Lisp Machine Manual 129 Symbols

6. Symbols

This chapter discusses the symbol as a Lisp data type. ‘The Lisp system uses symbols as
variables and function names, but these applications of symbols are discussed in chapter 3.

6.1 The Value Cell

Each symbol has associated with it a value cell, which refers to one Lisp object. 'This object
is called the symbol's value, since it is what you get when you evaluate the symbol as a dynamic
variable in a program. Variables and how they work are described in section 3.1, page 25. We
also say the the symbol is bound to the object which is its value. ‘The symbols nil and t are
always bound to themselves; they may not be assigned, bound, or otherwise used as variables.
‘The same is true of symbols in the keyword package.

The value cell can also be void, referring to no Lisp object, in which case the symbol is said
to be void or wunbound. 'This is the initial state of a symbol when it is created. An attempt to .
cvaluate a void symbol causes an error, '

Lexical variable bindings are not stored in symbol value cells. The functions in this section
have no interaction with Iexical bindings.

symeval symbol

symbol-value symbol
symeval is the basic primitive for retrieving a symbol's valuc. (symeval symbol) returns
symbol’s current binding. This is the function called by eval when it is given a symbol to
cvaluate. If the symbol is unbound, then symeval signals an crror. symbol-value is the
Common Lisp name for this function.

set symbol value ‘
set is the primitive for assignment of symbols. The symbol's value is changed to value:
value may be any Lisp object. set returns value.
Example:
(set (cond ((eq a b) ’c)
(t 'd))
'foo)
cither sets ¢ to foo or sets d to foo.

(setf (symeval symbol) value) is a more modern way to do this.

boundp symbol
t if symbol’s value cell is not void.

makunbound symbol
Makes symbol’s value cell void.

PS:KL.MANDFD-SYM.TEXT.14 8-JUN-84

‘The Function Cell 130 Iisp Machine Manual

lxample:
(setq a 1)
a =>1

(makunbound 'a)
a => Causcs an Crror.
makunbound returns its argument.

valus-cell-location symbol :
Returns a locative pointer to symbol’s value cell. See the section on locatives (chapter 14,
page 267). It is preferable to write
(Yocf (symeval symbol))
which is equivalent, instcad of calling this function explicitly.

This is actually the internal value cell; there can also be an external value cell. For
details, see the section on closures (chapter 12, page 250).

For historical compatibility, value-cell-location of a quoted symbol is recognized
specially by the compiler and treated like variable-location (page 30). However, such
usage results in a compiler warning, and cventually this compatibility feature will be
removed.

6.2 The Function Cell .

Every symbol also has associated with it a finction cell. The function cell is similar to the
value cell: it refers to a Lisp object. When a function is referred to by name, that is, when a
symbol is passed to apply or appears as the car of a form to be cvaluated, that symbol's function
cell is used to find its definition, the functional object which is to be applied. For cxample,
when evaluating (+ 5 6), the evaluator looks in +’s function cell to find the definition of +, in
this case a compiled function object, to apply to 5 and 6.

Maclisp does not have function cells; instcad, it looks for special properties on the property
list. This is one of the major incompatibilities between the two dialccts.

Like the value cell, a function cell can be void, and it can be bound or assigned. (However,
to bind a function cell you must usc thc %bind subprimitive; sec page 284.) The following
functions are analogous to the value-ccll-related functions in the previous section.

fsymeval symbol

symbol-function symbol
Returns symbol's definition, the contents of its function cell. If the function cell is void,
fsymeval signals an crror. symbol-function is the Common Lisp name for this function.

fset symbol definition
Stores definition, which may be any Lisp object, into symbol’s function ccll. It returns
definition.

(setf (fsymeval symbol) definition) is a more modern way to do this.

PSKL.MANDEFD-SYM.TEXT.14 8-JUN-84

Lisp Machine Manual 131 The Property 1ist

fboundp symbol
nil if symbol’s function cell is void, ic. iff symbol is undefined. Otherwise it returns t.

fmakunbound symbol
Causes symbol 10 be undefined, i.c. its function cell 1o be void. It returns symbol.

funct1on cell-location symbol
© Returns a locative pointer to symbol’s functmn cc,ll Sce the section on locatives (chapter
14, page 267). 1t is preferable to write
(locf (fsymeval symbol))
rather than calling this function explicitly.

Since functions are the basic building block of Lisp programs, the system provides a variety
of facilities for dealing with functions. Refer to chapter 11 for details.

6.3 The Property List

Every symbol has an associated property list. See scction 5.10, page 113 for documentation of
property lists. When a symbol .is created, its property list is initially empty.

The Lisp language itsclf docs not use a symbol's property list for anything. (This was not
true in older Lisp implementations, where the print-name, - value-cell, and function-cell of a
symbol were kept on its property list.) However, various system programs usc the property list to
associate information with the symbol. For instance, the cditor uses the property list of a symbol
which is the name of a function to remember where it has the source code for that function, and
the compiler- uses the property list of a symbol Wthh is the name of a special form to remember
how to compile that special form.

Because of the existence of print-name, value, function, and package cells, none of the
Maclisp system property names (expr, fexpr, macro, array, subr, Isubr, fsubr, and in former
times value and pname) cxist in Zetalisp.

piist symbol

symbol-plist
Returns the list which represents the property list of symbol. Note that this is not actually
a property list; you cannot do get on it. This valuc is like what would be the cdr of a

property list,
symbol-plist is the Common Lisp name.

setplist symbol list
Scts the list which represents the property list of symbol to list. setplist is to be used
with caution (or not at all), since property lists sometimes contain internal system
propertics, which are used by many uscful system functions. Also it is inadvisable to have
the property lists of two different symbols be eq, since the shared list structure will cause
uncxpected cffects on one symbol if putprop or remprop is done to the other.

PS:KLLMAN>FD-SYM.TEXT.14 8-JUN-84

The Print Name 132 Lisp Machine Manual

setplist is cquivalent to
(setf (plist symbol) list)

property- cel1-location symbol
Returns a locative pointer o the location of symbol’s property-list cell. This locative
pointer may be passed to get or putprop with the same results as if as s mbol itsclf had
been passed. It is preferable to write
(Tocf (plist symbol))
rather than using this function.

6.4 The Print Name

Every symbol has an associated string called the print-name, or pname for short. This string
is used as the external representation of the symbol: if the string is typed in to read, it is read
as a reference to that symbol (if it is interned), and if the symbol is printed, print types out the
print-name.

If a symbol is uninterned, #: is normally printed as a prefix before the symbol's print-name.
If the symbol is interned, a package prefix may be printed, depending on the current package
and how it relates to the symbol’s home package.

For more information, sce the sections on the reader (sce scction 23.3, page 516), printer (sce
section 23.1, page 506), and packages (sce chapter 27, page 636).

symbol-name symbol
get-pname symbol
Returns the print-name of the symbol symbol.
Example:
(symbol-name ’'xyz) => "XYZ"
get-pname is an older name for this function.

6.5 The Package Cell

Every symbol has a package cell which, for interned symbols, is used to point to the package
which the symbol belongs to. For an uninterned symbol, the package cell contains nil. For
information about packages in general, sce the chapter on packages, chapter 27, page 636. For
information about package cells, sce page 639.

PS:<ILMAN>FD-SYM.TEXT.14 8-JUN-84

Lisp Machine Manual 133 Creating Symbols

0.6 Creating Symbols

The functions in this section are primitives for creating symbols. However, before discussing
them, it is important to point out that most symbols are created by a higher-level mechanism,
namely the reader and the intern function. Nearly all symbols in Lisp arc created by virtue of
the reader’s having seen a sequence of input characters that looked like the printed representation
(p.r)) of a symbol. When the reader sees such a p.r.. it calls intern (sce page 645). which looks
up the sequence of characters in a big table and sces whether any symbol with this print-name
already cxists. 1f it does, read uses the already-cxisting symbol. I it does not, then intern
creates @ new symbol and puts it into the table; read uses that new symbol.

A symbol that has been put into such a table is called an interned symbol. Interned symbols
are normally created automatically; the first time that someone (such as the rcader) asks for a
symbol with a given print-name, that symbol is automatically created.

These tables are called packages. For more information, turn to the chapter on packages
(chapter 27, page 636).

An uninterned symbol is a symbol that has not been recorded or looked up in a package. It
is used simply as a data object, with no special cataloging. An uninterned symbol prints with a
prefix #: when escaping is in use, unless *print-gensym* is nil. This allows uninterned symbols
to be distinguishable and to read back in as uninterned symbols. See page 515.

.

The following functions can be used to create uninterned symbols explicitly.

make-symbol pname &optional permanent-p

Creates a new uninterned symbol, whose print-name is the string pname. The value and
function cells are void and the property list is empty. If permanent-p is specified, it is
assumed that the symbol is going to be interned and probably kept around forever; in
this case it and its pname arc put in the proper arcas. If permanent-p is nil (the default),
the symbol goes in the default arca and the pname is not copied. permanent-p is mostly
for the use of intern itself.
Examples: ‘

(setq a (make-symbol "foo")) => foo

(symeval a) => ERROR]
Note that the symbol is not interned; it is simply created and returned.

copysymbol symbol copy-props

copy-symbol symbol copy-props
Returns a new uninterned symbol with the same print-name as symbol. If copy-props is
non-nil, then the value and function-definition of the new symbol are the same as those
‘of symbol, and the property list of the new symbol is a copy of symbol’s. If copy-props is
nil, then the new symbol's function and value are void, and its property list is empty.

gensym &optional x

Invents a print-name and creates a new symbol with that print-name. It returns the new,
uninterned symbol.

PS:KL.MAN>FD-SYM.TEXT.14 8-JUN-84

Creating Symbols 134 I isp Machine Manual

The invented print-name is a prefix (the value of si:*gensym-prefix) followed by the
decimal representation of>a number (the value of si:*gensym-counter), c.g. g0001. The
number is increased by one every time gensym is called.

If the argument x is present and is a fixnum, then si:*gensym-counter is set 0 x. If x
is a string or a symbol, then siz*gensym-prefix is set to it, so it becomes the prefix for
this and successive calls to gensym. After handling the argument. gensym creates a
symbol as it would with no argument.

Examples: B
if (gensym) => #:q0007
then (gensym 'foo) => #:f000008

(gensym 32.) => #:f000032
(gensym) => #:f000033

Note that the number is in decimal and always has four digits. #: is the prefix normally
printed before uninterned symbols. ‘

gensym is usually used to create a symbol which should not normally be scen by the
user, and whose print-name is unimportant, cxcept to allow casy distinction by eye
between two such symbols. The optional argument is rarcly supplied. The name comes
from ‘generate symbol’. and the symbols produced by it arc often called “gensyms”.

gentemp &optional (prefix "t") (a-package package)
Creates and returns a new symbol whose name starts with prefix, interned in a-package,
and distinct from any symbol alrcady present there. ‘This is done by trying names one by
onc until a name not alrecady in usc is found, which may be very slow.

PS:KILMANDEFD-SYM.TEXT.14 8-JUN-84

	129_Symbols
	130_Symbols
	131_Symbols
	132_Symbols
	133_Symbols
	134_Symbols

