IFlow of Control 62 L isp Machine Manual

4. I'low of Control

Lisp provides a varicty of structures for flow of control,

Function application is the basic method for construction of programs. Operations arc written
as the application of a function to its arguments. Usually. Lisp programs are written as a large
collection of small functions, cach of which implements a simple operation. These functions
operate by calling onc another, and so farger operations arc defined in terms of smaller oncs.

A function may always call itself in Lisp. ‘The calling of a function by itself is known as
recursion;, it is analogous to mathematical induction.

The performing of an action repeatedly (usually with some changes between repelitions) is
called iteration, and is provided as a basic control structure in most languages. The 4o statement
of PL/IL, the for statement of AL.GOL./60, and so on arc cxamples of iteration primitives. Lisp
provides two genceral iteration facilities: do and loop. as well as a varicty of special-purpose
iteration facilitics. (loop is sufficiently complex that it is cxplained in its own chapter later in the
manual; scc page 350.)

A conditional construct is one which allows a program to makc a decision, and do onc thing
or another based on some logical condition. Lisp provides the simple onc-way conditionals and
and or. the simple two-way conditional if, and more general multi-way conditionals such as cond
and selectq. The choice of which form to usc in-any particular situation is a matter of personal
taste and style.

There are some non-local exit control structurcs, analogous to the leave, exit, and escape
constructs in many modern languages. Zetalisp provides for both static (lexical) non-local exits
with block and return-from and dynamic non-local cxits with catch and throw. Another kind of
non-local exit is the goto, provided by the tagbody and go constructs.

Zctalisp also provides a coroutine capability, explained in the scction on stack-groups (chapter
13, page 256), and a multiple-process facility (see chapter 29, page 682). There is also a facility
for generic function calling using message passing; sce chapter 21, page 401.

4.1 Compound Statements

progn body... Special form
The body forms are cvaluated in order from left to right and the valuc of the last one is
rcturned. progn is the primitive control structure construct for "compound statements™.
Example:
(foo (cdr a)
(progn (setq b (extract frob))
(car b))
(cadr b))

PS:KLMAN>EFD-FLO.TEXT.24 8-JUN-84

1isp Machine Manual 03 Conditionals

Lambda-expressions. cond forms, do forms, and many other control structure forms use
progn implicitly, that is, they allow multiple torms in their bodies.

progl first-form body... Special form
prog1 is similar to progn, but it returns the value of its firsr form rather than its last. It
is most commonly used to cvaluate an expression with side cffects, and return a value
which must be computed before the side cftects happen.
- Example: : _
(setq x (progl y (setq y x)))
interchanges the values of the variables x and y. prog?1 never returns multiple values. -

prog2 firs-form second-form body... Special form
prog2 is similar to progn and progl, but it returns its second form. 1t is included
largely for compatibility with old programs.

4.2 Conditionals

if _ Special form
if is the simplest conditional form. The “if-then” form looks like:

(if predicate-form then-form)
predicate-form is cvaluated, and if the result is non-nil, the then-form is cvaluated and its

result is returnced. Otherwise, nil is returned.

In the “if-then-clse” form, it looks like

(if predicate-form then-form else-form)
predicate-form is evaluated, and if the result i non-nil, the fhen-form is cvaluated and its
result is returned. Otherwise, the else-form is cvaluated and its result is returned.

If there are more than three subforms, if assumes you want more than onc else-form; if
the predicate returns nil, they are cvaluated sequentially and the result of the last one is

returned.

when condition body... Macro
If condition evaluates to something non-nil, the body is cxccuted and its value(s) returned.

Otherwise, the value of the when is nil and the body is not exccuted.

unless condition body... Macro
If condition cvaluates to nil, the body is cxcecuted and its value(s) returned. Otherwise,

the value of the unless is nil and the body is not exccuted.

"~ cond ‘ Special form
The cond special form consists of the symbol cond followed by several clauses. Each
clause consists of a predicate form, called the condition, followed by zero or more body
forms. ‘

PSKILMAN>ED-FLO.TEXT.24 ' 8-JUN-84

Conditionals 064 isp Machine Manual

(cond (condition body bedy. . .)
(condition)
(condition body . . .)

)

The idea is that .cach clause represents a case which is selected if its condition is satisfied
and the conditions of all preceding clauses were not satisfied. When a clause is sclected,
its body forms are evaluated.

cond processes its clauses in order from left 1o right. First, the condition of the current
clause is evaluated. If the result is nil. cond advances to the next clause. Otherwise, the
cdr of the clause is treated as a list of body forms which are evaluated in order from left
to right. After cvaluating the body forms, cond returns without inspecting any remaining
clauses. The value of the cond form is the value of the last body form evaluated, or the
value of the condition if there were no body forms in the clause. If cond runs out of
clauses, that is, if every condition evaluates to nil, and thus no casc is sclected, the value
of the cond is nil.

Eixample:
(cond ((zerop x) ; First clause:
(+y 3)) ; (zerop x)isthe condition.
i (+ y 3)isthe body.
((null y) ; A clause with 2 body forms:
(setq y 4) ; this
(cons x z)) ;and this.
(z) ;A clausc with no body forms: the condition is
; just z. Ifz is non-nil, it is returned.
(t ;A condition of t
105) ; is always satisfied.
) ; This is the end of the cond.
cond-every Macro

cond-every has the same syntax as cond, but exccutes every clause whose condition is
satisfied, not just the first. If a condition is the symbol otherwise, it is satisfied if and
only if no preceding condition is satisfied. The value returned is the value of the last
body form in the last clause whosc condition is satisfied. Multiple valucs are not returned.

and form... Special form
and cvaluates the forms one at a time, from left to right. If any form evaluates to nil,
and immediately rcturns nil without evaluating the remaining forms. If all the jforms
evaluate to non-nil values, and returns the value of the last form.

and can be used in two different ways. You can usc it as a logical and function, because
it returns a truc valuc only if all of its arguments are¢' true:
(if (and socrates-is-a-person
' all-people-are-mortal)
(setq socrates-is-mortal t))

PS:KLLMAN>ED-FLO.TEXT.24 8-JUN-84

Fisp Machine Manual 65 Conditionals

Because the order of evaluation is well-defined, you can do
(if (and (boundp 'x)
(eq x "foo})
(setq y ’'bar))
knowing that the x in the eq form will not be evaluated if x is found to be void.

You can also use and as a simple conditionat form;
' (and (setq temp (assq x y))
(rplacd temp z))
(and bright-day
glorious-day
(princ "It is a bright and glorious day."))
but when is usually preferable. '

Note: (and) => t, which is the identity for the and operation.
or form... Special form
or cvaluates the forms one by onc from left to right. If a form cvaluates to nil, or
" proceeds to evaluate the next form. If there are no more forms, or returns nil. But if a

form cvaluates to a non-nil value, or immediately returns that valuc without cvaluating
any rcmaining forms. '

As with and, or can be used cither as a logical or function, or as a conditional:
(or it-is-fish it-is-fowl)

(or it-is-fish it-is-fowl
(print "It is neither fish nor fowl.")

but it is often possible and cleancr to use unless in the latter case.

Note: (or) => nil, the identity for this operation.

selectq - ~ Macro
case Macro
caseq Macro

selectq is a conditional which chooses one of its clauses to exccute by comparing the
value of a form against various constants using eql. Its form is as follows:
(selectq key-form
(test body. . .)
(test body. . .)
(test body. . .)

)

The first thing selectq does is to cvaluate key-form; call the resulting value key. Then
selectq considers cach of the clauses in turn. If key matches the clause’s fest, the body
of the clausc is evaluated, and selectq returns the value of the last body form. If there
are no matches, selectq returns nil.

PS:KLMAN>ED-FL.O.TEXT.24 8-JUN-84

Conditionals 60 , 1isp Machine Manual

A test may be any of:

1) A symbol If the key is eqgl to the symbol, it matches.

2) A number If the key is eqgl to the number. it matches. key must
have the same type and the same value as the number.

3) A list If the key is eql to one of the clements of the list, then it
matches. The clements of the list should be symbols or
numbers. '

4) t or otherwise The symbols t and otherwise arc special tests which match

anything. Either symbol muy be used, it makes no
difference; t is mainly for compatibility with Maclisp’s
caseq construct. -To be uscful, this should be the last
clausc in the selectq.

Example:
(selectq x
(foo (do-this))
(bar (do-that))
((baz quux mum) (do-the-other-thing))
(otherwise (ferror nil "Never heard of ~S" x)))
is equivalent to
{cond ((eq x 'foo) (do-this))
((eq x ’'bar) (do-that))
((memq x ’'(baz quux mum)) (do-the-other-thing))
(t (ferror nil "Never heard of ~S8" x)))

Note that the fests arc not evaluated; if you want them to be evaluated usc select rather
than selectq.

case is thc Common Lisp name for this construct. caseq is the Maclisp name; it
identical to selectq, which is not totally compatible with Maclisp, because selectq accepts
otherwise as well as t where caseq would not accept otherwise., and because Maclisp
does some error-checking that selectq docs not. Maclisp programs that use caseq work
correctly so long as they don’t use the symbol otherwise as a key.

ecase key-form clauses... Macro
Like case cxcept that an uncorrectable crror is signaled if every clause fails. t or
otherwise clauses are not allowed.

ccase place clauses... " Macro
Like ecase cxcept that the error is correctable. 'The first argument is called place because
it must be setf'able. If the user proceeds from the crror, a new value is read and stored
into place; then the clauses arc tested again using the new value. Errors repeat until a
value is specified which makes some clause succeed.

Also sce defselect (page 236), a special form for defining a function whose body is like a
selectq.

PSKL.MANDED-FILOTEXT.24 8-JUN-84

Iisp Machine Manual 67 Conditionals

select Muacro
select is like selectq. cxcept that the elements of the rests are evaluated before they are
used.

This creates a syntactic ambiguity: i (bar baz) is scen the first clement of a clause, is it
a list of two forms, or is it onc form? select interprets it as a list of two forms. If you
~want to have a clause whose test is a single form, and that form is a list, you have to
write it as a list of onc form.
Example:
(select (frob x)
(foo 1)
((bar baz) 2)
(((current-frob)) 4)
(otherwise 3))
is equivalent to
(let ((var (frob x)))
(cond ((eq var foo) 1)
' ((or (eq var bar) (eq var baz)) 2)
((eq var (current- frob)) 4)

(t 3)))

selector Macro
selector is like select, cxcept that you get to specify the function used for the
comparison instead of eq. For example,
(selector (frob x) equal
((’(one . two)) (frob-one x))
(('(three . four)) (frob-three x))
(otherwise (frob-any x)))
“is equivalent to
(1et ((var (frob x)))
(cond ((equal var '(one . two)) (frob-one x))
((equal var °'(three . four)) (frob-three x))
(t (frob-any x))))

select-match Macro
select-match is like select but cach clause can specify a pattern to match the key
against. The gencral form of use looks like '
(select-match key-form
- (pattern condition body. . .)
(pattern condition body. . .)

(otherwise body...)) -
The value of key-form is matched against the patferns one at a time until a match
succeeds and the accompanying condition cvaluates to something non-nil. At this point the
body of that clause is cxecuted and its value(s) returned.” If all the patterns/conditions fail,
the body of the otherwise clause (if any) is exccuted. A pattern can test the shape of the
key object, and sct variables which the condition form can refer to. All the variables set
by the patterns are bound locally to the select-match form.

PS:KL.MAN>FD-FLO.TEXT.24 8-JUN-84

Conditionals 68 1 isp Machine Manual

The patterns are matched using list-match-p (page 92).

Example:
(select-match '(a b c)

(“(.,x b ,x}) t (vector x))

("((,x .y) b . .ignore) t (list x y))

(*(.,x b .y) (symbolp x) (cons x y))

(otherwise 'lose-big))
returns (@ . ¢). having checked (symbolp 'a). The first clause matches only if the there
arc three clements, the first and third clements arc equal and the sccond clement is b.
The second matches only if the first clement is a list of length two and the sccond
clement is b, ‘The third clause accepts any list of length three whose second clement is b.
The fourth clause accepts anything that did not match the previous clauscs.

select-match generates highly optimized code using special instructions.

dispatch Macro
(dispatch byte-specifier number clauses...) is the same as select (not selectq), but the key
is obtained by cvaluating (Idb byte-specifier number). -byte-specifier and number are both
evaluated. Byte specifiers and Idb are explained on page 155.
Example:
(princ (dispatch (byte 2 13) cat-type
(0 "Siamese.") -
(1 "Persian.")
(2 "Alley.")
(3 (ferror nil
' "~S is not a known cat type."

cat-type))))

It is not necessary to include all possible values of the byte which is dispatched on.

selectg-every Macro
selectq-every has thc same syntax as selectq, but, like cond-every, exccutes every
sclected clause instcad of just the first one. If an otherwise clause is present, it is
selected if and only if no preceding clausc is selected. The value returned is the value of
the last form in the last sclected clause. Multiple values are not returned. Example:
(selectg-every animal

((cat dog) (setq legs 4))

((bird man) (setq legs 2))

((cat bird) (put-in-oven animal))

((cat dog man) (beware-of animal)))

PS:KLLMAN>FD-FLO.TEXT.24 8-JUN-84

Eisp Machine Manual - 09 Conditionals

4.2.1 Comparison Predicates

eq x y

neq x

(eq x ») => tif and only if x and y arc the same object. It should be noted that things
that print the same arc not necessarily eq to cach other. In particular, numbers with the
same value nced not be eq, and two similar lists are usually not eq.
Iixamples: ‘

(eq 'a 'b) => nil

(eq 'a 'a) =>t

(eq (cons 'a 'b) (cons 'a 'b)) => nil

(setq x (cons 'a 'b)) (eq x x) =>t

Note that in Zetalisp cqual fixnums arc eq: this is not true in Maclisp. Fquality does not
imply eqg-ness for other types of numbers. To compare numbers, use =: scc page 139.

y
(neq x y) = (not (eq x y)). This is provided simply as an abbreviation for typing

convcnience.

eql x

equal

y
eql is the same as eq cxcept that if x and y are numbers of the same type they are eql

if they are =.

Xy _
The equal predicate returns t if its arguments arc similar (isomorphic) objects. Two
numbers are equal if they have the same value and type (for cxample, a float is never
equal to a fixnum, even if = is truc of them). For conscs, equal is defined recursively
as the two cars being equal and the two cdrs being equal. Two strings arc equal if they
have the samec length, and the characters composing them are the same; sce string=,
page 214. Alphabetic case is significant. All other objects are equal if and only if they
are eq. 'Thus equal could have been defined by:
(defun equal (x y)
(cond ((eq x y) t)

((and (numberp x) (numberp y))

(= xy))

((and (stringp x) (stringp y))

(string-equal x y))

((and (consp x) (consp y))

(and (equal (car x) (car y))

(equal (cdr x) (cdr y))))))

As a consequence of the above definition, it can be scen that equal may compute forever
when applied to looped list structure. In addition, eq always implics equal; that is, if
(eq a b) then (equal a b). An intuitive definition of equal (which is not quite correct) is
that two objects are equal if they look the same when printed out. For example:

PS:KL.MAN>ED-IFLO.TEXT.24 8-JUN-84

lteration 10 Lisp Machine Manual

(setq a '(1 2 3))

(setg b *(1 2 3))

(eq a b) => nil

(equal a b) => t

(equal "Foo" "foo") => nil

equalp x y o
equalp is a broader kind of cquality than equal. "T'wo objects that arc equal are always
equalp. In addition, numbers of different types are equalp if they are =. T'wo character

objects are equalp if they are char-equal (that is, they are compared ignoring font, case
and meta bits). o

Two arrays of any sort arc equalp if they have the same dimensions and corresponding
clements are equalp. In particular, this means that two strings arc equalp if they match
ignoring casc and font information.

(equalp "Foo" "foo") => t

(equalp '1 '1.0) => t

(equalp '(1 "Foo") '(1.0 "foo")) => t

Because equalp is a Common Lisp function, it regards a string as having character objects
as its clements:

(equalp "Foo" #(#=/F #=/0 #2/0)) => t

(equalp “"Foo" #(#/F #/0 #/0)) => nil

not x
null x
not returns t if x is nil, clse nil. null is the same as not; both functions arc included for
the sake of clarity. Use null to check whether something is nil; use not to invert the
sense of a logical value. Some people prefer to distinguish between nil as falschood and
nil as the cmpty list by writing:
(cond ((not (null 1st)) ...)
(.-«))
rather than
(cond (1st ...)

(...))

There is no loss of cfficiency, since these compile into exactly the same instructions.

4.3 Iteration

do Special form
The do special form provides a simple generalized iteration facility, with an arbitrary
number of “index variables” whose values arc saved when the do is cntered and restored
when it is left, ie. they arc bound by the do. The index variables are used in the
iteration performed by do. At the beginning, they arc initialized to specified values, and
then at the end of cach trip around the loop the values of the index variables are
changed according to specified rules. do allows the programmer to specify a predicate
which determines when the iteration will terminate. The valuc to be returned as the result

PSKLLMAN>ED-FLO.TEXT.24 8-JUN-84

Lisp Machine Manual ' 7 lteration

of the form may, optionally, be specified.

do comcs in two varictics, new-style and old-style. 'The old-style do is obsolete and cxists
for Maclisp compatibility only. ‘The more general, “new-style™ do looks like:
(do ((varinitrepeat) ...)
(end-test exit-form . . .)
body. . .)

The first item in the form is a list of zero or more index variable specifiers. Fach index
variable specifier is a list of the name of a variable var, an initial value form inir, which
defaults to nil if it is omitted, and a repeat value form repeat. If repeat is omitted, the
var is not changed between repetitions. If init is omitted, the var is initialized to nil,

An index variable specifier can also be just the name of a variable, rather than a list. In
this case, the variable has an initial valuc of nil, and is not changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning of the first
itcration, all the init forms are cvaluated. then the vars are bound to the values of the
init forms, their old values being saved in the usual way. Note that the /it forms are
evaluated before the vars arc bound, i.e. lexically ourside of the do. At the beginning of
each succceding itcration those vars that have repeat forms get sct to the values of their
respective repeat forms. Note that all the repeat forms are cvaluated before any of the
vars is sct. . :

The second clement of the do-form is a list of an cnd-testing predicate form end-test, and
zero or morc forms, called the exit-forms. This resembles a cond clause. At the
beginning of cach iteration, after processing of the variable specificrs, the end-test is
cvaluated. If the result is nil, exccution proceeds with the body of the do. If the result
is not nil, the exir-forms are evaluated from left to right and then do returns. The value
of the do is the value of the last exir-form, or nil if there were no exit-forms (not the
value of the end-test, as you might expect by analogy with cond).

Note that the end-test gets cvaluated before the first time the body is evaluated. do first
initializes the variables from the /nit forms, then it checks the end-fest, then it processes
the body, then it deals with the repear forms, then it tests the end-test again, and so on.
If the end-test returns a non-nil value the first time, then the body is not exccuted.

If the sccond element of the form is nil, there is no end-test nor exit-forms, and the body
of the do is exccuted only once. In this type of do it is an crror to have repeats. This
type of do is no more powerful than let; it is obsolete and provided only for Maclisp
compatibility. '

If the sccond clement of the form is (nil), the end-test is never true and there are no
exit-forms. The body of the do is executed over and over. The resulting infinite loop can
be terminated by usc of return or throw.

do implicitly creates a block with name nil, so return can be used lexically within a do
to exit it immediately. This unbinds the do variables and the do form returns whatever
values were specified in the return form. See scction 4.4, page 75 for more information

PS:KLLMAN>ED-FI O.TEXT.24 - 8-JUN-84

lteration ' ' 72 {isp Machine Manual

on these matters. 'Phe body of the do is actually treated as a tagbody, so that it may
contain go tags (sce scction 4.5, page 78), but this usage is discouraged as it is often

unclear. : :
Examples of the new form of do:
(do ((7 0 (1+ i)) 2 This is just the same as the above example,
(n (array-length foo-array)))
({= i n)) : but writlen as a new-style do.

(aset 0 foo-array i)) :Notchow the setq is avoided.

(do ((z list (cdr z)) :zstartsaslist and is cdr'd cach time.
(y other-1list) 1y starts as other-list, and is unchanged by the do.

(x) : x starts as nil and is not changed by the do.
w) : w starts as nil and is not changed by the do.
(nil) . 'The end-test is nil, so this is an infinite loop.
body) : Presumably the body uses return somewhere.

The construction
(do ((x e (cdr x))
' (oldx x x))
((null x))

~body)
cxploits parallel assignment to index variables. On the first iteration, the valuce of oldx is
whatever value x had before the do was cntered. On succceding iterations, oldx contains
the value that x had on the previous iteration.

The body of a do may contains no forms at all. Very often an iterative algorithm can be
most clearly expressed entircly in the repeats and exit-forms of a new-style do, and the
body is empty. For example,
(do ((x x (cdr x))
(y y (cdr y))
(z ni1 (cons (f x y) z))) :cxploits parallel assignment.
{((or (null x) (rull y))
(nreverse z)) ;typical use of nreverse.
) ;no do-body required.
is like (maplist 'f x y) (sec page 84).

The old-style do exists only for Maclisp compatibility. It looks like:
(do var init repeat end-test body. . .)

The first time through the loop var gets the value of the init form; the remaining times
through the loop it gets the value of the repeat form, which is re-evaluated cach time.
Notc that the init form is evaluated before var is bound, i.c. lexically ourside of the do.
Each time around the loop, after var is sct, end-test is cvaluated. If it is non-nil, the do
finishes and returns nil. If the end-test cvaluated to nil, the body of the loop is executed.
As with the new-style do, return and go may be used in the body, and they have the
samc mecaning.

Also scc loop (page 350), a general itcration facility based .on a keyword syntax rather than a list-
structure syntax.

PSKL.MANSED-FLO.TEXT.24 8-JUN-84

I isp Machine Manual ' 73 Tteration

do* ' Special form
In a word, do* is to do as let* is to let. . ‘

do* works like do but binds and steps the variables scquentially instcad of in parallel.
This means that the /nir form for onc variable can use the values of previous variables.
The repear forms refer to the néw values of previous variables instecad of their old values.
Here is an example: ' '

' (do* ((x xlist (cdr x))

(y (car x) (car x)))
(print (1ist x y)))

On cach-iteration, »'s value is the car of x. ‘The same construction with do might get an
error on entry since x might not be bound yet.

do-named Special form
do-named is like do but defines a block with a name explicitly specified by the
programmer in addition to the block named nil which cvery do defines. ‘lThis makes it
possible to use return-from to return from this do-named cven from within an inner do. -
An ordinary return there would return from the inner do instcad. do-named is obsolcte
now that block, which is more gencral and more coherent, cxists. See section 4.4, page
75 for more information on block and return-from.

The syntax of do-named is like do except that the symbol do-named is immediately
followed by the block name, which should be a symbol.
Example:
(do-named george ((a 1 (1+ a))
' (d 'foo))
((> a4d)7)
(do ((c b (cdr c)))
((null c))

(return-from george (cons b d))
ee))
is equivalent to
(block george
(do ((a 1 (1+ a))
(d 'foo))
((>a4)7)
(do {(c b (cdr ¢)))
((null c))

(return-from george (cons b d))

+++)))

t as the name of a do-named behaves somewhat peculiarly, and therefore should be
avoided.

PS:KILMAN>FD-FLO.TEXT.24 8-JUN-84

Iteration 4 ‘ 74]isp Machine Manual

do*-named Special form
This special form offers a combination of the features of do* and those of do-named. It
is obsolete, as is do-named. since it is cleaner to use block.

dot‘lme‘ (index count [value-expression]) body... Macro

dotimes is a convenicat abbreviation for the most common integer iteration. dotimes
performs body the number of times given by the value of count, with index bound to 0,
1. ctc. on successive iterations. When the count is exhausted, the value of value-
expression is returned; or nil, if value-expression is missing,
Fxample:

(dotimes (i (truncate m n))

(frob i))

is cquivalent to: .

(do ((i 0 (1+ 1))

(count (truncate m n)))
((=2 1 count))
(frob 1))

except that the name count is not used. Note that i takes on valucs starting at zero
rather than one, and that it stops beforc taking the value (truncate m n) rather than
after. You can usc return and go and tagbody-tags inside the body, as with do.
dotimes forms return the value of value-expression, or nil, unless returned from explicitly
with return. For example:

(dotimes (i 5)

“(if (eq (aref a i) 'foo)

{return i)))

This form secarches the array that is the value of a, looking for the symbol foo. It
returns the fixnum index of the first clement of a that is foo, or else nil if none of the
clements are foo.

dolist (item list [value-expression]) body... Macro
dolist is a convenicnt abbreviation for the most common list iteration. dolist performs
body once for cach clement in the list which is the value of list, with item bound to the
successive elements. If the list is exhausted, the value of value-expression is returned; or
nil, if value-expression is mlssmg
Example:
(dolist (item (frobs foo))
(mung item))
is cquivalent to:
(do ((1st {frobs foo) (cdr 1st))
(item))
((null 1st))
(setq item (car 1st))
(mung item))
cxcept that the name Ist is not used. You can use return and go and tagbody-tags msxde
the body, as with do.

PS:KLLMAN>ED-FL.O.TEXT.24 8-JUN-84

Fisp Machine Manual 75 Static Non-1.ocal Exits

do-forever body... ~ Macro
Lixecutes the forms in the body over and over, or until a non-local exit (such as return).

4.4 Static Non-Local Exits

The static non-local cxit allows code deep within a construct to jump to the end of that
construct instantly, not exccuting anything except unwind-protect’s on the way. The construct
which defines a static level that can be exited non-locally is called block and the construct which
cxits it is called return-from. The block being exited must be lexically visible from the return-
from which says to exit it; this is what ‘static’ means. By contrast, catch and throw provide for
dynamic non-local exits; refer to the following section. Here is an example of using a static non-
local cxit:

(block top
(let ((v1 (do-1)))
(when (all-done vl1) (return-from top vl1))
(do-2))
(do-3)

(do-last))
~ If (all-done v1) returns non-nil, the entirc block immediately rcturns the value of vi. Otherwise,

the rest of the body of the block is exccuted sequentially, and ultimately the value or values of
(do-last) arc rcturned.

Note that the return-from form is very unusual: ‘it does not cver return a value itsclf, in the
conventional sense. It isn’t useful to write (setq a (return-from foo 3)), because when the return-
from form is evaluated, the containing block is immediately exited, and the setq never happens.

The fact that block's and return-from’s are matched up lexically mcans you cannot do this:

(defun foo (a)
(btock fool
(bar a)))

(defun bar (x)
(return-from fool x))

The (return-from foo1 x) gets an error because there is no lexically visible block named foot.
The suitable block in the caller, foo, is not even noticed.

Static handling allows the compiler to produce good code for return-from. It is also useful
with functional arguments: :

PS:KKLLMAN>ED-FLO.TEXT.24 8-JUN-84

Static Non-Focal Exits ' 76 Lisp Machine Manual

(defun first-symbol (1list)
(block done
{(mapc #'(lambda (elt)
(if (symbolp elt) (return-from done elt)))
list)))

‘The return-from done sces the block done lexically. Even if mapc had a block in it named
done it would have no effect on the exccution of first-symbol.

When a function is defined with defun with a name which is a symbol, a block whose name
is the. function name is automatically placed around the body of the function definition. Tor
cxample,

{defun foo (a)
(if (evenp a)
(return-from foo (1list a)))
(1+ a))

(foo 4) => (4)
{foo 5) => 6

A function written cxplicitly with lambda does not have a block unless you write one
yourself.

A named prog, or a do-named, implicitly defines a block with the specified name. So you
can cxit those constructs with return-from. In fact, the ability to name prog’s was the original
way to define a place for return-from to cxit. before block was invented.

_ Every prog, do or loop, whether named or not, implicitly dcfines a block named nil. Thus,
named prog’s define mvo block’s, one named nil and one named whatever name you specify. As
a result, you can usc return. (an abbreviation for return-from nil) to return from the innermost
lexically containing prog, do or loop (or from a block nil if you happen to write one). This
function is like assq, but it rcturns an additional value which is the index in the table of the
entry it found. For example, :

(defun assgn (x table)
{(do ((1 table (cdr 1))
(n 0 (1+ n)))
((null 1) nil)
(if (eq (caar 1) x)
(return (values (car 1) n)))))

There is onc exception to this: a prog, do or loop with name t defines only the block
named t, no block named nil. The compiler used to make use of this feature in expanding
certain built-in constructs into others.

PS:KLLMAN>ED-FLO.TEX'T.24 8-JUN-84

Lisp Machine Manual 77 Static Non-F.ocal Exits

block name body... _ Special form
Executes body. returning the values of the last form in body, but permitting non-local
cxit using return-from forms present lexically within body. name is not cvaluated, and is
used o match up return-from forms with their block’ss.
(block foo
(return-from foo 24) t) => 24
(block foo t) => t

return-from name values Special form
Performs a non-local exit from the innermost lexically containing block whose name is
name. name is not evaluated. When the compiler is used. return-from’s arc matched up
with block’s at compile time,

values is cvaluated and its values become the values of the exited block form.

A return-from form may appear as or inside an argument to a regular function, but if
the return-from is cxccuted then the function will never actually be called. For example,
(block done
(foo (if a (return-from done t) nil)))
foo is actually called only if a's valuc is nil. This style of coding is not reccommended
when foo is actually a function.

return-from can also be used -with zero value forms, or with several value forms. Then
one valuc is returned from cach value form. Originally return-from always returned only
one valuc from cach value form, even when there was only onc value form. Passing back
all the values when there is a single values form is a later change, which is also the
Common Lisp standard. In fact, the single value form casc is much more powerful and
subsumes all the others. For example,

(return-from foo 1 2)
is equivalent to

(return-from foo (values 1 2))
and

(return-from foo)
is equivalent to

(return-from foo (values))
It is unfortunate that the case of onc value form is treated differently from all other cases,
but the power of being able to propagate any number of values from a single form is
worth it.

To return preciscly one value, use (return-from foo (values form)). It is legal to write
simply (return-from foo), which rcturns no values from the block. Sce section 3.7, page
55 for more information. ‘

return values Special form
Is equivalent to (return-from nil values). It returns from a block whose name is nil.

In addition, break (sce page 795) rccognizes the typed-in form (return value) spccially.
break cvaluates value and returns it,

PS:KL.MAN>FD-FLLO.TEXT.24 8-JUN-84

Tags and Gotos 78 I isp Machine Manual

return-Tist liss Special form
This function is like return except that cach element of /ist is returned as a separate value
from the block that is exited.

return-list is obsolete, since (return (values-list /isr)) docs the same thing.

4.5 Tags and Gotos

Jumping to a label or ag is another kind of static non-local exit. Compared with return-
from, it allows more flexibility in choosing where to send control to, but does not allow values to
be sent along, This is because the tag docs not have any way of saying what to do with any
values.

To define a tag, the tagbody special form is used. In the body of a tagbody, all lists are
treated as forms to be cvaluated (called srarements when they occur in this context). If no goto
happens. all the forms arc cvaluated in sequence and then the tagbody form returns nil. Thus,
the statements are cvaluated only for effect. '

An clement of the tagbody’s body which is a symbol is not a statcment but a tag instead. It
identifics a place in the scquence of statements which you can go to. Going to a tag is
accomplished by the form (go iag). exccuted at any point lexically within the tagbody.

go transfers control immcdiately to the first statement following sag in its tagbody, pausing
only to deal with any unwind-protects that arc being cxited as a result, If there are no more
statements after fag in its tagbody, then that tagbody returns nil immediately.

All Jexically containing tagbody’s arc cligible to contain the specified tag, with the innermost
tagbody taking priority. If no-suitable tag is found, an crror is signaled. The compiler matches
go’s with tags at compile time and issucs a compiler warning if no tag is found. Example:

(block nil
(tagbody
(setq x some frob)
loop
do something
(if some predicate (go endtag))
do something more
(if (minusp x) (go loop))
endtag
(return z)))
is a kind of iteration made out of go-to’s. This tagbody can ncver exit normally because the
return in the last statement takes.control away from it. This use of a return and block is how
one encapsulates a tagbody to produce a non-nil value.

It works to go from an internal lambda function to a tag in a lexically containing function,
as in

PS:<ILMAN>FD-FLO.TEXT.24 ‘ 8-JUN-84

Lisp Machine Manual ’ 79 v Tags and Gotos

(defun foo (a)
(tagbody
t1 .
“{(bar #’(lambda () (go t1)))))

If bar ever invokes its argument, control goes to t1 and bar is invoked anew. Not very uscful,
but it illustrates the technique.

tagbody siatements-and-tags... Special form
Exccutes all the clements of starements-and-tags which are lists (the statements), and then
returns nil. But mcanwhile. all clements of startemenis-and-rags which are symbols (the
tags) arc available for usc with go in .my of the statements. Atoms other than symbols
arc meaningless in a tagbody.

The reason that tagbody returns nil rather than the value of the last statement is that the

designers of Common Lisp decided that one could not reliably return a value from the,
‘tagbody by writing it as the last statement since some of the time the cxpression for the -
desired value would be a symbol rather than a list, and then it would be taken as a tag

rather than the last statement and it would not work.

go lag Special form
The go special form is used to “go-to” a tag defined in a lexically containing tagbody
form (or other form which implicitly expands into a tagbody, such as prog, do or loop).
fag must be a symbol. It is not evaluated.

prog ‘ Special form
prog is an archaic special form which provides temporary variables, static non-local exits,
and tags for go. These aspects of prog were individually abstracted out to inspire let,
block and tagbody. Now prog is obsolcte, as it is much cleancr to usc let, block,
tagbody or all threc of them, or do or loop. But prog appcars in so many programs
that it cannot be climinated.

A typical prog looks like (prog (variables...) body...), which is cquivalent to
(block nil
(et (variables. . .)
(tagbody body...)))

If the first subform of a prog is a non-nil symbol (rather than a list of variables), it is
the name of the prog., and return-from (see page 77) can be used to return from it. A
named prog looks like :

(prog name (vanables. ..) body..)
and is equivalent to

(block name

(block nil
(let (variables...) :
(tagbody body...))))

PS:KLLMANDID-FLO.TEXT.24 * 8-JUN-84

Dynamic Non-1 ocal Lxits 80 I isp Machine Manual

prog* Special form
The prog* special form is almost the same as prog. ‘The only difference is that the
hinding and initialization of the temporary variables is done sequentially, so cach one can
depend on the previous ones. Thus, the equivalent code would use let* rather than let.

4.6 Dynamic Non-Local Exits

catch rag body.. Special form

catch is a special form used with the throw function to do non-local cxits. First fag is
evaluated; the result is called the 1ag of the catch. Then the body forms are evaluated
scquentially. and the values of the last form are returned. However, if, during the
evaluation of the body. the function throw is called with the same tag as the tag of the
catch, then the evaluation of the body is aborted, and the catch form immediately
returns the values of the second argument to throw without further evaluating the current
body form or the rest of the body.

The rag’s are used to match up throw's with catch’s. (catch ’foo form) catches a (throw
'foo form) but not a (throw 'bar form). It is an crror if throw is donc when there is no
suitable catch (or catch-all; sce below).

Any Lisp object may be used as a catch tag. The values t and nil for rag are special: a
catch whose tag is onc of these values catches throws regardless of tag. ‘These arc only
for internal usc by unwind-protect and catch-all respectively. The only difference
between t and nil is in the error checking; t implies that after a “clcanup handler” is
exccuted control will be thrown again to the same tag, thercfore it is an crror if a specific
catch for this tag docs not cxist higher up in the stack. With nil, the error check isn’t
done. Example: '
{catch ’negative
(values
(mapcar #’(lambda (x)
(cond ((minusp x)
(throw ’negative
(values x :negative)))
(t (f x)))))
y)

:positive))
returns a list of f of cach clement of y, and :positive, if they arc all positive, otherwise
the first negative member of y, and :negative.

catch-continuation tag throw-cont non-throw-cont body... Macro
catch-continuation-1if cond-form tag throw-cont non-throw-cont body... Macro
The catch-continuation special form makes it convenient to discriminate whether exit is
normal or due to a throw.

The body is cxccuted inside a catch on tag (which is cvaluated). If body returns
normally, the function non-throw-cont is called. passing all the values returned by the last
form in body as arguments. This function’s values are returned from the catch-
continuation.

PSKLLMAN>ED-FLO. TEXT.24 8-JUN-84

Lisp Machine Manual 81 ' Dynamic Non-1.ocal Ixits

If on the other hand a throw to fag occurs, the values thrown are passed o the function
throw-cont, and its values are returned.

If a continuation is cxplicitly written as nil, it is not called at all. The arguments that
would have been passed to it are returned instcad. ‘This is cquivalent to using values as
the function; but explicit nil is optimized, so use that.

- catch-continuation-if differs only in that the catch is not done if the value of the cond-

throw

Sorm is nil. In this case, the non-throw continuation if any is always called.

In the general case, consing is necessary to record the multiple values, but if a
continuation is an cxplicit #'(lambda ...) with- a fixed number of arguments, or if a
continuation is nil, it is open coded and the consing is avoided.

tag values-form : Special form

throw is the primitive for cxiting from a surrounding catch. tag is cvaluated, and the
result is matched (with eq) against the tags of all active catch’es; the innermost matching
onc is exited. If no matching catch is dynamically active, an crror is signaled.

All the values of values-form are rcturned from the exited catch.

catch'es with tag nil always match any throw. They are really catch-all's. So do
catch'es with tag t, which are unwind-protect’s, but if the only matching catch’es are
these then an error is signaled anyway. This is because an unwind-protect always throws
again after its cleanup forms arc finished; if there is nothing to catch after the last
unwind-protect, an error will happen then, and it is better to detect the error sooner.

The values t. nil, and O for rag arc reserved and used for internal purposes. nil may not
be used, because it would cause confusion in handling of unwind-protect’s. t may only
be used with *unwind-stack. 0 and nil arc used internally when returning out of an
unwind-protect.

*catch form tag Macro
*throw jform tag : Macro

Old, obsolete names for catch and throw.

sys:throw-tag-not-seen (error) Condition

This is signaled when throw (or *unwind-stack) is used and there is no catch for the
specified tag. The condition instance supports these cxtra operations:

‘tag The tag being thrown to.

:value The value being thrown (the second argument to throw).

:count

:action The additional two arguments given to *unwind-stack, if that was used.

The error occurs in the environment of the throw; no unwinding has yet taken place.

PS:<L.MANDED-FLO.TEXT 24 8-JUN-84

Dvnamic Non-Focal Exits 82 I isp Machine Manual

The proceed type :new-tag expects one argument, a tag to throw to instead.

*unwind-stack rg value active-frame-count action
This is a generalization of throw provided for program-manipulating programs such as the
dcbugger. '

tag and value arc the same as the corresponding arguments to throw.

A tag of t invokes a special feature whereby the entire stack is unwound, and then the
function acrion is called (sce below). During this process unwind-protect’s receive
control, but catch-all’'s do not. ‘This feature is provided for the benefit of system
programs which want o unwind a stack completcly.

active-frame-count, if non-nil, is the number of frames to be unwound. ‘The definition of
a frame is implementation-dependent. If this counts down to zero before a suitable catch
is found, the *unwind-stack terminates and rthar frame returns value to whocever called it.
This is similar to Maclisp’s freturn function.

If action is non-nil, whenever the *unwind-stack would be ready to terminate (cither due
to active-frame-count or duc to fag being caught as in throw), instcad action is called with
onc argument. value. If tag is t, mcaning throw out the whole way, then the function
action is not allowed to return. Otherwise the function acfion may return and its value
will be returned instead of value from the catch—or from an arbitrary function if active-
Srame-count is in usc. In this case the catch does not return multiple values as it
normally docs when thrown to. Note that it is often uscful for action to be a stack-group.

Note that if both active-frame-count and action are nil, *unwind-stack is identical to
throw.

unwind-protect protected-form cleanup-form... ' Special form
Sometimes it is necessary to evaluatc a form and make sure that certain side-cffects take
place after the form is evaluated; a typical cxample is:
(progn
(turn-on-water-faucet)
(hairy-function 3 nil ’foo)
(turn-off-water-faucet))

The non-local exit facilitics of Lisp create situations in which the above code won’t work,
however: if hairy-function should usc throw, return or go to transfer control outside of
the progn form, then (turn-off-water-faucet) will never be cvaluated (and the faucet
will presumably be lefi running). This is particularly likely if hairy-function gets an crror
and the uscr tells the debugger to give up and flush the computation.

In order to allow the above program to work, it can be rewritten using unwind-protect
as follows:

PS:KLLMAN>FD-FLO.TEXT.24 : 8-JUN-84

Lisp Machine Manual . 83 Dynamic Non-Local Exits

(unwind-protect
(progn (turn-on-water-faucet)
(hairy-function 3 nil 'foo))
(turn-off-water-faucet)) ‘
If hairy-function transfers control out of the cvaluation of the unwind-protect, the
(turn-off-water-faucet) form is cvaluated during the transfer of control, before control
~arrives at the catch, block or go tag to which it is being transferred.

If the progn rcturns normally, then the (turn—oﬂ—Water—faucet) is cvaluated, and the
unwind-protect returns the result of the progn.

The general form of unwind-protect looks like
(unwind-protect :
protected-form

cleanup-forml .

cleanup-form2

|
protected-form is evaluated, and when it returns or when it attempts to transfer control out
of the unwind-protect, the cleanup-forms are cvaluated. The value of the unwind-
protect is the valuc of protected-form. Multiple valucs rcturned by -the protected-form are

~ propagated back through the unwind-protect.

The cleanup forms are run in‘ the variable-binding environment that you would expect:
that is, variables bound outside the scope of the unwind-protect special form can be
accessed, but variables bound inside the protected-form can’t be. In other words, the stack
is unwound to the point just outside the protected-form, then the cleanup handler is run,
and then the stack is unwound some more.

catch-all body.. Macro
(catch-all form) is like (catch some-tag form) cxcept that it catches a throw to any (ag
at all. Since the tag thrown to is onc of the returned values, the caller of catch-all may
continue throwing to that tag if he wants. The onc thing that catch-all does not catch is
a *unwind-stack with a tag of t. catch-all is a macro which expands into catch with a
tag of nil.

catch-all rcturns all the values thrown to it, or returncd by the body, plus three
additional values: the tag thrown to, the active-frame-count, and the action. The tag
value is nil if the body returned normally, The last two values arc the third and fourth
arguments to *unwind-stack (sce page 82) if that was used, or nil if an ordinary throw
was done or if the body returned normally.

If you think you want this, most likcly you are mistaken and you really want. unwind-
protect.

PS:KLLMANDED-FLO.TEXT.24 : 8-JUN-84

Mapping 84 Lisp Machine Manual

4.7 Mapping

map fen &rest lists

mapl jcn &rest lisis

mapc jen &rest lists

maptist fen &rest lists

mapcar fcn &rest lists

mapcon fcn &rest lists

mapcan fen &rest lists
Mapping is a type of iteration in which a function is successively applied to picces of a
list. ‘There are several options for the way in which the picces of the list arc chosen and
for what is done with the results returned by the applications of the function.

For example. mapcar opcrates on successive elements of the list. As it goes down the
list, it calls the function giving it an clement of the list as its one argument: first the car,
then the cadr, then the caddr. ctc.. continuing until the cnd of the list is rcached. ‘The
value returned by mapcar is a list of the results of the successive calls to the function,
An cxample of the use of mapcar would be mapcar'ing the function abs over the list (1
-2 -4.5 6.0e15 -4.2). which would be written as (mapcar (function abs) ‘(1 -2 -4.5
6.0e15 -4.2)). 'The result is (1 2 4.5 6.0e15 4.2).

In gencral, the mapping functions take any number of arguments. For example,
(mapcar fx] x2 ... xn)

In this casc f must be a function of n arguments. mapcar proceeds down the lists x/,
x2, .., xn in parallel. The first argument to f comes from x/, the sccond from x2, ectc.
The iteration stops as soon as any of the lists is exhausted. (If there are no lists at all,
then there are no lists to be exhausted, so fis called repeatedly without end. This is an
obscure way to write an infinite loop. It is supported for consistency.) If you want to call
a function of many argumcnts where one of the arguments successively takes on the
values of the clements of a list and the other arguments arc constant, you can use a
circular list for the other arguments to mapcar. The function circular-list is uscful for
creating such lists; sce page 93.

There are five other mapping functions besides mapcar. maplist is likc mapcar cxcept
that the function is applicd to the list and successive cdrs of that list rather than to
successive clements of the list. map (or mapl) and mapc are like maplist and mapcar
respectively, except that they don’t return any uscful value. These functions are used
when the function is being cailed merely for its side-cffects, rather than its rcturned
values. mapcan and mapcon are like mapcar and maplist respectively, except that they
combine the results of the function using nconc instead of list. That is, mapcon could
have been defined by
(defun mapcon (f x y)
(apply ’'nconc (maplist f x y)))
Of course, this definition is less general than the real one.

Sometimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should bc used wherever they naturally apply because this increases the
clarity of the code.

PSKL.MAN>EFD-FLO. TEXT.24 8-JUN-84

Lisp h1qchinc Manual 85 _ ‘ Mapping

Often fis a lambda-expression, rather than a symbol; mrcimnph.
(mapcar (function (lambda (x) (cons x something)))
some-1ist)

The functional argument to a mapping function must be a function, acceptable to
apply—it cannot be a macro or the name of a special form, - '

" Here is a table showing the relations between the six map functions.

applies function to

| successive | successive |

| - sublists | elements |
--------------- R e e &
its own | | |
second | map(1) | mapc |
argument | | |
--------------- e it EEE PR P
list of the | | |
returns function] maplist] mapcar]
results | | |
--------------- e ittt et
nconc of the | | |
function | mapcon | mapcan]
results | | |
--------------- R e e T

Note that map and mapl are synonymous. map is the traditional name of this function.
map! is the Common Lisp name. In Common Lisp, the function map docs something
different and incompatible; see cli:map, page 191. mapl works the same in traditional
Zetalisp and Common Lisp.

There arc also functions (mapatoms and mapatoms-all) for mapping over all symbols in
certain packages. See the explanation of packages (chapter 27, page 636).

You can also do what the mapping functions do in a different way by using loop. Sce
page 350. ‘

PS:<LL.MANDIFD-FL.O.TEXT.24 8-JUN-84

	062_FlowOfCtl
	063_FlowOfCtl
	064_FlowOfCtl
	065_FlowOfCtl
	066_FlowOfCtl
	067_FlowOfCtl
	068_FlowOfCtl
	069_FlowOfCtl
	070_FlowOfCtl
	071_FlowOfCtl
	072_FlowOfCtl
	073_FlowOfCtl
	074_FlowOfCtl
	075_FlowOfCtl
	076_FlowOfCtl
	077_FlowOfCtl
	078_FlowOfCtl
	079_FlowOfCtl
	080_FlowOfCtl
	081_FlowOfCtl
	082_FlowOfCtl
	083_FlowOfCtl
	084_FlowOfCtl
	085_FlowOfCtl

