conses, various types of numbers, two kinds of
compiled code objects, locatives, arrays. stack groups, and closures.

A symbol (these are sometimes called “atoms™ or “atomic symbols™ by other texts) has a print
name. a value, a definition, a property list, and a package.

The print name is a string. which may be obtained by the function symbol-name (page 132).
This string serves as the printed representation (sce section 23.1, page 506) of the symbol.

~ Each symbol has a value, which may be any Lisp object. 'This is the value of the symbol
when regarded as a dynamic variable. It is also referred to sometimes as the “contents of the
value cell”, since internally every symbol has a cell called the value cell, which holds the value.
It is accessed by the symeval function (page 129), and updated by the set function (page 129).
(That is, given a symbol, you usc symeval to find out what its valuc is, and usc set to change
its value.)

Each symbol has a definition, which may also be any Lisp object. It is also referred to as the
“contents of the function cell”, since internally every symbol has a ccll called the function cell,
which holds the definition. - The definition can be accessed by the fsymeval function (page 130),
and updated with fset (page 130), although usually the functions fdefinition and fdefine are
employed (page 239).

The property list is a list of an ecven number of clements; it can be accessed directly by plist
(page 131), and updated dircctly by setplist (page 131), although usually the functions get,
putprop, and remprop (page 114) are used. The property list is used to associate any number of
additional attributes with a symbol—attributes not used frequently enough to deserve their own
cells as the value and definition do.

Symbols also have a package ccll, which indicates which package of names the symbol
belongs to. This is cxplained further in the section on packages (chapter 27) and can be
disregarded by the casual user.

The primitive function for creating symbols is make-symbol (page 133), although most
symbols are created by read, intern, or fasload (which call make-symbol themsclves.)

A cons is an object that cares about two other objects, arbitrarily named the car and the cdr.
These objects can be accessed with car and cdr (page 87), and updated with rplaca and rplacd
(page 89). The primitive function for creating conscs is cons (page 87).

There are scveral kinds of numbers in Zetalisp. Fixnums represent integers in the range of
-2124 to 2124-1. Bignums represent integers of arbitrary size, but they arc more expensive to use
than fixnums because they occupy storage and arc slower. The system automatically converts
between fixnums and bignums as required. Floats are floating-point numbers. Short floats are

PS:KL.MAN>FD-DTP.TEXT.19 8-JUN-84

Data Types ' 10 | isp Machine Manual

another kind of floating-point numbers, with less range and precision, but less computational
overhead. Rarios are exact rational numbers that are represented with a numerator and a
denominator, which are integers. Complexnums are numbers that have explicitly represented real
and imaginary parts, which can be any real numbers of the same type. Sce chapter 7, page 135
for full details of these types and the conversions between them.

A character object is much like a fixnum except that its type is distinguishable. Common Lisp
programs use character objects to represent characters, Traditional programs usually use fixnums
1o represent characters. although they can create an manipulate character objects when they desire.
Character objects behave like fixnums when used in arithmetic; only a few operations make any
distinction. They do, however, print distinctively. Sce section 10,1, page 204 for more
information.

The usual form of compiled, executable code is a Lisp object, called a “Function Entry
Frame™ or “IFEF™ for historical rcasons. A IFEF contains the code for onc function. 'This is
analogous to what Maclisp calls a “subr pointer”. FEFs are produced by the Lisp Compiler
(chapter 17, page 301). and are usually found as the definitions of symbols. ‘The printed
representation of a FEF includes its name so that it can be identified.

Another kind of Lisp object that represents exccutable code is a “microcode entry”. These are
the microcoded primitive functions of the Lisp system, and any user functions compiled into
microcode. '

About the only uscful thing to do with any of these compiled code objects is to apply it to
arguments. However, some functions are provided for cxamining such objects, for user
convenience. Sec arglist (page 242), args-info (page 243), describe (page 791), and
disassembie (page 792). . :

A locative (sce chapter 14, page 267) is a kind of a pointer to a single memory cell anywhere
in the system. The contents of this cell can be accessed by cdr (see page 87) and updated by
rplacd (sce page 89).

An array (sce chapter 8, page 162) is a sct of cells indexed by a tuple of integer subscripts.
The contents of the cells may be accessed and changed individually. There are scveral types of
arrays. Somec have cells that may contain any object, while others (numeric arrays) may only
contain small positive numbers. Strings arc a type of array; the elements arc character objects.

A list is not a primitive data type, but rather a data structure made up out of conscs and the
symbol nil. Sce chapter 5, page 86.

PSKLMANED-DTP.TEXT.19 8-JUN-84

Lisp Machine Manual 11 Data Type Predicates

2.2 Data Type Predicates

A predicate is a function that tests for some condition involving its arguments and returns the
symbol t if the condition is true, or the symbol nil if it is not true. ‘The following predicates are
for testing what data type an object has.

By convention, the names of predicates usually end in the letter ‘p* (which stands for
‘predicate’).

The following predicates arc for testing data types. ‘These predicates return t if the argument
is of the type indicated by the name of the function, nil if it is of some other type.

symbolp object
tif object is a symbol, otherwise nil,

nsymbolp object
nil if object is a symbol, otherwise t.

1istp object ,
t if object is a cons, otherwisc nil. Note that this means (listp nil) is nil cven though nil
is the empty list.

[This may be changed in the future to work like clizlistp. Since the current definition of
listp is identical to that of consp, all uscs of listp should be changed to consp unless
the treatment of nil is not of concern.}

cli:1istp object
The Common Lisp version of listp returns t if object is nil or a cons.

nlistp object
t if object is anything besides a cons, otherwise nil. (nlistp nil) returns t.

[This may be changed in the future, if and when listp is changed. Since the current
definition of nlistp is identical to that of atom, all uscs of nlistp should be changed to
atom unless the treatment of nil is not of concern.]

atom object
t if object is not a cons, otherwise nil. This is the same as (not (consp object)).

consp object
t if object is a cons, otherwise nil. At thc moment, this is the same as listp; but while
listp may be changed, consp will never be true of nil.

numberp object
t if object is any kind of number, otherwise nil.

PSKLLMANDED-DTP.TEXT.19 8-JUN-84

Data Type Predicates 12 Lisp Machine Manual

integerp object

fixp object
Return t if object is a representation of an integer, i.c. a fixnum or a bignum, otherwise
nil.

floatp object
t if object is a floating-point number, i.c. a full-size or short float, otherwise nil.

fixnump object
t it object is a fixnum, otherwise nil.

bigp object
t i object is a bignum, otherwise nil,

flonump object
t if object is a full-size float, otherwise nil.

small-floatp object
t if object is a short float, otherwise nil.

rationalp object
t if object is an cxact representation of a rational number; that is, if it is a fixnum, a

bignum or a ratio. Otherwise nil.

complexp object
"t if object is a complexnum, a number cxplicitly represented as complex. Otherwise nil.

realp object
t if object is a number whose value is real, otherwise nil. Any fixnum, bignum, float (of
cither format) or ratio satisfics this predicate. So does a complexnum whose imaginary
part is zero.

characterp object
t if object is a character object, otherwise nil.

stringp object
t if object is a string, otherwise nil.

arrayp object
t if object is an array, otherwise nil. Note that strings are arrays.

vactorp object
t if object is an array of rank 1.

bit-vector-p object
t if object is an array of rank 1 that allows only 0 and 1 as clements.

PS:KLLMANOED-DTP.TEXT.19 . _ 8-JUN-84

[isp Machine Manual 13 Data Type Predicates

simple-vector-p object
t il objecr is an array of rank 1, with no fill pointer and not displaced. that can have any
Lisp object as an element,

simple-bit-vector-p object
t i object is an array of rank 1, with no fill pointer and not displaced. that allows only 0
and 1 as clemnents. : ‘

simple-string-p object
t if object is a string with no fill pointer and not displaced.

functionp object &optional allow-special-forms
t if object is a function (essentially, somcething that is acceptable as the first argument to
apply), otherwise nil. In addition (o interpreted. compiled, and microcoded functions,
functionp is truc of closures. sclect-methods (see page 232), and symbols whose function
definition is functionp.

functionp is not true of objects that can be called as functions but are not normally
thought of as functions: arrays. stack groups, ecntitics, and instances. As a special case,
functionp of a symbol whose function definition is an array returns t, because in this case
the array is being used as a function rather than as an object.

If allow-special-forms is specificd and non-nil, then functionp will be true of macros and
special-form functions (those with quoted arguments). Normally functionp returns nil for
these since they do not behave like functions.

compiled-function-p object

subrp object :

"t if object is any compiled code object, otherwise nil. The name subrp is for Maclisp
compatibility. :

special-form-p symbol
t if symbol is defined as a function that takes some unevaluated args. Macros do not

count as special forms.

macro-function can be uscd to test whether a symbol is defined as a macro, but you must
be careful because it also returns a non-nil value for certain special forms. Sec the definition
macro-function (page 344) to find out how to do this properly.

closurep object
t if object is a closure, otherwise nil.

entityp object

t if object is an cntity, otherwisc nil. Sce section 12.4, page 255 for information about
entities.

PS:<L.MANSFD-DTP.TEXT.19 8-JUN-84

Type Specifiers 14 Iisp Machine Manual

locativep object
t il object is a locative, otherwise nil.

commonp object
tif object is of a type that Common Lisp defines operations on. Sce the type specifier

common (page 18).

Other standard type predicates include packagep (see page 656), random-state-p (scc page
157). hash-table-p (page 119), pathnamep (page 545). streamp (page 459) and readtablep
(page 536). defstruct can define additional type predicates automatically (page 378).

2.3 Type Specifiers

Data types can be represented symbolically by Lisp objects called sype specifiers. A type
specifier describes a class of possible Lisp objects; the function typep tells whether a given object
matches a given type specifier.

Built-in type specifiers cxist for the actual Lisp Machine data types. The user can define
additional type specifiers to represent arbitrary classifications of data. ‘T'ype specifiers can also be
combined into specifiers for more complex types. '

Some type specifiers arc symbols: for example, number, cons, symbol, integer. character,
compiled-function, array, vector. ‘Their mcanings arc mostly obvious, but a table follows
below. Type specifiers that are symbols are called simple type specificrs.

Lists can also be type specifiers. They are usually combinations or restrictions of other type
specifiers. The car of the list is the key to understanding what it mecans. An examplc of a
combination is (or array symbol), which matches any array or any symbol. An cxample of a
restriction type is (integer 0 6), which matches only integers between 0 and 6 (inclusive).

2.3.1 Standard Type Specifiers

Basic Data Types

cons non-nil lists.

symbol symbols.

array all arrays, including strings.

number numbers of all kinds.

instance all instances of any flavor.

structure named structurcs of any structure type.
locative locatives.

closure closures.

entity cntities.

PS:KKL.MANDED-DTP.TEXT.19 8-JUN-84

I isp Machine Manual

stack-group

15 Type Speciiers

stack groups.

compiled-function

macrocode functions such as the compiler makes.

microcode-function

select:

character

built-in functions implemented by the microcode.

“select-method functions (defined by defselect or defselect-incremental).

character objects.

Other Uscful Simple Types

t
nil

string-char

standard-char .
characters defined by Common Lisp. These are the 95 ASCII printing characters

null
list

sequence

keyword

atom

all Lisp objects bclnngs to this type.

nothing belongs to this type.

characters that can go in strings.

(including Space), together with Return.
nil is the only object that belongs to type null.
lists, including nil. This type is the union of the types null and cons.

lists and vectors. Many Common Lisp functions accept cither a list or a vector as
a way of describing a sequence of clements.

keywords (symbols belonging to package keyword).

“anything but conscs.

Simple Number Types

integer
ratio
rational
| fixnum
bignum

bit
. float
short-float
single-fioat

double-float
long-fioat

real

PS:KIL.MAN>ED-DTP.TEXT.19

fixnums and bignums.

explicit rational numbers, such as 1\2 (1/2 in Common Lisp syntax).
integers and ratios.” '

small integers, whose %data-type is dtp-fix and which occupy no storage.
larger integers, which occupy storage.

very small integers—only O and 1 belong to this type.

any floating point number regardless of format.

short floats

full-size floats

defined by Common Lisp, but on the Lisp Machine synonymous with single-

float.

any number whose value is real.

8-JUN-84

Type Specifiers 16 Lisp Machine Manual

complex a number explicitly stored as complex. It is possible for such a number to have
7ero as an imaginary part but only if it is a floating peint zcro.

noncomplex a number which is not cxplicitly stored as complex. ‘This is a subtype of real.

Restriction Types for Numbers

(complex 1ype-spec) :

complex numbers whose components match npe-spee. Thus, (complex rational)
is the type of complex numbers with rational components. (complex t) is
equivalent o complex.

(integer low high)
integers between Jow and high. low can be:

integer integer is an inclusive lower limit
(integer) integer is an cxclusive lower limit.
* There is no lower limit.

high has the same sorts of possibilitics. If high is omitted, it defaults to *. If
both Jow and high arc omitted, you have (integer), which is cquivalent to plain
integer. Examples:

{integer 0 =) matches any nonncgative integer.
(integer 0) matches any nonnegative integer.
(integer -4 3) matches any integer between -4 and 3, inclusive.

(integer -4 (4)) matches any integer between -4 and 3, inclusive.
bit is equivalent to (integer 0 1).

(rational low high)
(float Jow high)
(short-float low high)
(single-float low high)
(double-float low high)
(long-float Jow high)
(noncomplex low high)
These specify restrictive bounds for the types rational, float and so on. The
bounds work on these types just the way they do on integer. Exclusive and
inclusive bounds make a useful difference here: _
(float (-4) (3)) matches any float between -4 and 3, exclusive.
No possible inclusive bounds could provide the same effect.

(mod high) nonncgative intcgers less than high. high should be an integer. (mod), (mod *)
and plain mod arc allowed, but are cquivalent to (integer 0).

(signed-byte size)
integers that fit into a byte of size bits, of which one bit is the sign bit.
(signed-byte 4) is cquivalent to (integer -8 7). (signed-byte *) and plain
signed-byte arc cquivalent to integer.

(unsigned-byte size) _ 4
nonnegative intcgers that fit into a byte of size bits, with no sign bit. (unsigned-
byte 3) is cquivalent to (integer 0 7). (unsigned-byte *) and plain unsigned-

PSKKL.MANDED-DTP.TEXT.19 8-JUN-84

Lisp Machine Manual 17 Type Specifiers

byte are cquivalent to (integer 0).

Simple Types for Arrays

array

simple-array

vector
bit-vector

string

all arrays.

arrays that are not displaced and have no fill pointers. (Displaced arrays are
defined in section 8.2.1, page 106 and fill pointers on page 166).

arrays of rank onc.
art-1b arrays of rank onec.

strings; art-string and art-fat-string arrays of rank one.

simple-bit-vector

bit vectors that arc simple arrays.

simple-string strings that are simple arrays.

simple-vector simple-arrays of rank one, whose clements’ types are unrestricted. ‘This is not the

same as (and vector simple-array)!

Restriction Types for Arrays

(array element-type dimensions)

arrays whose rank and dimensions fit the restrictions described by dimensions and
whose nature restricts possible clements to match element-type.

The array clements condition has nothing to do with the actual values of the
clements. Rather, it is a question of whether the array’s own type permits exactly
such clements as would match element-type. 1f anything could be stored in the
array that would not match element-type, then the array docs not match., If
anything that would match element-type could not be stored in the array, then the
array does not match.

For example, if element-type is (signed-byte 4), the array must be an art-4b
array. An art-1b array will not do, even though its clements all do match
(signed-byte 4), because somc objects such as the number 12 match (signed-
byte 4) but could not be stored in an art-1b array. Likewise an art-q array
whose elements all happen to match (signed-byte 4) will not do, sincec new
elements such as nil or 231 which fail to match could potentially be stored in the
array. :

If element-type is t, the type to which all objects belong, then the array must be
onc in which any object can be stored: art-q or art-q-list.

* as element-type mcans “no restriction”. Any type of array is then allowed,
whether it restricts its elements or not.

dimensions can be *, an integer or a list. If it is *, the rank and dimensions are
not restricted. If it is an integer, it spccifics the rank of the array. Then any
array of that rank matches.

PS:KLLMANDED-DTP.TEXT.19 | ‘ - 8-JUN-34

Type Specifiers 18 Lisp Machine Manual

If dimensions is a list, its length specifies the rank, and cach clement of
dimensions restricts one dimension. If the clement is an integer, that dimension’s
length must equal it. 1 the element is *, that dimension’s length is not restricted.

(simple-array elemeni-type dimensions)
the restrictions work as in (array element-type dimensions), but in addition the
array must be a simple array.

(vector clenient-type size)
element-1ype works as above, The array must be a vector. size must be an integer
or *;1if it is an integer, the array’s length must equal size.

(bit-vector size)

(simple-vector size)

(simple-bit-vector size)

(string size)

(simple-string size)

' These require the array to match type bit-vector, simple-vector, ctc. 'This

implicitly restricts the clement type, so there is no point in allowing an element-
Iype to be given in the type specifier. size works as in vector.

More Obscure Types

package packages, such as find-package might rcturn.
readtable structures such as can be the value of readtable.
pathname pathnames (instances of the flavor pathname).

hash-table hash-tables (instances of the flavor hash-table).
Sflavor-name instances of that flavor, or of any flavor that contains it.

defstruct-name named structures of that type, or of any structure that includes that one using
sinclude.

Common Lisp Compatibility Types

" random-state random-states. Sce random (page 157). This is actually a special case of using a
defstruct name as a type specifier, but it is mentioned specifically because
. Common Lisp defines this type.

common All objects of types defined by Common Lisp. This is all Lisp objects cxcept
closures, entitics, stack groups, locatives, instances, select-methods, and compiled
and microcode functions. (A few kinds of instances, such as pathnamcs, are
common, because Common Lisp does define how to manipulate pathnames, and
it is considered irrclevant that the Lisp Machine happens to implement pathnames
using instances.)

stream Anything that looks likc it might be a valid 1/0 stream. It is impossible to tell
for certain whether an object is a strcam, since any function with proper bechavior
may be uscd as a strcam. Therefore, use of this type specifier is discouraged. It
exists for the sake of Common Lisp.

PSKLMANSED-DTP.TEXT.19 8-JUN-84

Fisp Machine Manual ' 19 _ Type Specifiers

Combination Type Specifiers

(member objects) A
any onc of objects, as. compared with eql. 'Thus, (member t nil x) is matched
only by t, nil or x.

(satisfies predicate)
' objects on which the function predicate returns a non-nil value. ‘Thus, (satisfies
numberp) is cquivalent as a type specifier to number (though the system could

not tell that this is so). predicate must be a symbol, not a lambda-cxpression.

(and nype-specs...)
objecs that match all of the npe-spees individually. ‘Thus, (and integer (satisfies
oddp)) is the type of odd integers. .

(or nype-specs...)
objects that match at least one of the fpe-spees individually, Thus, (or number
array) includes all numbers and all arrays.

(not fype-spec) objects that do not match fype-spec.

2.3.2 User-Defined Type Specifiers

deftype npe-name lambda-list body... Macro
Defines gype-name as a type specifier by providing code to expand it into another type
specifier—a sort of type specifier macro.

When a list starting with fype-name is encountered as a type specifier, the lambda-list is
matched against the cdr of the type specifier just as the lambda-list of an ordinary
defmacro-defined macro is matched against the cdr of a form. Then the body is exccuted
and should return a new type specifier to be used instcad of the original one,

If there are optional arguments in Jambda-list for which no default value is specified, they
get * as a default value.

If type-name by itsclf is encountered as a type specifier, it is treated as if it were (fype-
name); that is to say, the lambda-list is matched against no arguments and then the body
is exccuted. So each argument in the lambda-list gets its default value, and there is an
error if they are not all optional,

Example:
(deftype vector (element-type size)
‘(array ,element-type (,size)))
could have been used to define vector,

(deftype odd-natural-number-below (n)
‘(and (integer 0 (,n)) (satisfies oddp)))

(typep 5 ’(odd-natural-number-below 6)) => t
(typep 7 ’'(odd-natural-number-below 6)) => nil

PS:KL.MANSED-DTP.TEXT.19 8-JUN-84

1ype Specifiers 20 [isp Machine Manual

2.3.3 Testing Types with Type Specifiers

type-of object :
Returns a type specifier which object matches. Any given object matches many different
type specifiers, including t. so you should not attempt to rely on knowing which type
specifier would be returned for any particular object. ‘The one actually returned is chosen
so as to be informative for a human. Programs should gencrally usc typep rather than
type-of.

Sce also data-type, page 270.

typep object ype-spec
t if object matches nype-spec. The fundamental purpose of type specifiers is to be used in
typep or other functions and constructs that usc typep. Examples:
(typep 5 ’'number) =»> t
(typep 5 '(integer 0 7)) => t
(typep 6§ ’bit) => nil
(typep 5 'array) => nil
(typep "foo" 'array) => t
(typep nil ’list) => t
(typep "(a b) ’list) => t
(typep 'lose ’list) => nil
(typep 'x '(or symbol number)) => t
(typep 5 ’'(or symbol number)) => t

If the value of type-spec is known at compile time, the compiler optimizes typep so that
it does not decode the argument at run time.

In Maclisp, typep is used with one argument. It returns a symbol describing the type of
the object it is given. This is somewhat like what type-of does. except in Maclisp the
intention was to compare the rcsult with eq to test the type of an object. The Lisp
Machinc supports this usage of typep for compatibility, but the rcturned symbol is a
keyword (such as :list, for conscs) which makes it actually incompatible. This usage is
considered obsolete and should be removed from programs.

typecase key-form clauses... Macro
Computes the valuc of key-form and then executes one (or none) of the clauses according

to the type of the value (call it key).

Each clause starts with a type spccificr, not ecvaluated, which could be the sccond
argument to typep. In fact, that is how it is used. The rest of the clause is composed of
forms. ‘The type specifiers of the clauses are matched scquentially against key. 1f there is
a match, the rest of that clause is exccuted and the values of the last form in it are
returned from the typecase form. If no clause matches, the typecase form rcturns nil.

typecase, like typep is optimized carcfully by the compiler.

PS:KLMANED-DTP.TEXT.19 _ 8-JUN-84

Lisp Machine Manual 2L ' Type Specifiers

Note that t, the type specifier that matches all objects, is useful in the last clause of a
typecase. otherwise is also permitted instead of t by special dispensation, with the same
meaning. '

Example:
(typecase foo
(symbol (get-pname foo))
(string foo) _
(1ist (apply ’string-append (mapcar 'hack f00)))
((integer 0) (hack-positive-integer foo))
(t (princ-to-string foo))) '

etypecase key-form clauses... o Macro
like typecase cxcept that an uncorrectable crror is signaled if every clause fails. t or
otherwise clauscs arc not allowed.

‘ctypecase place clauses... Macro
like etypecase cxcept that the crror is corrcctable. The first argument is called place
because it must be setfable (see page 36). If the user proceeds from the error, a new
value is read and stored into place; then the clauses arce tested again using the new value,
Errors repeat until a value is specified that makes some clause succeed.

2.3.4 Coercion with Type Specifiers

coerce object type-spec
Converts object to an “cquivalent” object that matches #ype-spec. Common Lisp specifies
exactly which types can be converted to which other types. In general, a conversion that
would lose information, such as turning a float into an integer, is not allowed as a
coercion. Hecre is a complete list of types you can cocrce to.

complex
(complex type) Real numbers can be cocrced to complex. If a rational is coerced to type
complex, the result cquals the rational, and is not complex at all. This is
because complex numbers with rational components are canonicalized to
- real if possible. However, if a rational is coerced to (complex float) or
{(complex single-float) then an actual complex number does rcsult.

It is permissible of course to coerce a complex number to a complex type.
The rcal and imaginary parts are coerced individually to fype if ppe is
specified.

short-float
single-float Rational numbers can be coerced to floating point numbers and any kind
' of floating point number can be cocrced to any other floating point

format.

float Rational numbers arc.converted to single-float’s; floats of all kinds are
left alone.

PS:KILMAN>FD-DTP.TEXT.19 | 8-JUN-84

Type Specifiers 22 Fisp Machine Manual

character Strings of length one can be coerced to characters. Symbols whose print-
nmames have length one can also be. ~An integer can be coerced to a
character: this results in a character whose character code is the specified
integer.

list Any vector can be coerced to type list. The . resulting list has the same
clements as the vector.

vector or array or any restricted array type.
Any sequence (list or vector) can be coerced to any array or vector type.
The new array has rank onc and the same clements as the original
sequence.

If you specify a type of array with restricted clement type, you may
actually get an array which can hold other kinds of things as well. For
cxample, the Lisp Machine does not provide anything of type (array
symbol), but if you specify that, you will get an array which at least can
hold symbols (but can hold other things as well). If an clement of the
original sequence does not fit in the new array, an crror is signaled.

t Any object can be coerced 1o type t, without change to the object.

If the value of rype-spec is known at compile time, the compiler optimizes coerce so that
it does not decode the argument at run time.

2.3.5 Comparing Type Specifiers

Since a type describes a sct of possible objects, it is possible to ask whether one type is
contained in another typc. Another way to say this is, is one type a subtype of another?

subtypep tpel type?
t if yypel is a subtype of type2.

The system cannot always tell whether typel is a subtype of rype2. When satisfies type
specifiers are in use, this question is mathematically undecidable. Because of this, it has
not been considered worthwhile to make the system able to answer obscure subtype
questions even when that is theorctically possible. If the answer is not known, subtypep
returns nil,

Thus, nil could mean that npel is certainly not a subtype of fype2, or it could mean that
therc is no way to tell whether it is a subtype. subtypep returns a second value to
distinguish these two situations; the second value is t if subtypep’s first value is
definitive, nil if the system does not know the answer.

Examples:

PSKLMANED-DTP.TEXT.19 8-JUN-84

Lisp Machine Manual 23 Type Specifiers

(subtypep 'cons 'list) => 1t
(subtypep 'null "list) => t t
(subtypep 'symbol 'list) => nil t

(subtypep '1ist ’number) => nil t
because not all lists are numbers (in fact, no lists are numbers).

(subtypep 'number ‘rational) => nil t
because not all numbers are rational.

(subtypep '(satisfies foo) '(satisfies bar)) => nil nil
because the system does not attempt to figure out your code.

PS:<L.MANDED-DTP.TEXT.19 8-JUN-84

	009_PrimObjTypes
	010_PrimObjTypes
	011_PrimObjTypes
	012_PrimObjTypes
	013_PrimObjTypes
	014_PrimObjTypes
	015_PrimObjTypes
	016_PrimObjTypes
	017_PrimObjTypes
	018_PrimObjTypes
	019_PrimObjTypes
	020_PrimObjTypes
	021_PrimObjTypes
	022_PrimObjTypes
	023_PrimObjTypes

