Closures 250 Lisp Machine Manual

12. Closures

A closure is a type of Lisp functional object useful for implementing certain advanced access
and control structures. Closures give you more explicit control over the cnvironment by allowing
you Lo save the dynamic bindings of specified variables and then to refer to those bindings later,
cven after the construct (let. cte.) which made the bindings has been exited.

12.1 What a Closure Is

There is a view of dynamic variable binding that we use in this section because it makes it
casicr to explain what closures do. In this view, when a variable is bound dynamically, a new
binding is created for it. The old binding is saved away somewhere and is inaccessible. Any
references (o the variable then get the contents of the new binding, and any setg’s change the
contents of the new value cell. Evantually the new binding goes away, and the old binding,
along: with its contents, becomes current again.

For cxample, consider the following sequence of Lisp forms:

(defvar a 3) *; abecomes 3.
(et ((é 10)) ; arcbound to 10.
(print (+ a 6))) ; 16 is printed.

(print a) ; 3 is printed.

Initially therc is a binding for a, and the setq form makes the contents of that binding be 3.
Then the lambda-combination is cvaluated. a is bound to 10: the old binding, which still
contains 3, is saved away, and a ncw binding is created with 10 as its contents. The reference to
a inside the lambda cxpression evaluates to the current binding of a, which is the contents of its
current binding, namely 10. So 16 is printed. Then the newer binding is discarded and the old
binding, which still contains a 3, is restored. The final print prints 3.

The form (closure varlist function), where var-list is a list of variables and function is any
function, creates and returns a closure. When this closure is applicd to some arguments, all of
the bindings of the variables on var-list are saved away, and the bindings that those variables had
al the time closure was called (that is, at the time the closure was created) are made to be the
bindings of the symbols. Then fincrion is applied to the arguments, (This paragraph is somewhat
complex, but it completely describes the operation of closures; if you don’t understand it, come
back and read it again after reading the ncxt two paragraphs.)

Here is another, lower-level cxplanation. The closure object stores several things inside it
First, it saves the function. Sccondly, for cach variable in varlist. it remembers what that
variable’s binding was when the closure was crcated. Then when the closure is called as a
function, it first temporarily restores the bindings it has remembered inside the closure, and then
applies function to the same arguments to which the closure itself was applicd. When the function
returns, the bindings are restored to be as they were before the closure was called.

PSKL.MAN>FD-CLO.TEXT.12 8-JUN-84

Lisp Machine Manual 251 What a Closure Is

Now, if we evaluate the form
(setq a
(Tet ((x 3))

(declare (special x))

(closure '(x) 'frob)))
what happens is that a new binding is created for x, containing a fixnum 3. Then a closure is
created, which remembers the function frob, the symbol x, and that binding. Finally the old
binding of x is restored. and the closure is returned. Notice that the new binding is still around,
because it is still known about by the closure. When the closure is applicd. say by doing
(funcall a 7), this binding is temporarily restored and the value of x is 3 again. If frob uses x as
a free variable, it sces 3 as the value.

A closure can be made around any function, using any form that cvaluates to a function.
The form could cvaluate to a compiled function, as would (function (lambda () x)). In the
cxample above. the form is 'frob and it evaluates to the symbol frob. A symbol is also a good
function. 1t is usually better to close around a symbol that is the name of the desired function, .
so that the closure points to the symbol. Then, if the symbol is redefined, the closure will use
the new definition. If you actually prefer that the closure continue to usc the old definition that
was current when the closure was made, use function, as in:

(closure ’'(x) (function frob))

Explicit closures made with closure rccord only the dynamic bindings of the specified
variables. Another closure mechanism is activated automatically to record lexical bindings
whenever function is used around an explicit lambda expression, but closure itsclf has no
interaction with lexical bindings. :

It is the uscr’s responsibility to make sure that the bindings that the closure is intended to
record are dynamic. bindings, cithcr by means of special declarations (sec page 51) as shown
above or by making the variables globally special with defvar or equivalent. If the function
closed over is an explicit lambda expression, it is occasionally necessary to usc declarations within
it to make sure that the variables are considered special there. But this is not nceded if the
variables are globally special or if a special declaration is lexically visible where closure is calied.

Usually the compiler can tell when a special dcclaration is missing, but when making a
closure the compiler detects this only after acting on the assumption that the variable is lexical,
by which time it is too late to fix things. The compiler warns you if this happens.

In Zetalisp’s implementation of closures, lambda-binding never really allocates any storage to
creatc new bindings. Bindings receive scparate storage only when the closure function itself finds
they nced it. Thus, there is no cost associated with closures when they are not in use. :

Zetalisp closures differ from the closures of Lisp 1.5 (which werc made with function) in that
they save specific variables rather than the entire variable-binding environment. For their intended
applications, this is an advantage. The explicit declaration of the variables in closure permits
higher efficiency and more flexibility. In addition the program is clcarer because the intended
effect of the closure is made manifest by listing the variables to be affected. Lisp 1.5 closures are
more similar to Zctalisp’s automatic handling of lexical variables.

PS:KLLMAN>FD-CLO.TEXT.12 . 8-JUN-84

o
wn
(o)

Examples of the Use of Clostres Lisp Machine Manual

Closure implementation {which it not usually nccessary for you to understand) involves two
kinds of value cells. Every symbol has an internal value cell, part of the symbol itself, which is
where its dynamic value is normally stored. When a variable is closed over. it gets an external
value cell o hold its value. The external value cells behave according to the lambda-binding
model used carlier in this scction. ‘The value in the external value cell is found through the usual
access mechanisms (such as evaluating the symbol. calling symeval, ctc.), because the internal
value cell is made to contain a forwarding pointer to the external value cell that is current. Such
a forwarding pointer is present in a symbol's value ccll whenever its current binding is being
remembered by some closure; at other times, there won't be an invisible pointer, and the value
resides directly in the symbol's internal value cell.

12.2 Examples of the Use of Closures

One thing we can do with closures is to implement a generator, which is a kind of function
which is called successively to obtain successive clements of a sequence. We implement a function
make-list-generator, which takes a list and returns a gencrator that returns successive clements
of the list. When it gets to the end it should return nil.

The problem is that in between calls to the generator, the gencrator must somchow remember
where it is up to in the list. Since all of its bindings arc undone when it is exited, it cannot save
this information in a bound variable. It could save it in a global variable, but the problem is
that if we want to have more than one list gencrator at a time, they will all try to use the same
global variable and get in cach other’s way.

Here is how to solve this problem using closures:
(defun make-list-generator (1)
(declare (special 1))
(closure '(1)
#’(1ambda ()
(progl (car 1)
(setq 1 (cdr 1))))))
(make-list-generator '(1 2 3)) returns a gencrator which, on successive calls, returns 1,- 2, 3,
and nil.

Now we can make as many list generators as we like; they won’t get in each other’s way
because cach has its own binding for I. Each of these bindings was created when the make-list-
generator function was cntered. and the bindings are remembered by the closures.

The following example uscs closures which share bindings:

PSKLMANDFD-CLO.TEXT.12 8-JUN-84

Lisp Machine Manual 253 Closure-Manipulating IFunctions

(defvar a)
_(defvar b)

| (defun foo () (setq a 5))
(defun bar () (cons a b))

C(let ((a 1) (b 1))
(setq x (closure '(a b) 'foo))
(setq y (closure ’(a b) ’bar)))

When the let is entered. new bindings are created for the symbols a and b, and two closures
arc created that both point to those bindings. If we do (funcall x), the function foo is be run,
and it changes the contents-of the remembered binding of a to 5. If we then do (funcally), the
function bar returns (5. 1). This shows that the binding of a scen by the closure y is the same
binding scen by the closure x. 'The top-level binding of a is unaffected.

Here is how we can create a function that prints always using base 16:
(deff print-in-base-16
(let ((*print-base* 16.))
(closure ’(#print-base*) ’'print)))

12.3 Closure-Manipulating Functions

closure varlist function
Creates and returns a closure of funcnon over the variables in var-list. Note that all
variables on var-list must be declared special if the function is to compile correctly.

To test whether an object is a closure, usc the closurep predicate (sec page 13) or (typep
object 'closure).

symeval-in-closure closure symbol
Returns the binding of symbol in the environment of closure; that is, it returns what you
would get if you restored the bindings known about by closure and then evaluated symbol.
This allows you to “look around inside” a closure. If symbol is not closed over by
closure, this is just like symeval.

symbol may be a locative pointing to a value cell instead of a symbol (this goes for all the
whatever-in-closure functions).

set-in-closure closure symbol x
Sets the binding of symbol in the environment of closure to x; that is, it does what
would happen if you restored the bindings known about by closure and then set symbol to
x. 'This allows you to change the contents of the bindings known about by a closure. If
symbol is not closed over by closure, this is just like set.

PS:KL.LMAN>FD-CLO.TEXT.12 8-JUN-84

Closure-Manipulating Functions 254 Lisp Machine Manual

locate-in-closure closure symbol
Returns the Tocation of the place in ¢losure where the saved value of symbol is stored. An

cquivalent form is (locf (symeval-in-closure closure symbol)).

boundp-in-closure closure symhol :
Returns t if symbol’s binding in closure is not void. 'This is what (boundp symbol) would
return if executed in closure’s saved environment. ' o

makunbound-in-closure closurc symbol
Makes symbol’s binding in closure be void. This is what (makunbound symbol) would do

if executed in closure’s saved environment.

closure-alist closure
Returns an alist of (symbol . value) pairs describing the bindings that the closure pc;furms
when it is called. This Tist is not the same one that is actually stored in the closure: l},hdt
one contains pointers to value cells rather than symbols, and closure-alist translates tl}cm
back to symbols so you can understand them. As a result, clobbering part of this list
docs not change the closure. -

The list that is returned may contain void cells if some of thc closcd-over variables wcrc
void in the closurc’s environment. In this casc, printing the value will get an efror
(accessing a cell that contains a void marker is always an crror unless done in a spccnal
carcful way) but the value can still be passed around.

closure-variables closure .
Returns a list of variables closed over in closure. 'This is equal to the first argument

specified to the function closure when this closure was created.

closure-function closure
Returns the closed function from closure. 'This is the function that was the sccond

argument to closure when the closurc was created. i

closure-bindings closure
Returns the actual list of bindings to be performed when closure is entered. This hst can
be passed to sys:%using-binding-instances to enter the closure’s environment without

calling the closurc. Sce page 287.

copy-closure closure
Returns a new closure that has the same function and variable values as closure. The

bindings are not shared between the old closure and the new one, so that if the .old
closurc changes some closed variable’s valucs, the values in the new closure do not
. change. ' »

let-closed ((variable value)..) function ' Macro
When using closures, it is very common to bind a sct of variables with initial values qmly
in order to make a closure over those variables. Furthermore, the variables must be
declared special. let-closed is a special form which docs all of ﬂ‘llS It is best dcscn‘bcd

by example:

PS:<LMAN>FD-CLO.TEXT.12 8-JUN-84

Lisp Machine Manual 255 Fntities

(let-closed ((a 5) b (c 'x))
(function (lambda () ...)))
micro-expands into '
(let ((a 6) b (c 'x))
(declare (special a b ¢))
(closure ’(a b c)
(function (lambda () ...))))

Note that the following code, which would often be useful, does not work as intended if
x is not special outside the let-closed:
(let-closed ((x x))
(function ...))
This is because the reference to x as an initializaton for the new binding of x is affected
by the special declaration that the let-closed produces. It therefore does not see any
lexical binding of x. This behavior is unfortunate, but it is required by the Common
Lisp specifications. 'T'o avoid the problem, write
(Tet ((y x))
(let-closed ((x y))
(function ...)))
or simply change the name of the variable outside the let-closed to something other than
X.

12.4 Entities

An entity is almost the same thing as a closure; an entity bchaves just like a closure when
applied, but it has a recognizably different data type which allows certain parts of the system such
as the printer and describe to treat it differently. A closure is simply a kind of function, but an
entity is assumed to be a message-receiving object. Thus, when the Lisp printer (sce section 23.1,
page 500) is given a closure, it prints a simple textual representation, but when it is handed an
entity, it sends the entity a :print-self mcssage, which the entity is expected to handle. The
describe function (sce page 791) also sends entities messages when it is handed them. So when
you want to make a mcessage-receiving object out of a closure, as described on page 407, you
should usc an cntity instead. :

To a large degree, entitics arc made obsolete by flavors (see chapter 21, page 401). Flavors
have had considerably more attention paid to their efficiency and to good tools for using them. If
what you arc doing is flavor-like, it is better to use flavors.

entity variable-list function
Returns a newly constructed entity. This function is just like the function closure except

that it returns an cntity instcad of a closure.

.

The function argument should be a symbol which has a function definition and a value.
When typep is applied to this entity, it returns the value of that symbol.

To test whether an object is an entity, usc the entityp predicate (sce page 13). The functions
symeval-in-closure, closure-alist, closure-function, ectc. also operate on cntities.

PS:KILMAN>ED-CLO.TEXT.12 8-JUN-84

	250_Closures
	251_Closures
	252_Closures
	253_Closures
	254_Closures
	255_Closures

