Arrays 162 Lisp Machine Manual

8. Arrays

An array is a Lisp object that consists of a group of cells, cach of which may contain an
object. ‘The individual cells are sclected by numerical subscripis. 'The type predicate arrayp (page
12) can be used to test whether an object is an array.

The rank of an array (the number of dimensions which the array has) is the number of
subscripts used to refer to one of the clements of the array. The rank may be any integer from
zero to seven, inclusively. An array of rank zero has a single clement which is addressed using
no subscripts. An array of rank onc is called a vecror: the predicate vectorp (see page 12) tests
whether an object is a vector. A series of functions called the generic sequence functions aceept
cither a vector or a list as argument indiscriminantly (sce chapter 9, page 188).

array-rank-1imit _ Constant
A constant giving the upper limit on the rank of an array. It is 8, indicating that 7 is the
highest possible rank.

The lowest value for any subscript is zero; the highest value is a property of the array. Each
dimension has a size, which is the lowest number which is too great to be used as a subscript.
For example. in a onc-dimensional array of five clements, the size of the one and only dimension
is five, and the acceptable values of the subscript are zero, one, two, three, and four.

array-dimension-1imit Constant
Any one dimension of an array must be smaller than this constant.

The total size of an array is the number of clements in it. It is the product of the sizes of
the dimensions of the array.

array-total-size-limit Constant
The total number of elements of any array must be smaller than this constant.

A vector can have a fill pointer which is a number saying how many eclements of the vector
arc active. For many purposes, only that many clements (starting with clement zero) are used.

The most basic primitive functions for handling arrays are: make-array, which is used for
the creation of arrays, aref, which is used for cxamining the contents of arrays, and aset, which
is used for storing into arrays.

An array is a regular Lisp object, and it is common for an array to be the binding of a
symbol, or the car or cdr of a cons, or, in fact, an clement of an array. There arc many
functions, described in this chapter, which take arrays as arguments and perform uscful operations
on them.

Another way of handling arrays, inhcrited from Maclisp, is to treat them as functions. In this
casc cach array has a namec, which is a symbol whose function definition is the array. Zetalisp
supports this style by allowing an array to be applied to arguments, as if it were a function. The
arguments arc treated as subscripts and the array is referenced appropriately. The store special
form (sec page 187) is also supported. 'This kind of array referencing is considered to be obsolete

PS:<I.MAN>FI)-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual 163 , Array Types

~and is slower than the usual kind. It should not be used in new programs.

8.1 Array Types

There are several types of arrays, which differ primarily in which kinds of clements they are
allowed to hold. Some .types of arrays can hold Lisp -objects of any type: such arrays are called -
general arrays. ‘The other types of array restrict the possible elements to a certain type. usually a
numeric type. Arrays of these types are called specialized arrays, or mumeric arrays if the clements
must be numbers. For example, one array type permits only complex numbers with floating
components to be stored in the array. Another permits only the numbers zero and one: Common
Lisp calls these bir arrays. ‘The contents of a black-and-white screen are stored in a bit array.
Several predicates exist for finding out which of these classifications an array belongs 10: simple-
vector-p (page 13), bit-vector-p, simple-bit-vector-p. stringp (page 12). and simple-string-
p. ,

The array types arc known by a set of symbols whose names. begin with art- (for ‘ARray
Type’).

The most commonly used type is called art-q. An art-q array simply holds Lisp objects of
any type. :

Similar to the art-q type is the art-q-list. like the art-q, its clements may be any Lisp
object. 'The difference is that the art-q-list array doubles as a list; the function g-1-p takes an
art-q-list array and returns a list whose clements are those of the array, and whose actual
substance is that of the array. If you rplaca clements of the list, the corresponding clement of
the array is changed, and if you store into the array, the corresponding clement of the list
changes the same way. An aiempt to rplacd the list causes a sys:rplacd-wrong -
representation-type error, since arrays cannot implement that operation.

The most important type of specialized array is the string, which is a vector of character
objects. Character strings are implemented by the art-string array type. Many important system
functions, including read, print, and eval, treat art-string arrays very differently from the other
kinds of arrays. There are also many functions specifically for opcrating on strings, described in
chapter 10.

As viewed by Common Lisp programs, the clements of a string are character objects. As
viewed by traditional programs, the elements are integers in the range 0 to 255. While most code
still accesses strings in-the traditional manner and gets integers out, the Common Lisp viewpoint
is considered the correct one. Sec page 203 for a discussion of this conflict of conventions and its
effect on programs.

An art-fat-string array is a character string with wider characters, containing 16 bits rather
than 8 bits. The extra bits arc ignored by many string operations, such as comparison, on these
strings; typically they are used to hold font information.

There is a sct of types called art-1b, art-2b, art-4b, art-8b, and art-16b: these names are
short for 1 bit’, ‘2 bits’, and so on. Each clement of an art-nb array is a non-ncgative fixnum,
and only the lcast significant » bits arc remembered in the array: all of the others are discarded.

PS:KLLMAN>EFD-ARR.TEXT.26 8-JUN-84

Array 'T'ypes 164 1isp Machine Manual

Thus art-1b arrays store only 0 and 1. and if you store a 5 into an art-2b array and look at it
later, you will find a 1 rather than a 5.

These arrays are used when it is known beforchand that the fixnums which will be stored are
non-negative and limited in size to a certain number of bits. Their advantage over the art-q
array is that they occupy less storage, because” more than one clement of the array is kept in a
single machine word. "(For cxample. 32 clements of an art-1b array or 2 clements of an art-16b
array fit into once word).

‘There are also art-32b arrays which have 32 bits per clement. Since fixnums only have 24
bits anvway. these are the same as art-q arrays except that they only hold fixnums. they are not
compatible with the other “bit™ array types and generally should not be used.

An art-half-fix array contains half-size fixnums. Each clement of the array is a signed 16-bit
integer: the range is from -32768 to 32767 inclusive.

The art-float array type is a special-purpose type whose clements are floats. When storing
into such an array the valuc (any kind of number) is converted to a float, using the float function
(sce page 149). The advantage of storing floats in an art-float array rather than an art-q array is
that the numbers in an art-float array are not truc Lisp objects. Instcad the array remembers the
numerical value, and when it is aref'ed creates a Lisp object (a float) to hold the value. Because
the system docs special storage management for bignums and floats that are intermediate results,
the use of art-float arrays can save a lot of work for the garbage collector and hence greatly
increase performance. An intermediate result is a lisp object passed as an argument, stored in a
local variable, or returned as the value of a function, but not stored into a special variable, a
non-art-float array, or list structure. art-float arrays also provide a locality of reference
advantage over art-q arrays containing floats, since the floats are contained in the array rather
than being separate objects probably on different pages of memory.

The art-fps-float array type is another special-purpose type whose clements are floats. The
internal format of this array is compatible with the PDP-11/VAX single-precision floating-point
format. The primary purpose of this array typc is to interface with the KPS array processor,
which can transfer data directly in and out of such an array.

Any type of number may be stored into an art-fps-float array, but it is, in effect, converted
to a fleat, and then rounded off to the 24-bit precision of the PDP-11. If the magnitude of the
number is too large, the largest valid floating-point number is stored. If the magnitude is too
small, zero is stored.

When an clement of an art-fps-float array is read, a ncw float is created containing’ the
value, just as with an art-float array.

The art-complex array type is a special purpose type whose clements are arbitrary numbers,
which may be complex numbers. (Most of the numeric array types can only hold rcal numbers.)
As comparced with an ordinary art-q array, art-complex provides an advantage in garbage
collection similar to what art-iloat provides for floating point numbers.

PS:KL.MAN>FD-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual 165 | Array Types

The art-complex-float array type is a special purpose type whose clements are numbers (real
or complex) whose real and imaginary parts are both floating point numbers, (If' you store a non-
floating-point number into the array, its real and imaginary parts are converted to floating point.)
‘This provides maximum advantage in garbage collection if all the clements you wish to store in
the array are numbers with floating pmm real and imaginary parts.

The art-complex-fps-float array type is similar to art-complex-float but cach recal or
imaginary part is stored in the form used by the FPS array processor. Fach element occupics two
words, the first bcmg the real part and the second being the imaginary part.

There are three types of arrays which exist only for the implementation of stack groups; these
types are called art-stack-group-head, art-special-pdl. and art- reg-pdl. Their clements may
be any Lisp object; their use is explained in the -section on stack groups (sce chapter 13, page
256).

array-types Constant ,
The value of array-types is a list of all of the array type symbols such as art-q, art-4b,
art-string and so on. 'The values of these symbols are internal array type code numbers

for the cor rcspondmg type.

array-types array-type-code :
Given an internal numeric array-type code, rcturns the symbolic name of that type.

array-elements-per-q - Constgnt
array-elements-per-q is an association list (sec page 110) which associates cach array
type symbol with the number of array elements stored in one word, for an array of that
type. . If the value is negative, it is instcad the number of words per array clement, for
arrays whose clements arc more than onc word long.

array-elements-per-q array-type-code
Given the internal array-type code number, returns the number of array clements stored
-in one word. for an array of that type. If the value is negative, it is instcad the number
of words per array clement, for arrays whose elements arc more than one word long.

array-bits-per-element Constant
The value of array-bits-per-element is an association list (scc page 110) which associates
cach array type symbol with the number of bits of unsigned number it can hold, or nil if
it can hold Lisp objects. This can be used to tell whether an array can hold Lisp objects
or not.

array-bits-per-element array-type-code
Given the internal array-type code numbers, returns the number of bits per cell for
unsigned numeric arrays, or nil for a type of array that can contain Lisp objects.

array-element-size array
Given an array, returns the number of bits that fit in an clement of that array. For
arrays that can hold general Lisp objects, the result is 25., based on the assumption that
you will be storing fixnums in the array.

PS:KLLMAN>ED-ARR.TEXT.26 8-JUN-84

Extra Features of Arrays 166 Lisp Machine Manual

8.2 Extra Features of Arrays

Any array may have an array leader. An array leader is like a one-dimensional art-q array
which is attached to the main array. So an array which has a leader acts like two arrays joined
together. The leader can be stored into and examined by a special set of functions, different from
those used for the main array: array-leader and store-array-leader. 'The leader is always one-
“dimensional, and always can hold any kind of Lisp object, regardless of the type or rank of the
main part of the array.

Very often the main part of an array is used as a homogencous set of objects. while the
leader is used to remember a foew associated non-homogencous picces of data. In this case the
leader is not used like an array; cach slot is used differently from the others. Explicit numeric
subscripts should not be used for the leader clements of such an array: instcad the leader should
be described by a defstruct (sce page 374).

By convention, clement 0 of the array leader of an array is used to hold the number of
clements in the array that are “active”. When the zeroth clement is used this way, it is called a
fill pointer. Many array-processing functions recognize the fill pointer. For instance, if a string
(an array of type art-string) has scven clements, but its fill pointer contains the value five, then
only clements zcro through four of the string are considered to be active; the string’s printed
representation is five characters long. string-scarching functions stop after the fifth clement, etc.
Fill pointers arc a Common Lisp standard, but the array leader which is the Lisp Machine’s way

of implementing them is not standard.

fi1l-pointer array
Returns the fill pointer of array, or nil if it does not have onc. This function can be
uscd with setf to sct the array’s fill pointer. '

The system does not provide a way to turn off the fill-pointer convention: any array that has
a leader must teserve clement 0 for the fill pointer or avoid using many of the array functions.

Lecader element 1 is used in conjunction with the “named structure” featurc to associate a
user-defined data type with the array; sce page 390. Element 1 is trcated specially only if the
array is flagged as a named structure.

8.2.1 Displaced Arrays

The following explanation of displaced arrays is probably not of interest to a beginner; the
section may be passed over without losing the continuity of the manual.

Normally, an array is represented as a small amount of header information, followed by the
contents of the array. However, somctimes it is desirable to have the header information removed
from the actual contents. One such occasion is when the contents of the array must be located in
a special part of the Lisp Machinc's address space, such as the arca used for the control of
input/output devices, or the bitmap memory which generates the TV image. Displaced arrays are
also uscd to reference certain special system tables, which are at fixed addresses so the microcode
can access them easily. :

PSKL.MAN>FD-ARR.TEXT.26 » 8-JUN-84

Iisp Machine Manual 167 Constructing Arrays

I you give make-array a fixnum or a locative as the value of the displaced-to option, it
creates a displaced array referring - to that location of virtual memory and its Successors.
References to clements of the displaced array will access that part of storage. and return the
contents: the regular aref and aset functions are used. If the array is onc whose clements are
Lisp objects, caution should be used: if the region of address space does not contain typed Lisp
objects, the integrity of the storage system and the garbage collector could be damaged. If the
array is onc whose clements are bytes (such as an art-4b-type), then there is no problem. It is
important to know, in this casc, that the clements of such arrays are allocated from the right to
the left within the 32-bit words.

It is also possible to have an array whose contents, instead of being located at a fixed place
in virtual memory, are defined 10 be those of another array. Such an array is called an indirect
array, and is created by giving make-array an array as the value of the «displaced-to option.
The cffects of this are simple if both arrays have the same type; the two arrays share all
clements. An object stored in a certain clement of one can be retrieved from the corresponding
clement of the other. This, by itself. is not very uscful. However, if the arrays have different
rank, the manner of accessing the clements differs. Thus, creating a one-dimensional array of
ninc clements, indirected to a second. two-dimensional array of three clements by three, allows
access to the clements in cither a one-dimensional or a two-dimensional manner. Weird cffects
can be produced if the new array is of a different type than the old array: this is not gencerally
reccommended. Indirecting an art-mb array o an art-nb array docs the obvious thing. For
instance, if m is 4 and n is 1, cach clement of the first array contains four bits from the second
array, in right-to-left order.

It is also possible to creatc an indirect array in such a way that when an attempt is made to
reference it or store into it, a constant number is added to the subscript given. This number is
called the index-offser. It is specified at the time the indirect array is created, by giving a fixnum
to make-array as the value of the :displaced-index-offset option. The length of the indirect
array nced not be the full length of the array it indirects to; it can be smaller. Thus the indirect
array can cover just a subrange of the original array. 'The nsubstring function (sce page 216)
creates such arrays. When using index offsets with multi-dimensional arrays, there is only one
index offset; it is added in to the lincarized subscript which is the result of multiplying each
subscript by an appropriate coefficient and adding them together.

8.3 Constructing Arrays

vactor &rcst elements
Constructs and returns a vector (one-dimensional array) whose clements are the arguments

given.

make-array dimensions &rest options.
This is the primitive function for making arrays. dimensions should be a list of fixnums
which are the dimensions of the array; the length of the list is the rank of the array. For
convenience you can specify a single fixnum rather than a list of onc fixnum, when
making a onc-dimensional array.

PS:KLLMANDFD-ARR.TEXT.26 - 8-JUN-84

Constructing Arrays 168 Iisp Machine Manual

options are alternating keywords and values. ‘The keywords may be any of the following:

:area Ihe value specifies in which arca (see chapter 16, page 296) the array
should be created. It should be either an arca number (a fixnum), or nil
to mean the default arca.

‘type The value should be a symbolic name of an array type: the most common
of these is art-q. which is the default. The clements of the array are
initialized according to the type: if the array is of a type whose clements
may only be fixnums or floats, then every clement of the array is initially
0 or 0.0: otherwise. cvery clement is initially nil. See the description of
array types on page 163, ‘The value of the option may also be the value
of a symbol which is an array type name (that is, an internal numeric
array type code).

-element-type clement-type is the Common Lisp way to control the type of array made.
Its value is a Common Lisp type specifier (see section 2.3, page 14). The
array type used is the most specialized which can allow as an clement
anything which fits the type specifier. For example, if element-type is
(mod 4), you get an art-2b array. |If element-type is (mod 3). you still
get an art-2b array, that being the most restrictive which can store the
numbers 0, 1 and 2. If element-type is string-char, you get a string.

sinitial-value

sinitial-element
Specifics the value to be stored in each clement of the new array. If it is
not specified, it is nil for arrays that can hold arbitrary objects, or 0 or
0.0 for numeric arrays. :initial-value is obsolete. ‘

sinitial-contents
Specifies the entire contents for the new array, as a scquence of sequences
of scquences... Array clement 1 3 4 of a three-dimensional array would be
(elt (elt (elt initial-contents 1) 3) 4). Recall that a sequence is cither a list
or a vector, and vectors include strings.

:displaced-to If this is not nil, a displaced array is constructed. If the valuc is a fixnum
or a locative, make-array creates a regular displaced array which refers to
the specified scction of virtual address space. If the value is an array,
make-array crcates an indirect array (sce page 167).

sleader-length The value should be a fixnum. The array is made with a leader
containing that many clements. The clements of the leader are initialized
to nil unlcss the :leader-list option is given (sce below).

:leader-list The value should be a list. Call the number of clements in the list n.
The first n clements of the leader are initialized from successive clements
of this list. If the :leader-length option is not specified, then the length
of the leader is n. If the :leader-length option is given, and its value is
greater than #, then the nth and following lcader clements are initialized
to nil. If its value is less than n, an ecrror is signaled. The lcader
clements arc filled in forward order; that is, the car of the list is stored
in leader clement 0, the cadr in clement 1, and so on.

PS:KLLMAN>ED-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual v : 169 Constructing Arrays

Afill-pointer ~ The value should be a fixnum. ‘The array is made with a lcader
containing at least onc clement, and this fixnum is used to initialize that
first clement.

Using the fill-pointer option is cquivalent to using :leader-list with a list
onc clement long. It avoids consing the list, and is also compatible with
Common Lisp.

:displaced-index-offset :
If this is present, the value of the displaced-to option should be an
array, and the value should be a non-negative fixnum: it is made to be
the index-offset of the created indirect array. (Sce page 167.)

:named-structure-symbol :

If this is not nil, it is a symbol to be stored in the named-structure cell of
the array. The array made is tagged as a named structure (scc page 390.)
If the array has a leader, then this symbol is stored in leader clement 1
regardless of the value of the :leader-list option. If the array does not
have a lecader, then this symbol is stored in array clement zero. Array
leader slot 1, or array element 0, cannot be used for anything clse in a
named structure.

:adjustable-p In strict Common Lisp, a non-nil valuc for this keyword makes the array
adjustable, which means that it is pcrmissible to change the array’s size
with -adjust-array (page 176). This is because other Lisp systems have
multiple representations for arrays, one which is simple and fast to access,
and another which can be adjusted. The Lisp Machine docs not require
‘two representations: any array’s size may be changed, and this keyword is
ignored.

PS:KLLMAN>FD-ARR.TEXT.26 8-JUN-84

Accessing Array Flements 170 Lisp Machine Manual

Examples:

- Create a one-dimensional array of five clements.

(make-array 5)

. Create a two-dimensional array,

.2 three by four, with four-bit clements.

(make-array '(3 4) :type ’art-4b)

.- Create an array with a three-clement leader.

(make-array 5 :leader-length 3)

-+ Create an array containing 5t's,

.- and a fill pointer saying the array is full.

(make-array 5 :initial-value t :fill-pointer 5)

.2 Create a named-structure with five leader

:: clements, initializing some of them.

(setqg b (make-array 20 :leader-length 5
:leader-1ist '(0 nil foo)
:named-structure-symbol ’bar))

(array-leader b 0) => 0

(array-leader b 1) => bar
(array-leader b 2) => foo
(array-leader b 3) => nil
(array-leader b 4) => nil

make-array rcturns the newly-crcated array, and also returns, as a sccond value, the
number of words allocated in the process of creating the array, i.c. the %structure-total-
size of the array.

When make-array was originally implemented, it took its arguments in the following
fixed pattern: ’
(make-array arca lype dimensions
&optional displaced-to leader
displaced-index-offset
A named-structure-symbol)

Jeader was a combination of the :leader-length and :leader-list options, and the list was
in reverse order. This obsolete form is still supported so that old programs will continue
to work, but the ncw keyword-argument form is preferred.

8.4 Accessing Array Elements

aref array &rest subscripls
Returns the clement of array selected by the subscripts. The subscripts must be fixnums
and their number must match the rank of array.

cli:aref array &rcst subscripts
The Common Lisp version of aref differs from the traditional one in that it returns a
character ‘object rather than an integer when array is a string. Sce chapter 10 for a
discussion of the data type of string clements.

PS:<I.MAN>FD-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual 171 Accessing Array Elements

aset x urray &rest subscripts
Stores x into the clement of array selected by the subscripts. 'The subscripts must be
fixnums and their number must match the rank of array. The returned value is x.

aset is cquivalent to
(setf (aref array subscripts...) x)

aloc array &rest subscripts _
Returns a locative pointer to the element-cell of array selected by the subscripts. “T'he
subscripts must be fixnums and their number must match the rank of array. ‘The array
must not be a numeric array, since locatives to the middle of a numeric array are not
allowed. Sce the explanation of locatives in dmplu 14, page 267,

It is cquivalent, and plcfcmblc to write
(Yocf (aref array subscripts...))

ar-1-force array i

as-1-force value array i

ap-1-force array i
These functions access an array with a single subscript regardless of how many dimensions
the array has. They may be useful for manipulating arrays of varying rank, as an
alternative to maintaining and- updating lists of subscripts or to creating one-dimensional
indirect arrays. ar-1-force rcfers to an clement, as-1-force scts an clcmcnt, and ap-
1-force returns a locative to the clement's cell.

In using these functions, you must pay attention to the order in which the array clements
arc actually stored. See scction 8.11, page 182.

array-row-major-1index array &rest indices
Calculates the cumulative index in array of the clement at indices indices.
(ar-1-force array
(array-row-major-index array indices...))
is cquivalent to (aref array indices...).

array-leader array i
array should be an array with a leader, and i should be a fixnum. This returns the 7 th

element of array’s leader. This is analogous to aref.

store-array-leader x array i
~array should be an array with a leader, and i should be a fixnum. x may be any object.
X is stored in the i th element of array’s leader. store-array-leader returns x. This is
analogous to aset.

It is cquivalent, and preferable, to write
(setf (array-leader array i) x)

PS:KL.LMAN>FD-ARR.TEXT.26 8-JUN-84

Accessing Array Elements 172 Iisp Machine Manual

ap-leader array i
Is cquivalent to
(locf (array-leader array i))

The following array accessing functions generally need not be used by users.

ar-1 array i

ar-2 array i j

ar-3 array I j Kk

as-1 x array i

as-2 x uarray i J

as-3 x array i j k

ap-1 array i

ap-2 array i j

ap-3 array i j k
These are obsolete versions of aref, aset and aloc that only work for one-, two-, or
three-dimensional arrays, respectively. '

The compiler turns aref into ar-1, ar-2, ctc. according to the number of subscripts specified,
turns aset into as-1. as-2, ctc.. and turns aloc into ap-1, ap-2, cic. For arrays with more
than three dimensions the compiler uses the slightly less cfficient form since the special routines
only exist for one, two and three dimensions. There is no reason for any program to call ar-1,
as-1, ar-2, ctc. explicitly; they are documented” because there used to be such a reason, and
many old programs usc these functions. New programs should usc aref, aset, and aloc.

A related function, provided only for Maclisp compatibility, is arraycall (page 187).

svref vector index
A special accessing function defined by Common Lisp to work only on simple general
vectors: vectors with no fill pointer, not displaced, and not adjustable (sec page 169).
Somec other Lisp systems open code svref so that it is faster than aref, but on the Lisp
Machine svref is a synonym for cli:aref.

bit bit-vector index

sbit bit-vector index

char bit-vector index

schar bit-vector index
Special accessing functions defined to work only on bit vectors, only on simple bit vectors,
only on strirgs, and only on simple strings, respectively. On the Lisp Machine they are
all synonyms for cli:aref.

Here are the conditions signaled for various errors in accessing arrays.
sys:array-has-no-leader (sys:bad-array-mixin error) Condition

This is signaled on a reference to the leader of an array that doesn’t have one. The
condition instance supports the :array operation, which returns the array that was used.

PS:<LL.MAN>FD-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual. 173 Getting Information About an Array

The :new-array proceed-type is provided.

sys:bad-array-mixin - Condition Flavor
This mixin is used in the conditions signaled by several kinds of problems pertaining to
arrays. It defines prompting for the :new-array proceed type.

sys-array wrong-number-of-dimensions (sys:bad-array-mixin error) Condition
‘This is signaled when an array is referenced (cither rcading or writing) with the wrong
number of subscripts: for example, (aref "foo" 1 2).

The :array operation on the condition instance returns the array that was used. 'The
:subscripts-used operation returns the list of subscripts used.

The :new-array proceed type is provided. It expects one argument, an array to use
instead of the original one. '

sys:subscript-out-of-bounds (error) Condition
This is signaled when there are the right number of subscripts but their values specify an
clement that falls outside the bounds. of the array. The same condition is used by
sys:%instance-ref, ctc., when the index is out of bounds in the instance.

The condition instance supports the operations :object and :subscripts-used, which
~return the array or instance and the list of subscripts.

The :new-subscript proceed type is provided. Tt takes an appropriatc number of
subscripts as arguments. You should provide as many subscripts as there originally were,

sys:number-array-not-allowed (sys:bad-array-mixin error) Condition
This is signaled by an attempt to use aloc on a numeric array such as an art-1b array or
a string. 'The :array opcration and the :new-array proceed type arc available.

8.5 Getting Information About an Array

array-type array
Returns the symbolic type of array.
Example:
(setq a (make-array '(3 5)))
(array-type a) => art-q

array-element-type array
Returns a type spccifier which describes what elements could be stored in array (sce
scction 2.3, page 14 for more about type specifiers). Thus, if array is a string, the value
is string-char. If array is an art-1b array, the value is bit. If array is an art-2b array,
the valuc is (mod 4). If array is an art-q array, the value is t (the type which all objects
belong to).

PS:KKLLMANDID-ARR.TEXT.26 . 8-JUN-84

Getting Information About an Array

array-length arruy
array-total-size arruy

174

Iisp Machine Manual

array may be any array. ‘This returns the total number of clements in array. For a one-
dimensional array, this is one greater than the maximum allowable subscript. (But if fill
pointers arc being used, you may want o use array -active-length.)

Iixample:

(array-length (make-array 3)) => 3
(array-length (make-array '(3 5))) => 15
array-total-size is the Common Lisp name of this function.

array-active-lengih array

If array does not have a fll pointer, then this returns whatever (array-length array)
would have. If array dees have a fill pointer, array-active-length returns it. Sce the
general explanation of the use of fill pointers on page 166.

array-rank array

Returns the nunber of dimensions of array.

Example:

(array-rank (make-array '(3 5))) => 2

array-dimension aray n

Returns the length of dimension n of array. Examples:
(setq a (make-array '(2 3)))

= 2

=> 3

(array-dimension a 0)
(array-dimension a 1)

array-dimension-n n array

array may be any kind of array, and n should be a fixnum. If nis between 1 and the
rank of array, this returns the n th dimension of array. 1f n is 0, this returns the length
of the leader of array; if array has no leader it returns nil. If n is any other value, this

returns nil.

This function is obsolete; use array-dimension-n, whose calling sequence is cleaner.

Examples: -

(setq a (make-array (3 5)

(array-dimension-n
(array-dimension-n
(array-dimension-n
(array-dimension-n

array-dimensions array

D W N

a)
a)
a)
a)

=>
=>

:1eader-length 7))
3

)

nil

7

Returns a list whose elements are the dimensions of array.

Example:

(setq a (make-array '(3 5)))
(array-dimensions a) => (3 5)
Note: the list returned by (array-dimensions x) is equal to the cdr of the list returned

by (arraydims x).

PS:KI.MAN>FD-ARR.TEXT.26

8-JUN-84

Lisp Machine Manual 175 Getting Information About an Array

arraydims array

Returns a list whose first clement is the symbolic name of the type of array. and whose
remaining clements arc its dimensions. array may be any array; it also may be a symbol
whose function cell contains an array, for Maclisp compatibility (sce section 8.14, page
186).
Example:

(setq a (make-array '(3 5)))

(arraydims a) => (art-q 3 5)

arraydims is for Maclisp compatibility only.

array-1in-bounds-p array &rest subscripts
t il subscripts is a legal set of subscripts for array, otherwise nil,

array-displaced-p array
tif array is any kind of displaced array (including an indircct array), otherwise nil. array
may be any kind of array.

array-indirect-p array _
t if array is an indircct array, otherwise nil. array may be any kind of array.

array-indexed-p array
t if array is an indircct array with an index-offset, otherwise nil. array may be any kind
of array. '

array-index-offset array
Returns the index offset of array if it is an indirect array which has an index offset.
Otherwisc it returns nil. array may be any kind of array.

array-has-fill-pointer-p array
t if array has a fill pointer. It must have a leader and lecader clement 0 must be an
integer. While array leaders are not standard Common Lisp, fill pointers are, and so is
this function.

array-has-leader-p array
t if array has a leader, otherwise nil.

array-leader-length array
Returns the length of array’s leader if it has one, or nil if it does not.

adjustable-array-p array

According to Common Lisp, returns t if array’s size inay be adjusted with adjust-array
(sce below). On the Lisp Machine, this function always returns t.

PSKILMAN>EFD-ARR.TEXT.26 | ' 8-JUN-84

Changing the Size of an Array 176 Lisp Machine Manual

8.6 Changing the Size of an Array

adjust-array array new-dimensions &key clement-type initial-element initial-contents
Sill-pointer displaced-10 - displaced-index-offset ‘
Modifies various aspects of an array. array is modified in place i that is possible;
otherwise, a new array is created and array is forwarded to it. In cither casc, array is
returned. ‘The arguments have the same names as arguments to make-array. and signify
approximately the same thing. However:

element-type is just an crror check. adjust-array cannot change the array type. If the
array type of array is not what element-fype would imply, you get an crror.

If displaced-t0 is specified, the new array is displaced as specified by displaced-to and
displaced-index-offset. 1 array -itsclf was already displaced. it is modified in place
provided that cither array used to have an index offset and is supposcd to continuc to
have one, or array had no index offset and is not supposcd to have one.

Otherwise, if initial-contents was specified, it 'is used to sct all the contents of the array.
‘The old contents of array arc irrclevant.

Otherwise, cach clement of array is copied forward into the new array to the slot with the
same indices, if there is one. Any new slots whose indices were out of range in array are
initialized to initial-element, or to nil or 0 if initial-element was not specified.

fill-pointer, if specified, is used to sct the fill pointer of the array. Aside from this, the
result has a lcader with the same contents as the original array.

adjust-array is the only function in this section which is standard Common Lisp.
According to Common Lisp, an array’s dimensions can be adjusted only if the :adjustable
option was specified to make-array with a non-nil value when the array was created (sce
page 169). The Lisp Machine does not distinguish adjustablc and nonadjustable arrays;
any array may be adjusted.

adjust-array-size array newsize ‘
If array is a onc-dimensional array, its size is changed to be new-size. If array has more
than one dimension, its size (array-length) is changed to new-size by changing only the
last dimension.

If array is made smaller, the extra clements are lost; if array is made bigger, the new
clements are initialized in the same fashion as make-array (see page 167) would initialize
them: cither to nil or 0, depending on the type of array.
Example: :

(setq a (make-array 5))

(aset 'foo a 4)

(aref a 4) => foo

(adjust-array-size a 2)

(aref a 4) => anerror occurs

PS:KILMANDFD-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual 177 Arrays Overlaid With Lists

If the size of the array is being increased, adjust-array-size may have to allocate a new
array somewhere. In that case. it alters arrqy so that references to it will be made to the
new array instead, by means of invisible pointers (sce structure-forward, page 273).
adjust-array-size returns the new array if it creates one. and otherwise it returns array.
Be careful 1o be consistent about using the returned result of adjust-array-size, because
you may end up holding two arrays which are not the same (i.c. not eq), but which share
the same contents.

array-grow array &rest dimensions
Equivalent to (adjust-array array dimensions). "I'his name is obsolete.

si:change-indirect-array array type dimlist displaced-p index-offset
Changes an indirect array array’s type, size. or target pointed at. fype specifies the new
array ype, dimlist its new dimensions, displaced-p the target it should point to (an array,
locative or fixnum), and index-offset the new offset in the new target.

array is returned.

8.7 Arrays Overlaid With Lists

These functions manipulate art-q-list arrays, which were introduced on page 163.

g-1-p array ‘
array should be an art-q-list array. This returns a list which shares the storage of array.
Example: ‘

(setq a (make-array 4 :type 'art-g-list))
(aref a 0) => nil

(setq b (g-1-p a)). => (nil nil nil nil)
(rplaca b t)

b => (t nil nil nil)

(aref a 0) => ¢

(aset 30 a 2)

b => (t nil 30 nil)

g-1-p stands for ‘get list pointer’.

The following two functions work strangely, in the same way that store does, and should not be
used in new programs. : '

get-list-pointer-into-array array-ref
The argument array-ref is ignored, but should be a reference to an art-q-list array by
applying the array to subscripts (rather than by aref). This rcturns a list object which is a
portion of the “list” of the array, beginning with the last element of the last array which
has been called as a function.

PS:KLLMAN>FD-ARR.TEXT.26 ’ ’ 8-JUN-84

Adding to the End of an Array 178 Lisp Machine Manual

get-locative-pointer-into-array array-ref
get-locative-pointer-into-array is similar to get-list-pointer-into-array, cxcept that it
returns a locative, and doesn't require the array to be art-g-list. Use locf of aref in
© new programs.

8.8 Adding to the End of an Array

vector-push x array

array-push array x
array must be a one-dimensional array which has a fill pointer and x may be any object.
vector-push attempts to store x in the clement of the array designated by the fill pointer,
and increase the fill pointer by one. If the fill pointer does not designate an clement of
the array (specifically, when it gets oo big). it is unaflected and vector-push returns nil;
otherwise, the two aclions (storing and incrementing) happen uninterruptibly, and vector-
push rewirns the former value of the fill pointer, ic. the array index in which it stored x.
If the array is of type art-q-list, an operation similar to nconc has taken place, in that
the clement has been added to the list by changing the cdr of the formerly last clement.
The cdr-coding is updated to cnsure this,

array-push is an old name for this function. vector-push is preferable because it takes
arguments in an order like push.

vactor-push-extend x array &optional extension

array-push-extend array x &optional extension
vector-push-extend is just like vector-push except that if the fill pointer gets too large,
the array grows to fit the new clement; it never “fails” the way vector-push docs, and
so never returns nil. extension is the number of clements to be added to the array if it
needs to grow. It defaults to something reasonable, bascd on the size of the array.

array-push-extend differs only in the order of arguments,

vector-pop array

array-pop array
array must be a onc-dimensional array which has a fill pointer. The fill pointer is
decreased by one and the array clement designated by the new value of the fill pointer is
returned. If the new value does not designate any clement of the array (specifically, if it
had alrcady rcached zero), an error is caused. The two operations (dccrementing and
array referencing) happen uninterruptibly, If the array is of type art-q-list, an operation
similar to nbutlast has taken place. The cdr-coding is updated to cnsure this.

The two names arc Synonymous,

sys:f111-pointer-not-fixnum (sys:bad-array-mixin error) Condition
This is signaled when one of the functions in this scction is used with an array whose
feader element zero is not a fixnum. Most other array accessing operations simply assume
that the array has no fill pointer in such a case, but these cannot be performed without a
fill pointer.

PS:KL.MAN>FID-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual 179 Copying an Array

The :array operation on the condition instance returns the array that was used. The
:new-array proceed type is supported, with one argument, an array.

8.9 Copying an Array

The new functions replace (page 189) and fill (page. 190) are uscful ways to copy parts of

arrays.

array-initialize arruy value &optional swart end

Stores value into all or part of array. start and end arc optional indices which delimit the
part of array o be initialized. They default to the beginning and end of the array.

‘This function is by far the fastest way to do the job.

fillarray array x

array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. It can also be nil, in which casc an array of type art-q is created.
‘There are two forms of this function, depending on the type of x.

If x is a list, then fillarray fills up array with the clements of fist. If x is too short to fill
up all of array, then the last element of x is used to fill the remaining elements of array.
If x is too long, the cxtra clements arc ignored. If x is nil (the empty list), array is filled
with the default initial value for its array type (nil or 0).

If x is an array (or, for Maclisp compatibility, a symbol whose function cell contains an
array), then the clements of array arc filled up from the clements of x. If x is too small,
then the extra elements of array are not affected.

If array is multi-dimensional, the clements are accessed in row-major order: the last
subscript varics the most quickly. The same is truc of x if it is.an array.

fillarray returns array; or, if array was nil, the newly created array.

1istarray array &optional limit

array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. listarray crcates and returns a list whose elements are those of
array. If limit is present. it should be a fixnum, and only the first limit (if there are
more than that many) clements of array are used, and so the maximum length of the
returned list is /imit.

If array is multi-dimensional, the elements are accessed in row-major order: the last
subscript varics the most quickly.

1ist-array-leader array &optional limit

array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. list-array-leader creates and rcturns a list whose clements are
those of array’s leader. 1If limir is present, it should be ‘a fixnum, -and only the first limit
(if there are more than that many) clements of array’s leader are used, and so the
maximum length of the returned list is /imit. 1f array has no lcader, nil is returned.

PS:KI.LMAN>FD-ARR.TEXT.26 8-JUN-84

Bit Array Functions

copy-array-contents from fo

180 I isp Machine Manual

Siom and fo must be arrays. The contents of fiom is copied into the contents of 10,
clement by clement. If o is shorter than from. the rest of fiom is ignored. I from is
shorter than fo, the rest of fo is filled with nil, 0 or 0.0 according to the type of array.
This function always retuens t.

The entire length of fiom or fo is used, ignoring the fill pointers if any. The leader itsclf
is not copied.

copy-array-contents works on multi-dimensional arrays. from and ‘o are lincarized
subscripts, and clements arc taken in row-major order.

copy—a'r'r'ay- contents-and-leader fiom 1

[.ike copy-array-contents. but also copics the leader of from (if any) into fo.

copy-array-portion from-array fiom-start from-end to-array to-start to-end

The portion of the array from-array with indices greater than or cqual to from-start and
less than from-end is copied into the portion of the array fo-array with indices greater than
or equal to ro-start and less than fo-end, clement by clement. 1f there are more clements
in the selected portion of fo-array than in the sclected portion of from-array, the cxtra
clements are filled with the default value as by copy-array-contents. If there arec more
clements in the sclected portion of from-array, the cxtra ones are ignored. Mult-
dimensional arrays arc treated the same way as copy-array-contents treats them. This

function always returns t.

%blt and %blt-typed (page 280) arc often uscful for copying parts of arrays. They can be used
to shift a part of an array cither up or down.

8.10 Bit Array Functions

These

bit-and
bit-1or
bit-xor
bit-eqv

functions perform bitwise boolcan

bit-array-1 bit-array-2 &optional
bit-array-1 bit-array-2 &optional
bit-array-1 bit-array-2 &optional
bit-array-1 bit-arrqy-2 &optional

operations on the clements of arrays.

result-bit-array
result-bit-array
result-bit-array
result-bit-array

bit-nand bir-array-1 birarray-2 &optional result-bit-array
bit-nor bir-array-1 bit-array-2 &optional result-bit-array
bit-andcl bir-array-1 bir-array-2 &optional result-bit-array
bit-andc2 bir-array-1 bit-array-2 &optional result-bit-array
bit-orcl bir-array-1 bit-array-2 &optional result-bit-array
bit-orc2 bir-array-1 bit-array-2 &optional result-bit-array

Perform boolean operations clement by clement on bit arrays. The arguments must match
in their sizc and shape, and all of their clements must be integers. Corresponding
clements of bit-array-1 and bit-array-2 arc taken and passed to onc of logand, logior, etc.
to get an element of the result array. ‘

PS:KL.MANDFD-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual 181 - Bit Array Functions

If the third argument is non-nil, the result bits are stored into it, ‘modifying it
destructively. If it is t, the results are stored in birarray-1. Otherwise a new array of the
same type as bit-array-1 is created and used for the result. In any casc, the value
returned is the array where the results are stored.

These functions were introduced for the sake of Common Lisp, which defines them only
when all arguments are specialized arrays that hold only zero or onc. In the Lisp
machine, they accept not only such arrays (art-1b arrays) but any arrays whose clements
are integers. '

bit-not birarray &optional result-bit-array
Performs lognot on cach element of birarray to get an clement of the result, If result-bit-
array is non-nil, the result clements are stored in that; it must match bit-array in siz¢ and
shape. Otherwise, a new array of the same type as bit-array is created and used to hold
the result. “The value of bit-not is the array where the results are stored.

bitb1t alu widih height from-array from-x from-y lo-array to-x lo-y
from-array and to-array must be two-dimensional arrays of bits or bytes (art-1b, art-2b,
art-4b, art-8b, art-16b, or art-32b). bitblt copics a rectangular portion of from-array
into a rectangular portion of fo-array. The value stored can be a Boolean function of the
new value and the valuc alrcady there, under the control of alu (sce below). This
function is most commonly used in connection with raster images for TV displays.

~'The top-left corner of the source rectangle is (ar-2-reverse Srom-array from-x from-y).
The top-left corner of the destination rectangle is (ar-2-reverse to-array to-x to-y). width
and height are the dimensions of both rectangles. If width or height is zcro, bitblt does
nothing. The x coordinates and width are used as the sccond dimension of the array,
since the horizontal index is the onc which varies fastest in the screen buffer memory and
the array’s last index varies fastest in row-major order.

from-array and to-array are allowed to be the same array. bitblt normally traverses the
arrays in increasing order of x and y subscripts. If widrh is negative, then (abs width) is
used as the width, but the processing of the x direction is done backwards, starting with
the highest value of x and working down. If height is negative it is treated analogously.
When bitblt'ing an array to itsclf, when the two rectangles overlap, it may be nccessary to
work backwards to achieve cffects such as shifting the entire array downwards by a certain
number of rows. Note that negativity of width or height does not affect the (x, y)
coordinates specified by the arguments, which are still the top-left corner even if bitblit
starts ‘at some other corner. :

~If the two arrays are of different types, bitblt works bit-wise and not clement-wise. That
is. if you bitblt from an art-2b array into an art-4b array, then two clements of the
Jrom-array correspond to onc clement of the fo-array.

If bitblt goes outside the bounds of the source array, it wraps around. This allows such
operations as the replication of a small stipple pattern through a large array. If bitblt goes
outside the bounds of the destination array, it signals an error.

PS:KLMANDFD-ARR.TEXT.26 | 8-JUN-84

(511101' of Array Elements 182 I isp Machine Manual

If sre is an clement of the source rectangle. and dsr is the corresponding clement of the
destination rectangle. then bitblt changes the value of dst o (boole alu sre dst). Sce the
boole function (page 152). There are symbolic names for some of the most uscful alu
functions: they are tv:alu-seta (plain copy). tv:alu-ior (inclusive or). tv:alu-xor
(exclusive or), and tv:alu-andca (and with complement of source).

bitblt is written in highly-optimized microcode and goes very much faster than the same
thing written with ordinary aref and aset opcrations would. Unfortunately this causes
bitblt to have a couple of strange restrictions. Wrap-around docs not work correctly if
from-array is an indircet array with an index-offsct. bitbtt signals an crror if the second
dimensions of fiomrarray and to-arrgy are not both integral multiples of the machine word
length. For art-1b arrays, the sccond dimension must be a multiple of 32., for art-2b
arrays it must be a multiple of 16., etc.

8.11 Order of Array Elements

Currently, multi-dimensional arrays arc stored in row-major order, as in Maclisp., and as
specified by Common Lisp. This mecans that successive memory locations differ in the last
subscript. In older versions of the system, arrays were stored in column-major order.

Most user code has no nced to know about which order array clements are stored in. There
are three known reasons to carc: use of multidimensional indirect arrays; paging cfficiency (if you
‘want to reference every clement in a multi-dimensional array and move lincarly through memory
to improve locality of reference, you must vary the last subscript fastest in row-major order); and
access 1o the TV screen or to arrays of pixels copied to or from the screen with bitblt. The latter
is the most important one.

The bits on the screen arc actually stored in rows, which means that the dimension that varics
fastest has to be the horizontal position. As a result, if arrays are stored in row-major order, the
horizontal position must be the sccond subscript, but if arrays are stored in column-major order,
the horizontal position must be the first subscript. To easc the conversion of code that uses arrays
of pixcls, several bridging functions arc provided:

make-pixel-array width height &rest options
This is like make-array except that the dimensions of the array arc widrh and height, in
whichever order is correct. width is used as the dimension in the subscript that varies
fastest in memory, and height as the other dimension. options arc passed along to make-
array to specify cverything but the size of the array.

pixel-array-width array
Returns the extent of array, a two-dimensional array, in the dimension that varies faster

through memory. For a screen array, this is always the width.
pixel-array-height array

Returns the extent of array, a two-dimensional array, in the dimension that varies slower
through memory. For-a screen array, this is always the height.

PS:<LLMANDFD-ARR.TEXT.26 §-JUN-84

Lisp Machine Manual 183 Matrices and Systems of Lincar liquations

ar-2-reverse array horizontal-index vertical-index
Returns the clement of array at horizontal-index and vertical-index. horizontal-index is
used as the subscript in whichever dimension varics faster through memory.

as-2-reverse newvalue array horizontal-index vertical-index
Stores newvalue into the clément of array at horizontal-index and vertical-index.
horizontal-index "is used as the subscript in whichever dimension varies faster through
memory.

Code that was written before the change in order of array indices can be converted by
replacing calls 0 make-array, array-dimension. aref and aset with these functions. It can then
wark cither in old systems or in new ones. In more complicated circumstances, you can facilitate
conversion by writing code which tests this variable:

sys:array-index-order Constant
This is t in more recent system versions which store arrays in row-major order (last
subscript varics fastest). 1t is nil in older system versions which store arrays in column- .
major order.

8.12 Matrices and Systems of Linear Equations

The functions in this section perform some uscful matrix operations. The matrices are
represented as two-dimensional Lisp arrays. These functions are part of the mathematics package
rather than the kernel array system, hence the ‘math:’ in the names.

math:multiply-matrices matrix-1 matrix-2 &optional marrix-3
Multiplics matrix-1 by matrix-2. 1§ matrix-3 is supplied, multiply-matrices storcs the
results into matrix-3 and returns matrix-3, which should be of exactly the right
dimensions for containing the result of the multiplication; otherwise it creates an array to
contain the answer and returns that. All matrices must be cither one- or two-dimensional
arrays, and the first dimension of matrix-2 must equal the sccond dimension of matrix-1.

math:invert-matrix martrix &optional into-matrix
Computes the inverse of matrix. If into-matrix is supplied, stores the result into it and
returns it; otherwise it creates an array to hold the result and returns that, matrix must
be two-dimensional and square. The Gauss-Jordan algorithm with partial pivoting is used.
Notc: if you want to solve a set of simultancous cquations, you should not use this
function; usc math:decompose and math:solve (sec below). '

math:transpose-matrix marrix &optional into-matrix
Transposes matrix. 1f into-matrix is supplied, stores the result into it and returns it;
otherwisc it creates an array to hold the result and returns that. marrix must be a two-
dimensional array. into-matrix, if provided, must be two-dimensional and have exactly
the right dimensions to hold the transpose of matrix.

PS:KLLMAN>FD>-ARR.TEXT.26 8-JUN-84

Matrices and Systems of | incar Equations 184 Lisp Machine Manual

math:determinant marrix
Returns the determinant of matrix. matrix must be a two-dimensional square matrix.

The next two functions are used to solve scts of simultancous lincar equations.
math:decompose takes a matrix holding the coeflicients of the equations and produces the LU
decomposition; this decomposition can then be passed to math:solve along with a vector of right-
hand sides to get the values of the variables. 1f you want to solve the same equations for many
different sets of right-hand side values. you only need to call math:decompose once. In terms of

the argument names used below, these two functions exist to solve the vector cquation 4 x = b
for x. A is a matrix. b and x arc vectors.

math:decompose « &optional lu ps

Computes the [.U decomposition of matrix a. If lu is non-nil, stores the result into it
and returns it otherwise it creates an array to hold the result, and returns that. The
lower triangle of /u, with ones added along the diagonal, is 1., and the upper triangle of
Iu is U. such that the product of 1. and U is a. Gaussian climination with partial
pivoting is used. The Ju array is permuted by rows according w the permutation array ps,
which is also produced by this function; if the argument ps is supplied, the permutation
array is stored into it; otherwise, an array is created to hold it. This function returns two
values, the LU decomposition and the permutation array.

math:solve lu ps b &optional x
This function takes the LU decomposition-and associated permutation array produced by
math:decompose and solves the sct of simultancous equations defined by the original
matrix a given to math:decompose and the right-hand sides in the vector b. If x is
supplied. the solutions are stored into it and it is returned; othcrwise an array is created
to hold the solutions and that is returncd. b must be a once-dimensional array.

math:1ist-2d-array array
Returns a list of lists containing the valucs in array, which must be a two-dimensional
array. There is onc clement for cach row; cach clement is a list of the values in that

row.

math:fi11-2d-array array list
This is the opposite of math:list-2d-array. [list should be a list of lists, with each
clement being a list corresponding to a tow. array’s clements are stored from the list.
Unlike fillarray (sce page 179), if list is not long cnough, math:fill-2d-array “wraps
around”, starting over at the beginning. The lists which are elements of /ist also work

this way.
math:singular-matrix (sys:arithmetic-error error) Condition
This is signaled when any of the matrix manipulation functions in this section has trouble

“because of a singular matrix. (In some functions, such as math:determinant, a singular
matrix is not a problem.)

The :matrix operation on the condition instance returns the matrix which is singular.

PS:KL.MAN>FD-ARR.TEXT.26 ' ' 8-JUN-84

L isp Machine Manual ‘ 185 ‘ Plancs

8.13 Planes

A plane is cffectively an array whose bounds. in cach dimension, are plus-infinity and minus-
infinity; all integers are legal as indices. Plancs may be of any rank.. When you create a planc,
you do not nced to specify any size. just the rank. You also specify a default value. At that
moment, every component of the plane has that value. As you can't ever change more than a
finitc. number of components, only a finite region of - the plane need actually be stored. When
you refer to an clement for which space has not actually been allocated, you just get the default
value.

The regular array accessing functions dont work on plancs. You can use make-plane to
create a plane, plane-aref or plane-ref to get the value of a component, and plane-aset or
plane-store to store into a component. array-rank works on plancs.

A planc is actually stored as an array with a leader. The array corresponds to a rectangular,
aligned region of the plane. containing all the components in which a plane-store has been done
(and, wusually, others which have never been altered). The lowest-coordinate corner of that
rectangular region is- given by the plane-origin in the array leader. 'The highest-coordinate corner
can be found by adding the plane-origin to the array-dimensions of the array. ‘The plane-
default is the contents of all the clements of the planc that arc not actually stored in the array.
The plane-extension is the amount to extend a plane by in any direction when the plane needs
o be extended. The default is 32.

If you never use any necgative indices, then the plane-origin remains all zcroes and you can
usc regular array functions, such as aref and aset, to access the portion of the plane that is
actually stored. This can be useful to speed up certain algorithms. In this casc you can even use
the bitblt function on a two-dimensional plane of bits or bytes, provided you don’t change the
plane-extension to a number that is not a multiple of 32.

make-plane rank &key type default-value extension initial-dimensions initial-origins
Creates and returns a plane. rank is the number of dimensions. The keyword arguments
are

type The array type symbol (e.g. art-1b) specifying the type of the array out of
* which the plane is made,

default-value The default component value as cexplained above.
extension The amount by which to extend the plane, as explained above,

initial-dimensions
nil or a list of integers whose length is rank. If not nil, cach clement
~corresponds to onc dimension, specifying the width to allocate the array
initially in that dimension.

initial-origins nil or a list of integers whose length is rank. 1If not nil, cach element
corresponds to onc dimension, specifying the smallest index in that
dimension for which storage should initially be allocated.

Example:
(make-plane 2 :type ‘art-4b :default-value 3)
creates a two-dimensional plane of type art-4b, with default value 3.

PS:<LLMAN>FD-ARR.TEXT.26 8-JUN-84

~Maclisp Array Compatibility : 186 I isp Machine Manual

plane-origin plane
A list of numbers, giving the lowest coordinate values actually stored.

plane-default plane
This is the contents of the infinite number of plane clements that are not actually stored.

plane-extension plane .
The amount to extend the planc by, in any dircction, when plane-store is done outside

of the currently-stored portion.

plane-aref plane &rcst subscripts

plane-ref planc subscripts
These two functions return the contents of a specificd element of a plane. They differ
only in the way they take their arguments; plane-aref wants the subscripts as arguments,
while plane-ref wants a list of subscripts.

plane-aset dawm plane &rcst subscripis

plane-store datum plane subscripls
These two functions storc darmwm into the specified clement of a planc, - extending it if
necessary, and return darmm. ‘They differ only in the way they take their arguments;
plane-aset wants the subscripts as arguments, whilc plane-store wants a list of

subscripts.

8.14 Maclisp Array Compatibility

The functions in this section are provided only for Maclisp compatibility and should not be
uscd in new programs.

Fixnum arrays do not cxist (however, scc Zetalisp’s small-positive-integer arrays). Float arrays
exist but you do not usc them in the same way; no dcclarations are required or allowed. Un-
garbage-collected arrays do not exist. Readtables and obarrays are represented as arrays, but
Zetalisp does not usc special array types for them. Sce the descriptions of read (page 531) and
intern (page 645) for information about readtables and obarrays (packages). There arc no ‘dead”
arrays, nor arc Multics “external” arrays provided.

The arraycall function exists for compatibility but should not be used (scc aref, page 170.)

Subscripts arc always checked for validity, regardless of the value of *rset and whether the
code is compiled or not. However, in a multi-dimensional array, an error is caused only if the
subscripts would have resulted in a reference to storage outside of the array. For cxample, if you
have a 2 by 7 array and refer to an clement with subscripts 3 and 1, no crror occurs despite the
fact that the reference is invalid: but if you refer to clement 1 by 100, an error occurs. In other
words, subscript crrors arc caught if and only if they refer to storage outside the array; some
errors are undetected, but they can only clobber (alter randomly) some other clement of the same
array, not somecthing completely unpredictable.

loadarrays and dumparrays arc not provided. Howcver, arrayé can be put into QFASL files;
sec scction 17.8, page 317.

PS:KL.MAN>FD-ARR.TEXT.26 8-JUN-84

Lisp Machine Manual 187 Maclisp Array Compatibility

The *rearray function is not provided, since not all of its functionality is available in
Zetalisp. Its most common uses are implemented by adjust-array-size.

In Maclisp, arrays arc usually kept on the array property of symbols, and the symbols are
used instead of the arrays. In order to provide some degree of compatibility for this manner of
using arrays, the array, *array, and store functions are provided. and when arrays are applicd
to arguments, the arguments are treated as subscripts and apply returns the corresponding clement
of the array. :

array "e symbol 1ppe &eval &rest dims
Creates an art-q type array in default-array-area with the given dimensions. (That is,
dims is given 0 make-array as its first argument.) gpe is ignored. If symbol is nil, the
array is returned; otherwise, the array is put in the function cell of symbol, and symbol is
returned.

*array symbol type &rest dims
Is like array, cxcept that all of the arguments are evaluated.

store array-ref x : Special form
Stores x into the specificd array element. array-ref should be a form which references an
array by calling it as a function (aref forms are not acceptable). First x is cvaluated, then
array-ref is cvaluated, and then the value of x is stored into the array cell last referenced
by a function call, presumably the one in array-ref.

xstore x array-ref
‘This is just like store, but it is not a special form; this is because the arguments are in
the other order. This function only exists for the compiler to compile the store special
form into, and should never be used by programs.

arraycall ignored array &rest subscripts

(arraycall t array subl sub2..) is the same as (aref array subl sub2..). Tt exists for
Maclisp compatibility.

PS:KILMAN>FD-ARR.TEXT.26 8-JUN-84

	162_Arrays
	163_Arrays
	164_Arrays
	165_Arrays
	166_Arrays
	167_Arrays
	168_Arrays
	169_Arrays
	170_Arrays
	171_Arrays
	172_Arrays
	173_Arrays
	174_Arrays
	175_Arrays
	176_Arrays
	177_Arrays
	178_Arrays
	179_Arrays
	180_Arrays
	181_Arrays
	182_Arrays
	183_Arrays
	184_Arrays
	185_Arrays
	186_Arrays
	187_Arrays

