Eyvaluation 24 ' Lisp Machine Manual

3. Evaluation

 The following is a complete description of the actions taken by the evaluator, given a form o
cvaluate,

If form is a number, the result is form.
If form is a string, the result is form.

If form is a sci-evaluating symbol (nil. t or a keyword such as :foo), then form itself is the
result.

If form is any other symbol, the result is the value of form, considered as a variable. If
Jorm's value is void, an error is signaled. ‘The way symbols are bound to values is explained in
section 3.1, page 25 below.

If form is not any of the above types, and is not a list, forn itsclf is the result.

In all remaining cases, form is a list. The evaluator examines the car of the list to figure out
what to do next. There are three possibilities: this form may be a special form, a macro form,
or a plain old function form. 1f the car is an cxplicit function such as a list starting with lambda,
the form is a function form. If it is a symbol, things depend on the symbol's function definition,
which may be a spccial form definition (scc page 233), a macro definition, or an ordinary
function,

If form is a special form, then it is handled accordingly; cach special form works differently.
All of them are documented in this manual. The internal workings of special- forms are explained
in more detail on page 233, but this hardly cver affects you.

If form is a macro form, then the macro is expanded as explained in chapter 18.

If form is a function form, it calls for the application of a function to arguments. The car of
form is a function or the name of a function. The cdr of form is a list of subforms. The
subforms arc cvaluated, scquentially, and cach produces onc argument for the function. The
function is then applicd to those arguments. Whatever results the function returns are the values
of the original form.

There is a lot more to be said about evaluation. The way variables work and the ways in
which they are manipulated, including the binding of arguments, is cxplained in scction 3.1, page
25. A basic cxplanation of functions is in scction 3.3, page 38. The way functions can rcturn
more than one value is explained in section 3.7, page 55. The description of all of the kinds of
functions, and the mcans by which they are manipulated, is in chapter 11. Macros are cxplained
in chapter 18. The evalhook facility, which lets you do something arbitrary whenever the
evaluator is invoked, is explained in scction 30.12, page 748. Special forms arc described all over
the manual; cach special form is in the section on the facility it is part of.

PS:KLMAN>FD-EVA.TEXT.46 8-JUN-84

[.isp Machine Manual 25 Variables

3.1 Variables

In Zetalisp, variables arc implemented using symbols, Symbols are used for many things in
the fanguage, such as naming functions. naming special forms, and being keywords; they are.also
uscful w programs written in Lisp, as parts of data structures. But when a symbol is cevaluated,
its value as a variable is taken. '

3.1.1 Variables and Bindings

There are two different ways of changing the value of a variable. One is to ser the variable.
Setting a variable changes its value to a new Lisp object, and the previous value of the variable is
forgotten., Setting of variables is usually done with the setq special form,

The other way to change the value of a variable is with binding (also called lambda-binding).
We say that a variable is bound (past participle of active verb) by the action of binding: we also
say that the variable is bound (state of being) after a binding has been made. When a binding is
made, the variable's old binding and valuc arc hidden or shadowed by a new binding, which
holds a new value. Setting a variable places a new value into the current binding; it does not
change which binding is current. In addition, shadowed bindings’ values arc not affected by
setting the variable. Binding a variable does not affect the value in the old current binding but
that binding ccases to be current so the value no longer applics.

The action of binding is always followed eventually by the action of unbinding. This discards
the current binding of the variable, with its value. The previous binding becomes current again,
and the value in it—unchanged since the newer binding was made, in normal opcration—is visible
again.

Binding is normally done on entry to a function and by certain special forms (let, do, prog
and others). The bindings are unbound on cxit from the function or the special form, even
nonlocal exit such as go, return or throw. The function or special form is said to be the scope
of the bindings made therein.

Here is a simple example of making a binding, shadowing it, unshadowing it, cxamining it,
and unbinding it. The inner, shadowing binding is made, examined, set, examined and unbound.
(let ((a 5))

(print a) ;prints 5
(let ((a "foo"))

(print a) ;prints "foo"

(setq a "bar")

(print a)) ;prints "bar"
(print a)) ;prints §

Every symbol has one binding which was never made and is never unbound. This is the
global binding. This binding is current whenever no other binding has been cstablished ~that
would shadow it. If you type (setq x 5) in the Lisp listen loop, you sct the global binding of x.
Programs often set global bindings permancntly using defvar or one of its cousins (page 33).
setq-globally and related functions can be used to sct or refer to the global binding even when it
is shadowed (page 35).

PS:KL.MANDFD-EVATEXT.46 8-JUN-84

Variables 26 1isp Machine Manual

(defvar a 5) :sets the global binding

(let ((a t))
(print a)) ;prints t

a=>5 :the global binding is visible again

A binding does not need to have an actual value. It can be void instead. 'The variable is also
called void. Acwally. a void binding contains a weird internal value, which the system interprets
as mcaning “there is no value here™. (This is the data type code dtp-null, page 271). Reference
to a variable whose current binding is void signals an crror. In fact, ncarly all variables’ global
bindings arc void; only those that you or the system have set arc not void. variable-
makunbound makes the current binding of a variable void again (page 31).

‘Void" used to be called ‘unbound’, and most function names, crror messages and
documentation still use the term ‘unbound’. The variable is also called ‘unbound’. The term
‘void® is being adopted because it is less ambiguous. ‘Unbound’ can mean ‘void’, or ‘not bound’
(no binding cstablished), or the past participle of ‘unbind’.

All bindings cxcept global binding have a limited scope: one function or special form. This
docs not fully specify the scope, however: it may be lexical or dynamic. When a binding has
lexical scope, it is visible only from code written within the function or special form that
cstablished it. Subroutines called from within the scope, but which are written clsewhere, never
sce the lexical binding. By contrast, a dynamic binding is visible the whole time it exists (except
when it is shadowed, of course), which includes time spent in subroutines called from within the
binding construct. The global binding of a symbol can be regarded as a dynamic binding that
lasts from the beginning of the session to the end of the session.

Lexical and dynamic bindings arc made by the same kinds of function definitions and special
forms. By dcfault, the bindings are lexical. You request a dynamic binding instcad using a
special-declaration at the beginning of the body of the function dcfinition or special form. Also,
some symbols are marked globally special; cvery binding of such a symbol is dynamic. This is
what defvar, etc., do to a symbol. Dynamic bindings are also called special bindings, and the
variable bound is called a special variable. Each use of a symbol as a variable (this includes
sctting as well as cxamining) is also marked as lexical or dynamic by the same declarations. A
dynamic use sces only dynamic bindings, and a lexical use sces only lexical bindings.

In the cxamples above it makes no difference whether the bindings of a are lexical or
dynamic, because all the code executed between the binding and unbinding is also written
lexically within the let which made the binding., Here is an example where it makes a difference:

(defun foo ()
(print a))

(Tet ((a §))
(foo))

>>Error: the variable A is used free but not special.

PSKLMAN>ED-EVA.TEXT.46 ' 8-JUN-84

Lisp Machine Manual 27 Variables

If the intention is that 5§ be printed, a dynamic binding is required. A dynamic binding
would remain visible for all the execution from the entry (o the let o the exit from the let,
including the exccution of the definition of foo. Actually, the default is to do lexical binding.
Since the binding of a is lexical, it is visible only for the evaluation of expressions written inside
the let, which does not include the body of foo. In fact, an crror happens when foo evaluates a.
since a there is supposed to be lexical and no lexical binding is visible. 1f you compile foo. you
- get a compiler warning about a. ‘

The use of a inside foo, not lexically within any binding of a, is-called free, and a is called
a free variable of foo. Free variables are erroncous unless they are special. Strictly speaking, it is
crroncous to type (setqg x 5) at top level in the Lisp listener if x has not been made globally
special, but this is permiitted as an exception because it is so often uscful.

Onc way to make the example work is to make a globally special:
(defvar a)
(defun foo () (print a))

(Tet ((a 5))
(foo))

prints 5. The global specialness of a tells let to make a dynamic binding and tells the cvaluation
of a in foo to look for onc.

Another way is with declarations at the point of binding and the point of use:

(defun foo ()
(declare (special a))
{(print a))

(let ((a 5))
(declare (special a))
(foo))

A dcclaration at the point of binding affects only that binding, not other bindings made
within it to shadow it. Another way of stating this is that a binding is affected only by a
declaration in the construct that makes the binding, not by declarations in surrounding constructs.

Thus,

PS:KLLMAN>FD-EVA.TEXT.46 _ 8-JUN-84

Variables , 28 | isp Machine Manual

(let ((a 5)) :this binding is dynamic
(declare (special a)) :
(let ((a "foo")) :this binding is lexical
no declaration here
a ... :this reference is lexical since
e ; the innermost binding is lexical
(Tet () ‘
(declare (special a))
Lo.a ... :this reference is dynamic, and sces value 5
-4))

[Currently, for historical compatibility, bindings are affected by surrounding declarations.
However, whenever this makes a difference, the compiler prints a warning to inform the
programmer that the declaration should be moved.]

The <classical case where dynamic binding is useful is for paramcter variables like *read-
base*:
(Tet ((*read-base* 16.))
(read))
reads an expression using hexadecimal numbers by default. *read-base* is globally special, and
the subroutine of read that rcads integers uses *read-base* free.

Here is an cxample where lexical bindings are dcsirable;

(let ((a nil))
(mapatoms (function (lambda (symbol) (push symbol a))))

a)

Because the reference to a from within the internal function is lexical, the only binding it can
sce is the one made by this let. mapatoms cannot interfere by binding a itself. Consider: if
mapatoms makes a lexical binding of a. it is not visible here because this code is not written
inside the dcfinition of mapatoms. If mapatoms makes a dynamic binding of a, it is not visible
here because the reference to a is not declared special and therefore sees only lexical bindings.

The fact that function is used to mark the internal function is crucial. It causes the lexical
environment appropriate for the function to be combined with the code for the function in a
lexical closure, which is passed to mapatoms. :

The last example shows downward usc of lexical closures. Upward use is also possible, in
which a function is closed inside a lexical environment and then preserved after the binding
construct has been exited. '

PS:KILMANSIFD-EVA.TEXT.46 8-JUN-84

l‘ish Machine Manual A Variables

(defun mycons (a d)
(function (lambda (x)
(cond ((eq x "car) a)
((eq x 'cdr) d)))))

(defun mycar (x) (funcall x ’car))
~ (defun mycdr (x) (funcall x 'cdr))

(setqg mc (mycons 4 t))

(mycar mc)

> 4
(mycdr mc) t

>

mycons rcturns an object that can be called as a function with one argument. This object
retains a pointer to a lexical environment that has a binding for a and a binding for d. The
function mycons that made those bindings has been cxited, but this is irrclevant because the.
bindings were not dynamic. Since the code of the lambda-expression is lexically within the body -
of mycons, that function can sce the lexical bindings made by mycons no matter when it is
called. The function returned by mycons records two values and can deliver cither of them when
asked, and is therefore analogous to a cons cell.

Only lexical bindings are transferred automatically downward and upward, but dynamic
bindings can be used in the same ways if cexplicitly requested through the use of the function
closure. Sce chapter 12, page 250 for more information.

Dynamic bindings, including the global binding, are stored (unless shadowed) in a particular
place: the symbol's value cell. This is a word at a fixed offsct in the symbol itsclf. When a new
dynamic binding is made, the valuc in the value cell is saved away on a stack called the special
pdl. The new binding's value is placed in the value cell. When the new binding is unbound, the
old binding's value is copicd off of the special pdl, into the value cell again. The function
symeval examines the value cell of a symbol chosen at run time; therefore, it sees the current
dynamic ‘binding of the symbol.

Lexical bindings are ncver stored in the symbol's value cell. The compiler stores them in
fixed slots in stack frames. The interpreter stores them in alists that live in the stack. It should
be noted that if the lexical binding is made by compiled code, then all code that ought to sce the
binding is necessarily also compiled; if the binding is made by interpreted code, then all code
that ought to sce the binding is nccessarily interpreted. Therefore, it is safc for the compiler and
interpreter to use completely different techniques for recording lexical bindings.

Lexical binding is the default because the compiler can find with certainty all the places where
a lexical binding is used. and usually can usc short cuts based on this certainty. For dynamic
bindings slow but general code must always be generated.

PS:<L.MANDED-EVA.TEX'T 46 A - 8-JUN-84

Variables 30 1 isp Muachine Manual

3.1.2 Setting Variables

Here are the constructs used for setting variables.

setq {variable value}... Special form

psetq

The setq special form is used to sct the value of a variable or of many variables. ‘The
first value is evaluated. and the first variable is set to the result. Then the sccond value is
evaluated, the sccond variable is set to the result. and so on for all the variable/value
pairs. setq returns the last value, i.c. the result of the evaluation of its Tast subform.
Lxample:
(setg x (+ 3 2 1) y (cons x nil))

X is set o 6. y is set to (6). and the setq form returns (6). Note that the first variable
was sct before the second value form was evaluated, allowing that form to use the new

value of x.

{variable value}... Macro
A psetq form is just like a setq form, except that the variables are set “in parallel”; first
all of the value forms are evaluated. and then the variables are sct to the resulting values.

Example:
(setq a 1)
“(setg b 2)
(psetq a b b a)
a=> 2
b => 1
variable-Tocation symbol Special form

Returns a locative to the cell in which the value of symbol is storcd. symbol is an
uncvaluated argument, so the name of the symbol must appear explicitly in the code.

For a special variable, this is equivalent to

(value-cell-location 'symbol)
For a lexical variable, the place where the value is stored is a matter decided by the
interpreter or the compiler, but in any case variable-location nevertheless returns a

pointer to it.

In addition, if symbol is a special variable that is closed over, the value returned is an
external value cell, the same as the valuce of locate-in-closure applicd to the proper
closurc and symbol. This cell always contains the closure binding's value, which is current
only inside the closurc. Sce page 251.

vaHab'Ie—boundp symbol Special form

t if variable symbol is not void. It is equivalent to
(location-boundp (variable-location symbol))
symbol is not cvaluated.

PSKL.MANDEFD-EVAUTEXT.46 8-JUN-84

Lisp Machine Manual -3l Variables

variable-makunbound symbol Special form
Makes symbol’s current binding void. It is cquivalent to
(location-makunbound (variable-location symbol))
symbol is not cvaluated.

3.1.3 Variable Binding Constructs
Here are the constructs used for binding variables.

Tet ((var valuc)...) body... : : Special form
Is uscd to bind some variables to some objects, and cvaluate some forms (the body) in
the context of those bindings. A let form looks like
(let ((varl vforml)
(var2 vform2)
cel)
bforml
bform2
vaes)
When this form is cvaluated, first the vforms (the values) are cvaluated. Then the vars are
bound to the values returned by the corresponding vforms. Thus the bindings happen in
parallel; all the vforms are cvaluated before any of the vars arc bound. Finally, the
bforms (the body) are cvaluated sequentially, the old values of the variables are restored,
and the result of the last bform is returned.

You may omit the vform from a let clause, in which cas¢ it is as if the vform were nil:
the variable is bound to nil. Furthermore, you may replace the entire clause (the list of
the variable and form) with just the variable, which also mecans that the variable gets
bound to nil. Example:

(Tet ((a (+ 3 3))

(b 'foo)
(c)
d)
ves)
Within the body, a is bound to 6, b is bound to foo, ¢ is bound to nil, and d is bound
to nil.
Tet* ((var value)..) body.. Special form -

let* is the same as let cxcept that the binding is scquential. Each var is bound to the
value of its vform before the next vform is evaluated. This is useful when the computation
of a vform depends on the value of a variable bound in an carlier yform. Example:
(letx ((a (+ 1 2)) |
(b (+ a a)))
ved)
Within the body, a is bound to 3 and b is bound to 6.

PS:KL.MAN>FD-EVA.TEXT .46 | 8-JUN-84

Variables » I isp Machine Manual

Tet-if condition ((var value)..) body... ' Special form

let-if is a variant of let in which the binding of variables is conditional. 'The let-if
special form. typically written as
(let-if cond
((var-1 val-1) (var2 val-2)...)
body. ..) 4

first cvaluates the predicate form cond. 1f the result is non-nil, the value forms val-1,
val-2. cte. are evaluated and then the variables varl, var-2, ctc. arc bound to them. If
the result is nil, the vars and vals are ignored. Finally the body forms are cvaluated.

The bindings arc always dynamic, and it is the user’s responsibility to put in appropriate
declarations so that the body forms consider the variables dynamic.

let-globally ((var value)..) body... Macro
let-globally-1f condition ((var value)...) body... Macro

progv

let-globally is similar in form t let (sce page 31). The difference is that let-globally
does not bind the variables: instcad, it saves the old values and sers the variables, and
sets up an unwind-protect (sce page 82) to set them back. The important consequence is
that, with let-globally, when the current stack group (see chapter 13, page 256) co-calls
some other stack group, the old values of the variables arc not restored. Thus let-
globally makes the ‘new values visible in all stack groups and processes that don't bind the
variables themselves, not just in the current stack group. Therefore, let-globally can be
used for communication between stack groups and between processes.

let-globally-if modifies and restores the variables only if the value of condition is non-nil.
The body is exccuted in any case.

Since let-globally is based on setq, it makes sensc for both lexical and dynamic
variables. But its main application cxists only for dynamic variables.

The globally in let-globally does not mean the same thing as the globally in setq-
globally and related functions.

symbol-list value-list body... Special form

progv is a special form to provide the user with extra control over binding. It binds a
list of variables dynamically to a list of valucs, and then cvaluates some forms. The lists
of variables and values arc computed quantities; this is what makes progv different from

let, prog, and do.

progv first cvaluates symbol-lisi and value-list, and then binds cach symbol to the
corresponding value. If too few values are supplied, the remaining symbols’ bindings are
made empty. If too many values are supplied. the excess values arc ignored.

After the symbols have been bound to the values, the body forms are evaluated, and
finally the symbols’ bindings are undone. The result returned is the value of the last form

" in the body. Assuming that the variables a, b, foo and bar are globally special, we can

do:

PS:KL.MAN>FD-EVATEXT 46 8-JUN-84

' Lisp Machine Manual ' R Variables

(setq a "foo b ’'bar)

(progv (list a b 'b) (list b)
(1ist a b foo bar))
=> (foo nil bar nil)

~During the evaluation of the body of this progv, foo is bound to bar, bar is bound to

progw

nil, b is bound to nil, and a retains its top-level value foo.

vars-and-vals-form body... Special form
progw is like progv except that it has a different way of deciding which variables to bind
and what values o give them. Like progv, it always makes dynamic bindings.

First, vars-and-val-forms-form is cvaluated. lts value should be a list that looks like the
first subform of a let:
((varl val-form-1)

(var2 val-form-2)

cel)
Each clement of this list is processed in turn, by cvaluating the val-forn and binding the
var dynamically to the resulting value. Finally, the body forms are cvaluated scquentially,
the bindings arc undone, and the result of the last form is rewrned. Note that the
bindings are scquential, not parallel.

This is a very unusual special form because of the way the cvaluator is called on the
result of an evaluation. progw is useful mainly for implementing special forms and for
functions part of whose contract is that they call the interpreter. For an cxample of the
latter, scc sys:*break-bindings* (page 797); break implements this by using progw.

Sec also %bind (page 284), which is a subprimitive that gives you maximal control over

binding.

~ 3.1.4 Defining Global Variables

Here are the constructs for defining global variables. Each makes the variable globally special,
provides a value, records documentation, and allows the editor to find where all this was done.

defvar variable [initial-value] [documentation) Macro

defvar is the recommended way to declare the use of a global variable in a program.
Placed at top level in a file,
(defvar variable initial-value
"documentation")
declares variable globally special and records its location in the file for the sake of the
editor so that you can ask to sce where the variable is defined. The documentation string
is remembered and returned if you do (documentation 'variable 'variable).

If variable is void, it is initialized to the result of cvaluating the form initial-value. initial-
value is evaluated only if it is to be used.

PS:KL.MANDED-EVATEXT.46 » 8-JUN-84

Variables ‘ ' 34 1isp Machine Manual

If you do not wish 0 give variable any initial value, usc the symbol :unbound as the
initial-value form. ‘This is treated specially: no attempt is made to evaluate :unbound.

Using a documentation string is better than using a comment to describe the use of the
variable, because the documentation string is accessible to system programs that can show
the documentation to you while you are using the machine. While it is still permissible to
omit initial-value and the documentation string, it is recommended that you put a
documentation string in cvery defvar.

defvar should be used only at top level, never in function definitions, and only for global
variables (those used by more than one function). (defvar foo 'bar) is roughly cquivalent
to
(declare (special foo))
(if (not (boundp ’'foo0))
(setq foo ’'bar}))

If defvar is used in a patch file (sce section 28.8, page 672) or is a single form (not a
region) cevaluated with the editor’s compile/evaluate from buffer commands, if there is an
initial-value the variable is always set to it regardless of whether it is void.

defconst variable initial-value [documentation] Macro

defparameter variable initial-value [documentation) Macro
defconst is the samc as defvar except that if an initial valuc is given the variable is
always sct to it regardless of whether it is alrcady bound. The rationale for this is that
defvar declares a global variable, whose value is initialized to somcthing but will then be
changed by the functions that use it to maintain some statc. On the other hand,
defconst dceclares a constant, whose value will be changed only by changes fo the
program, ncver by the operation of the program as written. defconst always scts the
variable to the specified value so that if, while developing or debugging the program, you
change your mind about what the constant value should be, and then you cvaluate the
defconst form again, the variable gets the new value, It is nor the intent of defconst to
declare that the value of variable will never change; for cxample, defconst is not a
license to the compiler to build assumptions about the valuc of varigble into programs
being compiled.

As with defvar, you should include a documentation string in every defconst.

defconstant symbol value {documentation] Macro
Defines a true constant. The compiler is permitted to assume it will never change.
Therefore, if a function that refers to symbol’s value is compiled, the compiled function
may contain value merged into it and may not actually refer to symbol at run time.

You should not change the value of symbol except by reexccuting the defconstant with a
new value. If you do this, it is nccessary to recompile any compiled functions that refer
to symbol ’s value.

PS:KI.MANDI'D-EVATEXT.46 8-JUN-84

[isp Machine Manual 35 - Generalized Vartables

3.1.5 The Global Binding

This section deseribes functions which examine or sct the global binding of a variable cven
when it is shadowed and cannot be accessed simply by evaluating the variable or sctting it.

The primary use of these functions is for init files to set variables which are bound by the
load function. such as package or base. (setq package (find-package 'foo)) cxccuted from a
file being loaded has no effect beyond the end of loading that file, since it scts the binding of
package made by load. However, if you use setq-globally instead. the current binding in cffect
during loading is actually not changed, but when the load cxits and the global binding is in effect
Cagain, foo will become the current package.

setq-globally {symbol value}... Macro
Sets cach symbol’s global binding to the value that follows. ‘The value's are evaluated but

the symbol's are not.

sét-gl obally symbol value
Sets the global binding of symbol to value.

makunbound-globally symbol
Mukes the global binding of symbol be void.

boundp-globally symbol
Returns t if the global binding of symbol is not void.

symeval-globally symbol

symbol-value-globally symbol ,
Return the value of the global binding of symbol. An error is signaled if the global
binding is void. :

See also pkg-goto-globally (page 638), a “globally” version of pkg-goto. Notc that let-
globally is not analogous to these functions, as it modifies the current bindings of symbols rather
than their global bindings. This is an unfortunate collision of naming conventions.

3.2 Generalized Variables

In Lisp, a variable is something that can remember one picce of data. The primary
conceptual opcrations on a variable arc to recover that picce of data and to change it. These
might be called access and update. The concept of variables named by symbols, explained above,
can be generalized to any storage location that can rcmcmbcr one piece of data, no matter how

that location is named.

For cach kind of generalized variable, there are typically three functions which implement the
conceptual access, update and locate operations. For example, symeval accesses a symbol’s value
cell, set updates it, and value-cell-location returns the value cell's location. array-leader
accesses the contents of an array leader element. store-array-leader updates it, and ap-leader
returns the location of the Icader clement. car accesses the car of a cons, rplaca updates it, and
car-location returns the location of the car.

PS:KLLMAN>ID-EVATEXT.46 : 8-JUN-84

Generalized Variables 36 [isp Machine Manual

Rather than thinking of this as two functions, which operate on a storage location somchow
deduced from their arguments, we can shift our point of view and think of the access function as
a name for the storage location. Thus (symeval 'foo) is a name for the value of foo, and (aref a
105) is a name for the 105th clement of the array a. Rather than having to remember the
update function associated with cach access function, we adopt a uniform way of updating storage
locations named in this way. using the setf special form. This is analogous to the way we use
the setq special form 1o convert the name of a variable (which is also a form which accesses it)
into a form that updates it. In fact, setf is an upward compatible gencralization of setq.
Similarly, the location of the generalized variable can be obtained using the locf construct.

3.2.1 setf

setf is the construct for storing a new valuc into a generalized variable which is identified by
the form which would obtain the current value of the variable. For example,
(setf (car x) y)
stores the value of y into the car of the value of x.

setf is particularly useful in combination with structure-accessing macros, such as those created
with defstruct, because the knowledge of the representation of the structure is embedded inside
the macro, and the programmer shouldn’t have to know what it is in order to alter an clement of
the structure.

setf is actually a macro which cxpands into the appropriate update code. It has a database,
explained in section 18.10, page 345, that associates from access functions to update functions.

setf {place value}... Macro

Takes a form called place that accesses something and “inverts” the form to produce a
corresponding form to wpdate the thing. A setf expands into an updatc form, which
stores the result of cvaluating the form value into the place referenced by the place. 1f
multiple place's and value's are specified, cach one specifies an updatc, and cach update
is done before the following updatcs’ arguments are computed.
Examples:

(setf (array-leader foo 3) ’bar)

==> (store-array-leader 'bar foo 3)

(setf a 3) ==> (setq a 3)

(setf (plist 'a) '(foo bar)) ==> (setplist ’'a '(foo bar))

(setf (aref q 2) 56) ==> (sys:set-aref q 2 56)

(setf (cadr w) x) ==> (sys:setcdr (cdr w) x)

The value of a setf form is always the value stored by the last update it performs. Thus,
(setf (cadr w) x) is not really the same as (rplaca (cdr w) x). because the setf returns x
and the rplaca returns w. In fact, the cxpansion of setf of cdr uscs an internal function
si:setcdr which cxists specifically for this purpose.

If place invokes a macro or a substitutable function, then setf cxpands the place and
starts over again. This lets you usc setf together with defstruct accessor macros.

PS:KLMAN>FD-EVA.TEX'T.46 8-JUN-84

Lisp Machine Manual ‘ 37 Generalized Variables

sys:unknown-setf-reference (error) ' Condition
sys:unknown-locf-reference (error) Condition
These are signaled when setf or locf does not know how to expand the place. 'The :form
operation on the condition instance returns the access-form.

psetf {plucc value}... ’ Macro
~ Stores cach value into the corresponding place. with the changes taking effect in parallel.
Thus,

(psetf (car x) (cdr x) (cdr x) (cai‘ x))
interchanges the car and cdr of x.

The subforms of the pluces, and the values, are cvaluated in order; thus, in
(psetf (aref a (tyi)) (tyi)
(aref b (tyi)) (aref a (tyi)))
the first input character indexes a, the second is stored, the third indexes b, and the
fourth indexes a. The parallel nature of psetf implics that, should the first and fourth
characters be cqual, the old value of that clement of a is what is stored into the array b,
rather than the new value which comes from the second character read.

shiftf place... Macro
Sets the first place from the second, the second from the third, and so on. The last place
is not set, so it docsn’t really need to be a- setfable place; it can be any form. The
value of the shiftf form is the old value of the first place. Thus,
(shiftf x (car (foo)) b)
evaluates (foo), copics the car of that value into x, copics b into the car of that value,
then returns the former value of x.

rotatef place... Macro
Sets the first place from the second, the second from the third, and so on, and scis the
last place from the old value of the first place. Thus, the values of the place’s are
permuted among the place’s in a cyclic fashion.

With only two place’s, their values are exchanged:
(rotatef (car x) (cdr x))
is equivalent to the psetf example above.

swapf placel place2 Macro
Exchanges the contents of placel and place2. This is a special case of rotatef.

incf place [amouni] ' Macro
Increments the value of a gencralized variable. (incf ref) increments the value of ref by 1.

(incf ref amount) adds amount to ref and stores the sum back into ref. The incf form
returns the value after incrementation.

incf cxpands into a setf form, so ref can be anything that setf understands as its place.

incf is defined using define-modify-macro, page 349.

PS:<L.MAN>FD-EVA.TEX'1.46 8-JUN-84

Functions 18 1 isp Machine Manual

decf place [amouni) Muacro
Decrements the value of a generalized variable. Just like incf except that amount (or 1) is
subtracted rather than added.

See also push (page 88). pop (page 88). pushnew (page 107). getf (page 115) and remf
(page 115). '

3.2.2 locf

Besides the aceess and update conceptual operations on generalized variables, there is a third
basic operation, which we might call Jocate. Given the name of a storage cell. the Jocate
operation returns the address of that cell as a locative pointer (see chapter 14, page 267). 'This
locative pointer is a first-class Lisp data object which is a kind of reference to the cell. It can be
passed as an argument to a function which operates on any cell. regardless of where the cell is
found. It can be used o bind the contents of the cell, just as special variables are bound, using
the %bind subprimitive (scc page 284).

Of course, this can work only on gencralized variables whose implementation is really to store
their value in a memory cell. A genceralized variable with an updare operation that cncrypts the
value and an access operation that decrypts it could not have the locate operation, since the value
per se is not actually stored anywhere.

Toct place Macro
locf takes a form that accesses some cell, and produccs a corresponding form to create a
locative pointer to that cell.
Examples:
(1ocf (array-leader foo 3)) ==> (ap-leader foo 3)
(locf a) ==> (value-cell-location 'a)
(locf (plist 'a)) ==> (property-cell-location ’a)
(locf (aref q 2)) ==> (aloc q 2)

If place invokes a macro or a substitutable function, then locf expands the place and
starts over again. This lets you usc locf together with defstruct accessor macros.

3.3 Functions

In the description of evaluation on page 24, we said that evaluation of a function form works
by applying the function to the results of evaluating the argument subforms. What is a function,
and what does it mean to apply it? In Zetalisp there are many kinds of functions, and applying
them may do many diffcrent kinds of things. For full details, - scc chapter 11, page 223. Here we
explain the most basic kinds of functions and how they work. In particular, this scction cxplains

lambda lists and all their important features.

The simplest kind of uscr-defined function is the lambda-expression, which is a list that looks
like:
(1ambda lambda-list bodyl body2...)
The first clement of the lambda-expression is the symbol lambda; the second clement is a list
called the lambda list, and the rest of the clements are called the body. The lambda list, in its

PSKLMANDED-EVATEXT 46 8-JUN-84

Iisp Machine Manual 39 Functions

simplest form, is just a list of variables. Assuming that this simple form is being used, here is
what happens when a lTambda expression is applied to some arguments. First, the number of
arguments and the number of variables in the lambda list must be the same, or clse an crror is
signaled. Each variable is bound to the corresponding argument value. Then the forms of the
body are evaluated sequentially. After this, the bindings are all undone, and the valuc of the last
form in the body is returned. '

This may sound something like the description of let, above. The most important difference
is that the lambda-expression is not a form at all; if you try to evaluate a lambda-expression, you
get an crror because lambda is not a defined function. 'The lambda-expression is a fienction, not
a form. A let form gets evaluated, and the values to which the variables are bound come from
the evaluation of some subforms inside the let form; a lambda-cxpression gets applied, and the
values are the arguments to which it is applied.

The variables in the lambda list are somctimes called parameters, by analogy with other
languages. Some other terminologics would. refer to these as formal parameters, and to arguments
as actual parameters.

L.ambda lists can have more complex structure than simply being a list of variables. There are
additional features accessible by using certain keywords (which start with &) and/or lists as
clements of the lambda list.

The principal weakness of simple lambda lists is that any function written with one must only
take a certain, fixed number of arguments. As we know, many very useful functions, such as
list. append, +, and so on, accept a varying number of arguments. Maclisp solved this problem
by the use of lexprs and Isubrs, which were somewhat inclegant since the paramcters had to be
referred to by numbers instcad of names (c.g. (arg 3)). (For compatibility reasons, Zetalisp
supports lexprs, but they should not be used in new programs.) Simple lambda lists also require
that arguments be matched with parameters by their position in the sequence. This makes calls
hard to read when there arc a great many arguments. Keyword paramecters cnable the use of
other, more readablc styles of call.

In general, a function in Zctalisp has zero or more positional parameters, followed if desired
by a single rest parameter, followed by zero or more keyword parameters. The positional
parameters may be required or optional, but all the optional paramecters must follow all the
required ones. The required/optional distinction does not apply to the rest parameter; all
keyword parameters are optional.

The caller must provide cnough arguments so that cach of the required parameters gets
bound, but he may provide extra arguments for some of the optional parameters. Also, if there
is a rest paramcter, he can provide as many cxtra arguments as he wants, and the rest parameter
is bound to a list of all these extras. Optional parameters may have a defaulr-form, which is a
form to be cvaluated to produce the default value for the parameter if no argument is supplied.

Positional parameters are matched with arguments by the position of the arguments in the
argument list. Keyword parameters arc matched with their arguments by matching the keyword
name; the arguments nced not appear in the same order as the paramcters. If an optional
positional argument is omitted, then no further arguments can be present. Keyword parameters
allow the caller to decide independently for cach one whether to specify it.

PS:KL.MANYFD-EVA TEXT.46 , 8-JUN-84

Functions 40 Lisp Machine Manual

Here is the exact algorithm used to match up the arguments with the parameters:

Required positional parameters:;
‘The first required positional paramcter is bound to the first argument. apply continues to
bind successive required positional parameters to the successive arguments. 1, during this
process. there are no arguments left but there are still some required parameters which
have not been bound yet, it is an error (“too few arguments”).

Optional positional parameters:

After all required parameters arc handled. apply continues with the optional positional
parameters, i any. It binds cach successive parameter to the next argument. If, during
this process, there are no arguments left, cach remaining optional parameter’s default-form
is evaluated. and the parameter is bound to it. This is donc one parameter at a time;
that is. first onc defauli-form is cvaluated. and then the parameter is ‘bound to it, then
the next default-form is evaluated. and so on. This allows the default for an argument to
depend on the previous argument.

After the positional parameters:
Now, if there are no remaining parameters (rest or keyword), and there are no remaining
arguments, we arc finished. If there are no more parameters but there are still some
arguments remaining, an crror is signaled (“too many arguments”). If parameters remain,
all the remaining arguments are used for both the rest parameter, if any, and the keyword
parameters.

Rest parameter:
If there is a rest parameter, it is bound to a list of all the remaining arguments. If there

arc no remaining arguments, it is bound to nil.

Keyword parameters:
If there arc keyword parameters, the same remaining arguments are used to bind them, as

follows.

The arguments for the keyword paramecters are treated as a list of alternating keyword
symbols and associated valucs. Each symbol is matched with eq against the allowed
parameter keywords, which have by default the same names as the parameters but in the
keyword package. (You can specify the keyword symbol explicitly in the lambda list if
you must; sce below.) Often the symbol arguments are constants in the program, and it is
convenient for this usage that keywords all evaluate to themselves, but it is permissible for
them to be computed by expressions.

If any keyword parameter has not received a value when all the arguments have been
processed, the default-form for the parameter is cvaluated and the parameter is bound to
its value. All keyword paramecters are optional.

There may be a keyword symboel among the arguments which does not match any
keyword paramcter name. By default this is an crror, but the lambda list can specify that
there should be no crror using &allow-other-keys. Also, if one of the keyword symbols
among the arguments is :allow-other-keys and the value that follows it is non-nil then
there is no crror. When there is no error, for cither rcason. the non-matching symbols
and their associated values arc simply ignored. The function can access these symbols and
values through the rest parameter, if there is onc. It is common for a function to check

PSKIL.MANDED-EVATEXT.46 8-JUN-84

Lisp Mauchine Manual 41 Functions

only for certain keywords, and pass its rest parameter o another function using apply;
that function will check for the keywords that concern it.

The way you express which paramcters are required, optional, rest and keyword is by mecans
of specially recognized symbols, which are called &-keywords, in the lambda list. All such
symbols’ print names begin with the character &', A list of all such symbols is the value of the
symbol lambda-list-keywords.

The keywords used here are &key. 8optional and &rest. 'The way they arc used is best
cxplained by means of examples; the following are typical lambda lists, followed by descriptions
of which parameters are positional, rest or keyword; and required or optional.

(a b c) a, b, and c arc all required and positional. The function must be passed three
arguments.

(a b &optional ¢) .
a and b arc required. ¢ is optional. All three arc positional. The function may
be passed cither two or three arguments.

(&optional a b c)
a, b, and c arc all optional and positional. The function may be passed zero,
one, two or three arguments,

(&rest a) ais a rest parameter. The function may be passed any number of arguments.

(a b &optional ¢ d &rest e) _ ,
a and b arc required positional, ¢ and d are optional positional, and e is rest.
The function may be passed two or more arguments.

(&key a b) a and b are both keyword parameters. ‘A typical call would look like
(foo :b 69 :a ’(some elements))
or
(foo :a ’'(some elements) :b 69)
or
(foo :a '(some elements))
This illustrates that the parameters can be matched in cither order, or omitted. If
a keyword is specified twice, the first value is used.

(x &optional y &rest z &key a b)
X is required positional, y is optional positional, z is rest, and a and b are
keyword. Onc or more arguments arc allowed. One or two arguments specify
only the positional parameters. Arguments beyond the sccond specify both the
rest parameter and the keyword parameters, so that
(foo 1 2 :b ’(a list))

specifies 1 for x, 2 for y, (b (a list)) for z, and (a list) for b. It does not
specify a. :

(&rest z &key a b ¢ &aliow-other-keys)
z is rest. and a, b and ¢ arc keyword paramcters. &allow-other-keys says that
absolutcly any keyword symbols may appcar among the arguments; these symbols
and the values that follow them have no effect on the keyword paramcters, but
do become part of the value of z.

PS:KL.MAN>ED-EVATEXT.46 _ 8-JUN-84

IFunctions 42 Iisp Machine Manual

(&rest z Bkey &allow-other-keys)
This is cquivalent to (&rest z). So, for that matter, is the previous example, if
the function does not use the values of a, b and c.

In all of the cases above, the defaulr-form for cach optional parameter is nil. "To specify your
own default forms. instecad of putting a symbol as the clement of a lambda list, put in a list
whose first clement is the symbol (the parameter itself) and whose sccond clement is the default-
form. Only optional parameters may have default forms; required parameters are never defaulted,
and rest parameters always default w nil. For example:

(a &optional (b 3))
The default-form for b is 3. a is a required parameter, and so it doesn’t have a
default form,

(&optional (a 'foo) &rest d &ey b (c (symeval a)))
a’s default-form is 'foo. b's is nil, and ¢’s is (symeval a). Note that if the
function were called on no arguments, a would be bound to the symbol foo, and
¢ would be bound to the value of the symbol foo: this illustrates the fact that
cach variable is bound immediately after its default-form is cvaluated, and so later
default-forms may take advantage of carlier parameters in the lambda list. b and
d would be bound to nil.

Occasionally it is important to know whether a certain optional parameter was defaulted or
not. Just by looking at the value onc cannot distinguish between omitting it and passing the
default value explicitly as an argument. The way to tell for surc is to put a third clement into
the list: the third clement should be a variable (a symbol), and that variable is bound to nil if
the parameter was not passed by the caller (and so was defaulted), or t if the paramcter was
passed. 'The new variable is called a “supplied-p” variable; it is bound to t if the parameter is
supplied. For example:

(a &optional (b 3 ¢))
The default-form for b is 3, and the supplied-p variable for b is ¢. If the
function is called with one argument, b is bound to 3 and ¢ is bound to nil. If
the function is called with two arguments, b is bound to the valuec that was
passed by the caller (which might be 3), and ¢ is bound to t.

It is possible to specify a keyword parameter’s symbol independently of its parameter name.
To do this, use fwo nested lists to specify the parameter. The outer list is the one which can
contain the default-form and supplicd-p variable, if the paramcter is optional. The first element
of this list, instcad of a symbol, is again a list, whose clements arc the keyword symbol and the
parameter variable name. For example:

(&ey ((:a a)) ((:b b) t))
This is cquivalent to- (&key a (b t)).

(&key ((:base base-value)))
This defines an argument which callers specify with the keyword :base, but which
within the function is referred to as the variable base-value so as to avoid
binding the valuc of base, which is a synonym for *print-base* and controls
how numbers are printed.

PSKL.MANDEFD-EVA.TEXT.46 8-JUN-84

Fisp Machine Manual : 43 I'unctions

At s also possible 1o include, in the lambda list, some other symbols, which are bound to the
values of their default-forms upon entry to the function. ‘These are nor parameters. and they are
never bound to arguments: they just get bound, as if they appeared in a let* form. (Whether
you use aux-variables or bind the variables with let* is a stylistic decision.)

To include such symbols, put them after any parameters, preceeded by the &-keyword &aux.
Examples:

(a &optional b &rest ¢ &aux d (e 5) (f (cons a e)))
d. e. and f arc bound, when the function is called, to nil, 5, and a cons of the
first argument and S.

“You could, cquivalently, use (a &optional b &rest ¢) as the lamda list and write
(let* (d (e 5) (f (cons a e))) ...) around the body of the function.

It is important to realize that the list of arguments to which a rest-parameter is bound is set
up in whatever way is most cfficiently implemented, rather than in the way that is most-
convenient for the function receiving the arguments. It is not guaranteed to be a “real” list. '
Sometimes the rest-args list is a stack list (sec scction 5.9, page 112) stored in the function-calling
stack, and loscs its validity when the function returns. ' If a rest-argument is to be returned or
made part of permancent list-structure, it must first be copied (sce copylist, page 94), as you must
always assume that it is one of these special lists. The system does not detect the error of
omitting to copy a rest-argument; you will simply find that you have a value which scems to
change behind your back.

At other times the rest-args list may be an argument that was given to apply; thercfore it is
not safe to rplaca this list as you may modify permancnt data structurc. An attempt to rplacd a
rest-args list is unsafe in this case, while in the first case it would cause an error, since lists in
the stack are impossible to rplacd.

lambda-parameters-1imit Constant
Has as its valuc the limit on the number of paramecters that a Jambda list may have. The
implementation limit on the number of parameters allowed is at least this many. There is
- no promisc that this many is forbidden, but it is a promisc that any number less than this
many is permitted.

3.3.1 Lambda-List Keywords

This scction documents all the keywords that may appcar in the lambda list or argument list
(sce section 3.3, page 38) of a function, a macro, or a special form. Some of them are allowed
everywhere, while others arc only allowed in onc of these contexts; those are so indicated. You
need only know about 8optional, 8&key, and &rest in order to understand the documentation of
system functions in this manual.

PS:KLLMANDID-EVA.TEXT.46 8-JUN-84

Irunctions

lambda-1ist-

44 I isp Machine Manual

keywords Constant

The value of this variable is a list of all of the allowed ‘& keywords. A list of them

follows.
&optional
&rest
&key

Separates the required arguments of a function from the optional arguments. Sce
scction 3.3, page 38. '

Separates the required and optional arguments of a function from the rest
argument. There may be only onc rest argument. Sce page 41 for full
information about rest arguments. See section 3.3, page 38.

Separates the positional arguments and rest argument of a function from the
keyword arguments. Sce scction 3.3, page 38.

&allow-other-keys

&aux

&special

&local

"e

&eval
8list-of
&body

&whole

&environment

In a function that accepts keyword arguments, says that kevwords that are not
recognized are allowed, ‘They and the corresponding values arce ignored. as far as
keyword arguments arc concerned, but they do become part of the rest argument,
if there is one,

Scparates the arguments of a function from the auxiliary variables. Following
&aux you can put cntrics of the form

(variable initial-value-form)
or just variable if you want it initialized to nil or don’t carc what the initial value
is.

Declares the following arguments and/or auxiliary variables to be special within
the scope of this function.

Turns off a preceding &special for the variables that follow.

Declares that the following arguments arc not to be ecvaluated. This is how you
create a special function. Sce the caveats about special forms on page 233.

Turns off a preceding "e for the arguments which follow.
This is for macros defined by defmacro only. Refer to page 324.

This is for macros defined by defmacro only. It is similar to &rest, but declares
to grindef and the code-formatting module of the cditor that the body forms of a
special form -follow and should be indented accordingly. Refer to page 324.

This is for macros defined by defmacro only. It mecans that the following
argument is bound to the entire macro call form being expanded. Refer to page
324, ‘

This is for macros defined by defmacro only. It means that the following
argument is bound to an cnvironment structure which records the local macrolet
macro definitions in cffect for subforms of the macro call form. Refer to page
324,

PS:KLLMAN>ED-EVA.TEXT 46 8-JUN-84

I isp Machine Manual 45 ~ Tunctions

3.3.2 Local Functions

The constructs flet and labels permit you to define a function name in a lexical context only.
If the same name has a global function definition, it is shadowed temporarily. lFunction
definitions cstablished by flet (or labels) arc to global definitions made with defun as lexical
variable bindings made with let are to global bindings made with defvar. They always have
lexical scope. :

flet local-functions body... Special form
Executes body with local function definitions in cffect according to local-functions.

local-functions should be a list of clements which look like

(name lambda-list function-body. . .)
just like the cdr of a defun form. The meaning of this clement of Jocal-functions is to
define name locally with the indicated definition. Within the lexical scope of body, using
name as a function name accesses the local definition.

Exampie:
(flet ((triple (x) (* x 3)))
(print (triple -1)) _
(mapcar (function triple) (1 2 1.2)))
prints the number -3 and returns a list (3 6 3.6).

Fach local function is closed in the environment outside the flet. As a result, the local
functions cannot call cach other.
(flet ((foo (x) (bar x t))
(bar (y z) (list y z)))
(foo t))
calls the local definition of foo, which calls the global definition of bar, because the body
of foo is not within the scope of the local definition of bar.

Functions defined with flet inside of a compiled function can be referred to by name in a
function spec of the form (:internal outer-function-name flet-name). Sec page 226.

labels local-functions body... Special form
Is like flet cxcept that the local functions can call cach other. They are closed in the
environment inside the labels, so all the local function names arc accessible inside the
bodics of the local functions. labels is onc of the most ancient Lisp constructs, but was
typically not implemented in sccond generation Lisp systems in which no efficient form of

closure existed.

(1abels ((walk (x)
(typecase x
(cons (walk (car x)) (walk (cdr x)))
(t (if (eq x 'haha) (print 'found-it))))))
(walk foo)) :
allows walk to call itself recursively because walk’s body is inside the scope of the

definition of walk.

PS:KI.LMANDED-EVA.TEXT .46 | 8-JUN-84

Some Functions and Special Forms 46 1 isp Machine Manual

See also macrolet. an analogous construct for defining macros locally (page 329).

3.4 Some Functions and Special Forms

This section describes some functions and special forms. Some arc parts of the cvaluator, or
closely related to it. Some have to do specifically with issues discussed above such as keyword
arguments, Some are just fundamental Lisp forms that are very important.

eval formn &optional nohook

(eval form) cvaluates form, and rcturns the result.
Example:

(defvar x 43)

{defvar foo ’'bar)

(eval (list ’'cons x ’'foo))

=> (43 . bar)

The dynamic bindings available at the time eval is called are visible for dynamic variables
within the expression x. No lexical bindings arc available for the cvaluation of x.

It is unusual to call eval explicitly, since usually cvaluation is donc implicitly. If you are
writing a simple Lisp program and cxplicitly calling eval, vou arc probably doing
something wrong. eval is primarily uscful in programs which dcal with Lisp itself, rather
than programs about knowledge, mathematics or games.

Also, if you arc only interested in getting at the dynamic value of a symbol (that is, the
contents of the symbol's value cell), then you should use the primitive function symeval
(sce page 129).

If the argument nohook is non-nil, exccution of the cvalhook is inhibited for form, but
not for cvaluation of the subforms of form. Sce evalhook, page 749. evalhook is also
the way to cvaluate in a specified lexical environment if you happen to have got your
hands on one.

Note: in Maclisp, the sccond argument to eval is a “binding context pointer”. There is
no such thing in Zetalisp; closures are used instcad (see chapter 12, page 250).

si1:evall form &optional nohook
Within the definition of a special form, evaluates form in the current lexical environment.

funcall f &rcst args

(funcall f al a2 ... an) applics the function fto the arguments al/, a2, .., an. f may
not be a special form nor a macro; this would not be meaningful.
Example:

(cons 1 2) => (1 . 2)

(setq cons ’'plus)

(funcall cons 1 2) => 3 _
This shows that thc usc of the symbol cons as the name of a function and the use of
that symbol as thc name of a variable do not intcract. The cons form invokes the
function named cons. 'The funcall form cvaluates the variable and gets the symbol plus,

PS:IKLLMAN>ED-EVATEXT .46 o 8-JUN-84

{isp Machine Manual 47 ' Some Functions and Special IForms

which is the name of a different function.

Note: the Maclisp functions subrcall, tsubrcall, and arraycall are not nceded on the Lisp
Machine; funcall is just as cfficient. arraycall is provided for compatibility; it ignores its first
subform (the Maclisp array type) and is otherwise identical o aref. subrcall and Isubrcall are
not provided. ' ' " .

apply [&rest args

lexpr-funcall f &rest args
apply is like funcall cxcept that the last of args is really a list of arguments to give to f
rather than a single argument. lexpr-funcall is a synonym for apply; formerly. apply
was limited to the two argument casc.

(apply [arglist) applies the function fto the list of arguments arglist. arglist should be a
list; fcan be any function.
Examples:

(setq fred '+) (apply fred (1 2)) => 3

(setq fred '-) (apply fred '(1 2)) => -1

(apply ’cons ’((+ 2 3) 4)) =>

((+ 23) .4) not (6 . 4)

Of course, arglist may be nil,

If there is more than one clement of args, then all but the last of them are individual
arguments to pass to £, while the last one is a list of arguments as above.
Examples:

(apply 'plus 1 11 (1 1.1)) =>86

(defun report-error (&rest args)
(apply °'format *error-output» args))

apply can also be used with a single argument. Then this argument is a list of a function
and some arguments to pass it.
Example:
(apply '(car (a))) => a
;Not the same as (eval '(car (a)))

Note: in Maclisp, . apply takes two or three arguments, and the third argument, when
passed, is interpreted as a “binding context pointer”. So the sccond argument always
provides all the args to pass to the function. There arc no binding context pointers in
Zetalisp; truc lexical scoping exists and is interfaced in other ways.

call-arguments-Timit Constant
Has as its value the limit on the number of arguments that can be dealt with in a
function call. There is no promise that this many is forbidden, but it is a promise that
any smaller number is acceptable.

Note that if apply is used with exactly two arguments, the first one being a function that
takes a rest argument, there is no limit cxcept the size of memory on the number of
clements in the sccond argument to apply. '

PS:KLLMANDFD-EVATEXT .46 _ 8-JUN-84

Some Functions and Special Forms 48 Lisp Machine Manual

call fiunction &rest argument-specifications
Offers a very general way of controlling what arguments you pass to a function. You can
provide cither individual arguments as in funcall or lists of arguments as in apply. in any
order. In addition, you can make some of the arguments oprional. 1f the function is not
prepared to aceept-all the arguments you specify, no crror occurs if the excess arguments
arc optional ones. Instead, the excess arguments are simply not passed to the function.

The argument-specs are alternating keywords (or lists of keywords) and values. Fach
keyword or list of keywords says what to do with the value that follows. If a valuc
happens to require no keywords, provide () as a list of keywords for it

Two keywords are presently defined: optional and :spread. :spread says that the
following value is a list of arguments. Otherwise it is a single argument. :optional says
that all the following arguments arc optional. 1t is not necessary to specify :optional with
all the following argiment-specs, because it is sticky.

Example:

(call #'foo () x :spread y '(:optional :spread) z () w)
The arguments passed to foo are the value of x, the clements of the value of y, the
clements of the value of z, and the value of w. The function foo must be prepared to
accept all the arguments which come from x and y, but if it does not want the rest, they
are ignored.

quota object Special form
(quote object) simply rcturns object. quote is used to include constants in a form. It is
uscful specifically because object is not cvaluated; the quote is how you make a form that
returns an arbitrary Lisp object.
Examples:
(quote x) => x
(setq x (quote (some list))) x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader normally converts
any form preceded by a single quote (') character into a quote form.
For example,
(setqg x '(some list))
is converted by read into
(setqg x (quote (some 1list)))

function f - Special form
function has two distinct, though related, meanings.

If fis a symbol or any other function spec (see scction 11.2, page 223), (function f)
refers to the function definition of f. For example, in (mapcar (function car) x), the
function dcfinition of car is passed as the first argument to mapcar. function used this
way is like fdefinition cxcept that its argument is uncvaluated, and so

(function fred) islike (fdefinition 'fred)

PSKIL.MANDED-EVA.TEXT .46 _ : 8-JUN-84

I isp Machine Manual 49 Some Functions and Special FForms

Secan also be an explicit function, or lambda-expression. a list such as (lambda (x) (* x
x)) such as could be the function definition of a symbol. Then (function f) represents
that function, suitably interfaced to exccute in the lexical environment where it appears,
Ta explain:

(let (a)
(mapcar (1ambda (x) (push x a)) 1))

attempts to call the function lambda and cvaluate (x) for its first argument. That is no
way to refer to the function expressed by (lambda (x) (push x a)).

(let (a)
(mapcar (quote (lambda (x) (push x a})) 1))

passes to mapcar (he list (lambda (x) (push x a)). ‘This list does not in any way record
the lexical environment where the quote form appeared, so it is impossible to make this
environment, with its binding of a, available for the exccution of (push x a). 'Thercfore,
the reference to a does not work properly.

(let (a)
(mapcar (function (lambda (x) (push x a))) 1))

passes mapcar a specially designed closure made from the function represented by
(lambda (x) (push x a)). When mapcar calls this closure, the lexical environment of the
function form is put again into effect, and the a in (push x a) refers properly to the
binding made by this let.

In addition, the compiler knows that the argument to function should be compiled. The
argument of quote cannot be compiled since it may be intended for other uses.

To case typing, the reader converts # 'thing into (function thing). So #’ is similar to
except that it produces a function form instead of a quote form. The last example could
be written as
(let (a)
(mapcar #’(lambda (x) (push x a)) 1))

Another way of explaining function is that it causes f to be trcated the same way as it

would as the car of a form. FEvaluating the form (f arg/ arg2..) uses the function

definition of fif it is a symbol, and otherwise expects f to be a list which is a lambda-

expression. Note that the car of a form may not be a non-symbol function spec, as that

would be difficult to make sense of. Instead, write '
(funcall (function spec) args...)

You should be careful about whether you use #' or '. Supposc you have a program
with a variable x whose value is assumed to contain a function that gets called on some
arguments. If you want that variable to be the test function, therc arc two things you
could say:

PS:KLLMANDFD-EVA.TEXT .46 : 8-JUN-84

Some Functions and Special Torms 50 Lisp Machine Manual

(setq x 'test)
or

(setg x #'test)
The former causes the value of x to be the symbol test. whercas the latter causes the
value of x to be the function object found in the function cell of test. When the time
comes to call the function (the program does (funcall x ...)), cither expression works
because calling a symbol as a function uses its function definition instecad. Using ‘test is
insignificantly slower. because the function call has to indireet through the symbol, but it
allows the function to be redefined, traced (sce page 738). or advised (see page 742). Use
of # picks up the function definition out of the symbol test when the setq is done and
does not sce any later changes to it. # ' should be used only if you wish specifically to
prevent redefinition of the function from affecting this closure.

false
Takes no arguments and returns nil.

true
Takes no arguments and returns t.

ignore &rcst ignore
Takes any number of arguments and returns nil.. This is often useful as a “dummy”
function; if you arc calling a function that takes a function as an argument, and you
want to pass onc that doesn’t do anything and won't mind being called with any argument
pattern, usc this.

commant Special form

comment ignores its form and returns the symbol comment. It is most useful for
commenting out function definitions that are not needed or correct but worth preserving
in the source. 'The #|.|# syntactic construct is an alternative mcthod. For comments
within code about the code, it is better to use semicolons.
Example:

(comment

;3 This is brain-damaged. Can someone figure out

;; how to do this right?

(defun foo (x)

cel)
} ;End comment
;» prevents this definition of foo from being used.

PSKLMANDED-EVATEXT.46 8-JUN-84

Lisp Machine Manual 51 Declarations

3.5 Declarations

Declarations provide auxiliary information on how to ecxccute a function or expression
properly. ‘The most important declarations are special declarations, which control the scope of
variable names. Some declarations do not affect exccution at all and only provide information
about a function, for the sake of arglist,” for example.

Declarations may apply to an entirc function or to any expression within it. Declarations can
be made around any subexpression by writing a local-declare around the subexpression or by
writing a dectare at the front of the body of certain constructs. Declarations can be made on an
entire function by writing a declare at the front of the function’s body.

local-declare (declaration..) body... : Special form
A local-declare form looks like

(1ocal-declare (decll decl2 ...)

Jorml
form2
L)
Each decl is in cffect for the forms in the body of the local-declare form.
declare declaration... Special form
The special form declare is used for writing local declarations within the construct they
apply to.

A declare inside a function definition, just after the argument list, is equivalent to putting
a local-declare around the function definition. More specifically,

(defun foo (a b)
(declare (special a b))
(bar))

is equivalent to

(1ocal-declare ((special a b))
(defun foo (a b)

(bar)))
Notebthat

(defun foo (a b)
(local-declare ((special a b))

(bar)))

does not do the job, because the declaration is not in effect for the binding of the
arguments of foo. '

PS:<KL.MAN>ID-EVA.TEXT.46 8-JUN-84

Declarations 52 Lisp Machine Manual

declare is preferable to locat-declare in this sort of situation, because it allows the
defuns themselves o he the top-level lists in the file. While local-declare might appear
to have an advantage in that onc local-declare may go around several defuns, it tends
to causc trouble to usce local-declare in that fashion.

declare has a similar mcaning at the front of the body of a progn, prog. let, prog*,
let*, or internal lambda. tor example,

(prog (x)

(declare (special x))
))

is cquivalent to

(local-declare ((special x))

(prog (x)
-))

At top level in the file. (declare forms...) is cquivalent to (eval-when (compile)
Sorms...). 'This usc of declare is ncarly obsolete, and should be avoided. In Common
Lisp, proclaim (below) is used for such purposes, with a different calling convention.

Elsewhere, declare’s are ignored.

Here is a list of declarations that have system-dcfined meanings:

(special varl var2 ...)
The variables varl, var2, ctc. will be treated as special variables in the scope of

the declaration.

(unspecial varl var2...) -
'The variables varl, var2, etc. will be treated as lexical variables in the scope of

the declaration, cven if they are globally special.

(notinline funl fun2...)
The functions funl, fun2 and so on will not be open coded or optimized by the
compiler within the scope of the declaration.

(inline finl fun2...)
The functions fun/, fun2 and so on will be open coded or optimized by the
compiler (to whatever extent it knows how) within the scope of the declaration.
Merely issuing this declaration docs not tell the compiler how to do any uscful
optimization or open coding of a function.

(ignore varl var2...)
Says that the variables var/, var2, ctc., which are bound in the construct in
which this declaration is found, arc going to be ignored. This is currently
significant only in a function being compiled; the compiler issues a warning if the
variables arc uscd, and refrains from its usual warning if the variables are ignored.

(declaration dec!l decl2...)
Says that declarations decll, deci2, ctc. arc going to be used, and prevents any
warning about an unrccognized type of declaration. For example:

PS:KKL.MAN>FD-EVATEXT.46 8-JUN-84

Lisp Machine Manual 53 Declarations

(defun hack ()
(declare (declaration lose-method)
(Tose-method foo bar))
. {lose foo) ..)

“might be useful if (lose foo) is a macro whose expander function does (getdecl
'foo 'lose-method) to sce what to do. Sce page 307 for more information on
getdecl and declarations.

(proclaim '(declaration lose-method))
might also be advisable if you expect widespread use of lose-method declarations.

The next two are used by the compiler and generally should not be written by users,

(def name . definition) : :
name will be defined for the wmpllcr in the scope of the declaration. ‘The
compiler uses this automatically to keep track of macros and open-codable
functions (defsubsts) defined in the file being compiled. Note that the cddr of
this item is a function.

(propname symbol value)
(getdecl symbol propname) will return value in the scope of the declaration. 'This

is how the compiler keeps track of defdecls.

These declarations are significant only when they apply to an entire defun.

(arglist . arglisf)
Records arglist as the argument list of the function, to be used instcad of its
lambda list if anyonc asks what its arguments are. This is purely documentation.

(values . values) or (:return-list . values)
Records values as the return values list of the function, to be used if anyone asks

what values it returns. This is purely documentation.

(sys:function-parent parent-function-spec)
Records parent-function-spec as the parent of this function. If, in the editor, you
ask to sec the source of this function, and the cditor doesn’t know where it is,
the editor will show you the source code for the parent function instead.

For cxample, the accessor functions gencrated by defstruct have no defuns of
their own in the text of the source file. So defstruct generates them with
sys:function-parent declarations giving the defstruct's name as the parent
function spec. Visiting the accessor function with Meta-. sees the declaration and
therefore visits the text of the defstruct.

(self-flavor flavorname)
Instance variables of the flavor ﬂavorname, in self, will be accessible in the

function.

PS:KILMANDFD-EVA.TEXT.46 8-JUN-84

Decliarations ' 54 Lisp Machine Manual

locally. &body body Macro
Lxecutes the bodv, recognizing declarations at the front of it, locally is synonymous with
progn cxcept that in Common Lisp a declare is allowed at the beginning of a locally
and not at the beginning of a progn.

locally does differ from progn in one context: at top level in a file being compiled,
progn causcs cach of its clements (including declarations, therefore) to be treated as if at
top level. locally does not receive this treatment. ‘The locally form is simply evaluated
when the QIFASI. file is loaded.

proclaim &rcst declarations
Fach of declurations is put into cffect globally. Currently only special and unspecial
declarations mean anything in this way. prociaim's arguments are cvaluated. and the
values arc expected to be declarations such as. you could write in a declare. 'Thus, you
would say (proclaim ’{special x)) to make a special declaration globally.

Top-level special declarations are not the recommended way to make a variable special.
Usc defvar, delfconstant or defparameter, so that you can give the variable
documentation. Proclaiming the variable special should be done only when the variable is
used in a file other than the one which defines it. to cnable the file to be compiled
without having to load the defining file first.

proclaim is fairly new. Until recently, top-level declare was the preferred way to make
global special declarations when defvar, etc., could not be used. Such top-level declare’s
arc still quitc common. In them, the declaration would not be quoted; for example,
(declare (special x)).

special variables... Special form
Equivalent to (proclaim (special variables...)), this declares cach of the variables to be
globally special. This function is absolcte.

unspecial variables... Special form
Removes any global special declarations of the variables. This function is obsolete.

the type-specifier value-form Macro
Is a Common Lisp construct effectively the same as value-form. Tt declarcs that the value
of value-form is an object which of type type-specifier. This is to assist compilers in
generating better code for conventional machine architectures. The Lisp Machine does not-
make use of type declarations so this is the same as writing just value-form. itype-specifier
is not cvaluated.

If you want the type of an object to be checked at run time, with an error if it is not
what it is supposed to be, usc check-type (page 709).

PS:KKILMAN>ID-EVATEXT.46 : - 8-JUN-34

[isp Machine Manual 55 Tail Recursion

3.6 Tail Recursion

When one function ends by calling another function (possibly itself), as in
{(defun last (x)
(cond ((atom x) x)
((atom (cdr x)) x)
(t (last (cdr x)))))

it is called til recursion. Tn general, if X is a form. and Y is a sub-form of X, then if the
value of Y is unconditionally returned as the value of X, with no intervening computation. then
we say that X tail-recursively evaluates Y.

In a tail recursive situation, it is not strictly necessary to remember anything about the first
call to last when the second one is activated. The stack frame for the first call can be discarded
completely, allowing last to use a bounded amount of stack space independent of the length of
its argument. ‘A system which docs this is called fail recursive.

The Lisp machine system works tail recursively if the variable tail-recursion-flag is non-nil.
This is often faster, because it reduces the amount of time spent in refilling the hardwarc’s pdl
buffer. However, you forfeit a certain amount of useful debugging information: once the outer
call to last has been removed from the stack, you can no longer sce its frame in the debugger.

tail-recursion-flag Variable
If this variable is non-nil, the calling stack frame is discarded when a tail-recursive call is

made in compiled code.

There are many things which a function can do that can make it dangerous to discard its
stack frame. For cxample, it may have done a *catch; it may have bound special variables; it
may have a &rest argument on the stack; it may have asked for the location of an argument or
local variable. The system detects all of these conditions automatically .and retains the stack frame
to ensure proper cxccution. Some of these conditions occur in eval; as a result, interpreted code
is never completely tail recursive.

3.7 Multiple Values

The Lisp Machine includes a facility by which the evaluation of a form can produce more
~ than one value. When a function needs to return more than one result to its caller, multiple
values arc a cleancr way of doing this than returning a list of the values or setq’ing special
variables to the extra values. In most Lisp function calls, multiple values are not uscd. Special
syntax is required both to produce multiple valucs and to receive them.

The primitive for producing multiple values is values, which takes any number of arguments
and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function returns three values. Many system functions produce
multiple values, but they all do it via values.

PS:<L.MANDFD-EVAITEXT.46 : R 8-JUN-84

Multiple Values 56 Lisp Machine Manual

valuas &rest args ‘
Returns multiple values, its arguments. This is the primitive function for producing
multiple values. It is legal to call values with no arguments: it returns no values in that

casc.

valuss-11ist list
Returns multiple values, the clements of the Jist. (values-list '(a b ¢)) is the same as
(values 'a 'b 'c). [iss may be nil. the empty list, which causes no values to be returned.
Fquivalent to (apply 'values lisr).

return and its variants can also be used. within a block, do or prog spccial form, to return
multiple values. ‘They are explained on page 77.

Here are the special forms for receiving multiple valucs.

multiple-valus (variable..) form Special form
multiple-value-setq (variable..) form Special form

multiple-value is a special form used for calling a function which is cxpected to return
more than onc value. form is cvaluated, and the variables arc set (not lambda-bound) to
the values returned by form. If more values arc returned than there are variables, the
cxtra values are ignored. If there are more variables than values returned, extra valucs of
nil are supplied. TIf nil appears in the varlist, then the corresponding value is ignored
(setting nil is not allowed anyway).
Example:

(multiple-value (symbol already-there-p)

(intern "goo"))

In addition to its first value (the symbol), intern returns a sccond value, which is non-nil
if an cxisting symbol was found, or clse nil if intern had to crcatc onc. So if the symbol
goo was alrcady known, the variable already-there-p is sct non-nil, otherwise it is sct to
nil. The third value returncd by intern is ignorcd by this form of call since there is no
third variable in the multiple-value.

multiple-value is usually used for cffect rather than for value; however, its value is
defined to be the first of the values returned by form.

multiple-value-setq is thc Common Lisp namec for this construct. The two namcs are
cquivalent.

multiple-value-bind (variable..) form body... Special form
This is similar to multiple-value, but locally binds the variables which receive the values,
rather than sctting them, and has a body—a sct of forms which are cvaluated with these
local bindings in cffect. First form is cvaluated. Then the variables arc bound to the
values returned by form. ‘Then the budy forms are cvaluated sequentially, the bindings
arc undone, and the result of the last body form is returned.

PSKL.MANDED-EVATEX'T.46 8-JUN-84

Lisp Machine Manual 57 ' Multiple Values

Example:
(multiple-value-bind (sym already-there)
(intern string)
;: If an existing symbol was found, deallocate the string.
(if already-there
(return-storage (progl string (setq string nil))))
sym) .

multiple-value-call function argforms... : Special form
Evaluates the argforms, saving all of their values, and then calls function with all those
values as arguments. This differs from
(funcall function argforms. . .)
because that would get only onc argument for fuumm ﬁom cach argform. whercas
“multiple-value-call gets as many args from cach argform as the argform carcs to return.
This works by consing a llst of all the values returned, and applying function to it
Example:
(multiple-value-call ’append
(values '(a b) '(c d))
(e f))
=> (abcdef)

multiple-value-progl form forms... Special form
Evaluates form, saves its valucs, evaluates the forms, discards their values, then returns
whatever values form produced. This does not cons. Example:
(multiple-value-progl (values 1 2)
(print 'foo0))
= 12

multiple-value-list form Special form

multiple-value-list evaluatcs form, and returns a list of the valucs it rctumed This is
uscful for when you don't know how many values to expect.
Example:

(setq a (multiple-value-list (intern "goo")))

a => (goo nil #<Package USER 10112147>)
This is similar to the cxample of multiple-value above; a is set to a list of three
clements, the three values returned by intern. ‘

nth-value n form Special form
Fvaluates form and returns its value number n, n = 0 mecaning the first value. For
example, (nth-value 1 (foo)) rcturns the second of foo’s values. nth-value operates
without consing in compiled code if the first argument's value is known at compile time.

When one form finished by tail recursively evaluating a subform (sce section 3.6, page 55), all
of the subform’s multiple valucs are passed back by the outer form. For example, the value of a
cond is the valuc of the last form in the sclected clause. If the last form in that clause produces
multiple values, so does the cond. This passing-back of multiple values of course has no cffect
unless eventually one of the special forms for recciving multiple values is reached.

PSKIL.MAN>IED- EVATEXT 46 8-JUN-84

Multiple Values 58 Fisp Machine Manual

If the outer form returns a \alue computed by a subform, but not in a til recursive fashion
(for example. if the value of the subform is examined first), multiple values or only single values
may be returned at the discretion of the implementation: users should not depend on whatever
way it happens to work, as it may change in the future or in other implementations. ‘The rcason
we don’t guarantee non-transmission of multiple values is because such a guarantee would not be
very useful and the efficiency cost of enforcing it would be high. Even setq'ing a variable to the
result of a form, then returning the value of that variable, might pass multiple values if an
optimizing compiler realized that the setq'ing of the variable was unnccessary. Since extra
returned values are generally ignored, it is not vital to climinate them.

Note that use of a form as an argument 1o a function never receives multiple values from that
form. ‘That is, if the form (foo (bar)) is cvaluated and the call o bar returns many values, foo
is still called on only one argument (namely, the first value returned), rather than being called on
all the values returned. We choose not 1o generate several separate arguments from the several
values, because this would make the source code obscure; it would not be syntactically obvious
that a single form does not correspond to a single argument. ‘To pass all returned values to
another function, usc multiple-value-call, above.

For clarity, descriptions of the interaction of scveral common special forms with multiple
values follow. This can all be deduced from the rule given above. Note well that when it says
that multiple values are not returned, it really means that they may or may not be returned, and
you should not write any programs that depend on which way it actually works. i

The body of a defun or a lambda, and variations such as thc body of a function, | the body
of a let, ctc., pass back multiple valucs from the last form in the body.

eval, apply and funcall, pass back multiple values from the function called.

progn passes back multiple values from its last form. progv and progw do so also. prog1
and prog2, however, do not pass back multiple values.

Multiple valucs are passed back only from the last subform of an and or an or form, not
from previous subforms since the return is conditional. Remember that multiple values are only
passed back when the value of a subform is unconditionally returned from the containing form.
For example, consider the form (or (foo) (bar)). If foo returns a non-nil first value, then only
that valuc is returned as the value of the form. But if it returns nil (as its first value), then or
returns whatever valucs the call to bar returns.

cond passes back multiple values from the last form in the selected clause, provided that that
last form’s valuc is returncd unconditionally. This is truc if the clause has two or morc forms in
it, and is always true for the last clause.

The variants of cond such as if, select, selectq, and dispatch pass back mulup]c values
from the last form in the sclected clause.

If a block form falls through the end, it returns all the values returncd by the last expression
in it. If return-from or return is used to cxit a block form, then the values returncd by the
block form depend on the kind of return. If return is given two or more subforms, then block
returns as many valucs as the return has subforms. However, if the return has only one

PSKLL.MAN>EFD-EVATEX'T .46 8-JUN-84

1 isp Machine Manual - 59 Evaluation and Function Calling Errors

subform, then the block returns all of the values returned by that one subform.

prog behaves like block if it is exited with return (or return-from). 1If control falls through
the end of a prog, it returns the single value nil. do also behaves like block with respect to
return, but if it is exited through the exit test, all the values of the last exir-form are returned.

unwind-protect passcs back multiple values from its protected form. In a sense, this is an
exception to the rule: but it is uscful. and it makes sense to consider the exceution of the
unwind forms as a byproduct of unwinding the stack and not as part of sequential execution.

catch passes back multiple values from the last form in its body, if it exits normally. If a
throw is done, multiple values arc passed back from the value form in the throw.

multiple-values-1imit Constant
The smallest number of values that might possibly fail to work. Recturning a number of
values less than this many cannot possibly run into trouble with an implementation limit
on number of values returned.

3.8 Evaluation and Function Calling Errors

Here is a description of the error conditions that the cvaluator can signal. Some can be
signaled by calls to compiled functions, also. This is for use by those who are writing condition
handlers (section 30.2, page 700). The novice should skip this section.

sys:invalid-function (error) Condition
This is signaled when an object that is supposed to be applied to arguments is not a valid
Lisp function. The condition instance supports the operation :function, which returns the
supposed function to be called.

The :new-function proceed type is provided; it expects one argument, a function to call
instead.,

sys:invalid-1ambda-1ist (sys:invalid-function error) Condition
This condition name is present in addition to sys:invalid-function when the function to
be called looks like an interpreted function, and the only problem is the syntax of its
lambda list.

sys:too-few-arguments (error) Condition
This condition is signaled when a function is applied to too few arguments. The condition
instance supports the operations :function and :arguments which return the function and
the list of the arguments provided.

The proceed types :additional-arguments and :new-argument-list are provided. Both
take onc argument. In the first case, the argument is a list of arguments to pass in
addition to the ones supplicd. In the second, it is a list of arguments to replace the ones
actually supplied.

PS:<L.MAN>EFD-EVATEXT.46 : 8-JUN-84

Eyvaluation and Tunction Calling Errors o0 Lisp Machine Manual

sys:too-many-arguments (error) Condition
‘This is similar to sys:too-few-arguments. Instcad of the :additional-arguments proceed
type. :fewer-arguments is provided. Its argument is a number, which is how many of
the originally supplied arguments to use in calling the function again.

sys:undefined-keyword-argument (error) Condition
This is signaled when a function that takes keyword arguments is given a keyword that it
does not accept. if &allow-other-keys was not used in the function’s definition and
:allow-other-keys was not specificd by the caller (see page 40). 'The :keyword operation
on the condition instance returns the coxtrancous keyword, and the value operation
returns the value supplied with it

The procced type new-keyword is provided. "It expects onc argument, which is a
keyword to usc instead of the one supplicd.

sys:cell-contents-error (error) Condition Flavor
This condition name categorizes all the crrors signaled because of references to void
memory locations. 1t includes “unbound™ variables, “undefined”™ functions, and other
things.

:address A locative pointer 1o the referenced cell.

:current-address
A locative pointer to the cell which currently contains the contents that
were found in the referenced cell when the error happened. This can be
different from the original address in the case of dynamic variable
bindings, which move between special PDILs and symbol value cells.

:cell-type A keyword saying what type of cell was referred to: :function, :value,
:closure, or nil for a cell that is not one of those.

:containing-structure
The object (list, array, symbol) inside which the referenced memory cell is
found.

:data-type
:pointer The data typc and pointer fields of the contents of the memory cell, at
the time of the crror. Both are fixnums.

The proceed type :no-action takes no argument. If the cell's contents are now valid, the
program procceds, using them. Otherwisc the error happens again.

The proceed type :package-dwim looks for symbols with the same name in other
packages; but only if the containing structure is a symbol.

Two other proceed types take onc argument: :new-value and :store-new-value. The
argument is used as the contents of the memory cell. :store-new-value also permanently
stores the argument into the cell.

PSKLMANDEFD-EVATEXT.46 8-JUN-84

I isp Machine Manual 6l Evaluation and FFunction Calling Frrors

sys:unbound-variable (sys:cell-contents-error error) Condition
This condition name categorizes all errors of variables whose values are void.

sys:unbound-special-variable Condition
sys:unbound-closure-variable Condition
sys:unbound-instance-variable - Condition

These condition names appear in addition to sys:unbound-variable (o subcategorize the
“kind of variable reference: that the error happened in.

sys:undefined-function (sys:cell-contents-error error) Condition
This condition name categorizes errors of function spees that are undefined.

sys:wrong-type-argument (error) Condition
This is signaled when a function checks thc type of its argument and rejects it; for

example, if you do (car 1).
The condition instance supports these extra operations:

:arg-name The name of the crroncous argument. This may be nil if there is no
name, or if the system no longer remembers which argument it was.

:old-value The value that was supplied for the argument.
function The function which received and rejected the argument.
:description A type specifier which says what sort of object was expected for this

argument.

The proceed type :argument-value is provided; it cxpects onc argument, which is a
value to usc instead of the erroneous value.

PS:KL.MAN>ED-EVA.TEXT.46 8-JUN-84

	024_Evaluation
	025_Evaluation
	026_Evaluation
	027_Evaluation
	028_Evaluation
	029_Evaluation
	030_Evaluation
	031_Evaluation
	032_Evaluation
	033_Evaluation
	034_Evaluation
	035_Evaluation
	036_Evaluation
	037_Evaluation
	038_Evaluation
	039_Evaluation
	040_Evaluation
	041_Evaluation
	042_Evaluation
	043_Evaluation
	044_Evaluation
	045_Evaluation
	046_Evaluation
	047_Evaluation
	048_Evaluation
	049_Evaluation
	050_Evaluation
	051_Evaluation
	052_Evaluation
	053_Evaluation
	054_Evaluation
	055_Evaluation
	056_Evaluation
	057_Evaluation
	058_Evaluation
	059_Evaluation
	060_Evaluation
	061_Evaluation

