Generice Sequence Functions 188 Lisp Machine Manual

9. Generic Sequence Functions

'The type specifier sequence is defined to include lists and vectors (arrays of rank onc). Lists
and vectors are similar in that both can be regarded as sequences of clements: there is a first
clement, a sccond clement, and so on. Element n of a list_is (nth » /isr). and clement # of a
veclor is (aref vector n). Many uscful operations which apply in principle to a sequence of
objects can work equally well on lists and vectors. ‘These are the generic sequence functions.

All the generic sequence functions accept nil as a sequence of length zero.

9.1 Primitive Sequence Qperations

make-saquence [ype size &key initial-clement
Creates a sequence of type fype. size clements long. size must be an integer and type
must be cither list or some kind of array type. fpe could be just array or vector to
make a general vector, it could be (vector (byte 8)) to make an art-8b vector, and so
on.

If initial-element is specified, cach clement of the new sequence contains initial-element.
Otherwise, the new scquence is initialized to contain nil if that is possible, zero otherwise
(for numeric array types).
(make-sequence 'list 3)
=> (nil nil nil)

(make-sequence ’array 5 :initial-element t)
=> #(ttttt) '

(make-sequence '(vector bit) 5)
=> #»00000

o1t sequence index
Returns the clement at index index in sequence. 1f sequence is a list, this is (nth index
sequence). 1f sequence is a vector, this is (aref index sequence). Being microcoded, elt is
as fast as cither nth or aref.

(setf (elt sequence index) value) is the way to set an element of a sequence.

length sequence
Returns the length of sequence, as an integer. For a vector with a fill pointer, this is the
fill pointer value. For a list, it is the traditional Lisp function; note that lists ending with
atoms other than nil are accepted, so that the length of (a b . ¢) is 2.

PS:<L.MAN>GENERIC.TEXT.14 : 8-JUN-84

Lisp Machine Manual 189 Simple Sequence Operations

9.2 Simple Sequence Operations

copy-seq sequence
Returns a new sequence of the same type, length and contents as sequence.

concatenate result-type &rest sequences :
Returns a new sequence, of type result-type, whose contents are made from the contents
-~ of all the sequences. result-type can be list or any array type, just as in make-sequence
above. Examples: '
(concatenate 'list '(1 2) "#(A 3)) => (1 2A 3)
(concatenate 'vector '(1 2) "#(A 3) => #(12 A 3)

subseq scquence start &optional end .
Returns a new sequence whose clements are a subscquence of sequence. 'The new
sequence is of the same type as sequence.

start is the index of the first element of sequence to take. end is the index of where to
stop—the first clement nor to take. end can also be nil, meaning take cverything from
start up to the end of sequence.

Examples:
(subseq "Foobar"™ 3 5) => "pa"
(subseq '(a b c) 1) => (b ¢c)

It is also possible to setf a call to subseq. This means to store into part of the sequence
passed to subseq. Thus,

(setf (subseq "Foobar" 3 5) "le")
modifics the string "Foobar" so that it contains "Fooler" instead.

replace into-sequence-1 from-scquence-2 &key (startl 0) endl (start2 0) end?
Copies part of from-sequence-2 into part of to-sequence-1. start? and end? are the indices
of the part of from-sequence-2 to copy from, and swart! and endl are the indices of the
part of to-sequence-1 to copy into.

If the number of clements to copy out of from-sequence-2 is less than the number of
elements of to-sequence-1 to be copied into, the extra clements of lo-sequence-1 are not
changed. If the number of clements to copy out is more than there is room for, the last
cxtra elements are ignored.

If the two scquence arguments are the same sequence, then the clements to be copied are
copicd first into a temporary scquence (if necessary) to make sure that no element is
overwritten before it is copied. Example:

(setq str "Elbow")

(replace str str :startl 2 :endl 5 :start2 1 :end2 4)
modifics str to contain "Ellbo".

into-sequence-1 is returned as the value of replace.

PS:KLLMAN>GENERIC.TEXT.14 8-JUN-84

Simple Sequence Operations 190 Lisp Machine Manual

111 sequence item &key (stari0) end
Modifics the contents of sequence by setting all the clements to item. start and cnd may
be specified to limit the operation to some contiguous portion of sequence; then the
clements before start or after end arc unchanged. If end is nil, the filling goes to the end
of sequence.

The value returned by fill is sequence. Example:
(setq 1 '(a b cde))
(fi11 1 "lose :start 2)

1 => (a b lose lose lose)

reverse scquence
Returns a new sequence containing the same clements as sequence but in reverse order.
The new sequence is of the same type and length as sequence. reverse docs not modify
its argument, unlike nreverse which is faster but does modify its argument. The list
crcated by reverse is not cdr-coded.
(reverse "foo") => "oof"
(reverse '(a b (c d) e)) => (e (c d) b a)

nreverse sequence

Modifies sequence destructively to have its clements in reverse order, and returns sequence
as modified. For a vector, this is donc by copying the clements to different positions.
For a list, this is done by modifying cdr pointers. This has two important consequences:
it is most efficient when the list is not cdr-coded, and the rcarranged list starts with the
cell that used to be at the end. Although the altered list as a whole contains the sarne
cells as the original, the actual valuc of the altered list is not eq to the original list. For
this reason. onc must always storc the valuc of nreverse into the place where the list will
be used. Do not just use nreverse for cffect on a list.

(setq a '#(1 2 3 4 5))
(nreverse a)
(concatenate 'list a) => (5 43 2 1)

(setq b '(1 2 3 4 5)
cb
d (last b))
(setqg b (nreverse b))

b =>(54321)
c => (1)
({eq b d) => t

nreverse is most frequently used after a loop which computes clements for a new list one
by one. These clements can be put on the new list with push, but this produces a list
which has the elements in reverse order (first onc generated at the end of the list).

PS:<ILMAN>GENERIC.TEXT.14 _ 8-JUN-84

Lisp Machine Manual 191 » Mapping On Scequences

(let (accumulate)
" (dolist (x input)
(push (car x) accumulate)
(push (cdr x) accumulate))
(nreverse accumulate))

Currently, nreverse is incfficient with cdr-coded lists (see section 5.4, page 100). because
it just uses rplacd in the straightforward way. ‘This may be fixed someday. In the
mcantime reverse might be preferable in some cases.

9.3 Mapping On Scquences

cli:map result-type finction &rest sequences
The Common Lisp map function maps function over successive clements of cach sequence,
constructing and returning a scquence of the results that function returns. ‘The constructed
sequence is of type result-type (scc make-sequence, page 188). '

Junction is called first on the first clements of all the sequences, then on the second
clements of all, and so on until some argument sequence is exhausted.

(map *Tist 'list "(1 2 3) '#(A B C D))
=> ((1 A) (2 B) (3C))

(setq vect (map '(vector (mod 16.)) '+

(3456 7) (circular-list 1)))
(concatenate 'list vect) => (2 3 4 5 6)
(array-element-type vect) => (mod 16.)

result-type can also be nil. Then the values returned by function are thrown away, no
scquence is constructed, and map returns nil.

This function is available under the name map in Common Lisp programs. In traditional
Zetalisp programs, map is another function which does something related but different;
sec page 84. Traditional programs can call this function as cli:map.

cli:some predicate &rest sequences
Applies predicate to successive clements of each sequence. If predicate ever returns a non-
nil value, cli:some immediately returns the same value. If one of the argument scquences

is exhausted, cli:some returns nil.

Each time predicate is called, it rcccives onc argument from cach sequence. The first
time, it gets the first clement of cach sequence, then the sccond clement of each, and so
on until a sequence is exhausted. Examples:

(cli:some °'plusp (-4 05 6)) => 5

(cli:some '> *(-4 0 656 6) '(0 12 12 12)) => nil

(cli:some '> *(-4 05 6) '(3333)) = 5§

(cli:some '> *(-4 0 5 6) (3 3)) => nil

PS:<LLMAN>GENERIC.TEXT.14 8-JUN-84

Mapping On Sequences 192 Lisp Machine Manual

“This function is available under the name some in Common Lisp programs. In traditional
Zetalisp programs, some is another function which docs something related but different;
sce page 106. ‘Ttaditional programs can call this function as cli:some.

cli:every predicaic &rest sequences
Applics predicate to successive clements of cach sequence. If predicate cver returns nil,
cliievery immediately returns nil. If one of the argument scquences is cxhausted,
cli:every returns t.

Fach time predicate is called, it receives onc argument from cach sequence. The first
time. it gets the first element of cach sequence, then the second clement of cach, and so
on until a sequence is exhausted. Examples:

(cli:every 'plusp "(-4 0 5 6)) => nil

(cli:every 'plusp '(5 6)) => t

This funciion is available under the name every in Common Lisp programs. In traditional
Zetlisp programs, every is another function which docs something related but different;
sce page 106. Traditional programs can call this function as clicevery.

notany predicate &rcst sequences
notevery predicale &rcst sequences
These are the opposites of cli:some and cli:every.

(notany ...) is cquivalent to (not (cli:some ...)).
(notevery ...) is cquivalent to (not (cli:every ...)).

reduce function sequence &kcy from-end (startQ) end initial-value
Combines the clements of sequence using function, a function of two args. function is
applied to the first two clements; then to that result and the third clement; then to that
result and the fourth clement; and so on. -

start and end arc indices that restrict the action to a part of sequence, as if the rest of
sequence were not there. They default to 0 and nil (nil for end means go all the way to
the end of sequence).

If from-end is non-nil, processing starts with the last of the elements. fiunction is first
applicd to the last two clements; then to the previous clement and that result; then to
the previous clement and that result; and so on until clement number start has been
used.

If initial-value is specified, it acts like an extra clement of sequence, used in addition to
the actual elements of the specified part of sequence. 1t comes, in cffect, at the beginning
if from-end is nil, but at the end if from-end is non-nil, so that in any casc it is the first
element to be processed.

If there is only one clement to be processed, that clement is returned and finction is not
called.

PS:<1.MAN>GENERIC.TEXT.14 : 8-JUN-84

Lisp Machine Manual 193 Operating on Selected Elements

If there are no clements (sequence is of length zero and no initial-value), function is called
with no arguments and its valuc is returned.

Examples: ,
(reduce '+ ’(1 2 3)) => 6
(reduce '- (12 3)) => -4
(reduce '- *(1 2 3) :from-end t) => 2 ;;1-(2-3)
(reduce °'cons '(1 2 3) :from-end t) => (12 . 3)
(reduce ‘'cons '(1 2 3)) => ((1. 2) . 3)

9.4 Operating on Sclected Elements

The generic sequence functions for scarching, substituting and removing clements from
scquences take similar arguments whose meanings are standard. This is because they all look at
cach clement of the sequence to decide whether it should be processed.

Functions which conceptually modify the sequence come in pairs. Onc function in the pair
copics the sequence if necessary and never modifies the argument. ‘The copy is a list if the
original sequence is a list; otherwise, the copy is an art-q array. If the sequence is a list, it may
be copied only partially, sharing any unchanged tail with the original argument. If no clements
match, the result sequence may be eq to the argument sequence.

The other function in the pair may alter the original scquence and return it, or may make a
copy and return that.

There are two ways the function can decide which clements to operatc on. The functions
whose names end in -if or -if-not have an argument named predicate which should be a function
of one argument. This function is applicd to cach clement and the value determines whether the
element is processed. ’

The other functions have an argument named item or something similar which is an object to
compare each clement with. The elements that match item are processed. By default, the
comparison is done with eql. You can specify any function of two arguments to be used instead,
as the fest keyword argument. item is always the first argument, and an clement of the sequence
is the second argument. The clement matches ifem if fest returns non-nil. Alternatively, you can
specify the test-not keyword argument; then the element matches if est-not returns nil,

The eclements may be tested in any order, and may be. tested more than once. For -
predictable results, your predicate, test and test-not functions should be side-effect free.

The five keyword arguments start, end, key, count and Jrom-end have the same meanings for
all of the functions, except that count is not relevant for some kinds of operations. Here is what

they do:

start, end start and end are indices in the scquence; they restrict the processing to the
portion between those indices. Only elements in this portion are tested, replaced
or removed. For the scarch functions, only this portion is scarched. For element
removal functions, elements outside the portion are unchanged.

PS:K<LLMAN>GENERIC.TEXT.14 | 8-JUN-84

Operating on Sclected Elements 194 - Lisp Machine Manual

key

Sfron-end

count

start is the index of the first clement to be processed, and end is the index of the
clement after the last element to be processed. end can also be nil, meaning that
processing should continue to the end of the sequence.

start always defaults to 0, and end always defaults to nil.

key, if not nil, is a function of one argument which is applied to cach clement of
the sequence to get a value which is passed to the fest, fest-not or predicate
function in place of the clement. Vor example, if' key is car, the car of each
clement is compared or tested. ‘The default for key is nil. which means to
comparc or test the clement itself.

If from-end is non-nil, clements are (conceptually) processed in the reverse of the
sequence order, from the later clements o the carlier oncs. In some functions
this argument makes no difference, or matters only when count is non-nil,

Note: the actual testing of clements may happen in any order.

count. if not nil, should bc an integer specifying the number of matching
clements to be processed. For example, if count is 2. only the first two clements
that match arc removed, replaced, ectc. If from-end is non-nil, the last two
matching clements are the ones removed or replaced.

The default for count is nil, which mcans all clements arc tested and all matching
oncs are processed.

9.4.1 Removing Elements from Sequences

These functions remove ccrtain clements of a sequence. The remove serics functions copy the
argument; the delete series functions can modify it destructively (currently they always copy
anyway if the argument is a vector).

remove-1f predicate sequence &key (startQ) end count key from-end
delete-1f predicate sequence &key (startQ) end count key from-end
Returns a sequence like sequence but missing any clements that satisfy predicate. predicate
is a function of onc argument which is applied to onc clement at a time; if predicate
returns non-nil, that clement is removed. remove-if copies structure as necessary to avoid
modifying sequence, while delete-if can ecither modify the original sequence and return it
" or make a copy and return that. (Currently, a list is always modified, and a . vector is
always copicd, but don’t depend on this.)

The start, end, key count and from-end arguments arc handled in the standard way.

PS:<I.MAN>GENERIC.TEXT.14 8-JUN-84

Lisp Machine Manual 195 Operating on Sclected Elements

(remove-if 'plusp (1 -1 2 -2 3 -3)) = (-1 -2 -3)
(remove-if ‘plusp '(1 -1 2 -2 3 -3) :count 2)
= (-1 -2 3 -3)
(remove-if 'plusp '(1 -1 2 -2 3 -3) :count 2 :from-end t)
=> (1 -1-2 -3) v
(remove-if ‘'plusp '(1 -1 2 -2 3 -3) :start 4)
=> (1-12 -2 -3)
(remove-if ‘zerop '(1 -1.2 -2 3 -3) tkey '1-)
=> (-12 -23 -3)

remove-1f-not predicate sequence &key (start0) end count key from-end

delete-if-not predicate sequence &key (start 0) end count key from-end
Like remove-if and delete-if cxcept that the clements removed are those for which
predicate returns nil.

cli:remove item sequence &key (test’eql) test-not (start0) end count key from-end

cli:delete item sequence &key (rest'eql) test-not (start 0) end count key from-end
The Common Lisp functions for climinating clements from a sequence test the clements of
sequence one by onc by comparison with item, using the rest or test-not function, and
eliminate the clements that match. cli:remove copics structurc as nccessary to avoid
modifying sequence, while cli:delete can cither modify the original sequence and return it
or make a copy and return that. (Currently, a list is always modified, and a vector is
always copied.) :

The start, end, key count and from-end arguments are handled in the standard way.

(cli:remove 'x '(x (a) (x) (a x)))

=> ((a) (x) (a x))

(cli:remove 'x ’'((a) (x) (a x)) :test 'memq)

=> ((a))

(cli:remove 'x ’((a) (x) (a x)) :test->not 'memq)

=> ((x) (a x))

(cli:remove 'x '((a) (x) (a x))
:test 'memq :count 1)

=> ((a) (a x))

(cli:remove 'x '"((a) (x) (a x)) :key 'car)

=> ((a) (a x))

These functions are available under the names remove and delete in Common Lisp
programs. Traditional Zetalisp provides functions remove and delete which serve similar
functions, on lists only, and with different calling sequences: sce page 105 and page 105.
Traditional programs can call these functions as cli:remove and cli:delete.

PS:<LLMAN>GENERIC.TEXT.14 , 8-JUN-84

Operating on Selected Elements ' 196 Lisp Machinc Manual

remove-duplicates sequence &key (test’eql) test-not (start 0) end key from-end

delete-duplicates sequence &kecy (lest’eql) test-not (start0) end key from-end
remove-duplicates returns a new sequence like sequence except that all but one of any
set of matching clements have been removed. delete-duplicates is the same except that
it may destructively modify and then return sequence itself.

Elements are compared using fest, a function of two arguments. Two clements match if
test returns non-nil. Each clement is compared with all the following clements and slated
for removal if it matches any of them.

If test-not is specified, it is used instcad of fest, but then clements match if test-not
returns nil. If neither fest nor test-not is specified, eql is used for test.

. If key is non-nil, it should be a function of one argument. key is applicd to each
clement, and the value key rcturns is passed to lest or lest-nol.

If from-end is non-nil, then clements are processed (conceptually) from the end of
sequence forward. Each element is compared with all the preceding ones and slated for
removal if it matches any of them. For a well-bchaved comparison function, the only
difference from-end makes is which clements of a matching set are removed. Normally the
last one is kept; with from-end, it is the first one that is kept.

If start or end is used to restrict processing to a portion of sequence, both removal and
comparison are restricted. An clement is removed only if it is itself within the specified
portion, and matches another element within the specified portion.

9.4.2 Substitution Functions

The functions in this scction substitute a new value for certain of the elements in a
sequence—those that match a specified object or satisfy a predicate, For example, you could
replace cvery t in the sequence with' nil. leaving all elements other than t unchanged. The
substitute series functions make a copy and return it, leaving the original sequence unmodified.
The nsubstitute series functions always alter the original sequence destructively and return it.
They do not use up any storage.

Note the difference between these functions and the function cli:subst. subst operates only
on lists, and it searches all levels of list structure in both car and cdr positions. substitute, when
given a list, considers for replacement only the clements of the list

substitute-1if newitem predicate sequence &key start end count key from-end

nsubstitute-1f newitem predicate sequence &key start end count key from-end
substitute-if returns a new sequence like sequence but with newitem substituted for each
clement of sequence that satisfies predicate. sequence itself is unchanged. If it is a list,
only cnough of it is copied to avoid changing sequence. '

nsubstitute-if replaces clements in sequence itsclf, modifyihg it destructively, and returns
sequence. :

PS:<I.MAN>GENERIC.TEXT.14 8-JUN-84

Lisp Machine Manual 197 Operating on Sclected Elements

start, end, key, count and from-end arc handled in the standard fashion as described
above. : ,
(substitute-if 0 'plusp '(1 -1 2 -2 3) :from-end t :count 2)
=> (1 -10 -2 0)

substitute-if-not newitem predicate sequence &key start end count key from-end
nsubstitute-if-not newitem predicate sequence &key start end count key from-end
~ Like substitute-if and nsubstitute-if except that the clements replaced are those for
which predicate returns nil. :

substitute newitem olditem sequence &key (fest ‘eql) test-not start end count key from-end
nsubstitute newitem olditem sequence &key (test’eql) test-not start end count key
Srom-end : x
Like substitute-if and nsubstitute-if except that clements are tested by comparison with
olditem, using test or test-not as a comparison function. ‘

start, end, key, count and from-end are handled in the standard fashion as described
above,
(substitute 'a 'b *(a b (a b)))
=> (a a (ab)) '

9.4.3 Searching for Elements

The functions in this section find an element or elements of a sequence which satisfy a
predicate or match a specified object. The position serics functions find one clement and return
the index of the clement found in the specified sequence. The find series functions rcturn the
clement itsclf. The count serics functions find all the clements that match and returns the
number of them that were found. '

All of the functions accept the keyword ‘arguments start, end, count and from-end, and
handle them in the standard way described in section 9.4, page 193.

position-1f predicate sequence &key (startO) end key from-end

find-1f predicate sequence &key (startO) end key from-end
Find the first element of sequence (last element, if Srom-end is non-nil) which satisfies
predicate. position-if returns the index in sequence of the clement found; find-if returns
the clement itself. If no element is found, the value is nil for cither function.

Sec scction 9.4, page 193 for a description of the standard arguments start, end énd key.

If start or end is used to restrict operation to a portion of sequence, elements outside the
portion are not tested, but the index returned is still the index in the entire scquence.

PS:<LL.LMAN>GENERIC.TEXT.14 8-JUN-84

Operating on Selected Flements 198 Lisp Machine Manual

(position-if ‘plusp "(-3 -2 -1 012 3))

=> 4
(find-if 'plusp "(-3 -2 -1 012 3))
=> 1
(position-if 'plusp (-3 -2 -1 0 1 2 3) :start 5)
=> 5
(position-if ‘plusp '(-3 -2 -1 012 3) :from-end t)
=> 6
(find-if ’plusp (-3 -2 -1 0123) :from-end t)
=> 3

position-if-not predicute sequence &key (startQ) end key from-end
find-1f-not predicate sequence &key (stari0) end key from-end
[ike position-if and find-if but scarch for an clement for which predicate returns nil.

position item scquence sequence &key fest test-not (startQ) end key from-end
find irem sequence sequence &key test fesi-nol (start0) end key from-end
1ike position-if and find-if but scaich for an clement which matches ifem, using lest Of
test-not for comparison.
(position #\A "BabA" :test 'char-equal) => 1
(position #=/A "BabA" :test ‘equalp) => 1
(position #\A "BabA" :test ’'char=) => 3
(position #=/A "BabA" :test 'eq) => 3
find -position-in-list is cquivalent to position with eq as the value of fest.

count-1f predicate sequence &key start end key
Tests cach clement of sequence with predicate and counts how many times predicate
returns non-nil. This number is rcturned. ‘

starf, end and key arc uscd in the standard way, as described in section 9.4, page 193.
The from-end keyword argument is accepted without crror, but it has no effect.
(count-if *symbolp #(a b "foo" 3)) => 2

count-1f-not predicate sequence &key start end key
Like count-if but returns the number of clements for which predicate returns nil.

count item sequence &key fest test-not start end key
Like count but returns the number of elements which match ifem. test or fest-not is the

function used for the comparison.
(count 4 (12 3 4 5) :test '>) => 3

PS:KL.MAN>GENERIC.TEXT.14 8-JUN-84

Lisp Machine Manual 199 _ Comparison Functions

9.5 Comparison Functions

mismatch scquencel sequence? &key (rest'eql) test-not (startl 0) endl (start20) cnd? key
Srom-end

Compares successive clements of sequencel with successive elements of sequencel,
returning nil if they all match, or else the index in sequencel of the first mismatch. If
the sequences differ in length but match as far as they go. the value is the index in
sequencel of the place where one sequence ran out, If sequencel is the one which ran
out. this value equals the length of sequencel, so it isn't the index of an actual element,
but it still describes the place where comparison stopped.

Elements are compared using the function test, which should accept two arguments. If it
returns non-nil; the elements are considered to match. If you specify test-nor instead of
fest, it is used similarly as a function, but the clements match if test-nor returns nil.

If key is non-nil, it should be a function of one argument. It is applied to cach clement
to get an object to pass to lest or fes-nol in place of the clement. Thus, if car is
supplicd as key, the cars of the elements are compared using fest or fest-nof.

startl and end! can be used to specify a portion of sequencel to use in the comparison,
and start2 and end? can be used to specify a portion of sequence2. The comparison uscs
the first clement of each sequence portion, then the second clement of cach sequence
portion, and so on. If the two- specified portions differ in length, comparison stops where
the first one runs out. In any case, the index returned by mismatch is still relative to
the whole of sequencel . ‘

If from-end is non-nil, the comparison proceeds conceptually from the end of cach
sequence or portion. The first comparison uses the last element of each sequence portion,
the sccond comparison uses the next-to-the-last element of cach sequence portion, and so
on. When a mismatch is encountered, the value returned is one greater than the index of
the first mismatch encountered in order of processing (closest to the ends of the
sequences). :

(mismatch "Foo" "Fox") => 2

(mismatch "Foo" "FOO" :test ‘char-equal) => nil

(mismatch "Foo" "FOO" :key "char-upcase) => nil

(mismatch '(a b) #(a b c)) => 2

(mismatch "Win" "The Winner" :start2 4 :end? 7) => nil

(mismatch "Foo" "Boo" :from-end t) = 1

~search jforsequence-1 in-sequence-2 &key Srom-end test test-not key (startl 0) endl (start2 0)
end2
Searches in-sequence-2 (or portion of it) for a subsequence that matches Jor-sequence-1 (or
portion of it) clement by clement, and returns the index in. in-sequence-2 of the beginning
of the matching subsequence. If no matching subscquence is found, the value is nil, The
comparison of cach subsequence of in-sequence-2 is donc with mismatch, and the test,
lest-not and key arguments arc used only to pass along to mismatch.

PS:<L.LMAN>GENERIC.TEXT.14 _ 8-JUN-84

Sorting and Merging 200 I isp Machine Manual®

Normally, subsequences are considered starting with (he beginning of the specified portion
of in-sequence-2 and proceeding toward the end. The value is therefore the index of the
carliest subsequence that matches. If from-cnd is non-nil. the subsequences are tried in
the reverse order, and the value identifies the latest subsequence that matches. In cither
case. the value identifics the beginning of the subsequence found.

(search "(#\A #\B) "cabbage" :test "char-equal) => 1

9.6 Sorting and Merging

Several functions are provided for sorting vectors and lists. These functions use algorithms
which always terminate no matter what sorting predicate is used, provided only that the predicate
alwavs (erminates. The main sorting functions are not stable: that is, cqual items may not stay in
their original order. If you want a stable sort, use the stable versions. But if you don’t care
about stability, don’t use them since stable algorithms are significantly slower.

After sorting, the argument (be it list or vector) has been rearranged internally so as to be
completely ordered. In the case of a vector argument, this is accomplished by permuting the
clements of the vector, while in the list case, the list is reordered by rplacd’s in the same
manner as nreverse. Thus if the argument should not be clobbered, the user must sort a copy
of the argument, obtainable by fillarray or copylist, as appropriate. Furthermore, sort of a list is
like delg in that it should not be used for cffect; the result is conceptually the same as the
argument but in fact is a different Lisp object.

Should the comparison predicate causc an crror, such as a wrong type argument crror, the
state of the list or vector being sorted is undefined. However, if the error is corrected the sort
proceeds correctly.

The sorting package is smart about compact lists; it sorts compact sublists as if they were
vectors. Sce section 5.4, page 100 for an explanation of compact lists, and MIT A. 1. Lab Memo
587 by Guy L. Stecle Jr. for an explanation of the sorting algorithm.

sort sequence predicate
The first argument to sort is a vector or a list whose clements are to be sorted. The
second is a predicate, which must be applicable to all the objects in the sequence. The
predicate should take two arguments, and rcturn non-nil if and only if the first argument
is strictly less than the sccond (in some appropriate sense).

The sort function procceds to reorder the elements of the sequence according to the
predicate, and returns a modified scquence. Note that since sorting requircs many
comparisons, and thus many calls to the predicate, sorting is much faster if the predicate
is a compiled function rather than interpreted.

Example: Sort a list alphabetically by the first symbol found at any level in each clement.

PS:<I.MAN>GENERIC.TEXT.14 8-JUN-84

Lisp Machine Manual | ’ 201 , Sorting and Merging

(defun mostcar (x)
(cond ((symbolp x) x)
((mostcar (car x)))))

(sort 'fooarray
#'(lambda (x y)
(string-lessp (mostcar x) (mostcar y))))

If fooarray contained these items before the sort:

(Tokens (The alien lurks tonight))
(Carpenters. (Close to you))
((Ro1ling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold you up))

then after the sort fooarray would contain;

((Beach Boys) (I get around))
(Beatles (I want to hold you up))
(Carpenters (Close to you))
((Ro1ling Stones) (Brown sugar))
(Tokens (The alien lurks tonight))

When sort is given a list. it may change the order of the conses of the list (using
rplacd), and so it cannot be used merely for side-effect: only the returned value of sort is
the sorted list. The original list may have some of its clements missing when sort returns.
If you nced both the original list and the sorted list, you must copy the original and sort
the copy (scc copylist, page 94).

Sorting a vector just moves the elements of the vector into different placcs, and so sorting
a vector for side-effect only is all right.

If the argument to sort is a vector with a fill pointer, note that, like most functions, sort
considers the active length of the vector to be the length, and so only the active part of
the vector is sorted (sce array-active-length, page 174).

sortcar sequence predicate
sortcar is the same as sort except that the predicate is applied to the cars of the elements
of sequence, instead of dircctly to the elements of sequence. Example:
(sortcar '((3 . dog) (1 . cat) (2 . bird)) #°'<)
=> ((1 . cat) (2 . bird) (3 . dog))

Remember that sortcar, when given a list, may change the order of the conses of the list

(using rplacd), and so it cannot be used merely for side-cffect; only the returned value of
sortcar is the sorted list. The original list is destroyed by sorting.

PS:KLMAN>GENERIC.TEXT.14 8-JUN-84

Sorting and Merging 202 ' Iisp Machine Manual

stable-sort. sequence predicate
stable-sort is like sort, but if two clements of sequence are equal. i.c. predicate rewurns
nil when applied to them in either order, then they remain in their original order.

stable-sortcar scquence predicate
stable-sortcar is like sortcar, but if two clements of sequence are cqual, i.c. predicate
returns nil when applied to their cars in cither order, then they remain in their original
order.

sort-grouped-array array group-size predicate
sort-grouped-array considers its array argument to be composed of records of group-size
clements cach. These records are considered as units, and are sorted with respect to one
another. ‘The predicate is applied 1o the first clement of cach record: so the first clements
act as the keys on which the records are sorted.

sort-grouped-array-group-key array group-size predicate
T'his is like sort-grouped-array cxcept that the predicate is applied to four arguments:
an array, an index into that array. a second array, and an index into the sccond array.
predicate should consider cach index as the subscript of the first clement of a record in
the corresponding array, and compare the two records. This is more general than sort-
grouped-array since the function can get at all of the clements of the relevant records,
instead of only the first clement.

merge resuli-type sequencel sequence2 predicate &key key
Returns a single sequence containing the clements of sequencel and sequence? interleaved
in order according to predicate. ‘The length of the result sequence is the sum of the
lengths of sequencel and sequencel. result-type specifies the type of sequence to create, as
in make-sequence.

The interleaving is donc by taking the next clement of sequencel unless the next clement
of sequence? is “less” than it according to predicate. Therefore, if cach of the argument
sequences is sorted, the result of merge is also sorted.

key, if non-nil, is applied to cach clement to get the object to pass to predicate, rather
than the element itself. Thus, if key is car, the cars of the clements are comparcd rather
than the entire clements, '

(merge 'list (1 25 6) '(3 5.0 5.1) ’<)
=> (12356.05.186) '

PS:<I.MAN>GENERIC.TEXT.14 8-JUN-84

	188_GenericSeqFns
	189_GenericSeqFns
	190_GenericSeqFns
	191_GenericSeqFns
	192_GenericSeqFns
	193_GenericSeqFns
	194_GenericSeqFns
	195_GenericSeqFns
	196_GenericSeqFns
	197_GenericSeqFns
	198_GenericSeqFns
	199_GenericSeqFns
	200_GenericSeqFns
	201_GenericSeqFns
	202_GenericSeqFns

