Lisp Machine Manual ' 135 ' . Numbers

7. Numbers

Zetalisp includes several types of numbers, with different characteristics. Most numeric
functions accept any type of numbers as arguments and do the right thing. ‘That is to say, they
are generic. In Maclisp, there are generic numeric functions (like plus) and there are specific
numeric functions (like +) which only operate on a certain type of number, but are much more
cflicient. In Zetalisp, this distinction does not exist: both function names exist for compatibility
but they are identical. 'The microprogrammed structure of the machine makes it possible to have
only the generic functions without loss of cfficiency.

The types of numbers in Zetalisp are:

fixnum Fixnums are 25-bit twos-complement binary integers. These are the preferred,
most cfficient type of number.

bignum Bignums arc arbitrary-precision binary integers.

ratio Ratios represent rational numbers exactly as the quotient of two integers, cach of

which can be a fixnum or a bignum. Ratios with a denominator of one arc not
normally created, as an integer is returned instead.

single-float or full-size float
Full size floats are floating-point numbers. They have a mantissa of 31 bits and
an cxponent of 11 bits, providing a precision of about 9 digits and a range of
about 101300. Stable rounding is employed.

short-float Short floats are another form of floating-point number, with a mantissa of 17 bits
and an cxponent of 8 bits, providing a precision of about 5 digits and a range of
about 10t38. Stable rounding is cmployed. Short floats are useful because, like
fixnums, and unlike full-size floats, they don't require any storage. Computing
with short floats is more ecfficient than with full-size floats because the operations
are faster and consing overhead is eliminated.

complexnum Complexnums represent complex numbers with a real part and an imaginary part,
which can be any type of number except complexnums. (They must be both
rational or both floats of the same type). It is impossible to make a complexnum
whose real part is rational and whose imaginary part is zero; it is always changed
into a rcal number. However, it is possible to create complexnums with an
imaginary part of 0.0, and such numbers may result from calculations involving
complexnums. In fact, 5.0 and 5.040.0i arc always distinct; they are not eql,
and arithmetic operations will never canonicalize a complexnum with zero
imaginary part into a rcal number.

Gencrally, Lisp objects have a unique identity; cach exists, independent of any other, and
you can usc the eq predicate to determine whether two references are to the same object or not.
Numbers are the cxception to this rule; they don’t work this way. The following function may
return either t or nil. Its behavior is considered undefined; as this manual is written, it returns t
when interpreted but nil when compiled.

PS:KILMAN>FD-NUM.TEXT.36 8-JUN-84

Numbers 136 | isp Machine Manual

(defun foo () _
(let ((x (float 5)))
(eq x {car (cons x nil))))) v
This is very strange from the point of view of Lisp’s usual object semantics, but the
implementation works this way. in order to gain cfficiency, and on the grounds that identity
testing of numbers is not really an interesting thing to do. So the rule is that the result of
applying eq to numbers is undefined, and may return cither t or nil on what appear to be two
pointers to the same numeric object. ‘The only reasonable ways to compare numbers are = (see
page 139) and eql (page 69). and other things (equal or equalp) based on them.

Conversely, fixnums and short floats have the unusual property that they arc always eq if
they are cqual in value. This is because they do not point w storage: the “pointer” ficld of a
fixnum is actually its numeric valuc. and likewise for short floats. Stylisticly it is better to avoid
depending on this, by using egl rather than eq. Also. comparing Hoats of any sort for cxact
cquality, even with = which is guaranteed to consider only the numeric values, is usually unwise
since round-off error can make the answer unpredictable and meaningless.

The distinction between fixnums and bignums is largely transparent to the user. The user
simply computes with integers, and the system represents some as fixnums and the rest (less
cfficiently) as bignums. The system automatically converts back and forth between fixnums and
bignums based solely on the size of the integer. ‘I'here are a few low level functions which only
work on fixnums; this fact is noted in their documentation. Also, when using eq on numbers the
uscr needs to be aware of the fixnum/bignum distiriction.

Integer computations cannot. overflow, except for division by zero, since bignums can be of
arbitrary sizc. Floating-point computations can get exponent overflow or underflow, if the result is
too large or small to be represented. Exponent overflow always signals an error. Exponent
underflow normally signals an error, and assumcs 0.0 as the answer if the user says to procced
from the crror. However, if the valuc of the variable zunderflow is non-nil, the error is skipped
and computation proceeds with 0.0 in place of the result that was too small.

When an arithmetic function of more than onc argument is given arguments of different
numeric types, uniform coercion rules are followed to convert the arguments to a commmon type,
which is also the type of the result (for functions which return a number). When an integer
meets a ratio, the result is a ratio. When an integer or ratio meets a float, the result is a float of
the same sort. When a short-float mcets a full-size float, the result is a full-size float.

If any argument of the arithmetic function is complex, the other arguments are converted to
complex. The components of a complex result must be both full-size floats, both small-floats, or
both rational; if they differ, the one whose type comes last in that list is converted to match the
other. Finally, if the components of the result are rational and the imaginary part is zero, the
result is simply the real part. If, however, the components arc floats, the value is always complex
cven if the imaginary part is zero.

Thus if the constants in a numecrical algorithm are written as short floats (assuming this
provides adequate precision), and if the input is a short float, the computation is donc with short
floats and the result is a short float, while if the input is a full-size float the computation is done
in- full precision and the result is a full-size float.

PS:<{L.MAN>FD-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual 137 . Numbers

- Zetalisp never automatically converts between full-size floats and short floats in the same way
as it awomatically converts between fixnums and bignums since this would lead cither to
incfliciency or to unexpected numerical inaccuracics. (When a short float meets a full-size float,
the result is a full-size float, but if you use only one type, all the results are of the same type
too.) This means that a short float computation can get an exponent overflow error even when the
result could have been represented as a full-size float.

Floating-point numbers retain only a certain number of bits of precision; therefore, the results
of computations arc only approximate. Full-size floats have 31 bits and short floats have 17 bits,
not counting the sign. The method of approximation is “stable rounding”. The result of an
arithmetic operation is the float which is closest to the cxact value. If the exact result falls
precisely halfway between two representable floats, the result is rounded down if the least-
significant bit is 0. or up if the least-significant bit is 1. This choice is arbitrary but insures that
no systematic bias is introduced.

Unlike Maclisp. Zctalisp docs not have number declarations in the compiler. Note that
because fixnums and short floats require no associated storage they are as efficient as declared
numbers in Maclisp. Bignums and full-size floats are less cfficient: however, bighum and float
intermediate results are garbage-collected in a special way that avoids the overhead of the full
garbage collector.

The different types of numbers can be distinguished by their printed representations. If a
number has an exponent scparated by ‘s’ it is a short float. If a number has an exponent
separated by f', it is a full-size float. A leading or embedded (but not trailing) decimal point,
and/or an exponent separated by ‘e, indicates a float; which kind is controlled by the variable
read-default-float-format, which is usually set to specify full-size floats. Short floats require a
special indicator so that naive users will not accidentally compute with the lesser precision,
Fixnums and bignums have similar printed representations since there is no numerical value that
has a choice of whether to be a fixnum or a bignum; an integer is a bignum if and only if its
magnitude is too big for a fixnum. See the examples on page 518, in the description of what the
reader understands.

zunderflow Variable
When this is nil, floating point exponent underflow is an error. When this is t, exponent
underflow procceds, returning zero as the value. The same thing could be accomplished
with a condition handler. However, zunderflow is uscful for Maclisp compatibility, and
is also faster.

sys:floating-exponent-overflow (sys:arithmetic-error error) Condition

sys:floating-exponent-underflow (sys:arithmetic-error error) Condition
sys:floating-exponent-overflow is signaled when the result of an arithmetic opcration
should be ‘a floating point number, but the exponent is too large to be represented in the
format to be used for the value. sys:floating-exponent-underflow is signaled when the
exponent is too small.

The condition instance provides two additional operations: :function, which returns the
arithmetic function that was called, and :small-float-p, which is t if the result was
supposed to be a short float. '

- PSKLLMANDEFD-NUM.TEXT.36 8-JUN-84

Numeric Predicates 138 Lisp Machine Manual

sys:floating-exponent-overflow provides the :new-value proceed type. It expects one
argument, a new value,

sys:floating-exponent-underflow provides the :use-zero procced type. which ¢xpects no
argument. '

Unfortunately, it is not possible to make the arguments to the operation available.
Perhaps someday they will be.

7.1 Numeric Predicates

zerop x ,
Returns t if x is zero. Otherwise it returns nil. If x is not a number, zerop causcs an

crror. For floats, this only returns t for cxactly 0.0 or 0.0s0. For complex numbers, it
returns t if both real and imaginary parts are zcro.

plusp x
Returns t if its argument is a positive number, strictly greater than zero. Otherwise it
returns nil. If x is not a number, plusp causes an error.

minusp x
Returns t if its argument is a necgative number, strictly less than zero. Otherwise it

returns nil. If x is not a number, minusp causes an CITOF.

oddp number .
Returns t if number is odd, otherwise nil. 1f number is not a fixnum or a bignum, oddp

€auscs an CIror.

avenp number
Returns t if number is cven, otherwise nil. If number is not a fixnum or a bignum,

evenp causes an Ccrrofr.

signp test x Special form
Tests the sign of a number. signp is present only for Maclisp compatibility and is not
recommended for use in new programs. signp returns t if x is a number which satisfies
the fest, nil if it is not a number or docs not meet the test. fest is not evaluated, but x

is. test can be one of the following:

I x<0
le x<0
e x=20
n x=0
ge x20
g x>0

PS:KLLMAN>FD-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual 139 Numeric Comparisons

Examples:
(signp ge 12) => t
(signp le 12) => nil
(signp n 0) => nil
(signp g 'foo) => nil

Sec also the data-type predicates integerp. rationalp, realp. complexp. floatp, bigp, small-
floatp. and numberp (page 12).

7.2 Numeric Comparisons

AIl of these functions require that their arguments be numbers: they signal an error if given a
non-number. Equality tests work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp in - which generally only the spelled-out names work for all kinds
of numbers). Ordering comparisons allow only rcal numbers, since they arc meaningless on
complex numbers,

= &rest numbers
Returns t if all the arguments are numerically cqual. They need not be of the same type;
1 and 1.0 arc considered equal. Character objects are also allowed, and in effect coerced
to integers for comparison.

Sce also eql, page 69, which insists that both the type and the value match when its
arguments are numbers, '

> &rest numbers.

greaterp &rest numbers :
> compares cach pair of successive arguments. If any argument is not greater than the
next, > returns nil.- But if the arguments are monotonically strictly decreasing, the result
is t. Zero arguments arc always monotonically decreasing, and so is a single argument.

Examples:
(>) => t
(> 3) =>t .
(> 4 3) => t
(>43210) =>1t
(>43120) = nil

greaterp is the Maclisp name for this function.

>= &rest numbers

> &rest numbers
2 compares cach pair of successive arguments. If any argument is less than the next, 2
returns nil. But if the arguments are monotonically decreasing or equal, the result is t.

>=is the Common Lisp name for this function.

PS:KLLMANDFD)-NUM.TEXT.36 8-JUN-84

Numeric Comparisons 140 Lisp Machine Manual

< &rest numbers
lessp &rest numbers
< compares cach pair of successive arguments. I any argument is not less than the next,
< returns nil. But if the arguments are monotonically strictly increasing, the result is t.
Fxamples:
(<) => 1t
(< 3) =>t
(<34) >t
(< 11) => nil
(<01234) =>1t
(<01324) =>nil

lessp is the Maclisp name for this function.

<= &rost numbers

< &rest numbers
< compares its arguments from left to right. If any argument is greater than the next, <
returns nil. But if the arguments are monotonically increasing or equal, the result is t.

= is the Common Lisp name for this function.

= &rest numbers

//= &rest numbers
t if no two arguments are numerically equal. This is the same as (not (= ...)) when there
are two arguments, but not when there arc more than two.

With zcro or onc argument, the valuc is always t, since there is no pair of arguments
that fail to be cqual.

// = is the Common Lisp name for this function. In Common Lisp syntax, it would be
written /=,

max &rest one-or-more-args
Returns the largest of its arguments, which must not be complex.
Example:
(max 1 3 2) => 3
max requires at least one argument.

min &rest one-or-more-args
Returns the smallest of its arguments, which must not be complex.
Example:
(min 1 3 2) => 1
min requires at Icast one argument.

PS:KILMAN>FD-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual , 141 Arithmetic

7.3 Arithmetic

All of these functions require that their arguments be numbers, and signal an error if given a
non-number. ‘They work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp, in which gencrally only the spelled-out versions work for alt
kinds of numbers, and the *$ versions are needed for floats).

+ &rest args

plus &roest args

+$ &rest args
Returns the sum of its arguments, 1If there are no arguments, it returns 0, which is the
identity for this operation.

plus and $+ arc Maclisp names, supported for compatibility.

- arg &rcst args

-$ arg &rest args .

‘ With only one argument, - rcturns the negative of its argument. With more than one
argument, - returns its first argument minus all of the rest of its arguments.

Examples:
(- 1) => -1
(- -3.0) => 3.0
(-31) =>2

(-921) =>6
~$ is a Maclisp name, supported for compatibility.

minus x
Returns the negative of x, just like - with one argument. .

difference arg &rest args
Returns its first argument minus all of the rest of its arguments. If there are at least two

arguments, difference is cquivalent to -.

abs x
Returns |x], the absolute value of the number x. abs for real numbers could have been
defined as
(defun abs (x)
(cond ((minusp x) (minus x))

(t x)))

abs of a complex number could be computed, though imprecisely, as
(sqrt (~ (realpart x) 2) (~ (imagpart x) 2))

PS:KL.MAN>FD-NUM.TEXT.36 8-JUN-84

Arithmetic 142 1isp Machine Manual

* &rest oargs

times &rost args

*$ Krest args .
Returns the product of its arguments. If there are no arguments, it returns 1, which is
the identity for this operation.

times and *$ arc Maclisp names, supported for compatibility.

/7 arg &rest args

/78 arg &rost args :
With more than one argument, 7/ it returns the first argument divided by all of the rest
of its arguments. With only one argument, (/7 x) is the same as (/7 1 x).

The name of this function is written // rather than / because / is the .cscape character in
traditional lisp syntax and must be cscaped in order to suppress that significance. //$ is
a Maclisp name, supported for compatibility.

// of two integers returns an integer even if the mathematically correct value is not an
integer. More precisely, the value is the same as the first value returned by truncate (sce
below). This will eventually be changed, and then the value will be a ratio if necessary
so that the it is mathematically correct. All code that relies on // to rcturn an integer
value rather than a ratio should be converted to usc truncate (or floor or ceiling, which
may simplify the code further). In the mecan time, use the function cli:// if you want a
rational result. ’

Examples:
(773 2) => 1 :Fixnum division truncates.
(/77 3 -2) => -1
(/7 -3 2) => -1
(77 -3 -2) => 1
(77 3 2.0) => 1.5
(// 3 2.0s0) => 1.5s0
(/77 4 2) => 2
(/77 12. 2. 3.) => 2
(77 4.0) => .25
quotient arg &rest args .
Returns the first argument divided by all of the rest of its arguments. When there are

two or morc arguments, quotient is equivalent to //.

c1i:// number &rest numbers
This is the Common Lisp division function. It is like // except that it uscs exact rational
division when the arguments are integers.

/7 will someday be changed to divide integers exactly. Then there will no longer be a
distinct function cli://; that name will become equivalent to //.

PS:KLLMAN>FD-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual 143 ' Arithmetic

Note that in Common Lisp syntax your would write just / rather than cli://.

There are four functions for “integer division”, the sort which produces a quotient and a
remainder. They differ in how they round the quotient to an integer. and therefore also in the
sign of the remainder. "The arguments must be real, since ordering is needed to compute the

value.

floor

The quotient is always an integer, but the arguments and remainder need not be.

x &optional (1) _
floor’s first value is the largest integer less than or equal to the quotient of x divided by

.

The sccond value is the remainder, x minus p times the first value. ‘This has the same
sign as y (or may be zero), regardiess of the sign of x.

With one argument, floor's first valuc is the largest integer less than or cqual to the
argument.

ceiling x &optional (y1)

ceiling’s first valuc is the smallest integer greater than or equal to the quotient of x
divided by y.

The second value is the remainder, -x minus y times the first value. ‘This has the opposite
sign from y (or may be zero), regardless of the sign of x.

With onc argument, ceiling’s first valuc is the smallest integer greater than or equal to
the argument.

truncate x &optional' (y1)

_ round

truncate is the same as floor if the arguments have the same sign, ceiling if they have
opposite signs. truncate is the function that the divide instruction on most computers
implements.

truncate’s first value is the ncarest integer, in the direction of zero, to the quotient of x
divided by y.

The sccond value is the remainder, x minus y times the first value. This has the same
sign as x (or may be zero).

x &optional (y1)
round's first value is the ncarcst integer to the quotient of x divided by y. If the
quoticnt is midway between two integers, the even integer of the two is used.

The second value is the remainder, x minus y times the first value. The sign of this
remainder cannot be predicted from the signs of the arguments alone.

With one argument, round’s first value is the integer ncarest to the argument.

Here is a table which clarifies the mcaning of floor, ceiling, truncate and round with one

argument:

L)

PS:AKL.MAN>EFD-NUM.TEXT.36 8-JUN-84

Arithmetic 144 Lisp Machine Manual

floor ceiling truncate round
2.6 2 3 2 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0
-0.3 -1 0 0 0
-0.7 -1 0 0 -1
-2.4 -3 -2 -2 -2
-2.5 -3 -2 -2 -2
-2.5 -3 -2 -2 -2
-2.6 -3 -2 -2 -3

There are two kinds of remainder function, which differ in the treatment of negative numbers.
The remainder can also be obtained as the second value of one of the integer division functions
above, but if only the remaineder is desired it is simpler to use these functions.

\ xy
remainder x y
cli:rem x y
Returns the remainder of x divided by y. x and y must be integers (fixnums or
bignums). 'This is the same as the second value of (truncate x y). Only the absolute
value of the divisor is rclevant.
(\ 3 2) =>1
(\ -3 2) => -1
(\ 3 -2) =>1
(\ -3 -2) => -1

Common Lisp gives this function the name rem, but since rem in traditional Zctalisp is a
function to remove clements from lists (sce page 105), the name rem is defined to mean
remainder only in Common Lisp programs. Note that the name \ would have to be
written as \\ in Common Lisp syntax; but the function \ is not standard Common Lisp.

mod number divisor

Returns the root of number modulo divisor. This is a number between 0 and divisor, or
possibly 0, whose difference from number is a multiple of divisor. It is the same as the
sccond value of (floor number divisor). Examples:

(mod 2 5) => 2

(mod -2 5) => 3

(mod -2 -5) => =2

(mod 2 -5) > -3

There are four “floating point integer division” functions. These produce a result which is a
floating point number whosc value is exactly integral.

PS:<LLMAN>FI)-NUM.TEXT.36 8-JUN-84

Fisp Machine Manual v 145 Arithmetic

ffloor x &aptional (1)

fceiling x &optional (y1)

ftruncate x &optional (y1)

fround ~ &optional (1)
Like floor, ceiling. truncate and round cxcept that the first value is converted from: an
integer o a float. If x is a float, then the result is the same type of float as x.

sys:divide-by-zero (sys:arithmetic-error error) Condition
Dividing by scro. using any of the above division functions, signals this condition. The
:function operation on the condition instance returns the name of the division function.
‘The wdividend operation may be available to return the number that was divided.

1+ x
addl x
1+% x
(1+ x) is the same as (+ x 1). ‘The other two names are for Maclisp compatibility.
1- x
subl x
1-% «x

(1- x) is the same as (- x 1). Note that the short name may be confusing: (1- x) docs
not mean l-x; rather, it means x-l1. The names sub1l and 1-$ arc for Maclisp
compatibility. :

gcd &rest integers

\\ &rest integers
Returns the greatest common divisor of all its arguments, which must be integers. With
onc argument, the value is that argument. With no arguments, the value is zero.

In Common Lisp syntax \\ would be written as \\\\, but only the name gcd is valid in
strict Common Lisp.

Tcm integer &rcst more-integers
Returns the least common multiple of the specified integers.

expt x y

~xy

~$ xy
Returns x raised to the y'th power. The result is rational (and possibly an integer) if x is
rational and y an integer. If the cxponent is an integer a repeated-squaring algorithm is
uscd; otherwisc the result is (exp (* y (log x))).

If y is zero, the result is (+ 1 (* x y)); this is cqual to one, but its type depends on
those of x and y.

PS:KILMAN>FD-NUM.TEXT.36 8-JUN-84

Complex Number FFunctions 146 [isp Machine Manual

sys:zero-to-negative-power (sys:arithmetic-error error) Condition
This condition is signaled when expt's first argument is zero and the second argument is
negative.

sqrt x

Returns the square root of x. A mathematically unavoidable discontinuity occurs for
negative real arguments, for which the value returned is a positive real times i.
© (sqrt 4) => 2
{(sqrt -4) => 0+2i
(sqrt -4+.00011) => .00005+2i (approximatcly)
(sqrt -4-.00017) => .00005-2i (approximately)

isqrt x :
Integer squarc-toot. x must be an integer: the result is the greatest integer less than or
cqual to the exact square root of x.

*dif x y

*plus x y

*quo x y

*times x y
These are the internal microcoded arithmetic functions. There is no rcason why anyone
should need to write code with these explicitly, since the compiler knows how to generate
‘the appropriatc code for plus, +, ctc. ‘These names arc only here for Maclisp
compatibility. '

%div dividend divisor
“The internal division function used by cli://. it was available before cli:// was and may

therefore be used in some programs. It takes cxactly two arguments. Uses of %div
should be changed to use cli://.

- 7.4 Complex Number Functions

Sce also the predicates realp and complexp (page 12).

complex x &optional y
Returns the complex number whose real part is x and whose imaginary part is y.

If x is rational and y is zero or omitted, the value is x, and not a complex number at
all. If x is a float and y is zero or omitted, of if y is a floating zcro, the result is a
complexnum whose imaginary part is zero.

realpart :z
Returns the real part of the number z. If z is real, this is the same as z.

PSKL.MANDED-NUM.TEXT.36 8-JUN-84

Iisp Machine Manual 147 Transcendental Functions

imagpart :z
Returns the imaginary part of the number z. If z is real, this is zcro.

conjugate :z
Returns the complex conjugate of the number z. If z is real, this'is the same as z.

phase :z
© Returns the phase angle of the complex number z in its polar form. This is the angle

from the positive ¥ axis to the ray from the origin through z. The valuc is always in the
interval (-@, =). '

(phase -4) => 4

(phase -4-.00011) isjustover -a.

(phase 0) => 0 (an arbitrary choicc)

cis angle _
Returns the complex number of unit magnitude whose phase is angle. This is cqual to

(complex (cos angle) (sin angle)). angle must be real.

sighum :z ,
Returns a number with unit magnitude and the same type and phase as z. If z is zero,

the value is zero.

If z is real, the value is = to 1 or -1; it may be a float, however.

7.5 Transcendental Functions

These functions are only for floating-point arguments; if given an integer they convert it to a
float. If given a short float, they return a short float.

pi ' ' Constant
The value of o, as a full-size float.

exp x
Returns e raised to the x’th power, where ¢ is the base of natural logarithms.

log x &optional base
Returns the logarithm of x to base base. base defaults to e. When base is e, the

imaginary part of the value is in the interval (-, #]; for negative real x, the value has
imaginary part =.

If base is specified, the result is
(77 (log x) (log base))

sys:zero-log (sys:arithmetic-error error) ' Condition
This is signaled when the argument to log is zero.

PS:KLLMAN>EFI)-NUM.TEXT.36 8-JUN-84

Transcendental Functions 148 Lisp Machine Manual

sin x
cos x
tan x 4
Return, respectively, the sine, cosine and tangent of x, where x is cxpressed in radians,
x may be complex.

sind x
cosd x
tand x
Return, respectively, the sine. cosine and tangent of x, where x is expressed in degrees.

asin x

acos x
Returns the angle (in radians) whose since (respectively, cosine) is x. The real part of the
result of asin is between -#/2 and #/2; acos and asin of any given argument always
add up to #/2.

atan y &optional x
If only y is given, the valuc is the angle, in radians, whose tangent is y. The real part
of the result is between zero and -,

If x is also given, both arguments must be real, and the value is an angle, in radians,
whose tangent is y /x. However, the signs of the two arguments arc used to choose
between two angles which differ by # and have the samc tangent. ‘The one chosen is the
angle from the x-axis counterclockwise to the tine from the origin to the point (x, y).

atan always returns a non-negative number between zero and 2s.

atan2 y &optional x

cli:atan y &optional x
Like atan but always rcturns a value whosc real part is between -#/2 and #/2. The
value is cither the same as the value of atan or differs from it by #.

atan2 is the traditional name of this function. In Common Lisp it is called atan; it is
documented as cli:atan since the name atan has a different meaning in traditional syntax.

sinh x
cosh x
tanh x
asinh x
acosh x
atanh x
The hyperbolic and inverse hyperbolic functions.

PS:KEMANDFIDD-NUM.TEXT.36 8-JUN-84

1 isp Machine Manual 149 Numeric Type Conversions

7.6 Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be forced, when
desired. :

float sumber &optional float
Converts number to a floating point number and recturns it.

If floar is specified, the result is of the same floating point format as floar. I number is a
float of a different format then it is converted.

If float is omitied, then number is converted to a single-float unless it is alrcady a floating
point number.

A complex number is converted to one whose rcal and imaginary parts are full-size floats
unless they are already both floats.

small-float x

short-float x .
Converts any kind of rcal number to a short-float. A complex number is converted to

onc whose recal and imaginary parts arc short floats. The two names are synonymous.

numerator x
Returns the numerator of the rational number x. If x is an integer, the value cquals x.

If x is not an integer or ratio, an crror is signaled.

denominator x '
Returns the denominator of the rational number x. If x is an integer, the value is 1. If

X is not an intcger or ratio, an crror is signaled.

rational x
Converts x to a rational number. If x is an integer or a ratio, it is returned unchanged.

If it is a floating point number, it is regarded as an cxact fraction whose numecrator is the
mantissa and whose denominator is a power of two. For any other argument, an error is

signaled.

rationalize x &optional precision
Returns a rational approximation to x.

If there is only one argument, and it is an integer or a ratio, it is returncd unchanged.
If the argument is a floating point number, a rational number is returned which, if
converted to a floating point number, would producc the original argument. Of all such
rational numbers, the one chosen has the smallest numerator and denominator.

If there are two arguments, the sccond one specifics how much precision of the first
argument should be considered significant. precision can be a. positive integer (the number
of bits to usc), a ncgative integer (the number of bits to drop at the end), or a floating
point number (minus its exponent is the number of bits to use).

PSKI.MAN>EFD-NUM.TEXT.36 8-JUN-84

Iloating Point Numbers 150 I isp Machine Manual

If there are two arguments and the first is rational, the value is a “simpler™ rational which
approximates it.

fix x 4
Converts x from a float or ratio to an integer, truncating towards negative infinity. ‘The
result is a fixnum or a bignum as appropriate. I x is alrcady a fixnum or a bignum, it is
returned unchanged.

fix is the same as floor except that floor returns an additional value. fix is semi-obsolete,
since the functions floor, ceiling. truncate and round provide four different ways of
converting numbers to integers with different kinds of rounding.

fixr x
fixr is the same as round cxcept that round returns an additional value. fixr is considered

obsolete.

7.7 Floating Point Numbers

decode-float floar
Returns three values which describe the value of float.

The first value is a positive float of the same format having the same mantissa, but with
an cxponent chosen to make it between 1/2 and 1, less than 1.

The second value is the exponent of floar: the power of 2 by which the first value needs
to be scaled in order to get floar back.

The third valuc cxpresses the sign of floar. It is a float of the same format as float,
whose value is cither 1 or -1. Example:
(decode-float 38.2)
=> 0.b596875 6 1.0

integer-decode-float float
[ike decode-fioat cxcept that the first valuc is scaled so as to make it an integer, and
the second value is modificd by addition of a constant to compensate.
(integer-decode-float 38.2)
=> #011431463146 -25. 1.0

scale-float floar integer
Multiplics float by 2 raiscd to the integer power. float can actually be an intcger also; it
is converted to a float and then scaled.
(scale-float 0.596875 6) => 38.2
(scale-float #011431463146 -25.) => 38.2

PS:KL.LMANDFI)-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual 151 Logical Operations on Numbers

float-sign flowr! &optional floar?
Returns a float whose sign matches that of flour! and whose magnitude and format are
those of float2. If floar2 is omitted, 1.0 is used as the magnitude and floar! s format is
used.
(float-sign -1.0s0 35.3) => -35.3
(float-sign -1.0s0 35.3s0) => -35.3s0

float-radix floar ,
Defined by Common Lisp to return the radix used for the exponent in the format used

for flowr. On the Lisp Machine. floating point exponents are always powers of 2, so
float-radix ignores its argument and always returns 2.

float-digits floar
Returns the number of bits of mantissa in the floating point format which float is an

example of. It is 17 for short floats and 31 for full size ones.

float-precision float
Returns the number of significant figures present in in the mantissa of floar. This is
always the same as (float-digits floar) for normalized numbers, and on the Lisp Machine
all floats are normalized, so the two functions are the same.

7.8 Logical Operations on Numbers

Except for Ish and rot, these functions operate on both fixnums and bignums. Ish and rot
have an inherent word-length limitation and hence only operate on 25-bit fixnums. Negative
numbers are operated on in their 2's-complement representation.

Togior &rest integers _
Returns the bit-wise logical inclusive or of its arguments. With no arguments, the value is

zero, which is the identity for this opcration.
Example (in octal):
(logior #04002 #067) => #04067

logand &rest integers
Returns the bit-wise logical and of its arguments. With no arguments, the value is -1,
which is the identity for this operation.
Examples (in octal):
{(logand #03456 #0707) => #0406
(logand #03456 #0-100) => #03400

logxor &rest integers
Returns the bit-wise logical exclusive or of its arguments. With no arguments, the value is

zero, which is the identity for this operation.
Exampile (in octal):
‘ (logxor #02531 #07777) => #05246

PS:KILMAN>FD)-NUM.TEXT.36 8-JUN-84

I ogical Operations on Numbers 152 Lisp Machine Manual

logeqv &rest integers
Combines the inregers together bitwise using the cquivalence operation, which, for two
arguments, is defined to result in 1 if the two argument bits are equal. "This operation is
asociative. With no args, the value is -1, which is an identity for the cquivalence
operation,
Lxample (in octal):
(1ogeqv #02531 #07707) => #0-5237 = ...77772541

Non-associative bitwise operations take only two arguments:

lognand integerl integer?
Returns the bitwise-nand of the two arguments. A bit of the result is 1 if at least one of
the corresponding argument bits is 0.

lognor integerl integer?
Returns the bitwise-nor of the two arguments. A bit of the result is 1 if both of the
corresponding argument bits are 0.

logorc1 integerl integer2
Returns the bitwisc-or of integer? with the complement of integerl.

logorc2 integer! integer2
Returns the bitwisc-or of integerl with the complement of integer2.

logandcl integerl integer2
Returns the bitwisc-and of integer2 with the complement of integerl .

logandc2 integer! integer2
Returns the bitwisc-and of integer! with the complement of integer?.

lognot number
Returns the logical complement of number. This is the same as logxor'ing number with
-1.
Example:
(l1ognot #03456) => #0-3457

boole fir &rest one-or-more-args
boole is the gencralization of logand, logior, and logxor. fi should be a fixnum
between 0 and 17 octal inclusive; it controls the function which is computed. If the
binary representation of fi is abed (a is the most significant bit, d the least) then the truth
table for the Boolcan operation is as follows:

y
| o 1
0] a ¢
x |
1] b d

PS:<KILMAN>FI)-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual 153 [ogical Operations on Numbers

If boole has more than three arguments, it is associated left to right; thus,

(boole fn x y z) = (boole fn (boole fn x y) z)
With two arguments, the result of boole is simply its sccond argument. At least two
arguments arc required. -

Examples:
(boole 1 x y)
(boole 6 x y)
(boole 2 x y)

(logand x y)
(logxor x y)
(logand (lognot x) y)

"

logand. logior, and so on arc usually preferred over the cquivalent forms of boole.
boole is useful when the operation to be performed is not constant,

boole-ior ' ‘ Constant
boole-and . Constant
boole-xor Constant
boole-eqv Constant
boole-nand . : Constant
boole-nor Constant
boole-orcl Constant
boole-orc?2 : Constant
boole-andci Constant
boole-andc2 Constant

The boole opcodes that correspond to the functions logior, logand, etc.

boole-clir Constant
boole-set Constant
boole-1 Constant
boole-2 ' Constant

The boole opcodes for the four trivial operations. Respectively, they are those which
always return zero, always return one, always return the first argument, and always rcturn
the second argument.

bit-test x y
Togtest x y .
bit-test is a predicate which returns t if any of the bits designated by the 1’s in x are 1’s
in y. bit-test is implemented as a macro which expands as follows:
(bit-test x y) ==> (not (zerop (logand x y)))
logtest is the Common Lisp name for this function.

'Tsh Xy
Returns x shifted left y bits if » is positive or zero, or x shifted right |y| bits if y is
negative. Zero bits are shifted in (at cither end) to fill unused positions. x and y must
be fixnums. (In some applications you may find ash useful for shifting bignums; see

below.)

PS:<1.MANDFD-NUM.TEXT.36 8-JUN-84

I ogical Operations on Numbers 154 Lisp Machine Manual

Examples:
(1sh 4 1) => #010
(1sh #o014 -2) => 3
(1sh -1 1) => -2

ash x y
Shifts x arithmetically left y bits i y is positive, or right -y bits if y is negative. Unused
positions are filled by zeroes from the right, and by copics of the sign bit from the left.
‘Thus. unlike Ish. the sign of the result is always the same as the sign of x. If x is a
fixnum or a bignum. this is a shifting operation. If x is a float, this does scaling
(multiplication by a power of two). rather than actually shifting any bits.

rot x y

Rewrns x rotated left y bits if y is positive or zero, or x rotated right |y] bits if y is
negative. ‘The rotation considers x as a 25-bit number (unlike Maclisp. which considers x
to be a 36-bit number in both the pdp-10 and Multics implementations). x and y must
be fixnums. (There is no function for rotating bignums.)
Examples:

(rot 1 2) => 4

(rot 1 -2) => #020000000

(rot -17) => -1

(rot #015 25.) => #015

logcount infeger
Returns the number of 1 bits in infeger, if it is positive. Rcturns the number of 0 bits in

integer, if it is ncgative. (There arc infinitely many 1 bits in a negative integer.)
(1ogcount #o01b) => 3
(logcount #o0-15) => 2

integer-length integer
The minimum number of bits (aside from sign) nceded to represent infeger in two’s
complement. This is the same as haulong for positive numbers.
(integer-length 0) => 0
(integer-length 7) => 3
(integer-length 8) => 4

(integer-length -7) => 3
(integer-length -8) => 3
(integer-length -9) => 4

haulong integer
The same as integer-length of the absolute value of integer. This name exists for

Maclisp compatibility only.

haipart x n
Returns the high n bits of the binary representation of [x]. or the low -n bits if n is
negative. x may be a fixnum or a bignum; its sign is ignored. haipart could have been

dcfined by:

PS:KI.MAN>FD-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual : 155 ~ Byte Manipulation Functions

(defun haipart (x n)
(setq x (abs x))
(if (minusp n)
(logand x (1- (ash 1 (- n))))
(ash x (min (- n (haulong x))

0))))

7.9 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width ficld of contiguous bits
appearing anywhere in an integer (a fixnum or a bignum). Such a contiguous sct of bits is called
a byte. Note that we are not using the term byte to mean cight bits, but rather any number of
bits within a number. These functions use numbers called byte specifiers to
designate a specific byte position within any word. A byte specifier contains two picces of
information: the size of the byte, and the position of the byte. The position is expressed as the
number of least significant bits which are not included in the byte. A position of zero means that
the byte is at the right (least significant) end of the number.

The maximum value of the size is 24, since a byte must fit in a fixnum although bytes can
be loaded from and deposited into bignums. (Bytes are always positive numbers.)

- Byte specifiers are represented as fixnums whose two lowest octal digits represent the size of
the byte, and whosc higher (usually two, but sometimes more) octal digits represent the position
of the byte within a number. For cxample, the byte-specifier #00010 (i.c. 10 octal) refers to the
lowest cight bits of a word, and the byte-specifier #01010 refers to the next cight bits. The
format of byte-specifiers is taken from the pdp-10 byte instructions.

Much old code contains byte specifiers written explicitly as octal numbers. It is cleaner to
construct byte specifiers using byte instead. Decomposition of byte specifiers should always be
done with byte-position and byte-size, as at some time in the future other kinds of byte
specifiers may be created to refer to fields whose size is greater than #077.

byte size position
Returns a byte specifier for the byte of size bits, positioned to exclude the position least
significant bits. This byte specifier can be passed as the first argument to Idb, dpb,
%logldb, %logdpb, mask-field, %p-Idb, %p-ldb-offset, and so on.

byte-position byte-spec
byte-size byte-spec
Return, respectively, the size and the position of byre-spec. It is always true that
(byte (byte-size byte-spec) (byte-position byte-spec))
equals byte-spec.

1db byte-spec integer
Extracts a byte from integer according to byte-soec. The contents of this byte are returned
right-justified in a fixnum. The name of the function, Idb, means ‘load byte’. integer
may be a fixnum or a bignum. The returned value is always a fixnum.

PS:KLLMAN>FD-NUM.TEXT.36 8-JUN-84

Byte Manipulation Functions 156 Lisp Machine Manual

Fxample:
(1db (byte G 3) #04567) => #056

load-byte integer pusition size _
This is like ldb except that instead of using a byte specifier, the position and size are
passed as separate arguments. ‘The argument order is not analogous to that of Idb so that
load-byte can be compatible with Maclisp.

1db-test bhyie-spec integer
idb-test is a predicate which returns t if any of the bits designated by the byte specifier
byte-spec are s in jnieger. ‘That is, it returns t if" the designated ficld is non-zero. Idb-
test is implemented as a macro which expands as follows:
(1db-test byre-spec integer) ==> (not (zerop (1db byre-spec integer)))

Togbitp index integer
t if the bit index up from the least significant in integer is a 1. This is cquivalent to

(Idb-test (byte index 1) integer).

mask-f1ield byte-spec fixnum
This is similar to Idb; however, the specified byte of fixnum is positioned in the same
byte of the returned value. ‘The returned value is zero outside of that byte. fixnum must
be a fixnum.
Example:
(mask-field (byte 6 3) #04567) => #0560

\

dpb byle‘ byle-spec\ integer \

Returns a number which is the same as infeger cxcept in the bits specified by byte-spec.
The low bits of byte, appropriatcly many, are placed in those bits. byte is interpreted as
being right-justified, as if it were the result of Idb. integer may be a fixnum or a bignum.
The name means ‘deposit byte’.
Example:

(dpb #023 (byte 6 3) #04567) => #04237

deposit-byte integer position size byte
This is like dpb except that instcad of using a byte specifier, the position and size are
passed as scparate arguments. The argument order is not analogous to that of dpb so that
deposit-byte can be compatible with Maclisp.

deposit-field byte byte-spec fixnum
This is like dpb, cxcept that byte is not taken to be left-justificd; the byte-spec bits of
byte are used for the byte-spec bits of the result, with the rest of the bits taken from
Sixnum. fixnum must be a fixnum.
Example:
(deposit-field #0230 (byte 6 3) #04567) => #04237

The behavior of the following two functions depends on the size of fixnums, and so functions

using them may not work the same way on futurc implementations of Zetalisp. Their names start
with % because they are more like machine-level subprimitives than the previous functions.

PS:KL.MAN>FD-NUM.TEXT.36 , 8-JUN-84

Lisp Machine Manual ‘ 157 Random Numbers

%1ogldb byte-spec fixnum
%logldb is like Idb except that it only loads out of fixnums and allows a byte size of 25,
i.c. all 25 bits of the fixnum including the sign bit.

%togdpb byre byie-spee f ixnum
%logdpb is like dpb except that it only deposits into ﬁxnunh Using this to change the
sign-bit lcaves the result as a fixnum, while dpb would produce a bignum result for
arithmetic correctness. %logdpb is good for manipulating fixnum bit-masks such as are
used in some internal system tables and data-structures.

7.10 Random Numbers

The functions in this section provide a pscudo-random number generator facility. The basic
function you use is random, which returns a new pscudo-random number cach time it is called.

random &optional wumber random-state
Returns a randomly gencrated number. If number is specified, the random number is of
the same type as number (floating if number is floating, ctc.), nonnecgative, and less than
number,

If number is omitted, the result is a randomly chosen fixnum, with all fixnums being
cqually likely. .

If random-state is present, it is used and updated in gencrating the random number.
Otherwise, the default random-state (the value of *random-state*) is used (and is created
if it doesn't alrecady cxist). The algorithm is cxccuted inside a without-interrupts (see
page 684) so two processes can use the same random-state without colliding.

si:random-in-range Jlow high
Returns a random float in the interval [low, high). The default random-state is used.

A random-state is a named structure of type random-state whose contents control the future
actions of the random number gencrator. Each time you call the function random, it uses (and
updates) one random-state. Onc random-state cxists standardly and is used by default. To have
several different controllable, rescttable sources of random numbers, you can create your own
random-states. Random-states print as

#s(random-state ...moredata...)
so that they can be read back in.

random-state-p object
t if object is a random-state. .

random-state : Variable
This random-state is used by default whcn random is called and the random-state is not

cxplicitly specified.

PS:KLLMAN>FD-NUM.TEXT.36 8-JUN-84

Information on Numeric Precision 158 1isp Machine Manual

make-random-state &optional rundom-state
Creates and returns a new random-state object. Il randomr-state is nil, the new random-
state is a copy of *random-state*. If rundoni-state is a random-state, the new onc is a
copy of that one. ‘If random-state is t. the new random-state is initialized truly randomly
(based on the value of (time)).

A random-state actually consists of an array of numbers and two pointers into the array. The
pointers circulate around the array: cach time a random number is requested. both pointers are
advanced by one, wrapping around at the end of the array. Thus, the distance forward from the
first pointer to the sccond pointer stays the same, allowing for wraparound. Let the length of the
array be fength and the distance between the pointers be offser. “To generate a new random
number, cach pointer is set to its old value plus one, modulo Jength. Then the two clements of
the array addressed by the pointers are added together; the sum is stored back into the array at
the Tocation where the second pointer points, and is returned as the random number after being
normalized into the right range. '

This algorithm produces well-distributed random numbers if length and offser arc chosen
carefully, so that the polynomial x ~ length + x ~ offset + 1 is irreducible over the mod-2
integers. 'The system uses 71. and 35.

The contents of the array of numbers should be initialized to anything moderately random, to
make the algorithm work. The contents get initalized by a simple random number gencrator,
bascd on a number called the seed. The initial value of the sced is sct when the random-state is
created, and it can be changed.

si:random-create-array length offset seed &optional (area nil)
Creates and returns a new random-state according to precise specifications. length is the
length of the array. offser is the distance between the pointers and should be an integer
less than length. sced is the initial valuc of the sced, and should be a fixnum. This calls
si:random-initialize on the random state before returning it.

si:random-initialize random-state &optional new-seed
random-state must be a random-state, such as is crcated by si:random-create-array. If
new-seed is provided, it should be a fixnum, and the sced is set to it. sirandom-
initialize reinitializes the contents of the array from the sced (calling random changes the
contents of the array and the pointers, but not the seed).

7.11 Information on Numeric Precision

Common Lisp defines some constants whose values give information in a standard way about
the ranges of numbers representable in the individual Lisp implementation.

most-negative-fixnum Constant
Any integer smaller than this must be a bignum.

PS:KL.MANDFD-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual } 159 Information on Numeric Precision

most-positive-fixnum ’ ; Constant
Any integer larger than this must be a bignum.

most-positive-short-float , o : Constant
No short float can be greater than this number.

least-positive-short-float Constant
~ No positive short float can be closer to zero than this number.

least-negative-short-float Constant
No negative short float can be closer to zero than this number.

most-negative-short-float , ‘ Constant
No short float can be less than this (negative) number.

most-positive-single-float Constant
least-positive-single-float Constant
least-negative-single-float ' Constant
most-negative-single-float Constant

Similar to the above, but for full-size floats rather than for short floats.

most-positive-double-float Constant
Teast-positive-double-float ' Constant
least-negative-double-float Constant
most-negative-double-float ‘ Constant
most-positive-long-float Constant
least-positive-long-float Constant
least-negative-long-float : Constant
most-negative-long-float Constant

These arc defined by Common Lisp to be similar to the above, but for double-floats and
long-floats. On the Lisp Machine, there are no distinct double and long floating formats;
they are synonyms for single-floats. So these constants cxist but their values arc the same
as thosc of most-positive-single-float and so on.

short-float-epsilon Constant
Smallest positive short float which can be added to 1.0s0 and make a difference. That is,

for any short float x less than this, (+ 1.0s0 x) cquals 1.0s0.

single-float-epsilon Constant
double-float-epsilon Constant
long-float-epsilon Constant

Smallest positive float which can be added to 1.0 and make a difference. The three names
are synonyms on the Lisp Machine, for reasons cxplained above.

short-float-negative-epsilon Constant
Smallest positive short float which can be subtracted from 1.0s0 and make a difference.

PS:KL.MAN>FD-NUM.TEXT.36 8-JUN-84

Arithmetic Ignoring Overflow 160 Lisp Machine Manual

single-float-negative-epsilon ' Constant
double-float-negative-epsilon © Constant
long-float-negative-epsilon Constant

Snuillest positive loat which can be subtracted from 10 and make a difference.

7.12 Arithmetic Ignoring Overflow

Sometimes it is desirable 10 have a form of arithmetic which has no overflow checking (that
would produce bignums), and truncates results to the word size of the machine.

%pointer-plus pointer-l pointer-2
Returns a fixnum which is pointer-1 plus pointer-2. modulo what could be stored in the
I p /

sizc of the pointer field (currently 25 bits). Arguments other than fixnums are rarely
uscful, but no type checks are made.

%pointer-difference pointer-1 pointer-2
Returns a fixnum which is pointer-1 minus pointer-2. 1f the arguments arc fixnums, rather
than true pointers, this provides subtraction modulo what can be stored in the pointer

field.

%pointer-times pointer-1 pointer-2
Returns a fixnum which is pointer-1 times pointer-2. Arguments other than fixnums are

rarely uscful. but no type checks are made. The two pointer ficlds are regarded as signed
numbers. '

7.13 24-Bit Arithmetic

Sometimes it is useful to have a form of truncating arithmetic with a strictly specified field
width which is independent of the range of fixnums permissible on a particular machine. In
Zetalisp, this is provided by the following sct of functions. Their answers are correct only modulo
2124,

These functions should nof be used for efficiency; they arc probably less cfficient than the
functions which do check for overflow. They arc intended for algorithms which require this sort
of arithmetic, such as hash functions and pscudo-random number generation.

%24-bit-plus x y
Returns the sum of x and y modulo 2124, Both arguments must be fixnums.

%24-bit-difference x y
Returns the difference of x and y modulo 2t24. Both arguments must be ﬁxnums

%24-b‘|t-t1mes Xy
Returns the product of x and y modulo 2124, Both arguments must be fixnums.

PS:<LMANDFD-NUM.TEXT.36 8-JUN-84

Lisp Machine Manual 161 Double-Precision Arithmetic

7.14 Double-Precision Arithmetic

‘These peculiar functions are useful in programs that don’t want to use bignums for one rcason
or another. ‘They should usually be avoided. as they are difficult to use and understand, and they
depend on special numbers of bits and on the use of twos-complement notation.

A double-precision number has 50 bits, of which one is the sign bit. It is represented as two
fixnums. ‘The less signficant fixnum conveys 25 signficant bits and is regarded as unsigned (that is,
what is normally the sign bit is treated as an ordinary data bit); the more significant fixnum has
the same sign as the double-precision number. Only %float-double handles negative double-
precision numbers; for the other functions, the more signficant fixnum is always positive and
contains only 24 bits of actual data.

#multiply-fractions numl num2
Returns bits 25 through 48 (the most significant half) of the product of num! and num?.
rcgarded as unsigned integers. If you call this and %pointer-times on the same
arguments muml and num2, you can combine the results into a double-precision product.
If numl and num?2 arc regarded as two’s-complement fractions, -1 < num < 1, %multiply-
fractions returns 1/2 of their correct product as a fraction.

[The name of this function isn't too great.]

%divide-double dividendf25:48] dividendf0:24] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the single-precision quotient. Causes an error if divisor is zero or if
the quoticnt won't fit in single precision.

There are only 24 bits in cach half of the number, as ncither sign bit is used to convey
information. .

%remainder-double dividend25:48] dividendf0:24] divisor .
Divides the double-precision number given by the first two arguments by the third
argument, and rcturns the remainder. Causcs an error if divisor is zero.

%float-double high25 low2s
high25 and low25, which must be fixnums, are concatenated to produce a 50-bit unsigned
positive integer. A full-size float containing the same value is constructed and returned.
Note that only the 31 most significant bits are retained (after removal of leading zeroes.)
This function is mainly for the benefit of read.

PSKL.MANDFD-NUM.TEXT.36 8-JUN-84

	135_Numbers
	136_Numbers
	137_Numbers
	138_Numbers
	139_Numbers
	140_Numbers
	141_Numbers
	142_Numbers
	143_Numbers
	144_Numbers
	145_Numbers
	146_Numbers
	147_Numbers
	148_Numbers
	149_Numbers
	150_Numbers
	151_Numbers
	152_Numbers
	153_Numbers
	154_Numbers
	155_Numbers
	156_Numbers
	157_Numbers
	158_Numbers
	159_Numbers
	160_Numbers
	161_Numbers

