Manipulating ist Structure - 86 Lisp Machine Manual

5. Manipulating List Structure

This chapter discusses functions that manipulate conses, and higher-level structures made up
of conses such as lists and trees. It also discusses hash tables and resources, which are related
facilitics.

A cons is a primitive Lisp data object that is extremely simple: it knows about two other
objects, called its car and its cdr.

A list is recursively defined to be the symbol nil, or a cons whose cdr is a list. A typical list
is a chain of conses: the cdr of cach is the next cons in the chain, and the cdr of the last one is
the symbol nil. The cars of cach of these conses are called the elemients of the list. A list has
one clement for cach cons; the empty list, nil, has no clements at all. Here are the printed
representations of some typical lists:

(foo bar) ;This Tist has two elements.

(a (b c d) e) ;This 1ist has three elements.
Note that the second list has three clements: a, (bcd), and e. The symbols b, ¢. and d are
not clements of the list itself. (They are clements of the list which is the sccond clement of the
original list.)

A dotted list is like a list except that the cdr of the last cons does not have to be nil. This
name comes from the printed representation, which includes a “dot™ character (period). Here is
an example: :

(ab . c)
This dotted list is made of two conses. The car of the first cons is the symbol a, and the cdr of
the first cons is the sccond cons. ‘The car of the sccond cons is the symbol b, and the cdr of the
second cons is the symbol ¢.

A tree is any data structure made up of conses whose cars and cdrs are other conses. The
following arc all printed representations of trees:
(foo . bar)
((a . b) (c . d))
((a.b) (cdef (g . 5)s) (7. 4))

These definitions are not mutually exclusive. Consider a cons whose car is a and whose cdr is
(b (cd)e). Its printed rcpresentation is
(ab (c d)e)
It can be thought of and trcated as a cons, or as a list of four clements, or as a trec containing
six conscs. You can cven think of it as a dotted list whose last cons just happens to have nil as a
cdr. Thus, lists and dotted lists and trees are not fundamental data types; they are just ways of
thinking about structures of conses.

A circular list is like a list except that the cdr of the last cons, instcad of being nil, is the
first cons of the list. This means that the conses arc all hooked together in a ring, with the cdr
of cach cons being the next cons in the ring. These are legitimate Lisp objects, but dealing with
them requires special techniques; straightforward tree-walking recursive functions often loop
infinitely when given a circular list. ‘The printer is is an example of both aspects of the handling
of circular lists: if *print-circle* is non-nil the printer uses special techniques to detect circular

PS:KL.MAN>FI)-CON.TEXT.23 8-JUN-84

Lisp Machine Manual 87 | Conses

structure and print it with a special encoding, but i’ *print-circle* is nil the printer docs not
check for circularity and loops infinitely unless *print-level® or *print-length* imposes a “time
limit”. Sce page 514 for more information on *print-circle* and related matters.

The Lisp Machine internally uses a storage scheme called edr-coding to represent conses. This
scheme is intended to reduce the amount of storage used in lists. The use of cdr-coding is
invisible to programs cxcept in terms of storage cfficiency; programs work the same way whether
or not lists are cdr-coded or not. Several of the functions below mention how they deal with cdr-
coding. You can completely ignore all this if you want. However, if you are writing a program
that allocates a lot of conses and you are concerned with storage cfficiency. you may want to
learn about the cdr-coded representation and how to control it. The cdrcoding scheme is
discussed in scction 5.4, page 100. -

5.1 Conses

car x
Returns the car of x.
‘Example:

(car '(a b c))

> a

cdr x
Returns the cdr of x.
Example: '
(cdr "(a b c)) => (b c)

Officially car and cdr are only applicable to conses and locatives. However, as a matter of
convenicnce, car and cdr of nil return nil. car or cdr of anything clse is an error.

c L] r x
All of the compositions of up to four car’s and cdr's arc defined as functions in their

own right. The names of these functions begin with ¢ and end with r, and in between is
a scquence of a's and d’s corresponding to the composition performed by the function.
Example:

(cddadr x) isthesameas (cdr (cdr (car (cdr x))))
The error checking for these functions is exactly the same as for car and cdr above.

cons x y
cons is the primitive function to create a new cons, whose car is x and whose cdr is y.
Examples:

(cons 'a 'b) => (a . b)
(cons 'a (cons 'b (cons 'c nil))) => (a b c)
(cons 'a (b ¢ d)) => (a b c d)

ncons x

(ncons x) is the same as (cons x nil). The name of the function is from “nil-cons”.

PS:KLLMAN>FD-CON.TEXT.28 8-JUN-84

Conscs 88 Lisp Machine Manual

xcons x y
xcons (“exchanged cons™) is like cons except that the order of the arguments is reversed.
Example: '
(xcons 'a 'b) => (b . a)

cons-in-area x y arca-number :
Creates a cons in a specific area. (Arcas are an advanced feature of storage management,
explained in chapter 16: iff you aren’t interested in them, you can safely skip all this
stuff). The first two arguments are the same as the two arguments to cons, and the third
is the number of the arca in which to create the cons. ‘
Fxample: .
(cons-in-area 'a 'b my-area) => (a . b)

ncons-1n-area x area-number
(ncons-in-area x area-number) = (cons-in-area x nil area-number)

xcons-1in-area x y area-number
(xcons-in-area x y area-number) = (cons-in-area y x area-number)

push item place Macro
Adds an clement item to the front of a list that is stored in place. A new cons is
allocated whose car is ifem and whose cdr is the old contents of place. This cons is
stored into place.

The form ‘

(push (hairy-function x y z) variable)
replaces the commonly-used construct

(setq variable (cons (hairy-function x y z) variable))
and is intended to be more explicit and esthetic.

place can be any form that setf can store into. For example,

(push x (get y z))
==> (putprop y (cons x (get y z)) z)

The returned value of push is not defined.

pop place Macro

Removes an clement from the front of the list that is stored in place. It finds the cons in
place, stores the cdr of the cons back into place, and returns the car of that cons. place
can be any form that setf can store into.
Example:

(setq x '(a b c))

(pop x) => a

x => (b c)

The backquote rcader macro facility is also generally uscful for creating list structure,
especially mostly-constant list structure, or forms constructed by plugging variables into a template.
It is documented in the chapter on macros; sce chapter 18, page 320.

PS:KLLMAN>FD-CON.TEXT.28 8-JUN-84

L isp Machine Manual ' 89 ists

car-location cons
car-location returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function: it is difficult because of the cdr-coding scheme (see
section 5.4, page 100). Instead, the cons itself serves as a kind of locative to its cdr (sce page
267). o '

The functions rplaca and rplacd are used to make alterations in already-cxisting list structure;
that is. to change the cars and cdrs of existing conses. ‘e structure is altered rather than copied.
Exercise caution when using these functions, as strange side-cffects can occur if they are used to
modify portions of list structure which have become shared unbeknownst to the programmer. ‘The
nconc, nreverse, nreconc, nbutlast and delg functions and others, described below, have the
same property, because they call rplaca or rplacd. - ‘

rplaca x y
Changes the car of x to y and returns (the modified) x. x must be a cons or a locative.
y may be any Lisp object.
Example:
(setq g "(a b c))
(rplaca (cdr g) ’d) => (d c)
Now g => (a d ¢)

rplacd x y .
Changes the cdr of x to y and returns (the modificd) x. x must be a cons or a locative.

»y may be any Lisp object.

Example:
(setq x '(a b c))
(rplacd x ’d) => (a . d)
Now x => (a . d)

(setf (car x) y) and (setf (car x) 4 y) are much like rplaca and rplacd, but they return y
rather than x.

5.2 Lists

1ist &rest args
Constructs and returns a list of its arguments.
Example: :
(1ist 3 4 ’'a (car (b . c)) (+ 6 -2)) => (3 4 a b 4)

list could have been defined by:
(defun list (&rest args)
(let ((1ist (make-list (length args))))
(do ((1 list (cdr 1))
(a args (cdr a)))
((null a) list)
(rplaca 1 (car a)))))

PSKL.MANED-CON.TEXT.28 8-JUN-84

Lists 90 -~ Lisp Machine Manual

Tist® &rest args
list* is like list cxcept that the last cons of the constructed list is dotted. 1t must be given
at least onc argument.
Example:
(list* 'a 'b 'c 'd) => (a b c . d)
This is like ' -
(cons 'a (cons 'b (cons 'c 'd)))

More examples:
(lists 'a 'b) => (a . b)
(list* 'a) => a

Yength list-or-array
Returns the length of list-or-array. ‘The length of a list is the number of clements in it;
the number of times you can cdr it before you get a non-cons.
FExamples:
(length-nil) => 0
(length "(a b c d)) => 4
(length '(a (b c) d)) => 3
(length "foobar") => 6
length could have been defined by:
(defun length (x)
(if (arrayp x) (array-active-length x)
(do ((n 0 (1+ n))
(y x (cdr y)))
((null y) n))))

“1ist-length Ilist
Returns the length of list, or nil if list is circular. (The function length would loop
forever if given a circular list.)

first list

second list

third list

fourth list

fifth list

sixth Jist

seventh list
These functions take a list as an argument, and recturn the first, second, etc. clement of
the list. first is identical to car, second is identical to cadr, and so on. The rcason
these names are provided is that they make more sense when you are thinking of the
argument as a list rather than just as a cons,

rest list
restl list
rest2 list
rest3d list
restd list
restn rceturns the rest of the clements of a list, starting with clement n (counting the first

PS:<I.MANYFD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual , 91 , Lists

clement as the 'zcmlh). Thus rest or rest1 is identical to cdr, rest2 is identical w cddr,
and so on. ‘The reason these names are provided is that they make more sense when you
arc thinking of the argument as a list rather than just as a cons.

endp list
Returns t if list is nil, nil if list is a cons cell. Signals an crror if /ist is not a list. 'This
is the way Common Lisp recommends for terminating a loop which cdr's down a list.
- However, Lisp Machine system functions generally prefer to test for the end of the list
with atom; it is regarded as a feature that these functions do something useful for dotted
lists. '

nth -n list
(nth # lisr) returns the n'th clement of Jist, where the zeroth clement is the car of the
list. If nis greater than the length of the list, nil is lcuuncd
Examples:
(nth 1 '(foo bar gack)) => bar
(nth 3 "(foo bar gack)) => nil

Note: this is not the same as the InterLisp function called nth, which is similar to but
not exactly the same as the Lisp Machine function nthedr. Also, . some people have used
macros and functions called nth of their own in their Maclisp programs, whlch may not
work the same way; be careful.

nth could have been defined by:
(defun nth (n list)
(do ((i n (1- 1))
(1 Tist (cdr 1)))
((zerop i) (car 1))))

nthede n list
(nthedr n list) cdrs list n times, and rcturns the result.
Examples:
(nthcdr 0 *(a b c)) => (a b c)
(nthedr 2 "(a b c)) => (c)
In other words, it rcturns the n'th cdr of the list. If n is grcater than the length of the
list, nil is returned.

This is similar to InterLisp’s function nth, except that the Interlisp function is onc-based
instcad of zero-based; sce the Interlisp manual for details. nthcdr could have been
dcfined by:
(defun nthcdr (n list)
(do ((i 0 (1+ 1))
(list list (cdr list)))
((= 1 n) Tist)))

PS:<1.MAN>ED-CON. TEXT 28 ‘ " 8-JUN-84

| .ists

92 Lisp Machine Manual

last list.

last returns the last cons of fist. 1€ Jist is nil, it returns nil. Note that last is
unfortunately nor anatogous to first (first returns the first clement of a list, but last
doesn’t return the last element of a list); this is a historical artifact.
Examples:
(setq x '(a b c d))
(last x) => (d)
(rplacd (last x) '(e T))
x => '(abcdef)
last could have been defined by:
(defun last (x)
(cond ((atom x) x)
((atom (cdr x)) x)
((1ast (cdr x)))))

list-match-p object pattern Macro

object is cvaluated and matched against patrern; the value is t if it matches, nil otherwise.
patiern is made with backquotes (section 18.2.2, page 325); whereas normally a backquote
expression says how to construct list structure out of constant and variable parts, in this
context it says how to match list structurc against constants and variables. Constant parts
of the backquote expression must match cxactly: variables preceded by commas can match
anything but sct the variable to what was matched. (Some of the variables may be set
even if there is no match.) If a variable appcars more than once, it must match the same
thing (equal list structures) cach time. ,ignore can be used to match anything and ignore
it

For example, '(x (,y) . ,z) is a pattern that matches a list of length at least two whose
first clement is x and whose sccond clement is a list of length one; if a list matches, the
caadr of the list is stored into the value of y and the cddr of the list is stored into z.

Variables sct during the matching remain sct after the list-match-p returns; in effect,
list-match-p cxpands into code which can setq the variables. If the match fails, some or
all of the variables may already have been set.

Example:
(1list-match-p foo
‘((a ,x) ,ignore . ,c))
is t if foo’s value is a list of two or more clements, the first of which is a list of two
clements; and in that casc it sets x to (cadar foo) and ¢ to (cddr foo). An equivalent
expression would be

PS:KILMAN>FD-CON.TEXT.28 8-JUN-84

Lisp Machine-Manual ' 93 ‘ Lists

(let ((tem foo0))
(and (consp tem)
(consp (car tem))
(eq (caar tem) ‘a)
(consp (cdar tem))
(progn (setq x (cadar tem)) t)
(nul1 (cddar tem))
(consp (cdr tem))
(setq ¢ (cddr tem))))
but list-match-p is faster.

~ list-match-p generates highly optimized code using special instructions.

list-in-area arca-number &rcst args
list-in-area is cxactly the same as list cxcept that it takes an extra argument, an arca
number, and creates the list in that area.

l1ist*-in-area area-number &rcst args
list*-in-area is cxactly the samc as list* cxcept that it takes an extra argument, an area
number, and creates the list in that area.

~make-11st Jengih &key area initial-element _
Creates and returns a list containing length clements. Jlength should be a fixnum. area, if
specified, is the arca in which to create the list (sec chapter 16, page 296). If it is nil,
the arca used is the value of working-storage-area.

initial-element is stored in cach clement of the new list.

make-list always creates a cdr-coded list (sce section 5.4, page 100).
Examples:

(make-1ist 3) => (nil nil nil)

(make-list 4 :initial-element 7) => (7 7 7 7)

The keyword :initial-value may be uscd in place of :initial-element.

When make-list was originally implemented, it took exactly two arguments: the arca and
the length. This obsolete form is still supported so that old programs can continue to
work, but the new keyword-argument form is preferred.

circular-1ist &rest args
Constructs a circular list whose elements are args repeated infinitely. circular-list is the
same as list except that the list itsclf is uscd as the last cdr, instead of nil. circular-list
is espccially useful with mapcar, as in the expression
' (mapcar (function +) foo (circular-list 5))
which adds cach element of foo to 5.

PS:<L.MAN>EFD-CON.TEXT.28 8-JUN-84

Lists

copy]l
copy-

copyl

94 Lisp Machine Manual

circular-list.could have been defined by:
(defun circular-list (&rest elements)
(setq elements (copylist+ elements))
(rplacd (last elements) elements)
elements)

ist list &optional area

1ist list &optional area . ‘

Returns a list which is equal to /isz. but not eq. copylist docs not copy any clements of
the list. only the conses of the list itself. The returned list is fully cdr-coded (see scction
5.4. page 100) to minimize storage. If /isr is dotted, that is. if (cdr (last fisr)) is a non-
nil atom, then the copy also has this property. You may optionally specify the area in
which to crcate the new copy.

ist* /list &optional area

This is the same as copylist except that the last cons of the resulting list is never cdr-
coded (sce section 5.4, page 100). This makes for incrcased cfficiency if you nconc
something onto the list later. ‘

copyalist Jist &optional area

copy-

appen

alist list &optional area

copyalist is for copying association lists (scc scction 5.5, page 102). The Jist is copied, as
in copylist. In addition, cach element of /ist which is a cons is replaced in the copy by a
new cons with the same car and cdr. You may optionally specify the arca in which to
crcate the new copy.

d &rest lists

The arguments to append are lists. The result is a list which is the concatcnation of the
arguments. ‘The arguments arc not changed (cf. nconc).

Example:

(append *(a b c) '(de f) nil ’(g)) => (ab cde f g) ‘
append makes copics of the conses of all the lists it is given, cxcept for the last one. So
the new list shares the conscs of the last argument to append, but all of the other conses
arc newly created. Only the lists arc copied, not the elements of the lists.

A version of append which only accepts two arguments could have been defined by:
(defun append2 (x y)
(cond ((null x) y)
((cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made (relying on car of nil
being nil):
{(defun append (&rest args)
(if (< (length args) 2) (car args)
(append2 (car args)
(apply (function append) (cdr args)))))

PS:KLLMANDED-CON.TEXT.28 8-JUN-84

Lisp Machine Manual 95 Lists

These definitions do not express the full functionality of append: the real definition
minimizes storage utilization by twrning all the arguments that are wlmd into onc cdr-
~coded list.

To copy a list, use copyhst (scc page 94). the old practice of using append to copy lists
is unclear and obsolete. :

nconc &rest lists

nconc takes lists as argumcnls It returns a list which is the arguments concatenated
together, ‘The arguments are changed, rather than copied (cf. append, page 94).
Fxample:

(setq x "(a b c))

(setq y "(d e f))

(nconc x y) => (abcdef)

x => (abcdef) ,
Note that the value of x is now different, since its last cons has been rplacd'd to the
value of y. If the nconc form were cvaluated again, it would yicld a picce of circular
list structure, whose printed rcpncecntauon would bc @abcdefdefdef.),
repeating forever.

nconc could have been defined by:

(defun nconc (x y) ; for simplicity, this dcfinition
(cond ((null x) y) ; only works for 2 arguments,
(t (rplacd (last x) y) ;hookyontox
x))) ; and return the modified x.

revappend x y
(revappend x y) is cxactly the same as (nconc (reverse x) y) except that it is more
cfficient. Both x and y should be lists.

revappend could have been defined by:
(defun revappend (x y)
(cond ((null x) y)
(t (revappend (cdr x) (cons (car x) y)))))

nreconc x y
(nreconc x y) is cxactly the same as (nconc (nreverse x) y) except that it is more

cfficient. Both x and y should be lists,

nreconc could have been defined by:
(defun nreconc (x y)
(cond ((null x) y)
((nreversel x y))))
using the same nreverse1 as above.

PS:KLLLMAN>FD-CON.TEXT.28 8-JUN-84

Lists 96 ' Lisp Machine Manual

butlast. /ist &optional (n1)
This creates and returns a list with the same clements as lisf, cxcepting the last n
clements.
Examples:
{butlast '(a b c d)) => (a b c)
(butlast *(a b ¢ d) 3) => (a)
(butlast '(a b c d) 4) => nil
(butlast nil) => nil
‘Yhe name is from the phrase “all clements but the last™.

nbutlast /iss &optional (1 1) .
This is the destructive version of butlast; it changes the cdr of the last cons but # of the

list w nil. The value is lisr, as modified. If list does not have more than » clements
then it is not really changed and the value is nil.
Examples:

(setq foo '(a b ¢ d))

(nbutlast foo) => (a b c)

foo => (a b c)

(nbutlast foo 2) => (a)

foo => (a)
(nbutlast foo) => nil
foo => (a)

firstn n list
Returns a list of length n, whosc clements are the first 7 elements of list. If list is fewer

than » clements long, the remaining clements of the returned list are nil.
Examples:

(firstn 2 '(a b c d)) => (a b)

(firstn 0 (a b c d)) => nil

(firstn 6 (a b c d)) => (a b c d nil nil)

nleft » list &optional tail :
Returns a “tail” of list, ie. one of the conses that makes up Iist, or nil. (nieft n list)
returns the last n elements of list. If n is too large, nleft returns list.

(nleft n list 1ail) takes cdr of list enough times that taking » more cdrs would yield tail,
and returns that. You can sec that when /ail is nil this is the same as the two-argument
casc. If rail is not eq to any tail of /ist, nleft returns nil.
Examples:

(setq x '(abcde f))

(nleft 2 x) => (e f)

(nleft 2 x (cddddr x)) => (c d e f)

Ydiff list tail
- list should be a list, and il should be one of the conses that make up /istz. Idiff
(mcaning ‘list difference’) returns a new list, whose clements are thosc clements of Jist that

appear before tail.

PS:KLLMAN>ED-CON.TEXT.28 8-JUN-84

)

Lisp Machine Manual 97 . Cons Cells as 'I'rees

Examples: ,

(setq x "(a b cde))

(setq y (cdddr x)) => (d e)

(1diff x y) => (a b c)

(Tdiff x nil) => (a b c d e)

(1diff x x) => nil
but

(1diff "(a b c d) "(c d)) => (a b c d)
since the ail was not eq to any part of the /ist.

car-safe object
cdr-safe object
caar-safe object
cadr-safe object
cdar-safe object
cddr-safe object
caddr-safe object
cdddr-safe object
cadddr-safe object
cddddr-safe object .
nth-safe n object
nthedr-safe n object
Return the same things as the corresponding non-safe functions, cxcept nil if the non-
safe function would get an error. These functions are about as fast as the non-safe
functions. The same cffect could be had by handling the sys:wrong-type-argument
crror, but that would be slower. Examples:
(car-safe '(a . b)) => a
(car-safe nil) => nil
(car-safe 'a) => nil
(car-safe "foo") => nil
(cadr-safe *(a . b)) => nil
(cadr-safe 3) => nil

5.3 Cons Cells as Trees

copytree tree &optional area

copy-tree tree &optional area
copytree copies all the conses of a tree and makes a new maxlmally cdr-coded tree wnth
thc same fringe. If area is specified, the new tree is constructed in that area,

tree-equal x y &key test test-not
Compares two trecs recursively to all levels. Atoms must match under the function fest

(which defaults to eql). Conses must match recursively in both the car and the cdr.

If test-not is specified instcad of tesr, two atoms match if fest-not returns nil,

PS:<I .MAN>FD-CON.TEXT.28 | 8-JUN-84

Cons Cells as Trees 98 1 isp Machine Manual

subst new old tree

(subst new old tree) substitutes new for all occurrences of old in tree, and returns the
modified copy of rree. ‘The original sree is unchanged, as subst recursively copies all of
tree replacing clements equal to old as it gocs.

Example:

(subst 'Tempest 'Hurricane
"(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

subst could have been defined by:
(defun subst (new old tree)
(cond ((equal tree old) new) ;ifitem cqualtoold, replace.
((atom tree) tree) * il no substructure, return arg.
((cons (subst new old (car tree)) ;otherwisc recurse.
(subst new old (cdr tree))))))

Note that this function is not destructive; that is, it does not change the car or cdr of
any alrcady-cxisting list structure.

To copy a tree, use copytree (sce page 97); the old practice of using subst to copy trees
is unclear and obsolete.

cli:subst new old tree &kecy test test-not key
The Common Lisp version of subst replaces with new every atom or subtree in tree
which matches old, returning a new tree. List structurc is copied as nccessary to avoid
clobbering parts of tree. 'This differs from the traditional subst function, which always
copies the entire tree.

test or ftest-not is used to do the matching, If rest is specified, a match happens when fest
returns non-nil; otherwise, if test-not is specified, a match happens when it returns nil. If
neither is specified, then eql is used for rest.

The first argument to the fest or fest-not function is always old. The sccond argument is
normally a leaf or subtree of free. Howcver, if key is non-nil, then it is called with the
subtree as argument, and the result of this becomes the sccond argument to the fest or
test-not function.

Becausc (subst nil nil tree) is a widely used idiom for copying a tree, cven though it is
obsolete, there is no practical possibility of installing this function as the standard subst
for a long time.

nsubst new old tree &key test test-not key
nsubst is a destructive version of subst. The list structure of free is altered by replacing
cach occurrence of old with new. No new list structurc is created. The keyword
arguments are as in cli:subst.

A simplificd version of nsubst, handling only the three required arguments, could be
defined as

PSKL.MAN>FD-CON.TEX'T.28 8-JUN-84

Lisp Machine Manual ‘ 9 Cons Cells as 'I'rees

(defun nsubst (nevi old tree)

(cond ((eql tree old) new) : If item matches old. replace.
((atom tree) tree) ;1 no substructure, return arg.
(t :Otherwise, recurse.

(rplaca tree (nsubst new old (car tree)))
(rplacd tree (nsubst new old (cdr tree)))
tree))) .

subst-1f new predicate tree &key key _
Replaces with new every atom or subtree in free which satisfies predicare. List structure is
copicd as necessary so that the original tree is not modified. key, if non-nil, is a function
applied to cach tree node to get the ol)Jcct to match against. If key is nil or omitted, the
trec node itsclf is used.

subst-1f-not new predicate 1ree &key key:
Similar, but replaces tree nodes which do not satisfy predicate.

nsubst-if new predicate tree &key key

nsubst-if-not new predicate tree &kcy key
Like subst-if and subst-if-not except that they destructively modify rree itself and return
it, creating no new list structure.

sublis alist tree &key test test-not key .
Performs multiple parallel replacements on free, returning a new tree. free itself is not
modified because list structure is copied as nccessary. 1f no substitutions are made, the
result is free. alist is an association list (sce scction 5.5, page 102). Each clement of alist
specifics one replacement; the car is what to look for, and the cdr is what to replace it
with.

test, test-not and key control how matching is done between nodes of the tree (cons cells
or atoms) and objects to be replaced. Sece cli:subst, above, for the details of how they
work. The first argument to rest or test-not is the car of an element of alist.
Example:
(sublis '((x . 100) (z . zprime))
"(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

A simplificd sublis could be defined by:
(defun sublis (alist tree)
(let ((tem (assq tree alist)))
(cond (tem (cdr tem))

({(atom tree) tree)

(t

(let ((car (sublis alist (car tree)))

(cdr (sublis alist (cdr tree))))
(if (and (eq (car tree) car) (eq (cdr tree) cdr))

~ tree :
(cons car cdr)))))))

PS:<I.MAN>FD-CON.TEXT.28 _ 8-JUN-84

Cdr-Coding 100 |_,i.~;p Muachine Manual

- nsublis dalist tree &key test fest-not key _
nsublis is like sublis but changes the original tree instead of allocating new structure,

A simplified nsublis could be defined by:
(defun nsublis (alist tree)
(let ((tem (assq tree alist)))
(cond (tem (cdr tem))
((atom tree) tree)
(t (rplaca tree (nsublis alist (car tree)))
(rplacd tree (nsublis alist (cdr tree)))
tree))))

5.4 Cdr-Coding

This section cxplains the -internal data format used to store conses inside the Lisp Machine.
Casual users don't have to worry about this; you can skip this scction if you want. 1t is only
important to rcad this scction if you require extra storage cfficiency in your program.

The usual and obvious internal representation of conscs in any implementation of Lisp is as a
pair of pointers, contiguous in memory. If we call the amount of storage that it takes to store a
Lisp pointer a ‘word’, then conses normally occupy two words. On¢ word (say it's the first) holds
the car, and the other word (say it's the sccond) holds the cdr. To get the car or cdr of a list,
you just reference this memory location, and to change the car or cdr, you just store into this
memory location.

Very often, conscs are used to store lists. If the above representation is used, a list of n
clements requires two times n words of memory: n to hold the pointers to the clements of the
list, and » to point to the next cons or to nil. To optimize this particular casc of using conses,
the Lisp Machine uses a storage representation called cdr-coding to store lists. The basic goal is to
allow. a list of n clements to be stored in only #n locations, while allowing conses that are not
parts of lists to be stored in the usual way.

The way it works is that there is an extra two-bit ficld in every word of memory, called the
cdr-code ficld. There are threc meaningful valucs that this field can have, which are called cdr-
normal, cdr-next, and cdr-nil. The rcgular, non-compact way to storc a cons is by two
contiguous words, the first of which holds the car and the second of which holds the cdr. In this
case, the cdr-code of the first word is cdr-normal. (The cdr-code of the sccond word docsn’t
matter; as we will sce, it is never looked at) The cons is represented by a pointer to the first of
the two words. When a list of n clements is stored in the most compact way, pointers to the n
clements occupy n contiguous memory locations. The cdr-codes of all these locations are cdr-
next, cxcept the last location whose cdr-code is cdr-nil. The list is represented as a pointer to
the first of the n words.

Now, how are the basic operations on conscs defined to work based on this data structure?
Finding the car is casy: you just rcad the contents of the location addressed by the pointer.
Finding the cdr is morc complex. First you must read the contents of the location addressed by
the pointer,- and inspect the cdr-code you find therc. If the code is cdr-normal, then you add
one to the pointer, rcad the location it addresses, and return the contents of that location; -that is,

PSKLLMAN>FD-CON.TEXT.28 ' 8-JUN-84

Lisp Machine Manual : 101 ~ Cdr-Coding

you read the second of the two words. If the code is cdr-next, you add one to the pointer, and
simply return - that pointer without doing any more reading: that is, you return a pointer to the
next word in the #-word block. If the code is cdr-nil, you simply return nil.

If you cxamine these rules, you will find that they work fine even if you mix the two kinds
of storage representation within the same list.

How about changing the structure? like car, rplaca is very casy: you just store into the
location addressed by the pointer. To do rplacd you must read the location addressed by the
pointer and cxamine the cdr-code. If the code is cdr-normal. you just store into the location
one greater than that addressed by the pointer; that is, you store into the second word of the
two words. But if the cdr-code is cdr-next or cdr-nil, therc is a problem: there is no memory
cell that is storing the cdr of the cons. ‘That is the cell that has been optimized out; it just
doesn’t exist.

‘This problem is dealt with by the use of invisible pointers. An invisible pointer is a special
kind of pointer, recognized by its data type (Lisp Machine pointers include a data type ficld as
well as an address ficld). The way they work is that when the lisp Machine rcads a word from
memory, if that word is an invisible pointer then it proceeds to read the word pointed to by the
invisible pointer and use that word instcad of the invisible pointer itself. Similarly, when it writes
to a location, it first reads the location, and if it contains an invisible pointer then it writes to the
“location addressed by the invisible pointer instcad. (This is a somewhat simplificd explanation;
actually there are several kinds of imvisible pointer that are interpreted in different ways at
different times, used for things other than the cdr-coding scheme.)

Here's how to do rplacd when the cdr-code is cdr-next or cdr-nil. Call the location
addressed by the first argument to rplacd /. First, you allocate two contiguous words in the same
arca that / points to. Then you store the old contents of / (the car of the cons) and the second
argument to rplacd (the new cdr of the cons) into these two words. You set the cdr-code of the
first of the two words to cdr-normal. Then you write an invisible pointer, pointing at the first
of the two words, into location /. (It doesn’t matter what the cdr-code of this word is, since the
invisible pointer data type is checked first, as we will see.)

Now, whenever any opecration is done to the cons (car, cdr, rplaca, or rplacd), the initial
reading of the word pointed to by thc Lisp pointer that represents the cons finds an invisible
pointer in the addressed cell. When the invisible pointer is scen, the address it contains is used
in place of the original address. So the newly-allocated two-word cons is used for any operation
done on the original object.

Why is any of this important to users? In fact, it is all invisible to you; cverything works the
same way whether or not compact representation is used, from the point of view of the semantics
of the language. That is, the only difference that any of this makes is a difference in cfficiency.
‘The compact representation is more cfficient in most cases. However, if the conscs are going to
get rplacd’ed, then invisible pointers will be crcated, cxtra memory will be allocated, and the
compact representation will degrade storage efficiency rather than improve it. Also, accesses that
go through invisible pointers are somewhat slower, since more memory references are needed. So
if you care a lot about storage efficiency, you should be careful about which lists get stored in
which representations. '

PS:KKLLMANDFD-CON.TEXT.28 8-JUN-84

Tables : 102 - Lisp Machine Manual

You should try to use the normal representation for those data structures that will be subject
to rplacd operations, including nconc and nreverse, and the compact representation for other
structures. ‘The functions cons, xcons, ncons, and their arca variants make conses in the
normal representation. The functions list. list*, list-in-area, make-list. and append usc the
compact representation. ‘The other list-creating functions, including read. currently make normal
lists, although this might get changed. Some functions, such as sort, take special care to operate
efliciently on compact lists (sort cffectively treats them as arrays). nreverse is rather slow on
compact lists. currently, since it simple-mindedly uses rplacd. but this may be changed.

(copylist x) is a suitable way to copy a list, converting it into compact form (see page 94).

5.5 Tables

Zetalisp includes functions which simplify the maintenance of tabular data structures of several
varieties. The simplest is a plain list of items There are functions to add (cons). remove (delete,
delg. del. del-if, del-if-not, remove, remq. rem, rem-if, rem-if-not), and scarch for
(member, memqg. mem) items in a list.

Association lists are very commonly used. An association list is a list of conses. The car of
each cons is a “key” and the cdr is a “datum™, or a list of associated data. 'The functions assoc,
assq, ass. memass, and rassoc may be used to retrieve the data, given the key. For example,

((tweety . bird) (sylvester . cat))
is an association list with two clements. Given a symbol representing the name of an animal, it
can retricve what kind of animal this is.

Structured records can be stored as association lists or as stercotyped cons-structurcs where
cach clement of the structure has a certain car-cdr path associated with it. However, these are
better implemented using structure macros (see chapter 20, page 372) or as flavors (chapter 21,
page 401).

Simple list-structurc is very convenient, but may not be efficient enough for large data bases
because it takes a long time to scarch a long list. Zectalisp includes hash table facilities for more
cfficient but more complex tables (sec section 5.11, page 116), and a hashing function (sxhash) to
aid users in constructing their own facilities.

5.6 Lists as Tables

memq ilem list :

Returns nil' if item is not onc of the clements of list. Otherwise, it returns the sublist of
list beginning with the first occurrence of item; that is, it returns the first cons of the list
whose car is item. The comparison is made by eq. Because memq rcturns nil if it
doesn’t find anything, and somcthing non-nil if it finds something, it is oftcn used as a
predicate.
Examples:

(memq 'a '(1 2 3 4)) => nil

(memq 'a '(g (x ay)cadeaf)) =>(adeaf)
Note that the value reurncd by memgq is eq to the portion of the list beginning with a.

PS:KLLMANDEFD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual ‘ ‘ 103 Lists as Tables

Thus rplaca on the result of memg may be used, if you first check to make sure memq
did not return nil,
Fxample:

(Tet ((sublist (memq x z))) : Scarch for x in the list z.
(if (not (null sublist)) ~aIfidis found,
(rplaca subTist y))) ; Replace it with y.

memgq could have been defined by:
(defun memq (item 1list)
(cond ((null list) nil)
((eq item (car tist)) hst)
(t (memq item (cdr list)))))

memq is hand-coded in microcode and therefore especially fast. It is cquivalent to
climember with eq specified as the rest argument.

member irem list :
member is likc memq, cxcept equal is used for the comparison, instcad of eq. Note

that the member function of Common Lisp, which is climember, is similar but
thoroughly incompatible (see below).

member could have been defined by:
(defun member (item list)
(cond ((null list) nil)
((equal item (car 1list)) list)
(t (member item (cdr list)))))

cli:member item list &key lest test-not key :
‘The Common Lisp member function. It is like memq or member cxcept that there is
more generality in how elements of list arc matched against ifem—and the default is

incompatible.

test, test-not and key are used in matching the clements, just as described under cli:subst
(scc page 98). If ncither fest nor test-not is specified, the default is to compare with eql,
whereas member compares with equal.

Usually rest is a commutative predicate such as eq, equal, =, char-equal or string-
equal. It can-also be a non-commutative predicate. The predicate is called with item as
its first argument and the clement of /ist as its sccond argument. Example:

(cli:member 4 (1.5 2.6 2 3.5 4.5 8) :test ’'<) => (4.5 8)

member-1f predicate list &key key .
Scarches the elements of /ist for one which satisfics predicate. 1f onc is found, the value
is the tail of list whose car is that clement. Otherwise the value is nil.

If key is non-nil, then predicate is applicd to (funcall key element) rather than to the
clement itself.

PS:KL.LMAN>ED-CON.TEXT.28 8-JUN-84

Fists as Tables 104 Lisp Machine Manual

member-1f-not predicate list &key key
Scarches for an element which does not satisfy predicate. Otherwise like member -if.

mem predicate item list
Is equivalent to
(c1i:member item list :test predicaie)

The function mem antedates cli:member.

find-position-in-1ist item list
Scarches /ist for an clement which is eq to irem, like memqg. However, it returns the
numeric index in the list at which it found the first occurence of jrent, or nil if it did not
find it at all. ‘This function is sort of the complement of nth (sce page 91); like nth, it
is zero-based.
Examples:

(find-position-in-list 'a '(a b c)) => 0
(find-position-in-list 'c "(a b ¢c)) => 2
(find-position-in-list ‘e '(a b c)) => nil

Sece also the generic sequence function position (page 198).

find-position-in-1ist-equal item list
Is like find-position-in-list, except that the comparison is done with equal instcad of

€q.

tailp sublist list
Returns t if sublist is a sublist of list (i.e. one of the conses that makes up lisf).
Otherwise returns nil. Another way to look at this is that tailp returns t if (nthcdr n list)
is sublist, for some value of n. tailp could have been defined by:
(defun tailp (sublist Tist)
(do Tist list (cdr Tist) (null list)
(if (eq sublist list)
(return t))))

delq item list &optional n
(delq item list) rcturns the list with all occurrences of item removed. eq is used for the
comparison. The argument Jlist is actually modified (rplacd’ed) when instances of item are
spliced out. delq should be used for value, not for cffect. That is, use
(setq a (delq 'b a))
rather than
(delq 'b a)
These two arc not cquivalent when the first clement of the value of a is b.

(delq item list n) is like (delq item list) except only the first n instances of item are
deleted. » is allowed to be zero. If n is greater than or ecqual to the number of
occurrences of item in the list, all occurrences of item in the list are deleted.
Example:

(delq ’a (b ac (ab) dae))=(bc(ab)de)

PS:KLLMAN>EFD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual ' 105 ' Fists as Tables

delq could have been defined by:
(defun delq (item list &optional (n -1))
(cond ((or (atom list) (zerop n)) list)

((eq . item (car list))

(delq item (cdr list) (1- n)))

(t (rplacd list (delq item (cdr 1list) n)))))
If the third argument () is not supplied. it defaults to -1 which is cffectively infinity
since it can be decremented any number of times without reaching zero.

delete item list &optional n _ v
delete is the same as delq cxcept that equal is used for the comparison instead of eq.

Common Lisp programs have a different, - incompatible function called delete: sce page
195. This function may be useful in non-Common-1isp programs as well, where it can be
referred to as cli:delete.

de1 predicate item list &optional n
del is the same as delq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (del 'eq a
b) is the same as (delq a b). Scc also mem, page 104.

Usc of del is cquivalent to
(cli:delete item list :test predicate)

remq ifem list &optional n
remq is similar to delq, except that the list is not altered; rather, a new list is returned.
Examples: : ‘
(setq x "(abcde f))
(remg 'b x) => (a c de f)
X =>(abcdef)
(remg 'b *(abcbab)?2)=>(acahb)

remove item list &optional n
remove is the same as remq except that equal is used for the comparison instead of eq.
Common Lisp programs have a different, incompatible function called remove; sce page
195. This function may be useful in non-Common-Lisp programs as well, where it can be
referred to as cli:remove.

rem predicate item list &optional n
rem is the same as remq cxcept that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instcad of eq. (rem 'eq a
b) is the same as (remq a b). Scc also mem, page 104,

The function rem in Common Lisp programs is actually cli:rem, a remainder function.
Sec page 144,

PSKLLMAN>FD-CON.TEXT28 | 8-JUN-84

[ists as Tables 106 ' Lisp Machine Manual

subsat predicate list

rem-1if-not predicare list
predicate should be a function of onc argument. A new list is made by applying predicate
to all of the clements of fist and removing the ones for which the predicate returns nil.
One of this function’s names (rem-if-npot) means “remove if this condition is not truc™,
i.c. it keeps the clements for which predicate is true. 'The other name (subset) refers to
the function’s action if /iss is considered to represent a mathematical set.
Fxample: ,

(subset #'minusp '(1 2 -4 2 -3)) => (-4 -3)

subset-not predicate list

rem-1f predicate list
predicate should be a function of one argument. A new list is made by applying predicate
to all of the clements of list and removing the ones for which the predicate returns non-
nil. One of this function's names (rem-if) mecans “remove if this condition is true™. The
other name (subset-not) refers to the function’s action if Jist is considered to represent a
mathcmatical sct.

del-1f predicate list
del-if is just like rem-if except that it modifics Jiss rather than crcating a new list.

del-1f-not predicate list
del-if-not is just like rem-if-not cxcept that it modifies list rather than crcating a new
© list.

Sce also the gencric sequence functions delete-if, delete-if-not, remove-if and remove-if-
not (page 194).

every list predicate &optional siep-function
Retrns t if predicate returns non-nil when applied to every clement of list, or nil if
predicate returns nil for some element. If step-function is present, it replaces cdr as the
function used to get to the next element of the list; cddr is a typical function to use
here.

In Common Lisp programs, the name every refers to a different, incompatible function
which serves a similar purpose. It is documented in the manual under the name cli:every.
Sce page 192.

some list predicate &optional step-function
Returns a tail of Jisz such that the car of the tail is the first clement that the predicate
returns non-nil when applied to, or nil if predicate returns nil for every clement. If step-
function is present, it replaces cdr as the function used to get to the next clement of the
list; cddr is a typical function to usc here. '

In Common Lisp programs, the name some refers to a different, incompatible function
which scrves a similar purpose. It is documented in the manual under the name cli:some.
Sce page 191.

PS:KL.MAN>FD)-CON.TEX'T.28 o 8-JUN-84

Lisp Machine Manual - 107 Lists as Sets

5.7 Lists as Sets

A list can be used to represent an unordered set of objects, simply by using it in a way that
ignores the order of the clements. Membership in the set can be tested with memqg or member,
and some other functions in the previous section also make sense on lists representing sets. This
section describes several functions specifically intended for lists that represent sets.

It is often desirable to avoid adding .duplicate clements in the list. The set functions attempt
to introduce no duplications, but do not attempt to ecliminate duplications present in their
arguments, If you need to make absolutely certain that a list contains no duplicates, usc remove-
duplicates or delete-duplicates (sc¢ page 196).

subsetp list] list2 &key test test-not key
t if cvery clement of /ist/ matches some clement of list2.

The keyword arguments control how matching is done. Either test or fest-not should be a
function of two arguments. Normally it is called with an clement of /ist/ as the first
argument and an clement of /ist2 as the sccond argument. If rest is specified, a match
happens when fest returns non-nil; otherwise, if tes-not is spccified, a match happens
when it returns nil. 1f ncither is specified, then eql is used for test.

If key is non-nil, it should be a function of onc argument. key is applied to cach list
clement to get a key to be passed to fest or rest-not instead of the clement,

adjoin item list &key test test-not key
Returns a list like /isr but with ifem as an additional clement if no existing element
matches item. It is done like this: '
(if (cli:member (if key (funcall key item) item)
list other-args. . .)
list
(cons item list))
The keyword arguments work as in subsetp.

pushnew item list-place &kcy test test-not key Macro
Pushes ifem onto list-place unless jtem matches an existing element of the value stored in
that place. Equivalent to
(setf list-place
(adjoin item list-place keyword-args...))
except for order of evaluation. Compare with push, page 88.

union list &rest more-lists
Returns a list representing the set which is the union of the sets represented by the
arguments. Anything which is an element of at least onc of the arguments is also an

element of the result.

Each clement of each list is compared, using eq, with all clements of the other lists, to
make sure that no duplications arc introduced into the result. As long as no individual
argument list contains duplications, the result does not cither.

PS:<L.MAN>FD-CON.TEXT.28 8-JUN-84

Lists as Scts 108 I isp Machine Manual

It is best to use union with only two arguments so that your code will not be sensitive to
the difference between the traditional version of union and the Common Lisp version
cli:union, below.

intersection /list &rest more-lists
If lists are regarded as sets of their clements, intersection returns a list which is the
intersection of the lists which are supplied as arguments. If /ist contains no duplicate
clements, neither does the value returned by intersection. Elements are compared using

eq.

It is best to use intersection with only two arguments so that your code will not be
sensitive to the difference between the traditional version of intersection and the Common
Lisp version clizintersection, below.,

nundon Jist &rest more-lists
If lists are regarded as scts of their clements, nunion maodifies /ist to become the union of
the lists which arc supplied as arguments. ‘This is done by adding on, at the end, any
clements of the other lists that were not alrcady in list. If nonc of the arguments
contains any duplicate clements, neither docs the value returned by nunion. FElements are
compared using eq.

It is not safc to assume that /ist has been modified properly in place, as this will not be
so if Jist is nil. Rather, you must store the value returned by nunion in place of /ist.

It is best to use nunion with only two arguments so that your code will not be sensitive
to the difference between the waditional version of nunion and the Common Lisp version
cli:nunion, bclow.

nintersection list &rest more-lists
Like intersection but produces the value by deleting clements from Iist until the desired

result is reached, and then returning /ist as modified.

It is not safe to assume that list has been modified properly in place, as this will not be -
so if the first clement was deleted. Rather, you must store the value returned by
nintersection in place of list.

It is best to usc nintersection with only two arguments so that your code will not be
sensitive to the difference between the traditional version of nintersection and the
Common Lisp version cli:nintersection, below.

cli:unton list] list2 &key test test-not key

cii:intersection lis/l list2 &key test test-not key

cli:nunion list] list2 &key test test-not key

cli:nintersection listi list2 &key test test-nol key
‘The Common Lisp versions of the above functions, which accept only two scts to operate
on, but permit additional arguments to control how clements are matched. These keyword
arguments work the same as in subsetp.

PS:KL.MAN>EFD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual 109 ' Association 1ists

set-difference /ist/ list? &key test test-not key
Returns a list which has all the clements of fist/ which do not match any clement of
list2. 'The keyword arguments control comparison of clements just as in subsetp.

‘The result contains no duplicate clements as long as /ist/ contains none.

set-exclusive-or /ist/ list2 &key test test-not key
Returns a list which has all the clements of /ist/ which do not match any clement of
list2, and also all the clements of /ist2 which do not match any clement of Jistl. The
keyword arguments control comparison of clements just as in subsetp.

The result contains no duplicate clements as long as ncither /ist/ nor list2 contains any.

nset-difference /ist/ list2 &key test test-not key
like set-difference but destructively modifies /ist/ to produce the value. Sce the caveat
in nintersection, above,

nset-exclusive-or listl list2 &key test test-not key
Like set-exclusive-or but may destructively modify both /list/ and /isz2 to produce the
valuc. Sce the caveat in nintersection, above.

5.8 Association Lists

In all the alist-scarching functions, alist clements which arc nil arc ignored; they do not count
as cquivalent to (nil . nil). Elements which aré not lists cause errors.

pairlis cars cdrs &optional tail
pairlis takes two lists and makes an association list which associates clements of the first
list with corresponding clements of the second list.
Example:
(pairlis ’(beef clams kitty) '(roast fried yu-shiang))
=> ((beef . roast) (clams . fried) (kitty . yu-shiang))

If tail is non-nil, it should be another alist. The new alist continues with il following
the newly constructed mappings.

pairlis is defined as:
(defun pairlis (cars cdrs &optional tail)
{nconc (mapcar ’cons cars cdrs) tail))

acons acar acdr tail

Returns (cons (cons acar acdr) tail). This adds onc additional mapping from acar to
acdr onto the alist tail.

PS:KLMAN>FD-CON.TEXT.28 8-JUN-84

Assoctation Lists 110 Lisp Machine Manual

assq item alist
(assq item alist) looks up irem in the association list (list of conses) alist. The value is
the first cons whose car is eq to x, or nil if there is none such. '
Fxamples:
(assq 'r '({a . b) (c . d) (r . x) (s . y) (r. 2)))
= (r . X)

(assq 'fooo '((foo . bar) (zoo . goo))) => nil
(assq 'b "((a b c) (bcd) (xyz))) =>(bc d)

It is okay to rplacd the result of assq as long as it is not nil, if your intention is to
“update™ the “table™ that was assq’s sccond argument.
Iixample:
(setq values ’((x . 100) (y . 200) (z . 50)))
{assq 'y values) => (y . 200)
(rplacd (assq 'y values) 201)
(assq 'y values) => (y . 201)

A common trick is to say (cdr (assg x y)). Since the cdr of nil is guaranteed to be nil,
this yiclds nil if no pair is found (or if a pair is found whose cdr is nil.)

assq could have been defined by:
(defun assq (item list)
(cond ((null 1list) nil)
((eq item (caar 1list)) (car 1list))
((assq item (cdr 1list)))))

assoc item alist
assoc is like assq cxcept that the comparison uscs equal instead of eq.
Example: '
(assoc "(a b) "((x . y) ((ab) . 7) ((c.d).e)))
=> ((a b) . 7)
assoc could have been defined by:
(defun assoc (item list)
{(cond ((null 1ist) nil)
((equal item (caar 1list)) (car 1list))
((assoc item (cdr 1ist)))))

cli:assoc item alist &key test test-not
The Common Lisp version of assoc, this function returns the first element of alist which

is a cons whose car matches ifem, or nil if there is no such element.

test and test-not arc used in comparing clements, as in cli:subst (page 98), but note that
there is no key argument in cli:assoc.

cli:assoc is incompatible with the traditional function assoc in that, like most Common
Lisp functions, it uscs eql by dcfault rather than equal for the comparison.

PSKKLLMAN>FD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual 111 Association Lists

ass predicate item alist
ass is the same as assq cxcept that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instcad of eq. (ass 'eq a
b) is the same as (assq a b). Scc also mem, page 104.

This function is part of The mem, rem. del scrics, whose names were chosed partly

because they created a situation in which this funetion simply had to be called ass. It's

oo bad that cli:assoc is so general and subsumes ass, which is equivalent to
(cli:assoc #em alist :test predicate)

assoc-1f predicate alist
Returns the first clement of afist which is a cons whose car satisfies predicate, or nil if
there is no such clement. '

assoc-if-not predicate alist
Returns the first clement of alist which is a cons whose car does not bamfy predicate, or
nil if there is no such clement,

memass predicate item alist
memass scarches alist just like ass, but rcturns the portion of the list beginning with the
pair containing item, rather than the pair itsclf. (car (memass x y z)) = (ass x y z).
Sce also mem, page 104,

rassq item alist
rassoc item alist
rass predicate item alist
cli:rassoc item alist &key test test-not
rassoc-1f predicate alist
rassoc-if-not predicate alist
The reverse-association functions are like assq, assoc, etc. but match or test the cdrs of
the alist clements instead of the cars. For cxample, rassq could have been defined by:
(defun rassq (item in-list)
(do 1 in-list (cdr 1) (null 1)
(and (eq item (cdar 1))
(return (car 1)))))

sassq item alist fcn
(sassq item alist fcn) is like (assq item alist) cxcept that if item is not found in alist,
instcad of rcturning nil, sassq calls the function fen with no arguments. sassq could
have been defined by:
(defun sassq (item atist fcn)
(or (assq item alist)

(apply fcn nil)))

sassq and sassoc (sce below) are of limited use. These are primarily leftovers from Lisp
1.5.

PS:KLLMAN>FD)-CON.TEXT.28 : 8-JUN-84

Stack 1 ists : 112 Lisp Machine Manual

sassoc irem alist fen
(sassoc item alist fen) is like (assoc item alist) except that if item is not found in dlist,
instead of returning nil, sassoc calls the function fen with no arguments. sassoc could
have been defined by:
(defun sassoc (item alist fcn)
(or (assoc item alist)

(apply fcn nil)))

5.9 Stack Lists

When you arc creating a list that will not be needed any more once the function that creates
it is finished, it is possible 10 create the list on the stack instcad of by consing it. This avoids
any permanent storage allocation. as the space is reclaimed as part of exiting the function. By the
same token, it is a little risky; if any pointers to the list remain after the function cxits, they will
become meaningless.

These lists arc called remporary lists or stack lists. You can create them explicitly using the
special forms with-stack-list and with-stack-list*. &rest arguments also somectimes create stack
lists.

If a stack list, or a list which might bc a stack list, is to be returned or made part of
permanent list-structure, | it must first be copied (sec copylist, page 94). 'The system cannot detect
the error of omitting to copy a stack list; you will simply find that you have a value that seems
to change behind your back.

with-stack-11st (variable element...) body... Special form
with-stack-11ist* (variable element... tail) body... Special form
These special forms crecate stack lists that live inside the stack frame of the function that
they arc used in. You should assume that the stack lists arc only valid until the special
form is exited.

(with-stack-1ist (foo x y)
(mumblify foo))
is equivalent to
(let ((foo (1ist x y)))
(mumblify foo))
cxcept for the fact that foo’s value in the first example is a stack list.

The list created by with-stack-list* looks like the onc created by list*. tail’s value
becomes the ultimate cdr rather than an clement of the list.

Here is a practical cxample. condition-resume (scc page 723) might have been defined
as follows:
(defmacro condition-resume (handler &body body)
*(with-stack-Tist» (eh:condition-resume-handlers
,handler eh:condition-resume-handlers)

,body))

PS:KLLMAN>ED-CON.TEXT.28 8-JUN-84

Lisp Muchine Manual 113 : Property Lists

s an error to do rplacd on a stack list (except for the tail of one made using with-stack -
list*). rplaca works normally.

sys:rplacd-wrong-representation-type (error) Condition
This is signaled if you rplacd a stack list (or a list overlayed with an array or other
structure). '

5.10 l’ropcr(y‘ Lists

From time immemorial, lisp has had a kind of tabular data structure called a property list
(plist for short). A property list contains zero or more cntries; cach entry associates from a
keyword symbol (called the property name, or sometimes the indicator) to a lisp object (called
the value or. sometimes, the properry). 'T'here are no duplications among the property names; a
property-list can have only onc property at a time with a given name.

This is very similar to an association list. ‘The important difference is that a property list is an
object with a unique identity; the operations for adding and removing property-list cntrics are
side-cffecting operations which alter the property-list rather than making a new onc. An
association list with no entrics would be the empty list (), ic. the symbol nil. There is only one
empty list, so all empty association lists arc the same object. Each empty property-list is a
scparate and distinct object.

The implementation of a property list is a memory cell containing a list with an even number
(possibly zero) of clements. Each pair of clements constituies a property; the first of the pair is
the name and the second is the valuc. (It would have bcen possible to use an alist to hold the
pairs; this format was chosen when Lisp was young.) The memory cell is there to give the
property list a unique identity and to provide for side-cffecting operations.

The term ‘property list' is somctimes incorrectly used to refer to the list of entries inside the
property list, rather than the property list itsclf. This is regrettable and confusing.

How do we deal with “memory cells” in Lisp? That is, what kind of Lisp object is a
property list? Rather than being a distinct primitive data type, a property list can exist in one of
three forms:

1. Any cons can be used as a property list. The cdr of the cons holds the list of entries
(property names and valucs). - Using the cons as a property list does not usc the car of the cons;
you can us¢ that for anything else.

2. The system associates a property list with every symbol (sce scction 6.3, page 131). A
symbol can be used where a property list is cxpected; the property-list primitives automatically
find the symbol's property list and use it.

3. A flavor instance may have a property list. The property list functions operate on
instances by sending messages to them, so the flavor can store the property list any way it likes.
Sce page 445.

PS:KLLMAN>FD-CON.TEXT.28 _ 8-JUN-84

Property Lists 114 | isp Machine Manual

4. A named structure may have a property list. The property list functions automatically call
named -structure-invoke when a named structure is supplied as the property list. Sce page 390.

S. A property list can be a memory cell in the middle of some data structure, such as a list,
an array, an instance, or a defstruct. An arbitrary memory cell of this kind is named by a
locative (see chapter 14, page 267). Such locatives are typically created with the locf special form
(sec page 38). :

Property lists of the first kind are called disembodied property lists because they are not
associated with a symbol or other data structure. ‘The way to create a disembodied property list is
(ncons nil), or (ncons duta) W store dara in the car of the property list.

Suppose that, inside a program which deals with blocks, the property list of the symbol b1

contains this list (which would be the value of (symbol-plist 'b1)):
(color blue on b6 associated-with (b2 b3 b4))

The list has six clements. so there are three properties. The first property’s name is the symbol
color. and its valuc is the symbol blue. Onc says that “the value of b1's color property is
blue™, or, informally, that “b1’s color property is blue.” The program is probably representing
the information that the block represented by b1 is painted blue. Similarly, it is probably
representing in the rest of the property list that block b1 is on top of block b6, and that b1 is
associated with blocks b2, b3, and b4.

get plist property-name &optional default-value

get looks up plist's properiy-name propeity. If it finds such a property, it rcturns the
value: otherwise, it returns default-value. 1f plist is a symbol, the symbol’s associated
property list is used. For example, if the property list of foo is (baz 3), then

(get 'foo 'baz) => 3

(get 'foo 'zoo) => nil

(get 'foo 'baz t) => 3

(get 'foo 'zoo t) => t

getl plist property-name-list
getl is like get, except that the second argument is a list of property names. getl
scarches down plist for any of the names in property-name-list, until it finds a property
whose name is onc of them. If plist is a symbol, the symbol’s associated property list is
used.

getl returns the portion of the list inside plist beginning with the first such property that
it found. So the car of the returned list is a property name, and the cadr is the property
value. If nonc of the property names on property-name-list arc on the property list, getl
returns nil. For example, if the property list of foo were

(bar (1 2 3) baz (3 2 1) color blue height six-two)
then

(getl 'foo ’'(baz height))

=> (baz (3 2 1) color blue height six-two)

When more than onc of the names in property-name-list is present in plist, which one
getl returns depends on the order of the propertics. This is the only thing that depends
on that order. The order maintained by putprop and defprop is not defined (their

PSKL.MAN>FD-CON.TEXT.28 8-JUN-84

1isp Machine Manual 115 Property Lists

behavior with respecet to order is not guaranteced and may be changed without notice).

putprop plist x property-name
This gives plist an- property-name-property of x. After this is done, (get plist property-
name) returns x. I plist is a symbol, the symbol's associated property list is used.
Example: ‘
(putprop ’'nixon t ’'crook)

It is more modern to write
(setf (get plist properiy-name) x)
which avoids the counterintuitive order in which putprop takes its arguments.

defprop symbol x properiy-name Special form
defprop is a form of putprop with uncvalwncd arguments, which is sometimes more
convenient for typing. Normally only a symbol nmkcs sense as the first argument.
Example:
(defprop foo bar next-to)
is the same as
(putprop ’'foo 'bar ’'next-to)

remprop plist property-name

This removes plist’s properiy-name property, by splicing it out of the property list. It
returns that portion of the list inside plist of which the former property-name-property was
the car. car of what remprop rcturns is what get would have returncd with the same
arguments. If plist is a symbol, the symbol's associated property list is used. For
example, if the property list of foo was

(color blue height six-three near-to bar)
then

(remprop 'foo ’'height) => (six-three near-to bar)
and foo's property list would be

(color blue near-to bar)
If plist has no property-name-property, then remprop has no sidc-effect and returns nil.

getf place property &optional default Macro
Equivalent to (get (locf place) property default), except that getf is defined in Common
Lisp, which does not have locf or locatives of any kind.

(setf (getf place property) value) can be used to storc propertics into the property list at

place.

remf place property Macro
Equivalent to (remprop (locf place) property), except that remf is defined in Common
Lisp.

get-properties place list-of properties Macro

Like (gett (locf place) list-of properties) but returns slightly different values. Specifically,
it scarches the property list for a property name which is memgq in list-of properties, then
returns three values:

PS:KLLMAND>FD-CON.TEXT.28 . 8-JUN-84

Hash Tables 116 Lisp Machine Manual

proprame the property name found

value the valuc of that property

cell the property list cell found, whose car is propname and whose cadr is
value.

If nothing is found, all three values are nil.

It is ‘possible 10 continue scarching down the property list by using cddr of the third
value as the argument to another call to get-properties.

5.11 Tash Tables

A hash table is a Lisp object that works somcthing like a property list. Each hash table has a
sct of enrries. cach of which associates a particular key with a particular value (or sequence of
values). ‘The basic functions that deal with hash tables can create entries, delete entries, and find
the value that is associated with a given key. Finding the value is very fast cven if there are
many entrics, because hashing is used; this is an important advantage of hash tables over
property lists. Hashing is explained in section 5.11.4, page 121.

A given hash table stores a fixed number of valucs for cach key: by dcfault, there is only
onc value. Each time you specify a new value or sequence of valucs, the old one(s) are lost.

There are three standard kinds of hash tables, .which differ in how they compare keys: with
eq. with eql or with equal. In other words, therc are hash tables which hash on Lisp objects
(using eq or eql) and there arc hash tables which hash on trecs (using equal).

You can also create a nonstandard hash table with any comparison function you like, as long
as you also provide a suitable hash function. Any two objects which would be regarded as the
same by the comparison function should produce the same hash code under the hash function.
See the :compare-function and :hash-function keywords under make-hash-table, below.

The following discussion refers to the eq kind of hash table; the other kinds are described
later, and work analogously.

eq hash tables are created with the function make-hash-table, which takes various options.
New cntries are added to hash tables with the puthash function. To look up a key and find the
associated valuc(s), the gethash function is used. To remove an entry, use remhash. Here is a
simple example.

(setq a (make-hash-table))

(puthash ’color ’brown a)
(puthash ’name ’'fred a)

(gethash ’'color a) => brown
(gethash 'name a) => fred

PS:KL.MAN>FD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual ' 117 ‘ A Hash Tables

JAn this example, the symbols color and name arc being used as keys, and the symbols
brown and fred arc being used as the associated values. The hash table remembers one value for
cach key, since we did not specify otherwise, and has two items in it, one of which associates
from color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they «can be any Lisp object. lLikewise values can be any
Lisp object. Since eq docs not work reliably on numbers (except for fixnums), they should not
be used as keys in an eq hash. table. Use an eqgl hash tble if you want to hash on numeric
values.

When a hash table is first created, it has a size, which is the number of entries it has room
for. But hash tables which arc ncarly full become slow to scarch. so if more than a certain
fraction of the entries become in use, the hash table is automatically made-larger, and the entrics
arc rehashed (new hash valuces are recomputed, and everything is rearranged so that the fast hash
lookup still works). "This is transparent o the caller; it all happens automatically.

The describe function (sce page 791) prints a varicty of uscful information when applied to a
hash table.

This hash table facility is similar to thc hasharray facility of Interlisp, and some of the
function names arc the same. However, it is nof compatible. The exact details and the order of
arguments arc designed to be consistent with the rest of Zetalisp rather than with Interlisp. For
instance, the order of arguments to maphash is different, we do not have the Interlisp “system
hash table”, and we do not have the Interlisp restriction that keys and values may not be nil.
Note, however, that the order of arguments to gethash, puthash, and remhash is not consistent
with the Zetalisp’s get, putprop, and remprop, either. This is an unfortunate result of the
haphazard historical development of Lisp. '

Hash tables are imp]emvcnted as instances of the flavor hash-table. The internals of a hash
table arc subject to change without notice. Hash tables should be manipulated only with the
functions and operations described below,

5.11.1 Hash Table Functions

make-hash-table &rest oprions

make-equal-hash-table &rest options
These functions create new hash tables. make-equal-hash-table crcates an equal hash
table. make-hash-table normally creates an eq hash table, but this can be overridden
by keywords as described below. Valid option keywords are:

size Sets the initial size of the hash table, in entrics, as a fixnum. The default
is 64. The actual size is rounded up from the size you specify to the next
sizc that is good for the hashing algorithm. The number of entries you
can actually store in the hash table before it is rchashed is at least the
actual size times the rchash threshold (sce below).

test A This keyword is the Common Lisp way to spccify the kind of hashing
desired. The value must be eq, eql or equal. The onc specified is used
as the comparc function and an appropriate hash function is chosen

PS:KLLLMAN>FD-CON.TEX'T'.28 ‘ 8-JUN-84

Hash Fables 118 Lisp Machine Manual

automatically to go with it.

:compare-function
Specifics a function of two arguments which compares two keys to sce if
they count as the same for retricval from this table. For reasonable
results, this function should be an equivalence relation. The default is eq.
FFor make-equal-hash-table the default is equal; that is the only
difference between that function and make-hash-table.

:hash-function :
Specifies @ function of onc argument which, given a key, computes its
hash code. ‘The hash code may be any Lisp object. The purpose of the
hash function is 10 map cquivalent keys into identical objects: if two keys
would cause the compare function to return non-nil, the hash function
must produce identical (eq) hash codes for them.

For an eq hash tible, the key itself is a suitable hash code, so no hash
function is nceded. Then this option's value should be nil (identity would
also work, but slower). nil is the default in make-hash-table.
make-equal-hash-table spccifies an appropriate function which uses
sxhash.

:number-of-values
A positive integer which specifies how many values to associate with each

key. The default is one.

:area Specifics the arca in which the hash table should be created. This is just
like the :area option to make-array (scc page 167). Dcfaults to nil (i.e.
default-cons-area).

rehash-function
Specifics the function to be used for rehashing when the table becomes
full. Defaults to the internal rchashing function that doces the usual thing.
If you want to write your own rchashing function, you must know all the
internals of how hash tables work. These internals are not documented
here, as the best way to learn them is to read the source code.

:rehash-size Specifics how much to increase the size of the hash table when it becomes
full. ‘This can be a fixnum which is the number of cntries to add, or it
can be a float which is the ratio of the new size to the old size. The
default is 1.3, which causes the table to be made 30% bigger cach time it
has to grow.

:rehash-threshold
Sets a maximum fraction of the entrics which can be in use before the
hash table is made larger and rchashed. The default is 0.7s0. Alternately,
an intcger may be specified. It is the cxact number of filled entries at
which a rchash should be done. When the rchash happens, if the
threshold is an integer it is increased in the samc proportion as the table
has grown. '

:rehash-before-cold '
If non-nil, this hash table should be rchashed (if that is nccessary duc to

PS:KLMAN>ED-CON.TFXT 28 8-JUN-84

Lisp Machine Manual 119 ‘ Hash Tables

garbage collection) by disk-save. * This avoids a delay for rchashing the
hash table the first time it is referenced after booting the saved band.

:actual-size Specifics exactly the size for the hash table. Hash tables used by the
microcode for flavor method lookup must be a power of two in size. This
differs from :size in that size is rounded up to a nearly prime number,
but :actual-size is used cxactly as specified. :actual-size overrides :size.

hash-table-p object
t if object is a hash table.
(hash-table-p object)
is equivalent to
(typep object hash-table)

‘The following functions are equivalent to sending appropriate messages to the hash table.

gethash key hash-table &optional default-value
Finds the cntry in hash-rable whose key is key, and return the associated value. If there
is no-such cntry, returns default-value. Returns also a sccond value, which is t if an
entry was found or nil if there is no entry for key in this table.

Returns also a third value, a list which overlays the hash tble entry. Its car is the key;
the remaining clements arce the values in the entry. This is how you can access values
other than the first, if the hash table contains more than onc value per entry.

puthash key value hash-table &rest extra-values
Creates an entry associating key to value; if there is alrcady an entry for key, then
replace the value of that entry with value. Returns value. The hash table automatically
grows if nccessary.

If the hash table associates more than onc value with cach key, the remaining values in
the entry are taken from extra-values.

remhash key hash-table
Removes any entry for key in hash-table. Returns t if there was an entry or nil if there

was not.

swaphash key value hash-table &rest extra-values
This specifics new value(s) for key like puthash, but returns values describing the
previous statc of the cntry, just like gethash. It returns the previous (replaced) associated
valuc as the first value, and returns t as the sccond value if the entry existed previously.

maphash fiunction hash-table &rest extra-args
For cach occupied entry in hash-table, call function. The arguments passed to function
arc the key of the entry, the value(s) of the entry (however many there are), and the
extra-args (however many there are).

If the hash table has more than onc value per key, all the values, in order, are supplied
as successive arguments,

PS:KI.LMAN>FD-CON.TEXT.28 8-JUN-84

Hash Tubles 120 Lisp Machine Manual

maphash-return function hash-tauble
l.ike maphash. but accumulates and returns a list of all the values returned by finction

when it is applied to the items in the hash table.

clrhash lash-table
Removes all the entries from hash-table. Returns the hash table itself,

hash-table-count /hash-table o
Returns the number of filled entrics in hash-table.

5.11.2 Hash Table Operations

Hash tables are instances, and support the following operations:

:size Operation on hash-table
Returns the number of cntries in the hash table. Note that the hash table is rchashed
when only a fraction of this many (the rchash threshold) are full.

:fi1led-entries Operation on hash-table
Returns the number of entries that are currently occupied.

:get-hash key Operation on hash-table
:put-hash key &rcst values Operation on hash-table
:swap-hash key &rest values Operation on hash-table
:rem-hash key Operation on hash-table
:map-hash function &rest extra-args Operation on hash-table
:map-hash-return finction Operation on hash-table
:clear-hash ' Operation on hash-table
:filled-entries Operation on hash-table

Arc equivalent to the functions gethash, puthash, swaphash, remhash, maphash,
maphash-return, clrhash and hash-table-count cxcept that the hash table nced not be
specificd as an argument because it is the object that reccives the message. Those
functions (documented in the previous section) actually work by invoking these operations.

:modify-hash key function &rest additional-args Operation on hash-table
Passes the value associated with key in the table to function: whatever function returns is
stored in the table as the new value for key. Thus, the hash association for key is both
examined and updated according to fiunction.,

The arguments passed to fiunction are key, the value associated with key, a flag (t if key
is actually found in the hash tablc), and the additional-args that you specify.

If the hash table stores morc than onc value per key, only the first value is examined and
updated.

PS:KL.MAN>FD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual 121 Hash Tables

5.11.3 Hash Tables and the Garbage Collector

The eq type hash tables actually ‘hash on the address of the representation of the object.
equal hash tables do so-too, if given keys containing unusual objects (other than symbols,
numbers, strings and lists of the above). When the copying garbage collector changes the
addresses of objects, it-lets the hash facility know so that the next gethash will rchash the table
based on the new object .iddrcsws

There may eventually be an oplion to make-hash-table which tells it to make a “non-GC-
protecting™ hash table. This is a special kind of hash table with the property that if one of its
keys becomes garbage, i.c. is an object not known about by anything other than the hash table,
then the entry for that key will be removed silently from the table. When this option exists it
will be documented in this scction. :

5.11.4 Hash Primitive

Hashing is a technique used in algorithms to provide fast retricval of data in large tables. A
function, known as the hash function, takes an object that might be used as a key, and produces
a number associated with that key. ‘This number, or some function of it, can be used to specify
where in a table to look for the datum associated with the key. It is always possible for two
different objects to “hash to the same valuc; that is, for the hash function to rcturn the same
number for two distinct objects, Good hash functions are designed to minimize this by evenly
distributing their results over the range of possible numbers. However, hash table algorithms must
still deal with this problem by providing a sccondary search, somctimes known as a rehash. For
morc information, consult a textbook on computer algorithms.

sxhash tree &optional ok-to-use-address
sxhash computes a hash code of a trece, and rcturns it as a fixnum. A property of
sxhash is that (equal x y) always implics (= (sxhash x) (sxhash y)). The number
rcturncd by sxhash is always a non-negative fixnu. sxhash trics to compute its hash code
in such a way that common permutations of an object, such as interchanging two clements
of a list or changing onc character in a string, always change the hash code.

Here is an example of how to use sxhash in maintaining hash tables of trees:
(defun knownp (x &aux i bkt) ;look up x in the table

(setq i (abs (remainder (sxhash x) 176)))
;The remainder should be reasonably randomized.

(setq bkt (aref table 1)) ‘
;bkt is thus a 1ist of all those expressions that
;hash into the same number as does x.

(memq x bkt))

For an “intern” for trees, one could write:

PS:KLLMAN>ED-CON.TEXT.28 8-JUN-84

Hash Tables 122 ~ Lisp Machine Manual

(defun sintern (x &aux bkt i tem)
(setq i (abs (remainder (sxhash x) 2n-1)))
:2n-1 stands for a power of 2 minus one.
;This is a good choice to randomize the
;result of the remainder operation.
(setq bkt (aref table i))
(cond ((setq tem (memq x bkt))
(car tem))
(t (aset (cons x bkt) table i)

x)))

If sxhash is given a named structure or a flavor instance, or if such an object is part of a
tree that is sxhash'ed, it asks the object to supply its own hash code by performing the :sxhash
operation if the object supports it This should return a suitable nonnegative hash code. ‘The
casicst way o compute onc is usually by applying sxhash to onc or more of the components of
the structurc or the instance variables of the instance.

For named structures and flavor instances that do not handle the :sxhash operation, and
other unusual kinds of objects, sxhash can optionally usc the object’s address as its hash code, if
you specify a non-nil sccond argument. If you usc this option, you must be prepared to deal
with hash codes changing duc to garbage collection. :

sxhash provides what is called “hashing on equal™; that is, two objects that are equal are
considered to be “the same” by sxhash. If two strings differ only in alphabetic case, sxhash
returns the same thing for both of them, making it suitable for equalp hashing as well in some
cases.

Thercfore, sxhash is useful for retricving data when two keys that are not the same object
but are equal are considered the same. 1f you consider two such keys to be different, then you
need “hashing on eq”, where two different objects are always considered different. In some Lisp
implementations, there is an casy way to crcate a hash function that hashes on eq, namely, by
returning the virtual address of the storage associated with the object. But in other
implementations, of which Zetalisp is one, this doesn’t work, because the address associated with
an object can be changed by the relocating garbage collector. The hash tables created by make-
hash-table deal with this problem by using the appropriate subprimitives so that they interface
correctly with the garbage collector. If you nced a hash table that hashes on eq, it is alrcady
provided; if you nced an eq hash function for some other reason, you must build it yourself,
cither using the provided eq hash table facility or carefully using subprimitives.

PSKLMAN>FD-CON.TEXT.28 8-JUN-84

Lisp Machine Manual 123 Resources

5.12 Resources

Storage allocation is handled differently by different computer systems. In many languages,
the programmer must spend a lot of time thinking about when variables and storage units are
allocated and deallocated. In Lisp, frecing of allocated storage is normally done automatically by
the Lisp system; when an object is no longer accessible to the Lisp environment, the garbage
collector reuses its storage for some other object. This relieves the programmer of a great burden,
and makes writing programs much casier. ‘

However. automatic frecing of storage incurs an expense: more computer resources must be
devoted to the garbage collector. If a program is designed to allocate temporary storage, which is
then Ieft as garbage. more of the computer must be devoted to the collection of garbage; this
expense can be high. In some cases, the programmer may decide that it is worth putting up with
the inconvenience of having to free storage under program control, rather than letting the system
do it automatically, in order to prevent a great deal of overhead from the garbage collector.

It usually is not worth worrying about frecing of storage when the units of storage are very
small things such as conses or small arrays. Numbers arc not a problem. cither; fixnums and
short floats do not occupy storage. and the system has a special way of garbage-collecting the
other kinds of numbers with low overhcad. But when a program allocates and then gives up very
large objects at a high rate (or large objccts at a very high rate), it can be worthwhile to keep
track of that one kind of object manually. Within the Lisp Machine system, there are several
programs that are in this position. The Chaosnet: software allocates and frecs “packets”, which are
modcrately large, at a very high rate. The window system allocates and frees certain kinds of
windows, which are very large, moderately often. Both of these programs manage their objects
manually, keeping track of when they are no longer used.

When we say that a program “manually frees” storage, it does not rcally mean that the
storage is freced in the same scnse that the garbage collector frees storage. Instead, a list of
unused objects is kept. When a new object is desired, the program first looks on the list to see if
there is onc around alrcady, and if there is it uses it. Only if the list is empty does it actually
allocate a new onc. When the program is finished with the object, it returns it to this list.

The functions and special forms in this scction perform the above function. The set of objects
forming cach such list is called a resource; for example, there might be a Chaosnet packet
resource. defresource defines a new resource: -allocate-resource allocates one of the objects;
deallocate-resource frees one of the objects (putting it back on the list); and using-resource
temporarily allocatcs an object and then frees it.

PS:<ILMAN>RESOUR.TEXT.28 - 8-JUN-84

Resources 124 Lisp Machine Manual

5.12.1 Defining Resources

defresource : Mucro
The defresource special fornt is used to define a new resource. ‘The form looks like this:
(defresource name parameters
doc-string
keyword value
kevword value

-)

name should be a symbol; it is the name of the resource and gets a defresource
property of the internal data structure representing the resource,

parameters is a lambda-list giving names and default values (if' &optional is used) of
parameters to an object of this type. For example, if onc had a resource of two-
dimensional arrays to be used as temporary storage in a calculation, the resource would
typically have two parameters, the number of rows and the number of columns. In the
simplest case parameters is ().

'The documentation string is recorded for (documentation name 'resource) to access. It
may be omitted.

The keyword options control how the objects of the resource are made and kept track of.
The following keywords are allowed:

:constructor The value is cither a form or the name of a function. It is responsible for
making an object, and will be used when someone tries to allocate an
object from the resource and no suitable free objects exist. If the value is
a form, it may access the parameters as variables. If it is a function, it is
given the internal data structure for the resource and any supplied
parameters as its arguments; it will nced to default any unsupplied
optional parameters. This keyword is required.

free-list-size The value is thc number of objects which the resource data structure
should have room. initially, to remember. This is not a hard limit, since
the data structure will be made bigger if nccessary.

iinitial-copies The value is a number (or nil which means 0). This many objects will be
made as part of the cvaluation of the defresource; thus is useful to set
up a pool of free objects during loading of a program. The dcfault is to
make no initial copies.

If initial copies are made and therc are parameters, all the parameters
must be &optional and the initial copics will have the dcfault values of
the parameters.

sinitializer The value is a form or a function as with :constructor. In addition to
the parameters, a form here may access the variable object (in the current
package). A function gets the object as its second argument, after the
data structure and before the parameters. The purpose of the initializer
function or form is to clcan up the contents of the object before each use.

PS:<LLMAN>RIESOUR.TEXT.28 8-JUN-84

Lisp Machine Manual ' 125 Resources

It is called or cvaluated cach time an object is allocated, whether just
constructed or being reused.

finder ‘I'he value is a form or a function as with :constructor and sces the same
arguments. If this option is specified, the resource system does not keep
track of the objects. Instead, the finder must do so. It will be called
inside a without-interrupts and must find a usable object somchow and
return it

:matcher ~'The value is a form or. a function as with :constructor. In addition to
the parameters, a form here may access the variable object (in the current
package). A function gets the object as its second argument, after the
data structure and before the parameters. The job of the matcher is to
make sure that the object matches the specified parameters. If no matcher
is supplied. the system will remember the values of the parameters
(including optional ones that defanlted) that were used to construct the
object, and will assume that it matches those particular values for all time.
The comparison is donc with equal (not eq). 'The matcher is called inside
a without-interrupts.

:checker The job of the checker is to determine whether the object is safe to
allocate. The value is a form or a function, as above. In addition to the
parameters, a-form here may access the variables object and in-use-p (in
the current package). A function receives these as its second and third
arguments, after the data structure and before the parameters. If no
checker is supplied, thic -default checker looks only at in-use-p; if the
object has been allocated and not freed it is not safe to allocate, otherwise
it is. The checker is called inside a without-interrupts.

If these options are used with forms (rather than functions), the forms get compiled into
functions as part of the cxpansion of defresource. The functions, whether user-provided
or gencrated from forms, are given names like (:property resource-name si:resource-
constructor); these names are not guarantced not to change in the future,

Most of the options are not used in typical cases. Here is an cxample:
(defresource two-dimensional-array (rows columns)
:constructor (make-array (list rows columns)))

Suppose the array was usually going to be 100 by 100, and you wanted to preallocate one
during loading of the program so that the first time you needed an array you wouldn’t
have to spend the time to create one. You might simply put

(using-resource (foo two-dimensional-array 100 100)

)

after your defresource, which would allocate a 100 by 100 array and then immediately
free it. Alternatively you could write:
(defresource two-dimensional-array
(&optional (rows 100) (columns 100))
:constructor (make-array (list rows columns))
~sinitial-copies 1)

PS:KL.LMAN>RESOUR.TEX'I'.28 8-JUN-84

Resources 1206 Lisp Machine Manual

Here is an example of how you might use the :matcher option. Suppose you wanted to
have a resource of two-dimensional arrays. as above, except that when you allocate one
you don’t care about the cxact size. as long as it is big cnough. Furthermore you realize
that you are going (o have a lot of different sizes and if you always allocated one of
exactly the right size, you would allocate a lot of different arrays and would not reuse a
pre-existing array very often. So you might write:
(defresource sloppy-two-dimensional-array (rows columns)
:constructor (make-array (list rows columns))
:matcher (and (2 (array-dimension-n 1 object) rows)
(2 (array-dimension-n 2 object) columns})))

5.12.2 Allocating Resource Objects

allocate-resource resource-name &rest paramelers
Allocates an object from the resource specified by resource-name. ‘The various forms
and/or functions given as options to defresource, together with any parameters given to
allocate-resource, control how a suitable object is found and whether a new onc has to
be constructed or an old one can be reused.

Note that the using-resource special form is usually what you want to use. rather than
allocate-resource itsclf; scc below.

deallocate-resource resource-name resource-object
Frees the object resource-object, returning it to the frec-object list of the resource specified

by resource-hame.

using-resource (variable resource paramelters...) body... Macro
The body forms are evaluated sequentially with variable bound to an object allocated from
the resource named resource, using the given parameters. The parameters (if any) are
cvaluated, but resource is not. '

using-resource is often more convenient than calling allocate-resource and deallocate-
resource. Furthermore it is carcful to free the object when the body is exited, whether it
returns normally or via throw. This is done by using unwind-protect; sce page 82.

Here is an example of the usc of resources:
(defresource huge-16b-array (&optional (size 1000))
:constructor (make-array size :type ’art-16b))

(defun do-complex-computation (x y)
(using-resource (temp-array huge-16b-array)
;Within the body, the array can be used.

.« s n

(aset 5 temp-array i)
..l)) ;The array is dcallocated at the end.

PS:<1.LMAN>RESOUR.TEXT.28 8-JUN-84

Fisp Machine Manual 127 : Resources

deallocate-whole-resource resource-name _
Frees all objects in resource-name. "This is like doing deallocate-resource on cach one
individually. ‘This function is often useful in warm-boot initializations.

map-resource finction resource-name &rest extra-args _
Calls function on cach object created in resource-name. Fach time function is called, it
receives three fixed arguments, plus whatever extra-args were specified. ‘The three fixed
~ arguments are an object- of the resource; t if the object is currently allocated (“in use™):
and the resource data structure itself, ' '

clear-resource resource-name
Forgets all of the objects being remembered by the resource specified by resource-name.
Future calls to allocate-resource will create new objects. This function is uscful if
something about the resource has been changed incompatibly, such that the old objects
arc no longer usable. If an object of the resource is in use when clear-resource is
called, an crror will be signaled when that object is deallocated.

5.12.3 Accessing the Resource Data Structure

The constructor, initializer, matcher and checker functions receive the internal resource data
structure as an argument. ‘This is a named structure array whose clements record the objects both
frec and “allocated, and whose array leader contains sundry other information. 'This structure
should be accessed using the following primitives:

st:resource-object resource-structure index
Returns the index’th object remembered by the resource. Both free and allocated objects
arc remembered.

si:resource-in-use-p resource-structure index
Returns t if the index’th object remembered by the resource has been allocated and not
dcallocated. Simply defined resources will not reallocate an object in this state.

sf:resource-parameters resource-structure index
Returns the list of parameters from which the index'th object was originally created.

si:resource-n-objects resource-structure
Returns the number of objects currently remembered by the resource. This will include
all objects cver constructed, unless clear-resource has been used.

si:resource-parametizer resource-structure -
Returns a function, created by defresource, which accepts the supplied parameters as
arguments, and returns a complete list of parameter valucs, including defaults for the
optional ones.

PS:KILMAN>RESOUR.TEXT.28 8-JUN-84

Resources 128 Fisp Machine Manual

5.12.4 Fast Pseudo-Resources

When small temporary data structures are allocated so often that they amount- to a
considerable drain of storage space, an ordinary resource may be unacceptably slow. Here is a
simple technique that provides in such cases ncarly all the benefit of a resource while costing
nearly nothing. ‘The function read uscs it to allocate a buffer for reading tokens of input.

(defvar buffer-for-reuse nil)

(defsubst get-buffer ()
(or (do (o1d)
((%store-conditional (locf buffer-for-reuse)
(setq old buffer-for-reuse)
nil)
old))
(construct-new-buffer))))

(defsubst free-buffer (buffer)
(setq buffer-for-reuse buffer))

To allocate a buffer for use, do (get-buffer). To free it when you are done with it, call
free-buffer. It is assumed that construct-new-buffer is the function which can crecatc a new
buffer when there is none available for reuse.

This technique keeps track of at most one buffer which has been freed and may be reused. It
is not cffective in this simple form when more than onc buffer is needed at any given time by
onc application. In the case of read, only onc token is being read in at any time.

It is safe for more than one process to call read because get-buffer is designed to guarantee
that a request cannot get a buffer alrcady handed out and not freed. Likewise, nothing terrible
happens if there is an crror inside read and read is called recursively within the debugger. The
only problem is that multiple buffers will be allocated, which means that some of them will be
lost. But the cost of this is minor in the cases where this technique is applicable. For example,
if two processcs arc reading files, process switching will probably happen a few times a sccond,
each time costing one buffer not reused. This is insignificant compared to the storage used up for
other purposes by reading large amounts of data.

PS:KL.MAN>RESOUR.TEXT.28 | 8-JUN-84

	086_ManipListStruct
	087_ManipListStruct
	088_ManipListStruct
	089_ManipListStruct
	090_ManipListStruct
	091_ManipListStruct
	092_ManipListStruct
	093_ManipListStruct
	094_ManipListStruct
	095_ManipListStruct
	096_ManipListStruct
	097_ManipListStruct
	098_ManipListStruct
	099_ManipListStruct
	100_ManipListStruct
	101_ManipListStruct
	102_ManipListStruct
	103_ManipListStruct
	104_ManipListStruct
	105_ManipListStruct
	106_ManipListStruct
	107_ManipListStruct
	108_ManipListStruct
	109_ManipListStruct
	110_ManipListStruct
	111_ManipListStruct
	112_ManipListStruct
	113_ManipListStruct
	114_ManipListStruct
	115_ManipListStruct
	116_ManipListStruct
	117_ManipListStruct
	118_ManipListStruct
	119_ManipListStruct
	120_ManipListStruct
	121_ManipListStruct
	122_ManipListStruct
	123_ManipListStruct
	124_ManipListStruct
	125_ManipListStruct
	126_ManipListStruct
	127_ManipListStruct
	128_ManipListStruct

