Fisp Machine Manual 203 Characters and Strings

10. Characters and Strings

A string is a onc-dimensional array representing a - sequence of characters. ‘The printed
representation of a string is its characters enclosed in quotation marks. for example "foo bar”.
Strings arc constants, that is, evaluating a string returns that string, Strings are the right data
lype to use for text-processing,

Individual characters can be represented by character objects or by fixnums. A character
- object is actually the same as a fixnum exeept that it has a recognizably different data type and
prints differently. Without escaping. a character object is printed by outputting the character it
represents. . With escaping, a character object prints as # \char in Common Lisp syntax or as
#=/char in traditional syntax; see section 10.1.1, page 205 and page 522. By contrast, a fixnum
would in all cases print as a sequence of digits. Character objects are accepted by most numeric
functions in place of fixnums, and may be used as array indices. When cvaluated, they are
constants,

The character object data type was introduced recently for Common Lisp support.
Traditionally characters were always represented as fixnums, and ncarly all system and user code
still does so. Character objects are interchangeable with fixnums in most contexts, but not in eq,
which is often used to compare the result of the stream input operations such as :tyi, since that
might be nil. Therefore, the stream input operations still return fixnums that represent characters.
Aside from this, Common Lisp functions that return a character return a character object, while
traditional functions return a fixnum. The fixnum which is the character code representing char
can be written as # /char in traditional syntax. ‘This is cquivalent to writing the fixnum using
digits, but does not require you to know the character code.

Most strings arc arrays of type art-string, where cach element is stored in cight bits. Only
characters with character code less than 256 can be stored in an ordinary string; these characters
form the type string-char. A string can also be an array of type art-fat-string, where each
clement holds a sixteen-bit unsigned fixnum. The extra bits allow for multiple fonts or an
expanded character set. '

Since strings are arrays, the usual array-referencing function aref is used to extract characters
from strings. For example, (aref "frob" 1) returns the representation of lower case r. The first
character is at index zero.

Conceptually, the eclements of a string are character objects. This is what Common Lisp
programs expect to sec when they do aref (or char, which on the Lisp Machinc is synonymous
with aref) on a string. But nearly all Lisp Machine programs are traditional, and expect clements
of strings to be fixnums. Therefore, aref of a string actually returns a fixnum. A distinct version
of aref exists for Common Lisp programs. It is cli:aref and it docs return character objects if
given a string. For all other kinds of arrays, aref and cli:aref are cquivalent.

- (aref "Foo" 1) => #0157
(cli:aref "Foo" 1) = f#=/0

It is also legal to storc into strings, for cxample using setf of aref. As with rplaca on lists,
this changes the actual object; you must be careful to understand where side-cffects will
propagate. It makes no difference whether a character object or a fixnum is stored. When you

PS:KLLMAN>FD-STR.TEXT.27 8-JUN-84

Characters 204 I isp Machine Manual

are making strings that you intend to change later, you prabably want to create an array with a
fill-pointer (see page 166) so that you can change the length of the string as well as the contents.
The length of a string is always computed using array-active-length. so that if a string has a
fill-pointer, its value is used as the length.

The functions described in this section provide a varicty of useful operations on strings. In
place of a string, most of these functions accept a symbol or a fixnum as an argument, coercing
it into a string. Given a symbol. its print name, which is a string. is used. Given a fixnum, a
one-character string containing the character designated by that fixnum is usced. Several of the
functions actually work on any tpe of one-dimensional array and may be useful for other than
string processing; these are the functions such as substring and string-length which do not
depend on the clements of the string being characters.

The generic sequence functions in chapter 9 may also be used on strings.

10.1 Characters

The lisp Machine data type for character objects is a recent addition to the system. Most
programs still use fixnums to represent characters.

Common Lisp programs typically work with actual character objects but programs traditionally
use fixnums to represent characters. The new Common Lisp functions for opcrating with
characters have been implemented to accept fixnums as well, so that they can be used cqually
well from traditional programs.

characterp object
t if object is a character object; nil otherwise. In particular, it is nil if object is a fixnum
such as traditional programs use to rcpresent characters.

character object
Coerces object to a single character, represented as a fixnum. If object is a number, it
is returned. If object is a string or an array, its first clement is returned. If object is a
symbol, the first character of its pname is returned. Otherwise an error occurs. The way
characters arc represented as fixnums is explained in section 10.1.1, page 205.

cli:character object
Cocrces object into a character and returns the character as a character object for Common
Lisp programs. ‘

int-char fixnum
Converts fixnum, tegarded as representing a character, to a character object. This is a
special case of clizcharacter. (int-char #0101) is the character object for A. If a
character object is given as an argument, it is returned unchanged.

PS:<l ..MAN§P'I}S'I'l{.'l']€X'l'.27 8-JUN-84

Fisp Machine Manual A 205 Characters

char-int char
Converts c¢har, a character object, to the fixnum which represents the same character.
This is the inverse of int-char. It may also be given a fixnum as argument, in which
casc the value is the same fixnum.

10.1.1 Components of a Character

A character object, or a fixnum which is interpreted as a character, contains three separate
picces of information: the character code, the font number, and the modifier bits. Fach of these
things is an integer from a fixed range. ‘The character code ranges from 0 o 377 (octal), the font
number from 0 to 377 (octal). and the madifier bits from 0 t 17 (octal). These numeric
constants should not appear in programs; instead. use the constant symbols char-code-limit. and
so on, described below.

Ordinary strings can hold only characters whose font number and modifier bits are zero. Fat
strings can hold characters' with any font number, but the modifier bits must still be zero.

Character codes less than 200 octal are printing graphics; when output to a device they are
assumed to print a character and move the cursor one character position to the right. (All
software provides for variable-width fonts, so the term “character position™ shouldn’t be taken too

literally.)

Character codes 200 through 236 octal are used for special characters. Character 200 is a
“null character”, which does not correspond to any key on the keyboard. The null character is
not used for anything much: fasload uscs it internally. Characters 201 through 236 correspond to
the special function keys on the keyboard such as Return and Call. ‘The remaining character
codes 237 through 377 octal are reserved for future expansion,

Most of the special characters do not normally appear in files (although it is not forbidden for
files to contain them). These characters cxist mainly to be used as “commands” from the
keyboard. A few special characters, however, are “format effectors” which are just as legitimate
as printing characters in text files. The names and meanings of these characters are:

Return The “newline” character, which separates lines of text. We do not use the PDP-
10 convention which separates lincs by a pair of characters, a “carriage return”
and a “linefeed”.

Page The “page separator” character, which scparates pages of text.

Tab The “tabulation” character, which spaces to the right until the next “tab stop”.
Tab stops are normally every 8 character positions.

The space character is considered to be a printing character whose printed image happens to
be blank, rather than a format effector.

When a letter is typed with any of the modifier bit keys (Control, Meta, Super, or Hyper),
the letier is normally upper-case. If the Shift key is pressed as well, then the letter becomes
lower-case. This is cxactly the reverse of what the Shift key docs to letters without control bits,
(The Shift-lock key has no effect on letters with control bits.)

PS:KLLMANDFD-STR.TEXT.27 8-JUN-84

Characters 206 Lisp Machine Manual

char-code char
char-font char

char-bits char
Return the character code of char, the font number of char, and the modifier bits value

of char. char may be a fixnum or a character object; the value is always a fixnum.

These used to be written as
~ (1db “%ch-char char)
(1db %%ch-font char)
(1db “%%ch-control-meta char)
Such use of Idb is frequent but obsolete.

char-code-1imit Constant
A constant whose value is a bound on the maximum code of any character. In the Lisp

Machine, currently, it is 400 (octal).

char-font-1imit Consiant
A constant whose value is a bound on the maximum font number value of any character.

In the Lisp Machine, currently, it is 400 (octal).

char-bits-1imit Constant
A constant whose value is a bound on the maximum modifier bits value of any character.
In the Lisp Machine. currently, it is 20 (octal). Thus, there are four modificr bits. These
arc just the familiar Control, Meta, Super and Hyper bits.

char-control-bit : Constant
char-meta-bit Constant
char-super-bit Constant
char-hyper-bit Constant

Constants with values 1, 2, 4 and 8. These give the meanings of the bits within the bits-
ficld of a character object. Thus, (bit-test char-meta-bit (char-bits char)) would be
non-nil if char is a meta-character. (This can also be tested with char-bit.)

char-bit char name
t if char has the modifier bit named by name. name is one of the following four
symbols: :control, :meta, :super, and :hyper.
(char-bit #\meta-x :meta) => t.

set-char-bit char name newvalue
Returns a character like char except that the bit specified by name is present if newvalue
is non-nil, absent otherwise. Thus,
(set-char-bit #\x :meta t) => #\meta-x.
The valuc is a fixnum if char is one; a character object if char is one.

Until recently the only way to access the character code. font and modifier bits was with Idb,
using the byte field names listed below. Most code still uses that mcthod, but it is obsolete;
char-bit should be used insicad.

%%kbd-char
%%ch-char Specifics the byte containing the character code.

PS:KL.LMANDFD-STR.TEXT 27 8-JUN-84

Iisp Machine Manual 207 Characters

%%ch-font - Specifies the byte containing the font number.,

%%kbd-control
Specifies the byte containing the Control bit.

%%kbd-meta Specifics the byte containing the Meta bit.
%%kbd-super Specifies the byte containing the Super bit.
%%kbd-hyper Specifics the byte containing the Hyper bit.

%%kbd-control-meta
Specifies the byte containing all the modifier bits,

Characters arc sometimes used 0 represent mouse clicks. ‘The character says which button was
pressed and how many times. Refer to the Window System manual for an explanation of how
these characters are generated.

tv:kbd-mouse-p char .
t if char is a character used to represent a mouse click. Such characters are always -
distinguishable from characters that represent keyboard input.

%%kbd-mouse-button Constant
The value of %%kbd-mouse-button is a byte specifier for the field in a mouse signal
that says which button was clicked. 'The byte contains 0, 1, or 2 for the left, middle, or
right button, respectively.

%%kbd-mouse-n-c¢licks : Constant
The value of %%kbd-mouse-n-clicks is a byte specifier for the field in a mouse signal
that says how many times the button was clicked. The byte contains onc less than the
number of times the button was clicked.

10.1.2 Constructing Character Objects

code-char code &optional (bits0) (font0)

make-char code &optional (bits0) (font 0)
Returns a character object made from code, bits and Sont. Common Lisp says that not
all combinations may be valid, and that nil is returncd for an. invalid combination. On
the Lisp Machine, any combination is valid if the arguments arc valid individually.

According to Common Lisp, code-char requires a number as a first argument, whereas
make-char requires a character object, whose character code is used. On the Lisp
Machine, cither function may be used in cither way.

digit-char weight &optional (radix 10.) (font 0)
Returns a character object which is the digit with the specified weight, and with font as
specified. However, if there is no suitable character which has weight weight in the
specified radix, the value is nil. If the “digit” is a letter (which happens if weight is
greater than 9), it is returned in upper case. '

PSKILLMANDEFD-STR.TEXT.27 | 8-JUN-84

Characters 208 [isp Machine Manual

tv:make-mouse-char Durton n-clicks
Returns the fixnum character code that represents a mouse click in the standard way.
tv:mouse-char-p of this value is t. buron is 0 for the leftbutton, 1 for the middle
button, or 2 for the right button. a-clicks is on¢ less than the number of clicks (1 for a
double click. 0 normally).

10.1.3 The Character Set

Here are the numerical values of the characters in the Zetalisp character set. [t should never
be necessary for a user or a source program to know these values. Indeed. they arc likely to be
changed in the future. ‘There are symbolic names for all characters; see the scction on character
names, below.

It is worth pointing out that the Zetalisp character set is different from the ASCII character
set. File servers operating on hosts that use ASCII for storing text files automatically perform
character set conversion when text files are rcad or written. The detils of the mapping are
explained in section 25.8, page 607.

PSKLMANID-STR.TEXT.27 8-JUN-84

Lisp Machine Manual 209
- 000 center-dot (-) 040 space 100 @
001 down arrow (4) oa1 ! 101 A
002 alpha (a) . 042 v - 102 B
003 beta (p) ' ’ 043 # 103 C
004 and-sign (a) 044 § 104 D
005 not-sign (-) 045 % 105 E
006 epsilon (&) 046 & 106 F
007 pi (=) ' © 047 . 107 G
010 Tambda (A) 050 (110 H
011 gamma (y) 051) 111 -
012 delta () 052 = 112 J
013 uparrow (1) 053 + 113 K
014 plus-minus (i) 054 114 L
015 circle-plus (o) 055 - 116 M
016 infinity (w) ' 056 . 116 N
017 partial delta (3) 057 / 117 0
020 left horseshoe (c) 060 0 120 P
021 right horseshoe (o) 061 1 121 Q
022 up horseshoe (N) - 062 2 122 R
023 down ‘horseshoe (U) 063 3 123 S
024 universal quantifier (V) 064 4 124 1
025 existential quantifier (3) 065 5 126 U
026 circle-X (@) 066 6 126 v
027 double-arrow () 067 7 127 W
030 Teft arrow («) 070 8 130 X
031 right arrow (=) 071 9 131 Y
032 not-equals (=) 072 : 132 2
033 diamond (altmode) (¢) 073 ; 133 [
034 less-or-equal (<) 074 < 134 \
035 greater-or-equal (2) 075 = 135]
036 equivalence (s=) 076 > 136 ~
037 or (v) 077 ? 137 _
200 Null character 210 Overstrike 220 Stop-output
201 Break 211 Tab 221 Abort
202 Clear 212 Line 222 Resume
203 Call 213 Delete 223 Status
204 Terminal escape 214 Page 224 End
205 Macro/backnext 215 Return 225 Roman-i
206 Help 216 Quote 226 Roman-ii
207 Rubout 217 Hold-output 227 Roman-iii
237-377 reserved for the future

The Lisp Machine Character Set
(all numbers in octal)

PS:KL.MAN>FD-STR.TEXT.27

230
231
232
233
234
235
236

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Characters

L}

a
b
c
d
e
f

g
h

i
J
k
1
m
n
)
p
q
r
s
t
u
v
w
X
y
z
{
I
}

I

Roman-iv

Han
Han
Han
Han
Sys
Net

d-up
d-down
d-left
d-right
tem
work

8-JUN-84

Characters 210 I isp Machine Manual

10.1.4° Classifying Characters

string-char-p char
t il char is a character that can be stored in a string. On the Lisp Machine, this is true
if the font and maodifier bits of char are zcro.

standard-char-p char
tif c¢har is a standard Common lisp character: any of the 95 ASCII printing characters
(including Space). and the Return character. ‘Thus (standard-char-p # \end) is nil.

graphic-char-p char
t if char is a graphic character: one which has a printed shape. A, -, Space and e are
all graphic characters: Return, End and Abort arc not. A character whose modificr bits
arc nonzero is never graphic.

Ordinary output to windows prints graphic characters using the current font. Nongraphic
characters arc printed using lozenges unless they have special formatting meanings (as
Return docs).

alpha-char-p char
t if char is a letter with zero modifier bits.

digit-char-p char &optional (radix 10.) :

If char is a digit available in the specified radlx returns the weight of that digit.
Otherwise, it returns nil. If the modifier bits of char arc nonzero, the value is always nil.
(It would be more useful to ignore the modifier bits, but this decision provides Common
Lisp with a foolish consistency.) Examples:

(digit-char-p #\8 8) => nil

(digit-char-p #\8 9) => 8

(digit-char-p #\F 16.) => 15.

(digit-char-p #\c-8 anything) => nil

alphanumericp char
t if char is a letter or a digit 0 through 9, with zcro modifier bits.

10.1.5 Comparing Characters

char-equal &rest chars :
‘This is the primitive for comparing characters for cquality; many of the string functions
call it. The arguments may be fixnums or character objects indiscriminatcly. The result is

t if the characters are cqual ignoring casc, font and modifier bits, otherwise nil.

char-not-equal &rcst chars
t if the arguments arc all different as characters, ignoring case, font and modifier bits.

PS:KLLMANDEFD-STR.TEXT27 . 8-JUN-84

Iisp Machine Manual 211 Characters

char-lessp &rest chars

char-greaterp &rost chars

char-not-lessp &rest chars

char-not-greaterp &rest chars
Ordered comparison of characters, ignoring case, font and modifier bits. ‘These are the
primitives for comparing characters for order: many of the string functions call it. The
arguments may be fixnums or character objects. ‘The result is t if the arguments are in
strictly increasing (strictly decreasing, nonincreasing, nondecreasing) order. Details of the
ordering of characters arc in section 10.1.1, page 205.

char= charl &rest chars

char//= charl &rest chars

chard> charl &rest chars

char< charl &rest chars

char>= charl &rest chars

char<= char!l &rest chars
These are the Common Lisp functions for comparing characters and including the case,
font and bits in the comparison. On the Lisp Machince they are synonyms for the
numeric comparison functions =, >, ctc. Note that in Common Lisp syntax you would
write char/ =, not char// =.

10.1.6 Character Names .

Characters can somctimes be referred to by long names; as, for example, in the #\
construct in Lisp programs. Every basic character (zero modifier bits) which is not a graphic
character has one or more standard names. Some graphic characters have standard names too.
When a non-graphic character is output to a window, it appecars as a lozenge containing the
character’s standard name.

char-name char
Returns the standard name (or one of the standard names) of char, or nil if there is
none. The name is returned as a string. (char-name # \space) is the string "SPACE".

If char has nonzero modifier bits, the value is nil, Compound names such as Control-X
arc not constructed by this function.

name-char name
Returns (as a character object) the character for which name is a name, or returns nil if

name is not a recognized character name. name may be a symbol or a string. Compound
names such as Control-X arc not recognized.

read uscs this function to process the #\ construct when a character name is
encountcred.

The following arc the recognized special character names, in alphabetical order except with
synonyms together, Character names are encoded and decoded by the functions char-name and

name-char (page 211).

PS«<I ,.M/\N>Fl)-S’l'R.’l‘EXT;Z7 v : 8-JUN-84

Conversion to Upper or 1 ower Case

First a list of the special function keys.

abort break

delete end

hand-right hand-up

line, if macro, back-next
overstrike, backspace, bs

quote resume

roman-i roman-ii

rubout space, Sp

system tab

8]

2 Fisp Machine Manual
call clear-input, clear
hand-down hand - left
help hold -output
network
page, form, clear-screen
return, cr '
roman-iii roman-iv
status stop -output

terminal, esc

These are printing characters that also have special namces because they may be hard to type

on the hosts that are used as file servers.

altmode circle-plus
integral lambda
center-dot down-arrow
and-sign neot-sign
lambda gamma
plus-minus circle-plus

left- horseshoe right-horseshoe

universal -quantifier

circle-x double-arrow
not-equal altmode
equivalence or-sign

delta gamma
plus-minus uparrow
alpha beta

epsilon pi

delta up-arrow
infinity partial -delta

up-horseshoe down-horseshoe
existential-quantifier
left-arrow

less-or-equal

right-arrow
greater-or-equal

The following names are for special characters sometimes used to represent single and double
mouse clicks. The buttons can be called ecither I, m, r or 1, 2, 3 dcpending on stylistic

preference.
mouse-I-1 or mouse-1-1
mouse-m-1 or mouse-2-1
mouse-r-1 or mouse-3-1

10.2 Conversion to Upper or Lower Case

upper-case-p char

mouse-|-2 or mouse-1-2
mouse-m-2 or mouse-2-2
mouse-r-2 or mouse-3-2

t if char is an upper casc letter with zero modifier bits.

lower-case-p char

t if char is an lower case letter with zero modifier bits.

both-case-p char

This Common Lisp function is defined to return t if char is a character which has distinct
upper and lower casc forms. On the Lisp Machine it returns t if char is a letter with

zero modifier bits.

PSCLMANIED-STR.TEXT.27

8-JUN-84

I isp Machine Manual _ 213 Conversion to Upper or Lower Case

char-upcase char
If char, is a lower-case alphabetic character its upper-case form is returned: otherwise,
Char itself is returned. If font information or modifier bits are present. they are preserved.
I char is a fixnum, the value is a fixoum. If ¢har is a character object, the value is a
character object. ‘

char-downcase char
Similar, but converts to lower case.

string-upcase swing &kcy (star10) end
Returns a string like string, with all lower-case alphabetic characters replaced by (he
corresponding upper-case characters. If siart or end is specified, only the specified portion
of the string is converted, but in any case the entire string is returned.

The result is a copy of string unless no change is nccessary. siring itself is never
modified.

string-downcase swing &key (start0) end
Similar, but converts to lower case.

string-capitalize swing &key (start0) end
Returns a string like string in which all, or the specified portion, has been processed by
capitalizing cach word. For this function, a word is any maximal sequence of letters or
digits. It is capitalized by putting the first character (if it is a letter) in upper case and
any letters in the rest of the word in lower case.

The result is a copy of string unless no change is necessary. string itself is never
modificd.

nstring-upcase swring &key (start0) end
nstring-downcase swring &kcy (start0) end
nstring-capitalize swring &key (start0) end
Like the previous functions except that they modify string itself and return it.

string-capitalize-words siring &optional (copy-pt) (spacest)
Puts each word in siring into lower-case with an upper casc initial, and if spaces is non-
nil replaces cach hyphen character with a space.

If copy-p is t, the value is a copy of string, and string itself is unchanged. Otherwise,
string itsclf is returned, with its contents changed.

This function is somewhat obsolete. One can use string-capitaliie followed optionally by
string-subst-char. :

Sec also the format operation ~({...~) on page 488.

PSKLMANYFD-STR.TEXT27 8-JUN-84

Basic String Operations 214 ‘ Lisp Machine Manual

10.3 Basic String Operations

make-string size &key (initial-element 0)
Creates and returns a string of length size, with cach clement initialized to initial-clement,
which may be a fixnum or a character,

string x
Coerces ¥ into a string. Most of the string functions apply this to their string arguments.
If x is a string (or any array). it is returned. 1f x is a symbol. its pname is returned. 1
¥ is a non-negative fixnum less than 400 octal, a one-character-long string containing it is
created and returned. 1f v is an instance that supports the :string-for-printing operation
(such as. a pathname) then the result of that operation is returned. Otherwise, an crror is
signaled.

If you want to get the printed representation of an object into the form of a string, this
function is nor what vou should usc. You can use format, passing a first argument of nil
(sce page 483). You might also want o use with-output-to-string (scc page 474).

string-length swring
Returns the number of characters in string. ‘This is 1 if srring is a number or character
object, the array-active-length (scc page 174) if string is an array, or the array-active-
length of the pname if siring is a symbol.

string-equal swringl string2 &key (startl 0) (start20) endl end?
Compares two strings, rewrning t if they are equal and nil if they arc not. The
comparison ignores the font and casc of the characters. equal calls string-equal if
applicd to two strings.

The keyword arguments start! and stari2 are the starting indices into the strings. endl
and end? arc the final indices: the comparison stops just before the final index. nil for
endl or end? means stop at the end of the string.
Examples:

(string-equal "Foo" "foo") => t

(string-equal "foo" "bar") => nil

(string-equal "element" "select" 0 13 4) =>

An older calling sequence in which the starf and end arguments are positional rather than
keyword is still supported. The arguments come in the order startl start2 endl end2.
This calling sequence is obsolcte and should be changed whencver found.

string-not-equal swring/ string2 &key (startl 0) endl (star120) end?
(not (string-equal ...))

string= stringl string2 &key (start! 0) (star120) endl end2
is like string-equal cxcept that case is significant.
(string= "A" "a") => nil

PS:<1.MANDFD-STR.TEXT.27 8-JUN-84

Lisp Machine Manual 215 Basic String Operations

string= swingl swing? S&key (startl 0) endl (start20) end?

string//= siringl string? &key (startl 0) endl (start120) end?
(not (string=..)). Note that in Common Lisp syntax you would write string/ =, not
string// =, '

string-lessp swingl swring? &key (startl 0) endl (star120) end?

string-greaterp swingl string? &key (start! 0) endl (sturt20) end?

strmg-not—gl‘eaterp siringl - string2 &key (startl 0) endl (start2 0) end?

string-not-lessp swing/ string? &key (startl 0) endl (start20) end?

' Compare all or the specified portions of stringl and string? using dictionary order.
Characters are compared using char-lessp and char-equal so that font and alphabetic
case are ignored.

You can usc these functions as predicates, but they do more. If the strings fit the
condition (e.g. stringl is strictly less in string-lessp) then the value is a number, the
index in stringl of the first point of difference between the strings. ‘This cquals the length
of stringl if the strings match. If the condition is not met, the value is nil,
(string-lessp "aa" "Ab") => 1 '
(string-tessp "aa" "Ab" :endl 1 :end2 1) => nil
(string-not-greaterp "Aa" "Ab" :endl 1 :end? 1) => 1

string< sringl string? &key (startl 0) endl (start20) end?

string> siringl string? &key (startl 0) endl (starti20) end2

string>= stringl string? &kcy (startl 0) endl (star12 0) end?

string<= stringl string? &kcy (startl 0) endl. (star120) end?

strings< stringl siring? &key (startl 0) endl (start20) end?

string2 swringl siring? &key (start] 0) endl (start20) end?

Like string-lessp, ctc., but treat casc and font as significant when comparing characters.

(string< "AA" "aa") => 0
(string-lessp "AA" "aa") => nil

string-compare stringl string? &optional (start] 0) (start20) endl end?
Compares two strings using dictionary order (as defined by char-lessp). The arguments
arc interpreted as in string-equal. The result is O if the strings are cqual, a necgative
number if stringl is less than string2, or a positive number if stringl is greater than
string2. If the strings are not cqual, the absolute value of the number returned is one
greater than the index (in stringl) where the first difference occurred,

substring swring swart &optional end area
Extracts a substring of string, starting at the character specified by start and going up to
but not including the character specified by end. start and end arc O-origin indices. The
length of the returned string is end minus start. If end is not specified it defaults to the
length of string. 'The area in which the result is to be consed may be optionally specified.
Example:
(substring "Nebuchadnezzar" 4 8) => "chad"

PS:KLMAN>FD-STR.TEXT.27 8-JUN-84

Basic String Operations 216 Iisp Machine Manual

nsubstring sring start Koptional end area
Is like substring except that the substring is not copied: instead an indirect array (sce
page 167) is created which shares part of the argument string. Modifying one string will
modify the other.

Note that nsubstring does not necessarily use less storage than substring: an nsubstring
of any length uses at least as much storage as a substring 12 characters long. So you
shouldn't use this for efliciency: it is intended for uses in which it is important to have a
substring which, if modified. will cause the original string to be modified too.

string-append &rest swings

Copics and concatenates any number of strings into "a single string. With a single
argument. string-append simply copies it. I there are no arguments, the value is an
empty string. In fact, vectors of any type may be used as arguments, and the valuc is a
vector capable of holding all the clements of all the arguments. ‘Thus string-append can
be used to copy and concatenate any type of vector. If the first argument is not an array
(for example, if it is a character), the valuc is a string.

Example:

(string-append #\! "foo" #\1) => "lfoo!"

string-nconc modified-string &rest strings

Is like string-append except that instcad of making a new string containing the
concatenation of its arguments, string-nconc modifics its first argument. modified-string
must have a fill-pointer so that additional characters can be tacked onto -it. Compare this
with array-push-extend (page 178). The value of string-nconc is modified-string or a
new, longer copy of it; in the latter case the original copy is forwarded to the new copy
(sce adjust-array-size, page 176). Unlike nconc, string-nconc with more than two
arguments modifics only its first argument, not every argument but the last.

string-trim charset string
Returns a substring of string, with all characters in char-set stripped off the beginning
and end. charset is a sct of characters, which can be represented as a list of characters,
a string of characters or a single character.
Example:
(string-trim *(#\sp) " Dr. No ") => "Dr. No"
(string-trim "ab" "abbafooabb") => "foo"

string-left-trim charset string o
Returns a substring of string, with all characters in char-set stripped off the beginning.
char-sel is a set of characters, which can be represented as a list of characters, a string of
characters or a single character.

string-right-trim charset string
Returns a substring of string, with all characters in char-set stripped off the end. char-set
is a sct of characters, which can be represented as a list of characters, a string of

characters or a single character.

PS:KLLMANSFD-STR.TEXT.27 8-JUN-84

I isp Machine Manual : 217 Basic String Operations

string-remove-fonts string
Returns a copy of sming with cach character truncated to 8 bits; (hat is, changed to font
7010, '

If string is an ordinary string of array type art-string. this does not change anything, but
it makes a difference if string is an art-fat-string.

string-reverse siring

string-nreverse srring
l.ike reverse and nreverse, but on strings only (sce page 190). ‘There is no longer any
reason to usc these functions except that they coerce numbers and symbols into strings
like the other string functions.

string-pluralize siring
Returns a string containing the plural of the word in the argument siring. Any added
characters go in the same casc as the last character of string.
Example:
(string-pluralize "event") => "events"
(string-pluralize "trufan") => "trufen"
(string-pluralize "Can") => "Cans"
(string-pluralize "key") => "keys"
(string-pluralize "TRY") => "TRIES"
For words with multiple .plural* forms depending on the mcaning, string-pluralize cannot
always do the right thing.

string-select-a-or-an word
Reéturns "a" or “"an" according to the string word; whichever onc appears to be correct

to use before word in English.

string-append-a-or-an word
Returns the result of appending "a " or "an ", whichever is appropriate, to the front of
word.

%string-equal stringl startl string2? start2 count
%string-equal is the microcode primitive used by string-equal. It returns t if the count
characters of stringl starting at startl are char-equal to the count characters of string2
starting at star2, or nil if the characters arc not cqual or if count runs off the length of

either array.

Instcad of a fixnum, count may also be nil. In this case, %string-equal compares the
substring from start! to (string-length stringl) against the substring from stari2 to
(string-length string2). If the lengths of these substrings differ, then they are not equal
and nil is returned.

Note that stringl and string2 must really be strings; the usual cocrcion of symbols and
fixnums to strings is not performed. This function is documented because certain
programs which requirc high cfficicncy and arc willing to pay the price of less generality
may want to usc %string-equal in place of string-equal.

PS:KL.MAN>FD-STR.TEXT.27 8-JUN-84

String Scarching 218 Fisp Machine Manual

Examples:
To compare the two strings foo and bar:
(“Zstring-equal foo 0 bar 0 nil)
Tosee if the string foo starts with the characters "bar":
(#string-equal foo 0 "bar" 0 3)

alphabetic-case-affects-string-comparison Variable
If this variable is t, the functions %string-equal and %string-search consider case (and
font) significant in comparing characters. Normally this variable is nil and those primitives
ignore differences of case.

This variable may be bound by user programs around calls to %string-equal - and
%string -search-char, but do not st it globally. for that may cause system malfunctions.

10.4 String Searching

string-search-char char string &optional (from0Q) to consider-case
Scarches through siring starting at the index from, which defaults to the beginning, and
returns the index of the first character that is char-equal to char, or nil if none is
found. If 7o is non-nil, it is used in place of (string-length swing) to limit the extent of
the scarch.
Example:
(string-search-char #\a "banana") => 1
Case (and font) is significant in comparison of characters if consider-case is non-nil. In
other words, characters arc compared using char= rather than char-equal.
(string-search-char #\a "BAnana" 0 nil t) => 3

%string-search-char char siring from to

%string-search-char is the microcode primitive called by string-search-char and other
functions. sfring must be an array and char, from, and fo must be fixnums. The
arguments are all required. Case-sensitivity is controlled by the value of the variable
alphabetic-case-affects-string-comparison rather than by an argument. Except for
these these differences, %string-search-char is the same as string-search-char. This
function is documented for the benefit of those who require the maximum possible
cfficicncy in string scarching.

string-search-not-char char string &optional (fiom0) to considercase
Like string-search-char but scarches siring for a character different from char.
Example:
(string-search-not-char #\B "banana") => 1
(string-search-not-char #\B "banana" 0 nil t) => 0

string-search key string &optional (from0) 1o (key-from0) key-to consider-case
Scarches for the siring key in the string string. 'The scarch begins at from, which defaults
1o the beginning of string. The value returned is the index of the first character of the
first instance of key, or nil if nonc is found. If to is non-nil, it is used in place of
(string-length string) to limit the extent of the search. ‘

PSKKL.MANDED-STR.TEXT.27 . 8JUN-84

1 isp Machine Manual 219 String Scarching

The arguments key-from and key-fo can be used to specify the portion of key to be
scarched for, rather than all of key.

Casc and font arc significant in character comparison if consider-case is non-nil.
Example: _
(string-search "an" "banana") => 1
(string-search "an" "banana" 2) => 3
(string-search "tank" "banana" 2 nil 1 3) => 3
(string-seahch "an" "BAnaNA" 0 nil 0 nil t) => nil

string-search-set charscr string &optional (fiom0) to consider-case
Scarches through siring looking for a character that is in char-set. char-set is a set of
characters, which can be represented as a sequence of characters or a single character.

‘The scarch begins at the index from, which defaults to the beginning. It returns the
index of the first character that is char-equal to some element of char-set, or nil if none
is found. If fo is non-nil, it is used in place of (string-length string) to limit the extent -
of the scarch. ‘

Casc and font are significant in character comparison if consider-case is non-nil.
Example:
(string-search-set '(#\n #\o) "banana") => 2
(string-search-set "no" "banana") => 2

string-search-not-set charset siring &optional (from0) to consider-case
Like string-search-set but scarches for a character that is not in char-set.
Example:
(string-search-not-set '(#\a #\b) "banana") => 2

string-reverse-search-char char string &optional from (100) consider-case
Scarches through string in reverse order, starting from the index onc less than from (nil
for from starts at the end of siring), and returns the index of the first character which is
char-equal to char, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. The last (leftmost)
character of string examined is the onc at index /0.

Case and font are significant in character comparison if consider-case is non-nil. In this
case, char= is used for the comparison rather than char-equal.
Example: .

(string-reverse-search-char #\n "banana") => 4

string-reverse-search-not-char char string &optional from (10 0) consider-case
Like string-reverse-search-char but scarches for a character in string that is different
from char.
Example:
(string-reverse-search-not-char #\a "banana") => 4
;4 is.the index of the second "n"

PS:KLLMAN>FD-STR.TEXT.27 ' 8-JUN-84

String Scarching 220 Lisp Machine Manual

string-reverse-search kev swring &optional Jrom (100) (key-from Q) key-10 cousider-case
Scarches for the string kev in the string string. The scarch proceeds in reverse order,
starting from the index one less than from. and returns the index of the first (lefimost)
character of the first instance found. or nil if none is found. Note that the index returned
is from the beginning of the string, although the scarch starts from the end. The from
condition, restated, is that the instance of key found s the rightmost one whose rightmost
character is before the from'th character of siring. nil for Srom means the scarch starts at
the end of string. “The last (lefimost) character of string examined is the one at index 1.

Lxample:
(string-reverse-search "na" "banana") => 4

‘The arguments key-from and key-to can be used 1o specify the portion of key to be
scarched for, rather than all of key. Case and font are significant in character comparison
if consider-case is non-nil.

string-reverse-search-set charser string &optional from (10 0) consider-case
Scarches through string in reverse order for a character which is char-equal to some
clement of char-set. char-set is a set of characters, which can be represented as a list of
characters, a string of characters or a single character.

The search starts from an index onc less than from, and returns the index of the first
suitable character found, or nil if none is -found. nil for Jrom means the scarch starts at
the end of swing. Note that the index returned is from the beginning of the string,
although the scarch starts from the end. ‘The last (leftmost) character of string examined
is the one at index fo,

Case and font are significant in character comparison if consider-case is non-nil. In this
case, char= is used for the comparison rather than char-equal.

(string-reverse-search-set "ab" "banana") => 5

string-reverse-search-not-set charser string &optional from (100) consider-case
Like string-reverse-search-set but scarches for a character which is not in char-set.
(string-reverse-search-not-set '(#\a #\n) "banana") => 0

string-subst-char new-char old-char string (copy-pt) (retain-font-pt)
Returns a copy of string in which all occurrences of old-char have been replaced by new-

char.

Case and font arc ignored in comparing old-char against characters of string. Normally
the font information of the character replaced is preserved, so that an old-char in font 3
is replaced by a new-char in font 3. If retain-font-p is nil, the font specified in new-char
is stored whenever a character is replaced.

If copy-p is nil, string is modified destructively and returned. No copy is made.

PS:<LMANDED-STR.TEXT.27 8-JUN-84

“1isp Machine Manual ! 221 Maclisp-Compatible Functions

substring-after-char char swring &optional start” end area
Returns a copy of the portion of srring that follows the next oceurrence of char after
index starr. ‘The portion copied ends at index end. 1f char is not found before end, a
null string is returned. '

The value is consed in arca area. or in default-cons-area, unless it is a null string.
start defaults to zero, and end to the length of swing.

See also make-symbol (page 133), which given a string makes a new uninterned symbol with
that print name, and intern (page 645), which given a string returns the one and only symbol (in
the current package) with that print name.

10.5 Maclisp-Compatible Functions
“The following functions are provided primarily for Maclisp compatibility.

alphalessp siringl string2
(alphalessp stringl string?) is equivalent to (string-lessp stringl string?).

samepnamep syml sym2
This predicate is equivalent to string =.

getchar swring index
Returns the index'th character of string as a symbol. Note that l-origin indexing is used.
'This function is mainly for Maclisp compatibility; aref should be used to index into
strings (but aref does not coerce symbols or numbers into strings).

getcharn string index
Returns the index’th character of string as a fixnum. Note that l-origin indexing is used.

This function is mainly for Maclisp compatibility; aref should be used to index into
strings (but aref does not coerce symbols or numbers into strings).

ascii x
Like character, but returns a symbol whose printname is the character instead of
returning a fixnum.
Examples:
(ascii #0101) => A
(ascii #0b6) => /.
The symbol returned is interned in the current package (sec chapter 27, page 636).

maknam char-list
Returns an uninterned symbol whosc print-name is a string made up of the characters in

char-list.
Example:
(maknam '(a b #\0 d)) => ab0d

PS:KL.MANDED-STR.TEXT.27 | 8-JUN-84

3]
[
[]

Maclisp-Compatible FFunctions Lisp Machine Manual

implode . char-list
implode is like maknam cxcept that the returned symbol is interned in the current

package.

PS:KL.MANDED-STR.TEXT.27 | 8-JUN-84

	203_CharsAndStrings
	204_CharsAndStrings
	205_CharsAndStrings
	206_CharsAndStrings
	207_CharsAndStrings
	208_CharsAndStrings
	209_CharsAndStrings
	210_CharsAndStrings
	211_CharsAndStrings
	212_CharsAndStrings
	213_CharsAndStrings
	214_CharsAndStrings
	215_CharsAndStrings
	216_CharsAndStrings
	217_CharsAndStrings
	218_CharsAndStrings
	219_CharsAndStrings
	220_CharsAndStrings
	221_CharsAndStrings
	222_CharsAndStrings

