Subprimitives 270 [isp Machine Manual

15. Subprimitives

Subprimitives arc functions which are not intended to be used by the average program, only
by system programs. ‘They allow one o manipulate the environment at a level lower than normal
Lisp. 'They are described in this chapter. Subprimitives usually have names starting with a %
character. The primitives described in other sections of the manual typically use subprimitives to
accomplish their work. To some extent the subprimitives take the place of what in other systems
would be individual machine instructions. Subprimitives are normally hand-coded in microcode.

There is plenty of swfl in this chapter that is not fully explained: there are terms that are
undefined. there are forward references, and so on. lFurthermore, most of what is in here is
considered subject to change without notice. In fact, this chapter does not exactly belong in this
manual, but in some other more low-level manual. Since the latter manual does not exist, it is
here for the interim.

Subprimitives by their very nature cannot do full checking. Improper use of subprimitives can
destroy the environment. Subprimitives come in varying degrees of dangerousncss. Generally,
those without a % sign in their name are not dircctly dangerous, whercas those whose names
begin with % can ruin the Lisp world just as readily as they can do something uscful. The
subprimitives are documented here since they need to be documented somewhere, but this manual
does not document all the things you nced to know in order to use them. Sdll other
subprimitives are not documented here because they are very specialized. Most of these are never
used cxplicitly by a programmer; the compiler inserts them into the program (o perform
operations which arc cxpressed differently in the source code.

The most common problem you can cause using subprimitives, though by no means the only
one, is to create illegal pointers: pointers that arc, for one reason or another, according to
storage conventions, not allowed to cxist. The storage conventions are not documented; as we
said, you have to be an cxpert to use a lot of the functions in this chapter correctly. If you
create such an illegal pointer, it probably will not be detected immediately, but later on parts of
the system may sce it, notice that it is illegal, and (probably) halt the Lisp Machine.

In a certain sense car, cdr, rplaca, and rplacd arc subprimitives. If these arc given a
locative instcad of a list, they access or modify the cell addressed by the locative without regard
to what object the cell is inside. Subprimitives can be used to create locatives to strange places.

15.1 Data Types

data-type arg
data-type rcturns a symbol that is the name for the internal data-type of arg. The type-
of function (page 20) is a higher-level primitive that is morce uscful in most cascs; normal
programs should always usc type-of (or, when appropriate, typep) rather than data-type.

Note that some types as scen by the user are not distinguished from cach other at this
level, and some user types may be represented by more than onc internal type. For
example, dtp-extended-number is the symbol that data-type would return for cither a
single-float or a bignum, cven though those two types are quite different.

PS:<1.MAN>FD-SUB.TEXT.19 8-JUN-84

Iisp Machine Manual

271 Data Types

Some of these type codes occur in memory words but cannot be the type of an actual
Lisp object. These include header types such as dtp-symbol-header. which identify the
first word of a structure, and forwarding or “invisible™ pointer types such as dtp-one-q-

forward.
dtp-symbol
- dtp-fix

dtp-small-flonum
dtp-extended-number
dtp-character

dtp-list
dtp-locative

dtp% array-pointer
dtp~-fef-pointer
dtp-u-entry
dtp-closure
dtp-stack-closure

dtp-instance
dtp-entity
dtp-select-method
dtp—stack?group

The object is a symbol.

The object is a fixnum; the numeric value is contained in the

“address ficld of the pointer.

‘The object is a short float; the numeric value is contained in the
address ficld of the pointer.

The object is a single-float. ratio, bignum or complexnum. This
value will also be used for future numeric types.

The object is a character object; the value is contained in the
address ficld of the pointer.

The object is a cons.

The object is a locative pointer.

The object is an array.

The objcbt is a compiled function.

The object is a microcode entry.

The object is a closure; sec chapter 12, page 250.

The object is a closure which lives inside a stack, and which
must be copied if it is stored anywhere but farther down in the
same stack. Lexical scoping is implemented using these.

The object is an instance of a flavor; sec chapter 21, page 401.
The object is an entity; sce section 12.4, page 255.

The object is a sclect-method; sce page 232.

The object is a stack-group; sce chapter 13, page 256.

The remaining types are internal only.

dtp-header

dtp-array-header
dtp-symbol-header

dtp-instance-header

dtp-null

PS:KLLMANDFD-SUB.TEXT.19

An internal type used to mark the first word of several kinds of
multi-word structure, including single-floats, ratios, bignums and
FEFs.

An internal type used to mark the first word of an array.

An internal type used to mark the first word of a symbol. The
pointer field points to the symbol’s print-name, which is a string.

An internal type used to mark the first word of an instance.
The pointer ficld points to the structure that describes the
instance’s flavor.

Nothing to do with nil. This type code identifics a void marker.
An attempt to refer to the contents of a cell that contains a dtp-
null signals an crror. This is how “unbound variable” and

8-JUN-84

Forwarding 272 Fisp Machine Manual

“undefined function™ errors are detected.

dtp-trap The zero data-type. which is not used. This hopes w0 detect
microcode bugs.

dtp-free This type is used to fill free storage. to catch wild references.

dtp-external-value-cell - pointer
An “invisible pointer”™ used for external value cells, which are
part of the closure mechanism (see chapter 12, page 250), and
used by compiled code 1o address value and function cells.

dip-self-ref-pointer An “invisible pointer™ used to refer to an instance variable of
self. 'This data type appears in FEFs of flavor methods.

dtp-header-forward An “invisible pointer”™ used to indicate that the structure
containing it has been moved clsewhere. The “header word™ of
the structure is replaced by one of these invisible pointers. Sce
the function structure-forward (page 273).

dtp-body-forward An “invisible pointer” used to indicate that the structure
containing it has been moved elsewhere. ‘This points to the word
containing the header-forward, which points to the new copy of
the structure,

dtp-one-q-forward An “invisible pointer” used to indicate that the single cell
containing it has been moved clsewhere,

dtp-gc-forward This is used by the copying garbage collector to flag the obsolete
copy of an object; it points to the new copy.

q-data-types Constant
The value of q-data-types is a list of all of the symbolic names for data types described
above under data-type. Thesc arc the symbols whose print names begin with ‘dtp-’.
‘The values of these symbols are the internal numeric data-type codes for the various types.

g-data-types {ype-code
Given. the internal numeric data-type code, returns the corresponding symbolic name.
This “function” is actually an array.

15.2 Forwarding

An invisible pointer ot forwarding pointer is a kind of pointer that does not represent a Lisp
object. but just resides in memory. There are several kinds of invisible pointer, and there are
various rules about where they may or may not appear. The basic property of an invisible pointer
is that if the Lisp Machinc rcads a word of memory and finds an invisible pointer there, instcad
of sceing the invisible pointer as the result of the read. it does a sccond rcad, at the location
addressed by the invisible pointer, and returns that as the result instead. Writing behaves in a
similar fashion. When the Lisp Machine writes a word of memory it first checks to sce if that
word contains an invisible pointer; if so it goes to the location pointed to by the invisible pointer
and trics to write there instcad. Many subprimitives that read and writc memory do not do this
checking.

PS:<L.MAN>FD-SUB.TEXT.19 8-JUN-84

Lisp Machine Manual ‘ 273 Forwarding

- The simplest kind of invisible pointer has the data type code dtp-one-q-forward. It is used
o forward a single word of memory to someplace else. Ihe invisible pointers with data types
dtp-header-forward and dtp-body-forward arc used for moving whole Lisp objects (such as
cons cells or arrays) somewhere else. ‘The dtp-external-value-cell-pointer is very similar to the
dtp-one-qg-forward; the difference is that it is not “invisible™ to the operation of binding. If the
(internal) value cell of a symbol contains a dtp-external-value-cell-pointer that points to some
other word (the external value cell), then symeval or set operations on the symbol consider the
pointer to be invisible and use the external value cell. but binding the symbol saves away the
dtp-external-value-cell-pointer itsclf. and stores the new value into the internal value cell of
the symbol. This is how closures are implemented.

dtp-gc-forward is not an invisible pointer at all; it only appears in “old spaced™ and can
never be seen by any program other than the garbage collector. When an object is found not to
be garbage, and the garbage collector moves it from “old space™ w “new space”, a dtp-gc-
forward is left behind to point to the new copy of the object. This cnsures that other references
to the same object get the same new copy.

structure-forward old-object new-object
‘This causes references to old-object actually to reference new-object, by storing invisible
pointers in old-object. 1t returns old-object.

An cxample of the use of structure-forward is adjust-array. If the array is being made
bigger and cannot be expanded-in place, a new array is allocated, the contents are copied,
and the old array is structure-forwarded to the new one. This forwarding ensures that
‘pointers to the old array, or to cells within it, continue to work. When the garbage
collector goes to copy the old array, it notices the forwarding and uses the new array as
the copy; thus the overhead of forwarding disappears cventually if garbage collection is in
use.

follow-structure-forwarding object
Normally returns object, but if object has been structure-forward’ed, returns the object
at the end of the chain of forwardings. If object is not exactly an object, but a locative
to a cell in the middle of an object, a locative to the corresponding cell in the latest copy
of the object is returned.

forward-value-cell fiom-symbol to-symbol
This alters from-symbol so that it always has the same valuc as to-symbol, by sharing its
value cell. A dtp-one-g-forward invisible pointer is stored into Srom-symbol’s value cell.
Do not do this while from-symbol’s current dynamic binding is not global, as the
microcode does not bother to check for that case and something bad will happen when
JSrom-symbol's binding is unbound. The microcode check is omitted to speed up binding
and unbinding.

This is how synonymous variables (such as *terminal-io* and terminal-io) are created.

To forward onc arbitrary cell to another (rather than specifically onc value cell to
another), given two locatives, do
(%*p-store-tag-and-pointer locativel dtp-one-q-forward locative?)

PS:<L.LMAN>FD-SUB.TEXT.19 ' 8-JUN-84

Pointer Manipulation 274 I isp Machine Manual

follow-cell1-forwarding loc cvepp
Joe is a locative to a cell. Normally Joc is returned. but if the cell has been forwarded,
this follows the chain of forwardings and returns a locative to the final cell. 1t the cell is
part of a structure which has been forwarded. the chain of structure forwardings is
followed, too. 1f evep-p is t, external value cell pointers are followed: if it is nil they are
not.

15.3 Pointer Manipulation

It should again be emphasized that improper use of these functions can damage or destroy the
Lisp environment. It is possible to create pointers with illegal data-type, pointers to non-existent
objects, and pointers o untyped storage, which will completely confuse the garbage collector.

%data-type x
Returns the data-type ficld of x, as a fixnum,

%pointer x
Returns the pointer ficld of x, as a fixnum. For most types, this is dangerous since the
garbage collector can copy the object and change its address.

%make-pointer data-type pointer
Makes up a pointer, with dara-1ype in the data-type field and pointer in the pointer field,
and returns it. data-type should be an internal numecric data-type code; these are the
values of the symbols that start with dtp-. poinfer may be any object; its pointer field is
used. This is most commonly used for changing the type of a pointer. Do not use this
to make pointers which are not allowed to be in the machine, such as dtp-null, invisible
pointers, etc.

Y%make-pointer-offset daia-type pointer offset
Returns a pointer with dara-type in the data-type ficld, and pointer plus offset in the
pointer ficld. The data-type and pointer arguments are like those of %make-pointer;
offset may be any object but is usually a fixnum. The types of the arguments are not
checked; their pointer ficlds are simply added together. This is useful for constructing
locative pointers into the middle of an object. However, note that it is illegal to have a
pointer to untyped data, such as the inside of a FEF or a numeric array.

%pointer-difference pointer-l pointer-2
Returns a fixnum which is pointer-1 minus pointer-2. No type checks are made. For the
result to be meaningful, the two pointers must point into the same object, so that their
difference cannot change as a result of garbage collection.

%pointerp object

t if object points to storage. For example, (%pointerp "foo") is t, but (%pointerp 5) is
nil.

PS:<1.MAN>EFD-SUB.TEXT.19 8-JUN-84

Fisp Machine Manual 275 Speciat Memory Referencing

4pointer-type-p duta-type
til the specified data type is one which points to storage. For example, (%pointer-type-
p dtp-fix) rcturns nil.

15.4 Special Memory Referencing

%p-pointerp location
t if the contents of the word at location points to storage. 'This is similar to (%pointerp
(contects Jocation)), but the latter may get an error if Jocation contains a forwarding
pointer, a header type, or a void marker. In such cases. %p-pointerp corrcctly tells you
whether the header or forward points to storage. : ‘

%p-pointerp-offset /location offset
Similar to %p-pointerp but operates on the word offser words beyond location.

%p-contents-offset base-pointer offset
Returns the contents of the word offser words beyond base-pointer. ‘This first checks the
cell pointed to by base-pointer for a forwarding pointer. Having followed forwarding
pointers to the real structure pointed to, it adds offset to the resulting forwarded base-
pointer and returns the contents of that location.

There is no %p-contents, since car performs that operation.

4p-contents-safe-p location
t if the contents of word location. are a valid Lisp object, at least as far as data type is
concerned. It is nil if the word contains a hcader type, a forwarding pointer, or a void
marker. If the value of this function is t, you will not get an error from (contents
location).

%p-contents-safe-p-offset location offset
Similar to %p-contents-safe-p but operates on the word offser words beyond location.

#p-contents-as-locative pointer
Given a pointer to a memory location containing a pointer that isn't allowed to be “in the
machine” (typically an invisible pointer) this function returns the contents of the location
as a dtp-locative. It changes the disallowed data type to dtp-locative so that you can
safcly look at it and sec what it points to.

%p-contents-as-locative-offset base-pointer offset
Extracts the contents of a word like %p-contents-offset, but changes it into a locative
like %p-contents-as-locative. This can be used, for example, to analyze the dtp-
external-value -cell-pointer pointers in-a FEF, which arc used by the compiled code to
reference value cells and function cells of symbols,

PS:KLLMAN>EFD-SUB. TEXT.19 8-JUN-84

Special Memory Referencing 276 Fisp Machine Manual

%4p-safe-contents-offset location offset
Returns the contents of the word offser words beyond Jocation as accurately as possible
without getting an crror,

If the contents are a valid Lisp object, it is returned exactly.

If the contents are not a valid Lisp object but do point to storage, the value returned is a
locative which points to the same place in storage.

If the contents are not a valid Lisp object and do not point to storage, the value returned
is a fixnum with the same pointer ficld.

Forwarding pointers arc checked as in %p-contents-offset.

%p-store-contents pointer value
Stores value into the data-type and pointer ficlds of the location addressed by pointer, and
returns value. The cdr-code field of the location remains unchanged.

%p-store-contents-offset value base-pointer offset
Stores value in the location offser beyond words beyond base-pointer, then returns value.
The cdr-code field remains unchanged. Forwarding pointers in the location at base-pointer
arc handled as they are in %p-contents-offset.

%p-store-tag-and-pointer poinier miscfields pointerfield
Stores miscfields and pointerfield into the location addressed by pointer. 25 bits arc taken
from pointerfield to fill the pointer field of the location, and the low 7 bits of miscfields
arc used to fill both the data-type and cdr-code fields of the location. The low § bits of
miscfields become the data-type, and the top two bits become the cdr-code. This is a
good way to storc a forwarding pointer from one structure to another (for example).

%p-store-tag-and -pointer should be used only for storing into ‘boxed’” words, for the
same reason as %blt-typed: the microcode could halt if the data stored is not valid
boxed data. Sce page 280.

%p-1db byte-spec pointer
Extracts a byte according to byte-spec from the contents of the location addressed by
pointer, in cffect regarding the contents as a 32-bit number and using ldb. The result is
always a fixnum. For example, (%p-ldb %%q-cdr-code loc) returns the cdr-code of the
location addressed by loc.

%p-1db-offset byle-spec base-pointer offset
Extracts a byte according to byte-spec from the contents of the location offset words
beyond base-pointer, after handling forwarding pointers like %p-contents-offset.

This is the way to reference byte ficlds within a structure without violating system storage
conventions.

PS:<(LLMANDEFD-SUB.TEXT.19 8-JUN-84

Lisp Machine Manual 277 Special Memory Referencing

#p-mask-field byre-spec pointer
Like %p-ldb, cxcept that the selected byte is returned in its original position within the
word instead of right-aligned.

%p-mask-field-offset Lyic-spec base-pointer offset
Like %p-ldb-offset, cxcept that the sclected byte is returned in its original position
within the word instead of right-aligned. :

Note: %p-dbp. %p-dpb- offset. %p-deposit-field and %p-deposit-field-offset should
never be used to modify the pointer field of a boxed word if the data type is one which actually
points to storage, unless you are sure that the new pointer is such as to cause no trouble (such
as, if it points 0 a static arca). Likewise, it should never be used to change a data type which
does not point to storage into one which does. Either action could confuse the garbage collector,

%p-dpb value byte-spec pointer
Stores value, a fixnum, into the byte sclected by byre-spec in the word addressed by
pointer. nil is returned. You can use this to alter data types, cdr-codes, ctc., but see the
note above for restrictions.

Zp-dpb-offset value byte-spec base-pointer offset
Stores value into the specified byte of the location offser words beyond that addressed by
base-pointer, after first handling forwarding pointers in the location addressed by base-
pointer as in %p-contents-offset. nil is returned.

This is the way to alter unboxed data within a structure without violating system storage
conventions. You can usc this to alter boxed words too, but sce the note above for
restrictions. :

%p-deposit-field value byte-spec pointer
Like %p-dpb, cxcept that the sclected byte is stored from the corresponding bits of value
rather than the right-aligned bits. See the note above %p-dpb for restrictions.

%p-deposit-field-offset value byte-spec base-pointer offset
Like %p-dpb-offset, cxcept that the sclected byte is stored from the corresponding bits
of value rather than the right-aligned bits. Sce the note above %p-dpb for restrictions.

%p-pointer pointer
Extracts the pointer field of the contents of the location addressed by pointer and returns
it as a fixnum.

#p-data-type pointer v
Extracts the data-type ficld of the contents of the. location addressed by pointer and returns
it as a fixnum,

%p-cdr-code pointer

Extracts the cdr-code field of the contents of the location addressed by pointer and returns
it as a fixnum.

PS:KL.MAN>ED-SUB.TEXT.19 ‘ : . 8-JUN-84

Storage Layout Definitions 218 1 isp Machine Manual

%p-store-pointer pointer value
Stores value in the pointer field of the location addressed by pointer, and retarns value.

%p—stobe-data-type pointer value
Stores value in the data-type field of the location addressed by pointer, and retrns value.

%p-store-cdr-code pointer value
Stores value in the edr-code field of the location addressed by pointer, and returns value.

%stack-frame-pointer
Returns a locative pointer to its caller’s stack frame. ‘This function is not defined in the
interpreted Lisp emvironment: it only works in compiled code. Since it turns into a
“mise™ instruction. the “caller's stack frame™ really means “the frame for the FEF that
exccuted the %stack-frame-pointer instruction™.

15.5 Storage Layout Definitions

The following special variables have values which define the most important attributes of the
way Lisp data structurcs arc laid out in storage. In addition to the variables documented here,
there arc many others that are more specialized. ‘They are not documented in this manual since
they arc in the system package rather than the global package. The variables whose names start
with %% arc byte specifiers, intended to be used with subprimitives such as %p-ldb. If you
change the value of any of these variables, you will probably bring the machine to a crashing
halt.

%%q-cdr-code Constant

The ficld of a memory word that contains the cdr-code. Sce section 5.4, page 100.
%%q-data-type Constant

The field of a memory word that contains the data-type code. See page 270.
%%q-pointer Constant

'The field of a memory word that contains the pointer address, or immediate data.
%%q-pointer-within-page Constant

The ficld of a memory word that contains the part of the address that lics within a single

page.
%%q-typed-pointer Constant

The concatenation of the %%q-data-type and %%q-pointer ficlds.

%%q-all-but-typed-pointer Constant
This is now synonymous with %%q-cdr-code, and thercforc obsolete.

PS:KL.MAN>ID-SUB.TEXT.19 : _ 8-JUN-84

Lisp Machine Manual 279 Analvzing Structures

%%q-all-but-pointer Constant
The concatenation of all ficlds of a memory word except for %%q-pointer.
%%q-all-but-cdr-code Constant

The concatenation of all fields of a memory word except for %%q-cdr-code.
4%q-high-half Constant
%%q-low-half Constant

The two halves of a memory word. ‘These fields are only used in storing compiled code.
cdr-normal ' Constant
cdr-next Constant
cdr-nil : Constant
cdr-error Constant

The values of these four variables are the numeric values that go in the cdr-code field of
a memory word. See section 5.4, page 100 for the details of cdr-coding.

15.6 Analyzing Structures

%find-structure-header pointer
This subprimitive finds the structure into which pointer points, by scarching backward for
a header. . It is a basic low-level function used by such things as the garbage collector.
pointer is normally a locative, but its data-type is ignored. Note that it is illegal to -point
into an “unboxed” portion of a structure, for instance the middle of a numeric array.

In structure space, the “containing structure” of a pointer is well-defined by system
storage conventions. In list space, it is considered to be the contiguous, cdr-coded
scgment of list surrounding the location pointed to. If a cons of the list has been copied
out by rplacd, the contiguous list includes that pair and ends at that point.

#find-structure-leader pointer
This is identical to %find-structure-header, except that if the structure is an array with
a lcader, this returns a locative pointer to the leader-header, rather than returning the
array-pointer itsclf. Thus the result of %find-structure-leader is always the lowest
address in the structure. This is the one used internally by the garbage collector.

%structure-boxed-size object
Returns the number of “boxed Q's” in object. This is the number of words at the front
of the structure which contain normal Lisp objects. Some structures, for example FEFs
and numeric arrays, contain additional “unboxed Q’s” following their boxed Q's. Note
that the boxed size of a PDIL (cither regular or special) does not include Q's above the
current top of the PDL. 'Thosc locations arc boxed, but their contents are considered
garbage and are not protected by the garbage collector.

PS:KLLMAN>ED-SUB.TEXT.19 ' 8-JUN-84

Creating Objects ’ 280 I isp Machine Manual

%structure-total-size object
Returns the total number of words occupied by the representation of object. including
" boxed Q's, unboxed Q's, and garbage Qs off the ends of PDLs.

15.7 Creating Objects

%allocate-and-initialize duta-rype header-type header sccond-word area size

This is the subprimitive for creating most structured-type objects. area is the area in
which it is to be created. as a fixnum or a symbol. size is the number of words to be
allocated. The value returned points o the first word allocated and has data-type dafa-
npe. Uninterruptibly. the words allocated arc initialized so that storage conventions are
preserved at all times. ‘The first word. the header. is initialized 1o have header-type in its
data-type field and header in its pointer field. The second word is initialized to second-
word. "The remaining words are initialized to nil, The cdr-codes of all words except the
last arc set to cdr-next; the cdr-code of the last word is set to cdr-nil. 1t is probably a
bad idea to rcly on this.

%allocate-and-initialize-array header data-length leader-length area size
This is the subprimitive for creating arrays, called only by make-array. [t is diffcrent
from %allocate-and-initialize because arrays have a more complicated header structure.

The basic functions for creating list-type objects are cons and make-list; no special
subprimitive is needed. Closures, entitics, and sclect-mcthods arc based on lists, but there is no
primitive for creating them. To create one, create a list and then use %make-pointer to change
the data type from: dtp-list to the desired type.

15.8 Copying Data

%blt and %blt-typed arc subprimitives for copying blocks of data, word aligned, from one
place in memory to another with little or no type checking.

%b1t jfrom 1o count increment

%b1t-typed from to count increment
Copies count words, separated by increment. The word at address from is moved to
address 10, the word at address from + increment is moved to address fo + increment, and
so on until count words have been moved.

Only the pointer ficlds of from and fo arc significant; they may be locatives or even
fixnums. " If one of them must point to the unboxed data in the middle of a structure,
you must make it a fixnum, and you must do so with interrupts disabled, or clsc garbage
collection could move the structure after you have alrcady created the fixnum.

%blt-typed assumes that each copicd word contains a data type ficld émd checks that
ficld, interfacing suitably with the garbage collector if nccessary. %blit docs not check the
data type ficlds of the copicd words.

PS:KL.MAN>ED-SUB.TEX'T.19 8-JUN-84

I isp Machine Manual 281 ’ Returning Storage

%blt may be used on any data except boxed data containing pointers to storage, while %bit-
typed may be used on any boxed data. Both %bit and %blt-typed can be used validly on data
which is formatted with data types (boxed) but whose contents never point 1o storage. 'This
includes words whose contents are always fixnums or short floats, and also words which contain
array headers, array leader headers, or FEFF headers. Whether or not the machine is told to
examine the data types of such data makes no difference since, on cxamining them, it would
decide that nothing nceded to be done.

For unboxed data (data which is formatted not containing valid data type fields), such as the
inside of a numecric array or the instruction words of a FEIF, only %blt may be used. If %blit-
typed were used, it would examine the data type ficlds of the data words, and probably halt duc
o an invalid data type code.

For boxed data which may contain pointers, only %blt-typed may be used. If %blt were
used, it would appear to work, but problems could appear mysteriously later because nothing
would notice the presence of the pointer there. For example, the pointer might point to a.
bignum in the number consing arca, and moving it in this way would fail to copy it into a -
nontemporary arca. ‘Then the pointer would become invalidated the next time the number consing
arca was empticd out. 'There could also be problems with lexical closurcs and with garbage
collection.

15.9 Returning Storage

return-storage object
This peculiar function attempts to return object to free storage. If it is a displaced array,
this returns the displaced array itsclf, not the data that the array points to. Currently
return-storage docs nothing if the object is not at the end of its region, i.c. if it was not
cither the most recently allocated non-list object in its area, or the most recently allocated
list in its area.

If you still have any references to object anywhere in the Lisp world after this function
returns, the garbage collector can get a fatal crror if it sces them. Since the form that
calls this function must get the object from somewhere, it may not be clear how to legally
call return-storage. Onc of the only ways to do it is as follows:
(defun func ()
(l1et ((object (make array 100)))

(return-storage (progl object (setq object nil)))))
so that the variable object docs not refer to the object when return-storage is called.
Alternatively, you can free the object and get rid of all pointers to it while mtcrrupts are
turned off with without-interrupts.

You should only call this function if you know what you are domg. otherwise the garbage
collector can get fatal crrors. Be careful.

PS:KLLMAN>FD-SUB.TEXT.19 : 8-JUN-84

1 isp Machine Manual

I~
oC
t2

I ocking Subprimitive

15.10 l,o.cking Subprimitive

%store-conditional pointer old new
This is the basic locking primitive. pointer is a locative to a cell which is uninterruptibly
read and written. 1 the contents of the cell is eq to old, then it is replaced by new and
t is returned. Otherwise, nil is returned and the contents of the cell are not changed.

Sce also store-conditional. a higher-level function which provides type checking (page
688).

15.11 CADR 170 Device Subprimitives

The CADR processor has a 32-bit memory bus called the Xbus. In addition to main memory
and TV screen memory, most 170 device registers are on this bus. ‘There is also a Unibus
compatible with the PDP-11. A map of Xbus and Unibus addresses can be found in SYS: DOC;
UNADDR TEXT.

Zunibus-read address :
Returns as a fixnum the contents of the register at the specifiecd Unibus address. You
must specify a full 18-bit address. This is guarantced to read the location only once.
Since the Lisp Machine Unibus does not support byte operations, this always references a
16-bit word, and so address should normally be an cven number.

%unibus-write address data
Writes the 16-bit number data at the specified Unibus address, exactly once.

%xbus-read io-offset
Returns the contents of the register at the specificd Xbus address. io-offset is an offset

into the 170 portion of Xbus physical address space. This is guarantced to recad the
location exactly once. The returned value can be cither a fixnum or a bignum.

%xbus-write io-offset data
Writes dara, which can be a fixnum or a bignum, into the register at the specified Xbus

address. io-offset is an offsct into the 170 portion of Xbus physical address space. This is
guaranteed to writc the location exactly once.

sys:%xbus-write-sync w-loc w-data delay sync-loc sync-mask sync-value
Does (%xbus-write w-loc w-data), but first synchronizes to within about one microsecond
of a certain condition. The synchronization is achicved by looping until
(= (Yogand (%xbus-read sync-loc) sync-mask) sync-value)
is false, then looping until it is true, then looping delay times. Thus the write happens a
specified delay after the leading edge of the synchronization condition. The number of
microscconds of delay is roughly onc third of delay.

This primitive is used to alter the color TV screen’s color map during vertical retrace.

PSKL.MANDFD-SUB.TEXT.19 8-JUN-84

Lisp Machine Manual 283 Fambda 170-Device Subprimitives

15.12 Lambda [70-Device Subprimitives

sys:%4nubus-read slot byte-address

Returns the contents of a word read from the Nu bus. Addresses on the Nu bus are
divided into an 8-bit slot number which identifics which physical board is being referenced
and a 24-bit address within slot. The address is measured in bytes and therefore should
be a multiple of 4. Which addresses are valid depends on the\type _of board plugged into
the specified slot. 1f, for example, the board is a 512k main memory board, then the
valid address range from 0 to 4 * (512k - 1). (Of course. main memory boards are
normally accessed through the virtual memory mechanism.)

sys:%4nubus-write slor byte-address word
Writes word into a word of the Nu bus, whose address is specified by slor and byre-

address as described above.

sys:%nubus-physical-address appareni-physical-page
The valid portions of the Nu bus address space arc not contiguous. Fach board is
allocated 16m bytes of address space, but no memory board actually provides 16m bytes

of memory.

The Lisp Machine virtual memory system maps virtual addresses into a contiguous
- physical address space. On the lLambda, this contiguous address space is mapped a
sccond time into the discontiguous Nu bus address space. Unlike the mapping of virtual
addresses to physical oncs, the sccond mapping is determined from the hardware
configuration when the machine is booted and does not change during operation.

This function performs exactly that mapping. The argument is a physical page number (a
physical address divided by sys:page-size). The argument is a "Nu bus page number";
multiplied by sys:page-size and then by four, it yields the Nu bus byte address of the
beginning of that physical page.

Sce also Sys:%physical~address, page 286.

15.13 Function-Calling Subprimitives

These subprimitives can be used (carcfully!) to call a function with the number of arguments
variable at run time. They only work in compiled code and arc not defined in the interpreted
Lisp environment. The preferred higher-level primitive is apply (page 47).

%open-call-block function n-adi-pairs destination
Starts a call to function. n-adi-pairs is the number of pairs of additional information
words alrcady %push’cd; normally this should be 0. destination is where to put the
result; the uscful values are 0 for the value to be ignored, 1 for the value to go onto the
stack, 3 for the value to be the last argument to the previous open call block, and 2 for
the value to be returned from this frame.

PSKL.MAN>FD-SUB.TEXT.19 8-JUN-84

e

Special-Binding Subprimitive 284 Lisp Machine Manual

%push value
Pushes value onto the stack. Use this to push the arguments.

%activate-open-call-block
Causces the call to happen.

%pop
Pops the top value off of the stack and returns it as its value. Usc this to recover the
result from a call made by %open-call-block with a destination of 1.

%assure-pdl-room n-words
Call this before doing a sequence of %push’s or %open-call-block’s that will add n-
words to the current frame. This subprimitive checks that the frame will not cxceed the
maximum legal frame size. which is 255 words including all overhead. "This limit is
dictated by the way stack frames arc linked together. If the frame is going to cxceed the
legal limit, %assure-pdl-room signals an crror.

15.14 Special-Binding Subprimitive

%bind locative value
bind Jlocative value :
Binds the cell pointed o by locative to x. in the caller’s environment. 'This function is

not defined in the interpreted Lisp environment: it only works from compiled code. Since
it turns into an instruction, the “caller's environment™ really means “the binding block for
the compiled function that exccuted the %bind instruction”. 'The preferred higher-level
primitives that turn into this are let (page 31), let-if (page 32), and progv (page 32).

The binding is in cffect for the scope of the innermost binding construct, such as prog or
let—cven one that binds no variables itself.

%bind is the preferred name; bind is an older name which will eventually be eliminated.

15.15 The Paging System

[Someday this may discuss how it works.]

sys:%disk-switches Variable
This variable contains bits that control various disk usage features.

Bit 0 (the lcast significant bit) enables rcad-comparcs after disk rcad operations. This
causes a considerable slowdown, so it is rarely uscd.

Bit 1 cnables recad-compares after disk writc operations.

Bit 2 cnables the multiple page swap-out feature. When this is. cnabled, as it is by
default, cach time a page is swapped out, up to 16. contiguous pages are also written out
to the disk if they have been modified. ‘This greatly improves swapping performance.

PS«1 ‘.MAN>FI)-SUB..TF,X'I'.I9 8-JUN-84

Lisp Machine Manual 285 The Paging System
_ ging 5y

Bit 3 controls the multiple page swap-in feature, which is also on by default. This feature
causes pages 1o be swapped inin groups: cach time a page is needed. several contiguous
pages arc swapped in in the same disk operation. ‘The number of pages swapped in can
be specified for cach arca using si:set-swap -recommendations-of-area.

si:set-swap-recommendations-of-area arca-number recommendation
Specifies that pages of arca arca-number should be swapped in in groups of
reconmmendation at a time. “This recommendation is used only if the multiple page swap-in
feature is cnabled.

Generally, the more memory a machine has, the higher the swap recommendations should
be 1o get optimum performance. The recommendations are set automatically according to
the memory size when the machine is booted.

si:set-all-swap-recommendations recommendation
Specifies the swap-in recommendation of all arcas at once.

si:wire-page address &optional (wire-pt)
If wire-p is t, the page containing address is wired-down:; that is, it cannot be paged-out.
If wire-p is nil, the page ccascs to be wired-down.

si:unwire-page address
(si:unwire-page address) is the.same as (si:wire-page address nil).

sys:page-in-structure object
Makes sure that the storage that represents object is in main memory. Any pages that
have been swapped out to disk are read in, using as few disk operations as possible.
Consccutive disk pages are transferred together, taking advantage of the full speed of the
disk. If object is large, this is much faster than bringing the pages in one at a time on
demand. The storage occupicd by object is defined by the %find-structure-leader and
%structure-total-size subprimitives.

sys:page-in-array array &optional from to
This is a version of sys:page-in-structure that can bring in a portion of an array. from
and fo arc lists of subscripts; if they are shorter than the dimensionality of array, the
remaining subscripts are assumed to be zero.

sys:page-in-pixel-array array &optional fiom to
Like sys:page-in-array cxcept that the lists from and to0, if present, arc assumed to have
their subscripts in the order horizontal, vertical, regardless of which of those two is
actually the first axis of the array. Scc make-pixel-array, page 182.

sys:pagoe-in-words address n-words

Any pages that have been swapped out to disk in the range of address space starting at
address and continuing for n-words are read in with as few disk operations as possible.

PS:<I.MAN>FI)-SUB.TEXT.19 : 8-JUN-84

‘The Paging System 286 I isp Machine Manual

sys:page-in-area wrca-nuniber
sys:page-in-region region-number -
All swapped-out pages of the specified region or arca are brought into main memory.

sys:page-out-structure object

sys:page-out-array array &optional from to

sys:page-out-pixel-array wruy &optional from o

sys:page-out-words address n-words

sys:page-out-area urcu-number

sys:page-out-region region-number
These are similar 10 the above, except that they take pages out of main memory rather
than bringing them in. Actually, they only mark the pages as having priority for
replacement by others. Use these operations when you are done with a large object, to
make the virtual memory system prefer reclaiming that object’s memory over swapping
something clse out.

sys:%page-status virual-address
If the page containing virtual-address is swapped out, or if it is part of onc of the low-
numbered fixed areas, this returns nil. Otherwise it returns the entire first word of the
page hash table entry for the page.

The %%pht1 - symbol's in SYS: SYS; QCOM LISP arc byte specifiers you can use with
%logldb for deccoding the value.

sys:%change-page-status virtual-address swap-status access-stalus-and-meta-bits
‘The page hash table entry for the page containing virtual-address is found and altered as
specified. t is returned if it was found, nil if it was not (presumably the page is swapped
out). swap-status and access-status-and-meta-bits can be nil if those ficlds are not to be
changed. This doesn’t make any ecrror checks; you can really screw things up if you call
it with the wrong arguments.

sys:%compute-page-hash virtual-address
Makes the hashing function for the page hash table available to the user.

sys:%physical-address virtual-address
Returns the physical address which virtual-address currently maps into. ‘The value is
“unpredictable if the virtual page is not swapped in; thercfore, this function should be
used on wired pages, or you should do
(without-interrupts
(%p-pointer virtual-address) ;swap it in
(sys:%physical-address virtual-address))

sys:%create-physical-page physical-address
This is used when adjusting the size of real memory available to the machine. It adds an
entry for the page frame at physical-address to the page hash table, with virtual address
-1, swap status flushable, and map status 120 (rcad only). ‘This doesn’t make error
checks; you can really screw things up if you call it with the wrong arguments.

PS:KI.MAN>FD-SUB.TEXT.19 . 8-JUN-84

Lisp Machine Manual 287 Closure Subprimitives

sys:%delete-physical-page physical-address
If there is a page in the page frame at physical-address. it is swapped out and its entry is
deleted from the page hash table, making that page frame unavailable for swapping in of
pages in the future. This doesn’t make error checks: you can really screw things up if
you call it with the wrong arguments.

sys:%disk-restore ligh-16-bits low-16-bits
~ Loads virtual memory from the partition. named by the concatenation of the two 16-bit
arguments, and starts exccuting it. The name 0 refers o the default load (the one the
machine loads when it is started up). ‘This is the primitive used by disk-restore (scc
page 8006).

sys:%disk-save physical-menm-size high-16-bits low-16-bits
Copies virtwal memory into the partition named by the concatenation of the two 16-bit
arguments (0 means the default). then restarts the world, as if it had just been restored.
‘The physical-mem-size argument should come from %sys-com-memory-size in system-
communication-area. If physical-mem-size is negative, it is minus the memory size, and -
an incremental save is done. 'This is the primitive used by disk-save (sce page 807).

si:set-memory-size nwords
Specifies the size of physical memory in words. The Lisp machine determines the actual
amount of physical memory when it is booted, but with this function you can tell it to
usce less memory than is actually present. This may be uscful for comparing performance
based on the amount of memory.

15.16 Closure Subprimitives

These functions deal with things like what closures deal with: the distinction between internal
and cxternal value cells and control over how they work.

sys:%binding-1instances lisr-of symbols
This is the primitive that could be used by closure. First, if any of the symbols in Jist-
of-symbols has no external value cell, a new external valuc cell is created for it, with the
contents of the internal value cell. Then a list of locatives, twice as long as list-of
symbols, is created and returned. The clements are grouped in pairs: pointers to the
internal and cxternal value cells, respectively, of each of the symbols. closure could have
been defined by:
(defun closure (variables function)
(#make-pointer dtp-closure
(cons function (sys:%binding-instances variables))))

sys:%using-binding-instances instance-list ' _
This function is the primitive operation that invocation of closures could use. It takes a
list such as sys:%binding-instances returns, and for cach pair of clements in the list, it
“adds™ a binding to the current stack frame, in the same manner that the %bind function
docs. These bindings remain in effect until the frame returns or is unwound.

PS:KLLMAN>FD-SUB.TEXT.19 | 8-JUN-84

Distiguishing Processor Types 288 Lisp Machine Manual

sys:%using-binding -instances checks for redundant bindings and ignores them. (A
binding is redundant i’ the symbol is alrcady bound to the desired external value cell)
This check avoids excessive growth of the special pdl in some cases and is also made by
the microcode which invokes closures, cntities, and instances.

Given a closure. closure-bindings extracts its list of binding instances, which you can
then pass to sys:%using-binding-instances.

sys:%internal-value-cell symbol
Returns the contents of the internal value cell of symbol. dtp-one-q-forward pointers
are considered invisible, as usual, but dtp-external-value-cell-pointers arc nof. this
function can return a dtp-external-value-cell-pointer. Such pointers will be considered
invisible as soon as they leave the “inside of the machine™, mecaning internal registers and
the stack.

15.17 Distiguishing Processor Types

The MIT Lisp Machinc system runs on two types of processors: the CADR and the [.ambda.
These are similar enough that there is no difference in compiled code for them, and no provision
for compile-time conditionalization. However, obscure or internal 170 code sometimes needs to
behave differently at run-time depending on the type of processor. This is possible through the
usc of these macros.

sys:processor-type-code Variable
This variable is 1 on a CADR processor or cquivalent, 2 on a Lambda.

if-1in-cadr body... Macro
Executes body only when exccuting on a CADR.

if-1n-1ambda - body Macro
Executes body only when executing on a Lambda.

if-in-cadr-else-lambda ifcadrform else-body... Macro
Exccutes if-cadr-form when cxccuting on a CADR, cxecutes else-body when cxccuting on a
Lambda.

(format t "~&Processor is a ~A.~%"
(if-in-cadr-else-Tambda "CADR" "Lambda"))

if-in-lambda-else-cadr iflambda-form else-body... Macro
Exccutes iffcadr-form when cxecuting on a L.ambda cxecutes else-body when exccuting on a
CADR.

selact-processor clauses Macro

Fach clause consists of :cadr or :lambda followed by forms to cxccute when running on
that kind of processor. Example:

PS:KL.MANDFD-SUB.TEXT.19 8-JUN-84

Fisp Muchine Manual 289 _ Microcode Variables

(format t "~&Processor is a ~A.~Y"
(select-processor
(:cadr "CADR™)
(:lambda "Lambda")))

I5.18 Microcode Variables

The following variables™ values actually reside in the scratchpad memory of the processor.
‘They are put there by dtp-one-q-forward invisible pointers. The values of these variables are
used by the microcode. Many of these variables arc highly internal and you shouldn't cxpect to
understand them,

#microcode-version-number Variable
‘This is the version number of the currently-loaded microcode, obtained from the version

number of the microcode source file.

sys:%number-of-micro-entries Variable
Size of micro-code-entry-area and related arcas.

default-cons-area is documented on page 297.
sys:number-cons-area Variable
The arca number of the arca where bignums, ratios, full-size floats-and complexnums are

consed. Normally this variable contains the value of sys:extra-pdi-area, which cnables
the “temporary storage” feature for numbers, saving garbage collection overhead.

current-stack-group and current-stack-group-resumer arc documented on page 258.

sys:%current-stack-group-state Variable
The sg-state of the currently-running stack group.

sys:%current-stack-group-calling-args-pointer Variable
The argument list of the currently-running stack group.

sys:%currant-stack—group-cal11ng—args-numbef Variable
The number of arguments to the currently-running stack group.

sys:%trap-micro-pc Variable
'The microcode address of the most recent error trap.

sys:%initial-fef Variable

The function that is called when the machine starts up. Normally this is the definition of
si:lisp-top-level. :

PS:KKLMAN>EFD-SUB.TEXT.19 | 8-JUN-84

Microcode Vartables 290 Iisp Machine Manual

sys:%initial-stack-group Variable
The stack group in which the machine starts up. Normally this is the initial Lisp Listener
window's process’s stack group.

sys:%error-handler-stack-group Constuant
The stack group that receives control when a microcode-detected error occurs. This stack
group cleans up. signals the appropriate condition, or assigns a stack group to run the
debugger on the erring stack group.

sys:%scheduler-stack-group : Constant
The stack group that receives control when a sequence break oceurs,

sys:%chaos-csr-address : Constant
A fixnum, the virtual address that maps to the Unibus location of the Chaosnet interface.

%mar-low Variable
A fixnum, the inclusive lower bound of the region of virtual memory subject to the MAR
feature (sce section 30.13, page 750).

%mar-high , Variable
A fixnum, the inclusive upper bound of the region of virtual memory subject 1o the MAR
feature (sce scction 30.13, page 750).

sys:%inhibit-read-only Variable
If non-nil, you can write into rcad-only arcas. This is used by fasload.

self is documented on page 420.
inhibit-scheduling-flag is documented on page 685.
inhibit-scavenging-flag Variable
If non-nil, the scavenger is turned off. The scavenger is the quasi-asynchronous portion of
- the garbage collector, which normally runs during consing operations.
sys:scavenger-ws-enable Variable
If this is nil, scavenging can compcte for all of the physical memory of the machine.

Otherwise, it should be a fixnum, which specifics how much physical memory the
scavenger can usc: page numbers as high as this number or higher are not available to it.

sys:%region-cons-alarm Variable
Increments whenever a new region is allocated.

sys:%page-cons-alarm Variable
Increments whenever a new page is allocated.

PSKILMAN>EFD-SUB.TEXT.19 : 8-JUN-84

Fisp Machine Manual | A - Microcode Variables

sys:%gc-flip-ready Variable
t while the scavenger is running, nit when there are no pointers to oldspace.

sys:%gc-generation-number Variable
A fixnum which is incremented whenever the garbage collector flips, converting one or
more regions from newspace to oldspace. If this number has changed, the %pointer of
an object may have changed.

sys:%disk-run-1ight Constant
A fixnum, the virtual address of the 'T'V buffer location of the run-light which lights up
when the disk is active. This plus 2 is the address of the run-light for the processor.
‘This minus 2 is the address of the run-light for the garbage collector.

sys:%loaded-band Variable
A fixnum, the high 24 bits of the name of the disk partition from which virtual memory

was booted. Used to create the greeting message.
sys:%disk-blocks-per-track ' Variable

sys:%disk-biocks-per-cylinder Variable
Configuration of the disk being used for paging. Don’t change these!

sys:%disk-switches is documented on page 284.

sys:%qlaryh Variable
This is the last array to be called as a function, remembered for the sake of the function
store.

sys:%qlaryl : Variable

This is the index used the last time an array was called as a function, remembered for
the sake of the function store.

sys:%mc-code-exit-vector Variable
This is a vector of pointers that microcompiled code uses to refer to quoted constants.
sys:currently-prepared-sheet Variable
Used for communication between the window system and the microcoded graphics
primitives.

alphabetic-case-affects-string-comparison is documented on page 218.
sys:tail-recursion-flag is doc11mcn;cd on page 55,
zunderflow is documented on page 137.

The next four have to do with implementing the metering system described in section 35.3, page
187. '

PS:KI.MAN>FD-SUB.TEXT.19 ‘ 8-JUN-84

Microcode Meters 292 [isp Machine Manual

sys:%meter-giobal-enable Variable
tif the metering system is turned on for all stack-groups.

sys:%meter-buffer-pointer Variable
A temporary buffer used by the metering system.

sys:%meter-disk-address : Variable
Where the metering system writes its next block of results on the disk.

sys:¥%meter-disk-count Variable
The number of disk blocks remaining for recording of metering information.

sys:lexical-environment Variable
This is the static chain used in the unpluncnmuon of lexical scoping of variable bindings

in compiled code.

sys:amem-evcp-vector Variable
No longer used.

background-cons-area is documented on page 297.
sys:self-mapping-table is documented on page 442.

sys:processor-type-code is documented on page 288.

sys:a-memory-location-names Constant
A list of all of the above symbols (and any others added after this documentation was
written).

15.19 Microcode Meters

Microcode meters are locations in the scratchpad memory which contain numbers. Most of
them are used to count cvents of various sorts. They arc accessible only through the functions
read-meter and write-meter. They have nothing to do with the Lisp metering tools.

read-meter name
Returns the contents of the microcode meter named name, which can be a fixnum or a
bignum. nane must be onc of the symbols listed below.

write-meter name value
Writes value, a fixnum or a bignum, into the microcode meter named name. name must
be one of the symbols listed below.

The microcode meters are as follows:

PS:KL.MAN>FD-SUB.TEXT.19 8-JUN-84

isp Muchine Manual ' 293 Microcode Mcters

sys:%count-chaos-transmit-aborts ' Meter
The number of times transmission on the Chaosnet was aborted, cither by a collision or
because the receiver was busy.
sys:%count-cons-work Meter
sys:%count-scavenger-work ' Meter
~Internal state of the garbage collection algorithm,
sys:%tv-clock-rate Meter
The number of TV frames per clock sequence break. The default value is 67.. which
causes clock sequence breaks to happen about once per second.
sys:%count-first-level-map-reloads : Meter
The number of times the first-level virtual-memory map was invalid and had to be
reloaded from the page hash table.
sys:%count-second-level-map-reloads Meter
The number of times the second-level virtual-memory map was invalid and had to be
reloaded from the page hash table.
sys:%count—meta-bits—map-re'loads Meter
The number of times the virtual address map was rcloaded to contain only “meta bits”,
not an actual physical address.
sys:%count-pd1-buffer-read-faults ' Meter
The number of read references to the pdl buffer that were virtual memory references that
trapped.
sys:%count-pd1-buffer-write-faults , Meter
The number of write references to the pdl buffer that were virtual memory references that
trapped.
sys:%count-pdl-buffer-memory-faults Meter
The number of virtual memory references that trapped in case they should have gone to
the pdl buffer, but turned out to be rcal memory references after all (and therefore were
-needlessly slowed down).
sys:%count-disk-page-reads Meter
The number of pages read from the disk. '
sys:%count-disk-page-writes Meter
' The number of pages written to the disk.
sys:%count-fresh-pages Meter

The number of fresh (newly-consed) pages created in core, which would have otherwise
been read from the disk.

PS:KL.MAN>ED-SUB.TEXT.19 8-JUN-84

Microcode Meters 294 Lisp Machine Manual

sys:%count-disk-page-read-operations Meter
The number of paging read operations; this can be smaller than the number of disk pages
read when more than one page at a time is read.

sys:%count-disk-page-write-operations Meter
The number of paging write operations; this can be smaller than the number of disk
pages written when more than one page at a time is writien. '

sys:%count-disk-prepages-used Meter
The number of times a page was used after being read in before it was needed.

sys:%count-disk-prepages-not-used Meter
The number of times a page was read in before it was needed, but got evicted before it
was cver used.

sys:%count-disk-page-write-waits Meter
The number of times the machine waited for a page to finish being written out in order
to cvict the page.

sys:%count-disk-page-write-busys Meter
'The number of times the machine waited for a page to finish being written out in order
to do something clse with the disk.

sys:%disk-wait-time Meter
The time spent waiting for the disk, in microseconds. This can be used to distinguish
paging time from running time when measuring and optimizing the' performance of
programs.

sys:¥%count-disk-errors Meter
The number of recoverable disk crrors.

sys:%count-disk-recalibrates Meter
‘The number of times the disk scck mechanism was recalibrated, usually as part of error
recovery.

sys:%count-disk-ecc-corrected-errors Meter

The number of disk crrors that were corrected through the error correcting code.

sys:%count-disk-read-compare-differences ' Meter
The number of times a read compare was done, no disk crror occurred, but the data on
disk did not match the data in memory.

sys:%count-disk-read-compare-rereads Meter
The number of times a disk rcad was donc over because after the read a read compare
was done and did not succced (cither it got an ecrror or the data on disk did not match
the data in memory).

PS:KL.MAN>FD-SURB.TEXT.19 8-JUN-84

Lisp Machine Manual ' 295 Miscellancous Subprimitives

sys:%count-disk-read-compare-rewrites ‘ Meter
The number of times a disk write was donc over because after the write a read compare
was done and did not succeed (either it got an error or the data on disk did not match
the data in memory).

sys:%disk-error-log-pointer Meter
~ Address of the next entry to be written in the disk error log. 'The function si:print-disk-
error-log (sce page 794) prints this log.

sys:%count-aged-pages Meter
The number of times the page ager set an age trap on a page, to determine whether it
was being referenced.

sys:%count-age-flushed-pages ' Meter
‘The number of times the page ager saw that a page still had an age trap and hence made
it “flushable™, a candidate for cviction from main memory.

sys:%aging-depth Meter
A number from 0 to 3 that controls how long a page must remain unreferenced before it
becomes a candidate for eviction from main memory.

sys:%count-findcore-steps Meter

The number of pages inspected by the page replacement algorithm.
sys:%count-findcore-emergencies Meter

“»he number of times no cvictable page was found and extra aging had to be done.
sys:a-memory-counter-block-names Constant

A list of all of the above symbols (and any others added after this documentation was

written).

15.20 Miscellaneous_ Subprimitives

sys:%halt
Stops the machine.

>

PSKILL.MAN>ED-SUB.TEXT.19 8-JUN-84

	270_Subprimitves
	271_Subprimitves
	272_Subprimitves
	273_Subprimitves
	274_Subprimitves
	275_Subprimitves
	276_Subprimitves
	277_Subprimitves
	278_Subprimitves
	279_Subprimitves
	280_Subprimitves
	281_Subprimitves
	282_Subprimitves
	283_Subprimitves
	284_Subprimitves
	285_Subprimitves
	286_Subprimitves
	287_Subprimitves
	288_Subprimitves
	289_Subprimitves
	290_Subprimitves
	291_Subprimitves
	292_Subprimitves
	293_Subprimitves
	294_Subprimitves
	295_Subprimitves

