Lisp Machine Manual 223 FFunctions

11. Functions

Functions are the basic building blocks of Lisp programs. This chapter describes the functions
in Zetalisp that are used to manipulate functions. It also explains how to manipulate special
forms and macros.

This chapter contains internal details intended for those writing programs (o manipulate
programs as well as material suitable for the beginner. Feel free to skip scctions that look
complicated or uninteresting when reading this for the first time.

1.1 What Is a Function?

‘There are many different kinds of functions in Zcetalisp. Here are the printed representations

of examples of some of them:

foo ‘

(lambda (x) (car (last x)))

(named-lambda foo (x) (car (last (x))))

(subst (x) (car (last x)))

#<dtp-fef-pointer append 1424771>

#<dtp-u-entry last 270>

#<dtp-closure 1477464>
We will examine these and other types of functions in detail later in this chapter. There is one
thing they all have in common: a function is a Lisp object that can be applied to arguments. All
of the above objects may be applied to some arguments and will return a value. Functions are
Lisp objects and so can be manipulated in all the usual ways, you can pass them as arguments,
return them as values, and make other Lisp objects refer to them.

11.2 Function Specs

The name of a function does not have to be a symbol. Various kinds of lists describe other
places where a function can be found. A Lisp object that describes a place to find a function is
called a function spec. (‘Spec’ is short for ‘specification’.) Here are the printed representations of
some typical function specs:

foo ,

(:property foo bar)

(:method tv:graphics-mixin :draw-line)
(:internal foo 1)

(:within foo bar)

(:location #<dtp-locative 7435216>)

Function specs have two purposes: they specify a place to remember a function, and they
serve to name functions. The most common kind of function spec is a symbol, which specifies
that the function cell of the symbol is the place to remember the function. We will sce all the
different types of function spec, and what they mean, shortly. Function specs are not the same
thing as functions. You cannot, in general, apply a function spec to arguments. The time to use
a function spec is when you want to do something to the function, such as define it, look at its

PS:{LMAN>FD-FUN.TEXT.26 8-JUN-84

Function Speces 224 1isp Machine Manual

definition, or compile it

Some kinds of functions remember their own names, and some don't. The “name”
remembered by a function can be any kind of function spec, although it is usually a symbol. In
the examples of functions in the previous scction, the one starting with the symbol named-
lambda. the onc whose printed representation included dtp-fef-pointer, and the dtp-u-entry
remembered names (the function spees foo, append, and last respectively). The others didn't
remember their names.

Yo define a function spee means o make that function spec remember a given function.
Programs do this by calling fdefine; you give fdefine a function spec and a function, and fdefine
remembers the function in the place specified by the function spec. ‘The function associated with
a function spec is called the definition of the function spec. A single function can be the
definition of more than one function spec at the same time, or of no function specs.

‘The definition of a function spec can be obtained with fdefinition. (function function-spec)
does so 100. but here function-spec is not cvaluated. For example, (function foo) cvaluates to the
function definition of foo. fdefinition is used by programs whose purpose is to examine function
definitions, whereas function is used in this way by programs of all sorts to obtain a specific
definition and usc it. Sce page 48.

To define a function means to create a new function and define a given function spec as that
new function. This is what the defun special form does. Secveral other special forms, such as
defmethod (page 415) and defselect (page 236), do this too.

These special forms that define functions usually take a function spec, create a function whose
pame is that function spec. and then define that function spec to be the newly-created function.
Most function definitions are done this way, and so usually if you go to a function spec and sce
what function is there, the function’s name is the same as the function spec. However, if you
define a function named foo with defun, and then dcfine the symbol bar to be this same
function, the name of the function is unaffected; both foo and bar are defined to be the same
function, and the name of that function is foo, not bar.

A function spec’s definition in general consists of a basic definition surrounded by
encapsulations. Both the basic definition and the cncapsulations are functions, but of recognizably -
different kinds. What defun creates is a basic definition, and usually that is all there is.
Encapsulations are made by function-altering functions such as trace, breakon and advise. When
the function is called, the entire definition, which includes the tracing and advice, is used. If the
function is redefined with defun, only the basic definition is changed; the encapsulations are left
in place. Sce the scction on encapsulations, scction 11.9, page 244,

A function spec is a Lisp object of one of the following types:

a symbol
The function is remembered in the function cell of the symbol. Sec page 130 for an
cxplanation-of function cells and the primitive functions to manipulate them.

(:property symbol property) _
The function is remembered on the property list of the symbol: doing (get symbol
property) rteturns the function. Storing functions on property lists is a frequently-used

PS:<LLMANDFD-FUN.TEXT.26 8-JUN-84

o
[
N

I isp Machine Manual Function Spees

“technique for dispatching (that s, deciding at run-time which function to call, on the
basis of input data).

(:method flavor-name operation)
(:method flavor-name method-type operation)
(:method flavor-name method-1ype operation suboperation)
The function is remembered inside internal data structures of the flavor system and is
- called automatically as part of handling the operation operation on instances of Slavor-
name. See the chapter on flavors (chapter 21, . page 401) for details,

(:handler flavor-name operation)
This is a name for the function actually called when an operation message is sent to an
instance of the flavor flavor-name. The difference between :handler and :method is that
the handler may be a method inherited from some other flavor or a combined method
automatically written by the flavor system. Methods are what you define in source files:
handlers arc not. Note that redefining or encapsulating a handler affects only the named
flavor, not any other flavors built out of it. Thus thandler function specs are often used .
with trace (sce page 738), breakon (page 741), and advise (page 742). :

(:select-method finction-spec operation) '
This function spec assumes that the definition of Junction-spec is a sclect-method object
(sce page 232) containing an alist of operation names and functions to handle them, and
refers to one particular clement of that alist: the one for operation operation.

The function is remembered in that alist clement and is called when function-spec’s
definition is called with first argument operation.

:select-method function specs are most often used implicitly through defselect. One of
the things done by
(defselect foo
(:win (x) (cons ‘win x))
ced)

is to define the function spec (:select-method foo win).

:select-method function specs are explicitly given function definitions when you use
defselect-incremental instcad of defselect, as in
(defselect-incremental foo)
(defun (:select-method foo :win) (ignore x)
(cons 'win x))

(:lambda-macro name)
This is a name for the function that cxpands the lambda macro name.

(:location pointer)
~The function is stored in the cdr of pointer, which may be a locative or a list. This is
for pointing at an arbitrary place that there is no other way to describe. This form of
function spec isn’t uscful in defun (and related special forms) because the reader has no
printed representation for locative pointers and always crcates new lists; these function
specs are intended for programs that manipulate functions (sce scction 11.7, page 239).

(:within within-function function-to-affeci)
This refers to the meaning of the symbol Junction-to-affect, but only where it occurs in

PS:KL.MAN>FD-FUN.TEXT.26 3-JUN-84

[“'unction Spees 226 I isp Machine Manual

the text of the definition of within-function. 1f you define this function spec as anything
but the symbol fimction-to-affect itself. then that symbol is replaced throughout the
definition of within-finction by a new symbol. which is then defined as you specify. See
the section on si:rename-within encapsulations (section 11.9.1, page 249) for more
information. '

It is rarely useful to define a :within function spec by hand, but often uscful to trace or
advise onc. For example, ‘ ,

(breakon '(:within myfunction eval))
allows you to break when eval is called from myfunction. Simply doing (breakon ‘eval)
will probably blow away your machine.

(sinternal function-spec number) :
Some Lisp functions contain internal functions, created by (function (lambda...)) forms.
These internal functions nced names when compiled. but they do not have symbols as
names; instcad they are named by :internal function-specs. jfunction-spee is the name of
the containing function. number is a scquence number; the first internal function the
compiler comes across in a given function is numbered 0. the next 1. ctc. Internal
functions are remembered inside the compiled function object of their containing function.

(:internal function-spec symbol)
If a Lisp function uses flet to name an intcrnal function, you can usc the local name
defined with flet in the :internal function spec instead of a number. Here is an cxample
of such a function: :
(defun foo (a)
(flet ((square (x) (* x x)))
(+ a (square a)))) |

After compiling foo. you could use the function spec (internal foo square) to refer to
the internal function locally named square. You could also use (internal foo 0). If
there are multiple flet's defining local functions with the same namc, only the first can be
referred to by name this way. ’

Here is an example defining a function whose name is not a symbol:
(defun (:property foo bar-maker) (thing &optional kind)
(set-the ’bar thing (make-bar 'foo thing kind)))
This puts a function on foo’s bar-maker property. Now you can say
(funcall (get ’'foo ’'bar-maker) ’'baz)
or : :
(funcall #'(:property foo bar-maker) 'bax)

Unlike the other kinds of function spec, a symbol can be used as a function. If you apply a
symbol to arguments, the symbol’s function definition is used instcad. If the definition of the first
symbol is another symbol, the definition of the second symbol is used, and so on, any number of
times. But this is an cxception; in gencral, you can't apply function specs to arguments.

A keyword symbol that identifics function specs (i.c., that may appear in the car of a list
which is a function spec) is identified by a sys:function-spec-handler property whose value is a
function that implements the various manipulations on function spccs of that type. The interface
to this function is internal and not documented in this manual.

PS:KL.MANDFD-FUN.TEXT.26 8-JUN-84

Fisp Machine Manual 227 _ Simple Function Definitions

- For compatibility with Maclisp, the function-defining special forms defun, macro, and
defselect (and other defining forms built out of them, such as defmacro) also accept a list

(symbol property)

as a function name. “I'his’is translated into

(:property symbol property)

symbol must not be one of the keyword symbols that identify a function spec, since that
would be ambiguous. '

11.3 Simple Function Definitions

defun

: Special form
The usual way of defining a function that s part of a program. A defun form looks like:

(defun name lambda-list
body. . .)

name is the function spec you wish to define as a function. The lambda-list is a list of
the names to give to the arguments of the function. Actually, it is a little more general
than that; it can contain Jambda-list keywords such as &optional and &rest. (These
keywords are explained in section 3.3, page 38 and other keywords arc explained in
section 3.3.1. page 43.) Scc page 234 for some additional syntactic features of defun.

defun creates a list that looks like
(named-lambda name lambda-list body. . .)
and puts it in the function cell of name. name is now defined as a function and can be

called by other forms.

Examples:
(defun addone (x)

(1+ x))

(defun foo (a &optional (b 5) c &rest e &aux j)
(setq j (+ (addone a) b))
(cond ((not (null ¢))
(cons j e))
(t 3)))

addone is a function which expects a number as an argument, and returns a number one
larger. foo is a complicated function - that takes one required argument, two optional
arguments, and any number of additional arguments that are given to the function as a

list named e.

A dcclaration (a list starting with declare) can appear as the first element of the body. It
applies o the entire function definition; if it is a special dcclaration, it applies to
bindings made in the lambda list and to free references anywhere in the function. For

- example,

PS:<LLMANDEFD-FUN.TEX'I'.26 8-JUN-84

L isp Machine Manual

td
[
o

User Operations on lunctions

(defun foo (x)
(declare (special x))
(bar)) :bar uses x free.
causes the binding of x to be a dynamic binding, and
(defun foo (&rest args)
(declare (arglist a b c))
~ (apply 'bar args))
causcs (arglist 'foo) to return (@ b) rather than (&rest args), presumably because the
former is more informative in the particular application.

A documentation string can also appear at the beginning of the body: it may precede or
follow a declaration. This documentation string becomes part of the function’s debugging
info and can be obtained with the function documentation (sce page 784). 'T'he first line
of the string should be a complete sentence that makes sense read by itself, since there
are two cditor commands to get at the documentation, one of which is “brief” and prints
only the first line. Example:

(defun my-append (&rest lists)

“Like append but copies all the Tists.

This is like the Lisp function append, except that

append copies all Tists except the last, whereas

this function copies all of its arguments

including the last one."

-)

A documentation string may not be the last clement of the body; a string in that position is
interpreted as a form to evaluate and return and is not considered to be a documentation string.

For more information on defining functions, and other ways of doing so, sce scction 11.6,
page 234.

11.4 User Operations on Functions

Here is a list of the various things a user (as opposcd to a program) is likely to want to do to
a function. In all cases, you specify a function spec to say where to find the function.

To print out the definition of the function spec with indentation to make it legible, use
grindef (sce page 528). This works only for interpreted functions. If the definition is a compiled
function, it can’t be printed out as Lisp code, but its compiled code can be printed by the
disassemble function (sce page 792).

To find out about how to call the function, you can ask to see its documentation or its
argument names. (The argurnent names arc usually chosen to have mnemonic significance for the
caller). Use arglist (page 242) to sce the argument names and documentation (page 784) to sce
the documentation string. There are also cditor commands for doing these things: the Control-
Shift-D and Meta-Shift-D commands are for looking at a function’s documentation, and
Control-Shift-A is for looking at an argument list. :

PSKLMANFD-FUN.TEXT.26 8-JUN-84

I isp Machine Manual , 229 ' Kinds of Functions

Control-Shift-A and Control-Shift-D do not ask for the function name: they act on the
function that is called by the innermost expression which the cursor is inside. Usually this is the
function that will be called by the form you are in the process of writing. They are available in
the rubout handler as well.

You can sce the function’s debugging info alist by means of the function debugging-info (scc
page 242).

When you are debugging. you can use trace (scc page 738) 10 obtain a printout or a break
loop whenever the function is called. You can usc breakon (scc page 741) to cause the error
handler to be entered whenever the function is called: from there. you can step through further
function calls and returns. You can customize the definition of the function, cither temporarily or
permanently, using advise (sce page 742).

11.5 Kinds of Functions

There arc many kinds of functions in Zectalisp. This section briefly describes cach kind of
function. Note that a function is also a picce of data and can be passed as an argument,
returned, put in a list, and so forth.

‘There are four kinds of functions, classified by how they work.

First, there are interpreted functions: you define them with defun, they are represented as
list structure, and they are interpreted by the Lisp evaluator.

Sccondly, there are compiled functions: they are defined by compile or by loading a QFASL
file, they are represented by a special Lisp data type, and they are executed dircctly by the
~ microcode. Similar to compiled functions are microcode functions, which are written in microcode
(cither by hand or by the micro-compiler) and executed directly by the hardware.

Thirdly, there arc various types of Lisp object that can be applied to arguments, but when
they are applied they dig up another function somewhere and apply it instead. These include
selcct-methods, closures, instances, and entitics.

Finally, there arc various types of Lisp object that, when called as functions, do something
special related to the specific data type. These include arrays and stack-groups.

11.5.1 Interpreted Functions

An interpreted function is a piece of list structure that represents a program according to the
rules of the Lisp interpreter. Unlike other kinds of functions, interpreted functions can be printed
out and read back in (thcy have a printed representation that the reader understands), can be
pretty-printed (sec page 528), and can be cxamined with the usual functions for list-structure
manipulation.

There arc four kinds of interpreted functions: lambdas, named-lambdas, substs, and
named-substs. A lambda function is the simplest kind. It is a list that looks like this:

PS:KL.MAN>EFD-FUN.TEX'T.26 ' ‘ 8-JUN-84

Kinds of Functions 230 Lisp Machine Manual

(Yambda lambda-list forml form2...)
The symbol lambda identifies this list as a lambda function. fambda-list is a description of -what
arguments the function takes; see section 3.3, page 38 for details. The forms make up the body
of the function. When the function is called. the argument variables are bound to the values of
the arguments as described by fembda-list, and then the forms in the body are cvaluated, onc by
one. ‘The values of the function are the values of its Tast form.

A named-lambda is like a lambda but contains. an extra clement in which the system
remembers the function’s name. documentation, and other information. Having the function’s
name there allows the error handler and other wols 0 give the user more information. You
would not normally write a4 named-lambda yourself; named-lambda exists so that defun can
use it. A named-lambda function looks like this:

(named-Tambda nanie lambda-list body forms. . .)
If the name slot contains a symbol, it is the function’s name. Otherwise it is a list whose car is
the name and whose cdr is the function’s debugging information alist. (Sce debugging-info,
page 242.) Note that the name need not be a symbol; it can be any function spec. For example,

(defun (foo bar) (x)

(car (reverse x)))

gives foo a bar property whose value is

(named-lambda ((:property foo bar)) (x) (car (reverse x)))

A subst is a function which is open-coded by the compiler. A subst is just like a lambda as

far as the interpreter is concerned. It is a list that looks like this:
(subst Jambda-list forml form2...)

The difference between a subst and a lambda is the way they are handled by the compiler. A
call to a normal function is compiled as a closed subroutine; the compiler gencrates code to
compute the valucs of the arguments and then apply the function to those values. A call to a
subst is compiled as an open subroutine; the compiler incorporates the body forms of the subst
into the function being compiled, substituting the argument forms for references to the variables
in the subst’s lambda-list. subst's are described more fully on page 329, with the explanation of
defsubst.

A named-subst is the same as a subst except that it has a name just as a named-lambda
docs. It looks like
(named-subst name lambda-list forml form2 ...)
where name is interpreted the same way as in a named-lambda.

11.5.2 Lambda Macros

Lambda macros may appear in functions where lambda would have previously appeared.
When the compiler or interpreter detects a function whose car is a lambda macro, they expand
the macro in much the same way that ordinary Lisp macros are expanded—the lambda macro is
called with the function as its argument and is expected to return another function as its value.
The definition of a lambda macro (that is, the function which expands it) may be accessed with
the (:lambda-macro name) function spec.

PS:KL.MANDED-FUN.TEXT.26 8-JUN-84

I isp Machine Manual 231 ' Kinds of Functions

~The value returned by the lambda macro expander function may be any valid function.
Usually it is a list starting with lambda, subst, named-lambda or named-subst. but it could
also be another use of a lambda macro, or even a compiled function.

lambda-macro name lambda-list &body body ' Macro
By analogy with macro, defincs a lambda macro to be called name. lambda-list should
consist of one variable, which is bound to the function that caused the lambda macro to
~ be called. ‘The lambda macro must return a function. lFor example:
(lambda-macro ilisp (x)

‘(lambda (&optional .@(second x) &rest ignore) . ,(cddr x)))
defines a lambda macro called ilisp which can be used to define functions that accept
arguments like a standard Interlisp function: all arguments arc optional and extra
arguments are ignored. A typical use would be:

(fun-with-functional-arg #'(ilisp (x y z) (Tist x y z)))

This passes to fun-with-functional-arg a function which will ignore cxtra argumcms'r
beyond the third, and will default x, y and z to nil.

deflambda-macro ' Macro
deflambda-macro is like defmacro, but defines a lambda macro instead of a normal
macro. Here is how ilisp could be defined using deflambda-macro:
(deflambda-macro ilisp (argument-list &body body)
‘(lambda (&optional ,@argument-list &rest ignore) . ,body))

deffunction function-spec lambda-macro-name lambda-list &body body Macro
Defines a function with a definition that uses an arbitrary lambda macro instead of
lambda. It takes arguments like defun, expect that the argument immediatly following
the function specifier is the name of the lambda macro to be used. deffunction expands
the lambda macro immediatly, so the lambda macro must have been previously defined.

Example:
(deffunction some-interlisp-like-function ilisp (x y z)
(list x y z))
would decfine a function called some-interlisp-like- functlon with the definition
(ilisp (x'y 2) (list x y z)).

.(defun foo ...) could be considerced an abbreviation for (deffunction foo lambda ...)

PS:KL.MANDFD-FUN.TEXT.26 - : | 8-JUN-84

t
‘o
s

Kinds of FFunctions Lisp Machine Manual’

11.5.3 Compiled Functions

There are two kinds of compiled functions: macrocoded functions and mricrocoded functions,
The Lisp compiler converts lambda and named-lambda functions into macrocoded functions. A
macrocoded function’s printed representation looks like;

#<dtp-fef-pointer append 1424771>
This type of Lisp object is also called a “Function Entry Frame’, or ‘FEF for short. Like ‘car’
and "cdr’, the name is historical in origin and doesn’t really mean anything. ‘The object contains |
Lisp Machine machine code that does the computation expressed by the function: it also contains
a description of the arguments accepled. any constants required. the name, documentation, and
other things. Unlike Maclisp “subr-objeets™. macrocoded functions are full-fledged objects and can
be passed as arguments, stored in data structure, and applied to arguments.

‘The printed representation of a microcoded function looks like:
#i<dtp-u-entry last 270>
Most microcompiled functions are basic Lisp primitives or subprimitives written in Lisp Machine
microcede. You can also convert your own macrocode functions into microcode functions in some
circumstances. using the micro-compiler.

11.5.4 Other Kinds of Functions

A closure is a kind of function that contains another function and a sct of special variable
bindings. When the closure is applied, it puts the bindings into cffect and then applics the other
function. When that returns, the closure bindings arc removed. Closures are made with the
function closure. Sce chapter 12, page 250 for more information. Entitics arc slightly different
from closurcs: sce scction 12.4, page 255.

A sclect-method (internal type code dtp-select-method) contains an alist of symbols and
functions. When one is called, the first argument is looked up in the alist to find the particular
function to be called. This function is applied to the rest of the arguments. The alist may have a
list of symbols in placc of a symbol, in which case thc associated function is called if the first
argument is any of the symbols on the list. If cdr of last of the alist is non-nil, it is a default
handler function, which gets called if the message key is not found in the alist. Select-methods
can be created with the defselect special form (sce page 236). If the sclect-method is the
definition of a function-spec, the individual functions in the alist can be referred to or defined
using :select-method function specs (sce page 225).

An instance is a message-recciving object that has both a state and a table of message-
handling functions (called methods). Refer to the chapter on flavors (chapter 21, page 401) for
further information.

An array can be used as a function. The arguments to the array are the indices and the value
is the contents of the clement of the array. This is for Maclisp compatibility and is not
recommended usage. Usc aref (page 170) instead.

A stack group can be called as a function. This is one way to pass control to another stack
group. Sce chapter 13, page 256. '

PS:<I.MAN>FD-FUN.TEX'T.26 | 8-JUN-84

Lisp Machine Manual 233 Kinds of FFunctions

11.5.5 Special Forms and Functions

‘The special forms of Zetalisp, such as quote. let and cond, arc actually implemented with
an unusual sort of function.

First. let’s restate the outline of how the evaluator works. When the cvaluator is given a list
whose first clement is a symbol, the form may be a function form, a special form, or a macro
form (see page 24). If the definition of the symbol is a function, “then the function is just applied
to the rosult of evaluating the rest of the subforms. If the definition is a cons whose car is
macro, then it is a macro form; these are explained in chapter 18, page 320. What about
special forms?

A special form is implemented-by a function that is flagged to tell the cvaluator to refrain
from cvaluating some or all of the arguments to the function. Such functions make use of the
lambda-list keyword "e. ‘

The cvaluator, on sccing the "e in the lambda list of an interpreted function (or
something cquivalent in a compiled function) skips the cvaluation of the arguments to which the
"e applics. Aside from that, it calls the function normally.

For example, quote could be defined as
(defun quote ("e arg) arg)
Evaluation of (quote x) would sce the "e in the definition, implying that the argument arg
should not be evaluated. Therefore, the argument passed to the definition of quote would be the
symbol x rather than the value of x. From then on, the definition of quote would exccute in the
normal fashion, so x would be the valuc of arg and x would be returned.

"e applics to all the following arguments, but it can be cancclled with &eval. A simple
setq that accepted only one variable and onc value could be defined as follows:
(defun setq ("e variable &eval value)
(set variable value))
The actual dcfinition of setq is more complicated and uses a lambda list ("e &rest
variables-and-values). Then it must go through the rest-argument, evaluating every other
clement. :

The definitions of special forms arc designed with the assumption that they will be called by
eval. It does not usually make much scnse to call onc with funcall or apply. funcall and apply
do not cvaluate any arguments; they receive values of arguments, rather than cxpressions for
them, and pass these values directly to the function to be called. There is no cvaluation for
funcall or apply to refrain from performing. Most special forms explicitly call eval on some of
their arguments, or parts of them, and if called with apply or funcall they will st/ do so. This
behavior is rarcly useful, so calling spccial forms with apply or funcall should be avoided.
Encapsulations can do this successfully, because they can arrange that quoted arguments are
quoted also on entry to the encapsulation.

It is possible to define your own-special form using "e. Macros can also be used to
accomplish the same thing. It is preferable to implement language cxtensions as macros rather
than special forms, because macros directly define a Lisp-to-Lisp translation and therefore can be
understood by both the interpreter and the compiler. Special forms, on the other hand, only

PS:K<I.LMAN>FD-FUN.TEXT.26 8-JUN-84

Function-Defining Special Forms 234 ' Lisp Machine Manual

extend the interpreter. The compiler has to be modified in an ad hoc way to understand cach
new special form so that code using it can be compiled. For example, it would not work for a
compiled function to call the interpreted definition of setq: the set in that definition would not
be able to act on focal variables of the compiled function.

Since all real programs arc eventually compiled, writing your own special functions is strongly
discouraged. The purpose of "e is to be used in the system’s own standard special forms.

New Lisp constructs in the system are also implemented as macros most of the time; macros
are less work for us, too.

11.6 Function-Defining Special Forms

defun is a special form that is put in a program to define a function; defsubst and macro
are others. ‘This section explains how these special forms work, how they relate to the different
kinds of functions, and how they interface to the rest of the function-manipulation system.

Function-defining special forms typically take as arguments a function spec and a description
of the function to be made, usually in the form of a list of argument names and some forms that
constitute the body of the function. They construct a function, give it the function spec as its
name, and define the functicn spec to be the new function. Different special forms make
different kinds of functions. defun makcs a named-lambda function, and defsubst makes a
named-subst function. macro makes a macro; though the macro definition is not really a
function, it is like a function as far as definition handling is concerned.

These special forms are used in writing programs because the function names and bodies are
constants. Programs that definc functions usually want to compute the functions and their names,
so they usc fdefine. Sce page 239.

All of these function-defining special forms alter only the basic definition of the function spec.
Encapsulations arc preserved. Sce section 11.9, page 244,

The special forms only create interpreted functions. There is no special way of defining a
compiled function. Compiled functions are made by compiling interpreted ones. The same special
form that defines the interpreted function, when processed by the compiler, yiclds the compiled
function. Scc chapter 17, page 301 for details.

Note that the cditor understands these and other “defining” special forms (c.g. defmethod,
defvar, defmacro, defstruct, ctc.) to somec cxtent, so that when you ask for the definition of
something, the editor can find it in its source file and show it to you. The general convention is
that anything that is uscd at top level (not inside a function) and starts with def should be a
special form for defining things and should be understood by the editor. defprop is an exception.

The defun special form (and the defunp macro which cxpands into a defun) are used for
creating ordinary interpreted functions (sce page 227).

For Maclisp compatibility, a Ilype symbol may be inscrted between name and lambda-list in
the defun form. The following types arc understood: :

PSKL.MAN>ED-TF'UN.TEXT.26 8-JUN-84

1 isp Machine Manual 23 Function-Pefining Special Forms

expr The same as no type.

fexpr "e and &rest arc prefixed to the lambda list,
macro A macro is defined instead of a normal function.

If lambda-Tist is a non-nil symbol instcad of a list, the function is recognized as a Maclisp
lexpr and it is converted in such a way that the arg, setarg, and listify functions can be used to
access its arguments (see page 238).

The defsubst special form is used to create substitutible functions. It is used just like defun
but produces a list starting with named-subst instcad of one starting with named-lambda. The
named-subst function acts just like the corresponding named-lambda function when applied,
but it can also bhe open-coded (incorporated into its callers) by the compiler. Sce page 329 for
full information.

The macro special form is the primitive means of creating a macro. It gives a function spec
a definition that is a macro definition rather than a actual function. A macro is not a function
because it cannot be applicd, but it can appear as the car of a form to be cvaluated. Most
macros are created with the more powerful defmacro special form. Sce chapter 18, page 320.

The deféele_ct special form defines a select-method function. Sce page 236.

Unlike the above special forms, the next two (deff and def) do not crcate new functions. They
simply scrve as hints to the cditor that a function is being stored into a function spec here, and
therefore if somcone asks for the source code of the definition of that function spec, this is the
place to look for it.

def Special form
If a function is creatcd in some strange way, wrapping a def special form around the
codc that creates it informs the cditor of the connection. The form
(def function-spec
Jorml form2...)
simply evaluates the forms. forml, form2, etc. It is assumed that these forms will create
or obtain a function somchow, and make it the definition of function-spec.

Alternatively, you could put (def function-spec) in front of or anywhere ncar the forms
which define the function. The editor only uses it to tell which linc to put the cursor on.

deff function-spec definition-creator Special form

deff is a simplified version of def. It cvaluates the form definition-creator, which should
produce a function, and makes that function the definition of function-spec, which is not
cvaluated. deff is used for giving a function spec a dcfinition which is not obtainable
with the specific defining forms such as defun. For example,

(deff foo 'bar)
makes foo cquivalent to bar, with an indirection so that if bar changes foo will likewise
change; conversely,

(deff foo (function bar))
copies the definition of bar into foo with no indirection, so that further changes to bar
will have no cffcct on foo.

PS:KLLMAN>ED-FUN.TEX'T.26 8-JUN-84

IFunction-Defining Special Forms 230 I isp Machine Manual

deff-macro function-spec definition-creator Special furm
Is like deff (scc page 235) but for defining macros. definition-creator is evaluated to
produce a suitable definition-as-a-macro and then finction-spec is defined that way. The
definition-as-a-macro should be a cons whose car is macro and whose cdr is an expander
function. Alternatively, a definition as a subst function can be used: either a list starting
with subst or named-subst or a IFEI* which records it was compiled from such a list.

The difference between deff and deff-macro is that compile-file assumes that deff-
macro is defining something which should be expanded during compilation. For the rest
of the file. the macro defined here is available for expansion. When the file is ultimately
loaded. or if compilation is done in-core, deff and deff-macro are cquivalent.

G8define : Macro
This macro wrns into nil, doing nothing. It cxists for the sake of the @ listing
generation program, which uses it to declare names of special forms - that define objects
(such as functions) that @ should cross-reference.

si:defun-compatibility x
This function is used by defun and the compiler to convert Maclisp-style lexpr, fexpr,
and macro- defuns to Zetalisp definitions. x should be the cdr of a (defun ..) form.
defun-compatibility rcturns a corresponding (defun ...) or (macro ...) form, in the usual
Zctalisp format. You shouldn’t ever need to call this yourself. »

defselect Special form

defselect defines a function which is a sclect-method. This function contains a table of
subfunctions; when it is called, the first argument, a symbol on the keyword package
called the operation, is looked up in the table to determine which subfunction to call.
Each subfunction can take a different number of arguments and have a different pattern
of arguments. defselect is uscful for a variety of “dispatching” jobs. By analogy with the
morc general message-passing facilities described in chapter 21, page 401, the subfunctions
arc called methods and the list of arguments is somctimes called a message.

The special form looks like
(defselect (function-spec defaulr-handler no-which-operations)
(operation (args...) ‘
body...)
(operation (args...)
body...)
)

Sunction-spec is the name of the function to be defined. defaulr-handler is optional; it
must be a symbol and is a function which gets called if the select-method is called with
an unknown operation. 1f defaulr-handler is unsupplied or nil, then an unknown operation
causes an error with condition name sys:unclaimed-message (sce page 423).

Normally, methods for the operations :which-operations, :operation-handled-p and
:send-if-handles arc generated automatically based on the set of cxisting methods. These
opcrations have the same mcaning as they do on flavor instances; sce section 21.10, page
432 for their definitions. If no-which-operations is non-nil, these methods are not created
automatically; however, you can supply them yourself,

PS:KLLMAN>FD-FUN.TEXT.26 8-JUN-84

L isp Machine Manual 237 IFunction-Defining Special FForms

If finction-spee is a symbol, and defaudi-handler and no-which-operations arc not supplied,
then the first subform of the defselect may be just finction-spee by itself, not enclosed in
a list. :

The remaining subforms in a defselect arc the clauses. ‘cach defining one method.
operation is the operation o be handled by this clause or a list of several operations to be
handled by the same clause. args is a lambda-list; it should not include the first
argument,. which is the operation. body is the body of the function.

A clause can instead look like:

(operation . symbol)
In this case, symbol is the name of a function that is to be called when the operation
operation is performed. It will be called ‘with the same arguiments as the select-method,
including the operation symbol itsclf.

The individual methods of the defselect can be cxamined, redefined, traced, ctc. using
:select-method function spees (sce page 225).

defselaect-incremental function-spec default-handler Special form
defselect dcfines a sclect-method function - all at once. By contrast, defselect-
incremental defines an empty sclect-method to which methods can be added with defun.

Specifically, defselect-incremental function-spec, with just a default handler and the
standard methods :which~operations, :operation-handled-p and :send-if-handles.

Individual methods are defined by using defun on a function spec of the form (:select-
method function-spec operation). function-spec specifics where to find the select-method,
and operation is the operation for which a method should be defined. 'The argument list
of the defun must include a first argument which receives the opceration name.

Example:
(defselect-incremental foo ignore)
; The function ignore is the default handler
(defun (:select-method foo :lose) (ignore a)
(1+ a))
defines the same function foo as
(defselect (foo ignore)
(:lose (a) (1+ a)))
These two examples are not completely cquivalent, however. Recvaluating the defselect
gets rid of any methods that used to exist but have been deleted from the defselect itself.
Reevaluating the defselect-incremental has no such effect, and recvaluating an individual
defun redefines only that method. Mcthods can be removed only with fundefine.

PS:HKL.MAN>ED-FUN.TEXT.26 8-JUN-84

Function-Defining Special Forms 238 Lisp Machine Manual

1L.6.1 Maclisp Lexprs

Lexprs are the way Maclisp functions can accept variable numbers of arguments. ‘They are
supported for compatibility only: &optional and &rest arc much preferable. A lexpr definition
looks like

_(defun foo nargs body...)
where a symbol (nargs. here) appears in place of a lambda-list. When the function is called,
nargs is bound to the number of arguments it was given. ‘The arguments themselves are accessed
using the functions arg, setarg, and listify.

arg x
(arg nil), when cvaluated during the application of a lexpr, gives the number of
arguments supplied to that lexpr. "This is primarily a debugging aid, since lexprs also
receive their number of arguments as the value of their lambda-variable.

(arg 7). when cevaluated during the application of a lexpr, gives the value of the i'th
argument to the lexpr. 7 must be a fixnum in this case. It is an crror if 7 is less than 1
or greater than the number of arguments supplied to the lexpr. Example:

(defun foo nargs :define a lexpr foo.
(print (arg 2)) ;print the second argument.
(+ (arg 1) sreturn the sum of the first

(arg (- nargs 1)))) ;and nextto last arguments.

setarg i x
setarg is used only during the application of a lexpr. (setarg i x) scts the lexpr’s i°th
argument to x. ¢ must be greater than zero and not greater than the number of
arguments passcd to the lexpr. After (setarg /7 x) has been done, (arg i) returns x.

1istify »n
(listify #) manufactures a list of »n of the arguments of a lexpr. With a positive argument
n, it returns a list of the first n arguments of the lexpr. With a negative argument n, it
returns a list of the last (abs n) arguments of the lexpr. Basically, it works as if defined
as follows: '
(defun 1istify (n)
(cond {{minusp n)
(1istifyl (arg nil) (+ (arg nil) n 1)))
(t
(listifyl n 1))))

(defun listifyl (n m) ; auxiliary function.
(do ((in (1- 1))
(result nil (cons (arg i) result)))
((< 1 m) result)))

PS:KL.MAN>ED-FUN.TEX'T.26 - 8JUN-84

Lisp Machine Manual 239 How Programs Manipulate Function Spees

11.7 How Programs Manipulate Function Specs

fdefine finction-spee definition &optional (carefully nil) (no-query nil)

This is the primitive used by defun and cvervthing clse in the system to change the
definition of a function spec. If carefily is non-nil, which it usually should be. then only
the basic definition is changed: the previous basic definition is saved if possible (sce
undefun, page 241). and any encapsulations of the function such as tracing and advice
arc carried over from the old definition to the new definition. carefidly also causes the
user to be queried if the function spee is being redefined by a file different from the one
that defined it originally. However, this warning is suppressed if cither the argument no-
query is non-nil, or if the global variable inhibit-fdefine-warnings is t.

If fdefine is called while a file is being loaded, it records what file the function definition
came from so that the editor can find the source code.

If fienction-spec was alrcady defined as a function, and carefidly is non-nil, the function-
spec’s :previous-definition property is used to save the previous definition. This property
is used by the undefun function (page 241), which restores the previous definition. The
propertics for different kinds of function specs are stored in different places; when a
function spec is a symbol its propertices are stored on the symbol's property list.

defun and the other function-defining special forms all supply t for carefully and nil or
nothing for no-query. Opcrations that. construct c¢ncapsulations, such as trace, are the
only ones which usc nil for carefully.

si:record-source-file-name name &optional (1ypedefun) no-query
Records a dcefinition of name, of type npe. 1ype should be defun to record a function
definition; then name is a function spec. #ype can also be defvar, defflavor,
defresource, defsignal or anything elsc you want to use.

The value of sys:fdefine-file-pathname is assumed to be the gencric pathname of the
file the definition is coming from, or nil if the dcfinition is not from a file. If a
definition of the same name and type has already been seen but not in the same file, and
no-query is nil, a condition is signaled and then the user is queried.

If si:record-source-file-name recturns nil, it means that the user or a condition handler
said the redefinition should not be performed.

sys:fdefine-file-pathname Variable
While the system is loading a file. this is the generic pathname for the file. The rest of
the time it is nil. fdefine uscs this to remember what file defines cach function.

si:get-source-file-name function-spec &optional type
Returns the generic pathname for the file in which funciion-spec received a definition of
type type. If yype is nil, the most recent definition is used, regardless of its type.

Junction-spec really is a function spec only if fype is defun; for example, if 1ype is defvar,
Sunction-spec is a variable name. Other types that arc used by the system arc defflavor
and defstruct.

PS:KLLMAN>F¥D-FUN.TEXT.26 8-JUN-84

How Programs Manipulate Function Specs 240 Lisp Machine Manual

This function returns the generic pathname of the source file. To obtain the actual source
file pathname. use the :source-pathname opceration (sce page 503).

A second value is returned, which is the type of the definition that was reported.

si:get-all-source-file-names finction-spec
Returns a list describing the generic pathnames of all the definitions this function-spec has
received. of all types. ‘The list is an alist whose clements look like
(type pathname. . .)

sys:redefinition (sys:warning) Condition Flavor
This condition, which is not an error, is signaled by si:record-source-file-name when
something is redefined by a different file. The handler for this condition can control what
is done about the redefinition.

The condition instance provides the operations :name, :definition-type, :old-pathname
and :new-pathname. :name and :definition-type rcturn the name and 1ype arguments to
si:record-source-file-name. :old-pathname and :new-pathname rcturn two generic
pathnames saying where the old definition was and where this onc is. The new pathname
may be nil, meaning that the redefinition is being done by the user, not in any file.

Two proceed types arc available, :proceed and :inhibit-definition. The first tells
si:record-source-file-name to rcwrn t, the sccond tells it to return nil. If the condition
1s not handled at all, the user is queried or warned according to the value of inhibit-
fdefine-warnings.

inhibit-fdefine-warnings Variable
This variable is normally nil. Setting it to t prevents si:record-source-file-name from
warning you and asking about questionable redefinitions such as a function being redefined
by a different file than defined it originally, or a symbol that belongs to one package
being defined by a file that belongs to a different package. Setting it to :just-warn allows
the warnings to be printed out, but prevents the queries from happening; it assumes that
vour answer is ‘yes’, i.e. that it is all right to redefine the function.

fset-carefully symbol definition &optional force-flag
This function is obsolete. It is cquivalent to
(fdefine symbol definition t force-flag)

fdefinadp function-spec
This returns t if fiunction-spec has a definition, nil if it does not.

fdefinition function-spec
This returns function-spec’s definition. If it has none, an error occurs.

fdefinition-location function-spec
Equivalent to (locf (fdefinition finction-spec)). For some kinds of function specs, though
not for symbols, this (whichever way you write it) can cause data structurc to be created
to hold a definition. For example. if function-spec is of the :property kind, then an entry
may have to be added to the property list if it isn't alrcady there.

PS:KLLMAN>ED-FUNTEXT.26 8-JUN-84

Lisp Machine Manual 241 How Programs Manipulate Function Speces

fundefine finction-spec

Makes fienction-spec undefined; the cell where its definition is stored becomes void. For
symbols this is cquivalent to fmakunbound. [f the function is encapsulated, fundefine
removes both the basic definition and the encapsulations. Some types of function specs
(:location for cxample) do not implement fundefine. fundefine on a :within function
spec removes the replacement of finction-to-affect, putting the definition of within-function
back to its normal state. fundefine on a :method function spec removes the method
completely, so that future messages will be handled by some other method (see the flavor
chapter).

undefun function-spec ,
If function-spec has a saved previous basic definition, this interchanges the current and
previous basic definitions, leaving the cncapsulations alone. If function-spee has no saved
previous definition, undefun asks the user whether to make it undefined.

This undoes the cffect of redefining a function. Sec also uncompile (page 301).

si:function-spec-get function-spec indicator
Returns the value of the indicator property of function-spee, or nil if it doesn’t have such
a property.

si:function-spec-putprop function-spec value indicator
Gives function-spec an indicator-property whose value is value.

si:function-spec-lessp fiunction-specl function-spec2
Compares the two function specs with an ordering that is useful in sorting lists of function
specs for presentation to the user.

si:function-parent finction-spec
If function-spec does not have its own definition, textually speaking, but is defined as part
of the definition of somecthing else, this function returns the function spec for that
something else. For example, if finction-spec is an accessor function for a defstruct, the
value returned is the name of the defstruct.

The intent is that if the caller has not been able to find the definition of function-spec in
a more direct fashion, it can try looking for the definition of the function-parent of
Sunction-spec. This is used by the cditor’s Meta-. command.

sys:invalid-function-spec (error) Condition
‘This condition name belongs to the error signaled when you refer to a function spec that
is syntactically invalid; such as, if it is a list whose car is not a recognized type of

function spec.

The condition object supports the operation :function-spec, which returns the function
- spec which was invalid.

Note that in a few cascs the condition :wrong-type-argument is signaled instcad. These
are the cases in which the error is correctable.

PS:KL.MANDFD-FUN.TEXT.26 8-JUN-84

()
Ja
[$%]

How Programs Examine FFunctions Lisp Machine Manual

1.8 How Programs Fxamine Functions

These functions (ake a function as argument and return information about that function.
Some also accept a function spec and operate on its definition. The others do not accept function
specs in general but do accept a symbol as standing for its definition. (Note that a symbol is a
function as well as a function spec).

The function documentation can be used to examine a function’s documentation string. See
page 784,

debugging-info finction ‘
‘This returns the debugging info alist of functipn, or nil if it has none.

arglist finction &optional real-flag
arglist is given a function or a function spec, and returns its best guess at the nature of
the function’s lambda-list. It can also return a second value which is a list of descriptive
names for the values returned by the function.

If function is a symbol, arglist of its function definition is used.

[f the finction is an actual lambda-cxpression, its cadr, the lambda-list, is returned. But
if function is compiled. arglist attempts to reconstruct the lambda-list of the original
definition, using whatever debugging information was saved by the compiler.

Some functions’ real argument lists arc not what would be most descriptive to a user. A
function may take a rest argument for technical reasons cven though there are standard
meanings for the first clements of that argument. For such cases. the definition of the
function can specify, with a local declaration, a value to be returned when the user asks
about the argument list. Example:
(defun foo (&rest rest-arg)
(declare (arglist x y &rest z))

ceed)

real-flag has one of three values:
nil Return the arglist declared by the user in preference to the actual one.

t Return the actwal arglist as computed from the function definition’s
handling of arguments, ignoring any arglist declaration. For a compiled
function, this omits all keyword arguments (replacing them with a rest
argument) and may replace initial valucs of optional arguments with
si:*hairy* if the actual expressions are too complicated.

compile Like nil, but in the casc of a compiled function it returns the actual
arglist of the lambda-cxpression that was originally compiled. . The
compiler uses this as a basis for checking for incorrect calls to the
function. '

Programs interested in how many and what kind (cvaluated or quoted) of arguments to
pass should usc args-info instead.

PS:KLLMAN>FD-FUN.TEXT.26 8-JUN-84

1isp Machine Manual ' 243 How Programs Examine Functions

When a function returns mualtiple values, it is useful o give the values names so that the
caller can be reminded which value is which, By mcans of a return-list declaration in
the function’s definition, entirely analogous to the arglist declaration above, you can
specify a list of mnemonic names for the returned values. ‘This list is then returned by
arglist as the sccond value.
(arglist 'arglist)
=> (function &optional real-flag) and (arglist return-list)

function-name finction &optional ry-flavor-name
Returns the name of the function finction, if that can be determined. If function docs
not describe what its name is, fiencrion itself is returned.

If try-flavor-name is non-nil, then if fiunerion is a flavor instance (which can, after all, be
used as a function), then the flavor name is returned. If the optional argument is nil,
flavor instances are treated as anonymous.

eh:arg-name finction arg-number
Returns the name of argument number arg-number in function function. Returns nil if
the function doesn’t have such an argument, or if the name is not recorded. &rest
arguments arc not obtained with arg-number; usc rest-arg-name to obtain the name of
SJunctions &rest argument, if any.

eh:rest-arg-name function .
Returns the name of the rest argument of function finction, or nil if function docs not
have one.

eh:local-name function local-number
Returns the name of local variable number local-number in function function. If local-
number is zero, this gets the name of the rest arg in any function that accepts a rest arg.
Returns nil if the function doesn’t have such a local.

args-1info function
Returns a fixnum called the “numeric argument descriptor” of the function, which
~describes the way the function takes arguments. This descriptor is used internally by the
microcode, the evaluator, and the compiler. function can be a function or a function

spec.

The information is stored in various bits and byte ficlds in the fixnum, which are
referenced by the symbolic names shown below. By the usual Lisp Machine convention,
those starting with a single ‘%’ arc bit-masks (mcant to bc logand'ed or bit-test'ed with
the number), and those starting with ‘%%’ are byte specifiers, meant to be used with Idb
or ldb-test.

Here are the fields:

%%arg-desc-min-args
This is the minimum number of arguments that may be passcd to this function,
i.e. the number of required parameters.

PS:KI.MAN>FD-FUN.TEXT.26 8-JUN-84

Encapsulations 244 Lisp Machine Manual

%%arg-desc-max-args
This is the maximum namber ot arguments that may be passed to this function,
i.c. the sum of the number of required parameters and the number of optional
parameters. I there is a rest argument, this is not really the maximum number of
arguments that may be passed; an arbitrarity-large number of arguments is
permitted, subject to limitations on the maximum size of a stack frame (about 200
words). '

%arg-desc-evaled-rest
If" this bit is sct, the function has a rest argument, and it is not quoted.

%arg-desc-quoted-rest
If" this bit is sct. the function has a rest argument, and it is quoted. Most special
forms have this bit. '

%arg-desc-fef-quote-hair
If this bit is sct, there are some quoted arguments other than the rest argument
(if any)., and the pattern of quoting is too complicated to describe here. The
ADL (Argument Description List) in the FEF should be consulted. ‘This is only
for special forms.

%arg-desc-interpreted
This function is not a compiled-code object, and a numeric argument descriptor
cannot be computed. Usually args-info does not return this bit, although
%args-info docs.

Y%arg-desc -fef-bind-hair
There is argument initialization, or somecthing else too complicated to describe
here. 'The ADL (Argument Description List) in the FEIF should be consulted.

Note that %arg-desc-quoted-rest and %arg-desc-evaled-rest cannot both be set.

%args-info function
This is an internal function; it is like args-info but does not work for interpreted
functions. Also, function must be a function, not a function spec. It exists because it has
to be in the microcode anyway, for apply and the basic function-calling mechanism.

11.9 Encapsulations

The dcfinition of a function spec actually has two parts: the basic definition, and
encapsulations. 'The basic definition is what is created by functions like defun, and encapsulations
arc additions made by trace or advise to the basic definition. The purpose of making the
encapsulation a separate object is to kcep track of what was made by defun and what was made
by trace. If defun is done a sccond time, it replaces the old basic definition with a new one
while leaving the encapsulations alone.

, Only advanced users should ever nced to use cncapsulations directly via the primitives

explained in this scction. The most common things to do with cncapsulations are provided as
higher-level, casicr-to-use features: trace (sce page 738), breakon (sce page 741) and advise (sce
page 742).

PS:KI.MAN>FD-FUN.TEXT.26 8-JUN-84

Lisp Machine Manual 245 Encapsulations

~The actual definition of the function spec is the outermost encapsulation: this contains the
next encapsulation, and so on. ‘The innermost encapsulation contains the basic definition. The
way this containing is done is as follows. An encapsulation is actually a function whose debugging
info alist contains an clement of the form

(si .encapsulated—defmnh on uninterned-symbol encapsulation-type)

The presence of such an clement in-the debugging info alist is how you recognize a function to
be an encapsulation. An encapsulation is usually an interpreted function (a list starting with
named-lambda) but it can be a compiled function also, if Lhc application which uca(cd it wants
to compile it. :

uninterned-symbol's function definition is the thing that the encapsulation contains, usually the
basic definition of the function spee. Or it can be another encapsulation, which has in it another
debugging info item containing another uninterned symbol. Eventually you get to a function
which is not an cncapsulation; it does not have the sort of debugging info llcm which
encapsulations all have. "That function is the basic definition of the function spec.

Literally speaking, the definition of the function spec is the outermost encapsulation, period.
The basic definition is not the definition. If you arc asking for the definition of the function spec
because you want to apply it, the outermost cncapsulation is cxactly what you want. But the
basic definition can be found mechanically from the definition, by following the dcbugging info
alists. So it makes sense to think of it as a part of the definition. In regard to the function-
defining special forms such as defun, it is convenicnt to think of the encapsulations as conncecting
between the function spec and its basic definition.

An encapsulation is created with the macro si:encapsulate.

si:encapsulate Macro
A call to si:encapsulate looks like
(si:encapsulate function-spec outer-function type
body-form
extra-debugging-info)
All the subforms of this macro are cvaluated. In"fact, the macro could almost be
replaced with an ordinary function, except for the way body-form is handled.

Junction-spec cvaluates to the function spec whose definition the new cncapsulation should
become. outer-function is another function spec, which should often be the same one. Its
only purpose is to be used in any error messages from si:encapsulate.

1ype cvaluates to a symbol which identifics the purpose of the encapsulation and says what
the application is. For cxample, that could be advise or trace. The list of possible types
is defined by the system because cncapsulations are supposed to be kept in an order

- according to their type (scc si:encapsulation-standard-order, page 247). fype should
have an si:encapsulation-grind-function property which tells grindef what to do with an
encapsulation of this type.

body-form evaluates to the body of the encapsulation-definition, the code to be exccuted
when it is called. Backquote is typically used for this expression; sce section 18.2.2, page
325. siiencapsulate is a macro because, while body is being cvaluated, the variable
si:encapsulated-function is bound to a list of the form (function wuninterned-symbol),

PS:KL.MAN>FD-FUN.TEXT.26 v 8-JUN-84

[:ncapsukations " 246 Lisp Machine Manual

referring 1o the uninterned symbol used to hold the prior definition of finction-spee. 1f
si:encapsulate were a function, body-form would just get evaluated normally by the
cevaluator before si:encapsulate cver got invoked, and so there would be no opportunity
to bind si:encapsulated-function. The form body-form should contain
'(apply ,si:encapsulated-function arglist) somewhere if the encapsulation is to live up to
its name and truly serve to encapsulate the original definition. (The variable arglist is
bound by some of the code which the si:encapsulate macro produces automatically.
When the body of the encapsulation is run arglist’s value will be the list of the arguments
which the encapsulation received.)

extra-debugging-info evaluates to a list of cxtra items to put into the debugging info alist
of the encapsulation function (besides the one starting with si:encapsulated -definition,
which cvery cencapsulation must have). Some applications find this uscful for recording
information about the cncapsulation for their own later use.

If compile-encapsulations-flag is non-nil, thc cncapsulation is compiled before it is
installed. The encapsulations on a particular function spec can be compiled by calling
compile-encapsulations. Scc page 302, Compiled cncapsulations can still be
uncncapsulated since the information nceded to do so is stored in the debugging info alist,
which is preserved by compilation. However, applications which wish to modify the code
of the encapsulations they previously created must check for encapsulations that have been
compiled and uncompile them. This can be done by finding the sys:interpreted-
definition entry in the debugging info alist, which is present in all compiled functions
cxcept those made by file-to-file compilation.

When a special function is encapsulated, the encapsulation is itself a special function with

the same argument quoting pattern. Therefore, when the outermost encapsulation is

started, cach argument has been cvaluated or not as appropriate. Because each

encapsulation calls the prior definition with apply, no further evaluation takes place, and

the basic definition of the special form also finds the arguments cvaluated or not as

appropriate. The basic definition may call eval on some of these arguments or parts of
- them; the encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the definition of
Sunction-spec is a macro, then si:encapsulate automatically cncapsulates the cxpander
function instead. In this casc, the definition of the uninterncd symbol is the original
macro definition, not just the original cxpander function. It would not work for the
encapsulation to apply the macro definition. So during the ecvaluation of body-form,
si:encapsulated-function is bound to the form (cdr (function uninterned-symbol)), which
extracts the expander function from the prior definition of the macro.

Because only the cxpander function is actually encapsulated, the encapsulation does not
sce the evaluation or exccution of the cxpansion itself. The value returncd by the
encapsulation is thc cxpansion of the macro call, not the value computed by the
expansion.

A program which creates cncapsulations often nceds to cxamine an encapsulation it created
and find the body. For cxample, adding a second picce of advice to one function requires doing
this. The proper way to do it is to usc si:encapsulation-body.

PS:KLMAN>EFD-FUN.TEXT.26 ‘ 8-JUN-84

Lisp Machine Manual : 247 Encapsulations

si:encapsulation-body cucapsilation
Returns a list whosescar is the body-form of encapsulation. 1t is the form that was the
fourth argument of sicencapsulate when encapsulation was created. To illustrate this
relationship, ‘
(si:encapsulate 'foo 'foo ’'trace 'body))

(si:encapsulation-body (fdefinition 'foo))
=> (body) -

Itis possible for one function to have multiple encapsulations, created by different subsystems.
In this case, the order of encapsulations is independent of the order in which they were made. 1t
depends instcad on their types. Al possible encapsulation types have a total order and a new
encapsulation is put in the right place among the existing encapsulations according to its type and
their types.

si:encapsulation-standard-order Variable
The value of this variable is a list of the allowed cncapsulation types. in the order in
which the encapsulations are supposed 10 be kept (innermost encapsulations first). If you
want to add new kinds of cncapsulations, you should add another symbol to this list.
Initially its value is '
(advise breakon trace si:rename-within)

advise cncapsulations are used to hold advice (sec page 742). breakon encapsulations are
used for implementing breakon (sce page 741). trace cncapsulations are used for
implementing tracing (sce page 738). sirename-within encapsulations are used to record
the fact that function specs of the form (:within within-function altered-function) have been
defined. The encapsulation goes on within-function (see scction 11.9.1, page 249 for more
information).

Every symbol used as an encapsulation type must be on the list si:encapsulation-standard-
order. In addition, it should have an si:encapsulation-grind-function property whose value is a
function that grindef will call to process encapsulations of that type. This function need not take
carc of printing the encapsulated function because grindef will do that itself. But it should print
any information about the encapsulation itsclf which the user ought to see. Refer to the code for
the grind function for advise to see how to write one.

To find the right place in the ordering to insert a new encapsulation, it is necessary to parse
existing oncs. This is donc with the function si:unencapsulate-function-spec.

si:unencapsulate-function-spec function-spec &optional encapsulation-types
This takes one function spec and returns another. If the original function spec is
undefined, or has only a basic dcfinition (that is, its dcfinition is not an encapsulation),
then the original function spec is returned unchanged.

If the definition of function-spec is an encapsulation, then its debugging info is examined
to find the uninterned symbol that holds the encapsulated definition and the encapsulation
type. If the encapsulation is of a type that is to be skipped over, the uninterned symbol
replaces the original function spec and the process repeats.

PS:KLMAN>FD-FUN.TEX'T.26 : 8-JUN-84

Fncapsulations 248 Lisp Machine Manual

The value returned is the uninterned symbol from inside the last encapsulation skipped.
This uninterned symbol is the first one that does not have a definition that is an
encapsulation that should be skipped. Or the value can be function-spec if function-spec’s
definition is not an encapsulation that should be skipped. '

The types of encapsulations (o be skipped over are specified by encapsulation-types. 'T'his
can be a list of the types to be skipped. or nil meaning skip all encapsulations (this is the
default). Skipping all encapsulations means returning the uninterned symbol that holds the
basic definition of function-spec. ‘That is, the definition of the function spec returned is
the basic definition of the function spee supplied. "Thus,

{(fdefinition (si:unencapsulate-function-spec 'foo))
returns the basic definition of foo, and

(fdefine (si:unencapsulate-function-spec 'foo) ’bar)
sets the basic definition (just like using fdefine with carefidly supplicd as t).

encapsulation-1ypes can also be a symbol, which should be an cncapsulation type; then we
skip all types that arc supposed to come outside of the specified type. For example, if
encapsulation-types is trace, then we skip all types of encapsulations that come outside of
trace cncapsulations, but we do not skip trace encapsulations themsclves. ‘The result is a
function spec that is where the trace cncapsulation ought to be, if there is one. Either
the definition of this function spec is a trace cncapsulation, or there is no trace
cncapsulation anywhere in the definition of fiuncrion-spec, and this function spec is where
it would belong if there were one. For example,
(let ((tem (si:unencapsulate-function-spec spec ’'trace)))
(and (eq tem (si:unencapsulate-function-spec tem ’(trace)))
(si:encapsulate tem spec 'trace ‘(...body...))))

finds the place where a trace encapsulation ought to go and makes onc unless there is
alrcady one there. ‘

(let ((tem (si:unencapsulate-function-spec spec ’'trace)))
(fdefine tem (fdefinition (si:unencapsulate-function-spec
tem '(trace)))))
climinates any trace encapsulation by replacing it by whatcver it encapsulates. (If there is
rio trace cncapsulation, this code changes nothing.)

These examples show how a subsystem can insert its own type of encapsulation in the
proper sequence without knowing the names of any other types of encapsulations, Only
the variable si:encapsulation-standard-order, which is used by si:unencapsulate-
function-spec, knows the order.

PS:KKL.MAN>FD-FUN.TEXT.26 8-JUN-84

I isp Machine Manual 249 Encapsulations

11.9.1 Rename-Within Encapsulations

One special kind of encapsulation is the type si:rename-within. This cncapsulation goes
around a definition in which renamings of functions have been done.

How 1is this used?

If you define, advise, or trace (:within foo bar), then bar gets renamed to # :altered-bar-
within-foo wherever it is called from foo, and foo gets a sicrename-within encapsulation to
record the fact. The purpose of the encapsulation is to enable various parts of the system to do
what scems natural to the user. For example, grindef (sec page 528) notices the encapsulation,
and so knows to print bar instcad of # :altered-bar-within-foo when grinding the definition of
foo. ‘ :

Also, if you redefine foo, or trace or advisc it, the new dcfinition gets the same renaming
done {bar replaced by # :altered-bar-within-foo). To make this work, cveryone who alters part
of a function definition should pass the new part of the definition through the function
si:rename-within-new-definition-maybe.

si:rename-within-new-definition-maybe function-spec new-structure
Given new-structure, which is going to become a part of the definition of function-spec,
perform on it the replacements described by the sirrename-within cncapsulation in the
definition. of function-spec, if there is one. The altered (copied) list structure is returned.

It is not neccessary to call this function yoursclf when you replace the basic definition
because fdefine -with carefully supplied as t does it for you. si:encapsulate does this to
the body of the new encapsulation. So you only nced to call si:rename-within-new-
definition-maybe yourself if you are rplac’ing part of the definition.

For proper results, function-spec must be the outer-level function spec. That is, the value
returned by si:unencapsulate-function-spec is not the right thing to use. It will have
had one or more encapsulations stripped off, including the si:rename-within cncapsulation
if any, and so no rcnamings will be done.

PS:<.MAN>FD-FUN.TEXT.26 _ 8-JUN-84

	223_Functions
	224_Functions
	225_Functions
	226_Functions
	227_Functions
	228_Functions
	229_Functions
	230_Functions
	231_Functions
	232_Functions
	233_Functions
	234_Functions
	235_Functions
	236_Functions
	237_Functions
	238_Functions
	239_Functions
	240_Functions
	241_Functions
	242_Functions
	243_Functions
	244_Functions
	245_Functions
	246_Functions
	247_Functions
	248_Functions
	249_Functions

