Eisp Machine Manual 301 The Compiler

17. The Compiler

17.1 The Basic Operations of the Compiler

The purpose of the Lisp compiler is to convert Lisp functions into programs in the Lisp
Machine’s instruction sct. so that they run more quickly and take up less storage. Compiled
functions arc represented in Lisp by FEFs (Function Entry Frames), which contain machine code
as well as various other information. "The printed representation of a FEF is

#<DTP-FEF~-POINTER address name>

If you want to understand the output of the compiler, refer to chapter 31, page 752.

There are three wavs to invoke the compiler from the Lisp Machine. First. you may have an
interpreted function in the Lisp environment that you would like to compile. ‘The function
compile is used to do this. Sccond. you may have code in an cditor buffer that you would like
to compile, The Zmacs editor has commands to read code into Lisp and compile it. 'Third, you ',
may have a program (a group of function definitions and other forms) written in a file on the file
system. ‘The function compile-file can translate this file into a QFASL file that describes the
compiled functions and associated data. The QFASI. file format is capable of representing an
arbitrary collection of Lisp objects, including shared structure. The name derives from ‘Q’, a
prefix once used to mean “for the Lisp Machine, not for Maclisp”, and ‘FASL’, an abbreviation
for “fast loading”.

17.2 How to Invoke the Compiler

compile function-spec &optional definition
Compiles an individual interpreted function definition. If definition is supplied, it is the
definition to be compiled. Otherwise, the current definition of fiunction-spec is used. If
Sfunction-spec is non-nil, the compiled function is stored as the definition of function-spec,
and function-spec is rcturned. Otherwise, the compiled function object itsclf is returned.
(However, it is preferable to usc compile-lambda if your wish is to create a compiled
function object without storing it anywhere.)

The compiled function object created by compile records the interpreted definition it was
made from on its dcbugging info alist (sce page 242). This is uscful in two ways: the
function uncompile can be used to reinstall the interpreted definition, and compile
invoked again on the same fiunction-spec can find the interpreted definition used before
and compile it again. The latter is useful if you have changed some macros or subst
_ functions which the definition refers to.

uncompile finction-spec _
If function-spec is defined as a compiled function that records the original definition that
was compiled, then function-spec is redefined with that original definition. This undoes
the cffect of calling compile on function-spec.

PS:KLL.MAN>COMPIL.TEXT.106 ' 8-JUN-84

How to Invoke the Compiler R{V) Lisp Machine Manual

compile-Tambda lumbda-exp function-spec
Returns a compiled function object produced by compiling kambda-cxp. The function
name recorded by the compiled function abject is finction-spee, but that function spec is
not defined by compile-lambda. ‘This function is preferable to compile with first
argument nib in that it allows you to specify the name for the function to record
internally.

compile-encapsulations finction-spec
Compiles all encapsulations that function-spec currently has. Encapsulations (sce section
11.9. page 244) include tracing, breakons and advice. Compiling tracing or breakons
makes it possible (or at least more possible) to trace or breakon certain functions that are
used in the evaluator. Compiling advice makes it less costly to advise functions that are
used frequently.

Any encapsulation that is changed will cease to be compiled; thus, if you add or remove
advice, you must do compile-encapsulations again if you wish the advice to be
compiled again.

compile-encapsulations-flag Variable
If this is non-nil, all encapsulations that are created are compiled automatically.

compile-file input-file &key output-file set-default-pathname package
Compiles the file specified by inpur-file, a-pathname or namestring. The format for files
input to the compiler is described on scction 17.3, page 303.

If outpur-file is specified, it is a pathname used for the compiled file. Otherwise, the
ouptut file name is computed from the input file name by specifying :gfasl as the type
component.

package, if non-nil spccifies the package in which compilation should be performed.
Normally the system knows, or asks interactively, and you need not supply this argument.

set-default-pathname. if non-nil, mecans that the defaults should be sct to the input file’s
name. sel-default-pathname defaults to t.

qc-f1ile filename &optional outpur-file load-flag in-core-flag package file-local-declarations
dont-set-defauli-p read-then-process-flag
An ‘older, obsolete way of invoking the compiler on a file.

file-local-declarations is for compiling multiple files as if they were one. dont-set-default-p
suppresses the changing of the dcfault file name to filename that normally occurs. The
load-flag and in-core-flag arguments were not fully implemented and should not be used.
read-then-process-flag causcs the entire file to be rcad and then the entire file to be
compiled; this is no longer advantageous now that there is cnough memory to avoid
thrashing when forms are rcad and compiled onc by one, and it prevents compile-time
reader-macros defined in the file from working properly.

PS:KL.MAN>COMPIL.TEXT.106 8-JUN-84

I isp Machine Manual 303 [nput to the Compiler

qc-fitle-load filename &optional outpur-file load-flag in-core-flug package finctions-defined
Sile-local-declarations dont-set-defauli-p - read-then-process-flag
Compiles a file and ‘then loads in the resulting QEFASL file,

.compiler:compiler-verbose Variable
If this variable is non-nil, the compiler prints the name of cach function that it is about
to compile. -

compiler:peep-enable Variable
The peephole optimizer is used if this variable is non-nil. The only reason to set it to nil
is if’ there is a suspicion of a bug in the optimizer.

Sce also the disassemble function (page 792), which lists the instructions of a compiled
function in symbolic form.

17.3 Input to the Compiler

'The purpose of compile-file is to take a file and produce a translated version which docs the
same thing as the original except that the functions are compiled. compile-file rcads through the
input file, processing the forms in it one by one. For cach form, suitable binary output is sent
to the QFASL file so that when the QFASL. file is loaded the cffect of that source form will be
reproduced. The differences between source files and QFASL. files are that QFASL. files are in a
compressed binary form, which reads much faster but cannot be edited, and that function
definitions in QFASI. files have been translated from Lisp forms to FEFs.

So, if the source contains a (defun ..) form at top level, then when the QFASL file is
loaded the function will be defined as a compiled function. If the source file contains a form that
is not of a type known specially to the compiler, then that form (encoded in QFASL format) is
output “directly” into the QFASL file, so that when the QFASL file is loaded that form will be
evaluated. Thus, if the source file contains (princ "Hello") at top level, then the compiler puts
in the QFASL file instructions to create the list (princ "Hello") and then evaluate it.

The Lisp Machine editor Zmacs assumes that source files are formatted so that an open
parenthesis at the left margin (that is, in column zcro) indicates the beginning of a function
definition or other top level list (with a few standard cxceptions). The compiler assumes that you
follow this indentation convention, cnabling it to tell when a close-parenthesis is missing from one
function as soon as the beginning of the next function is reached.

If the compiler finds an open parenthesis in column zero in the middle of a list, it invents
enough closc parentheses to close off the list that is in progress. A compiler warning is produced
instecad of an error. After that list has been processed, the open parenthesis is rcad again. The
compilation of the list that was forcefully closed off is probably uscless, but the compilation of
the rest of the file is usually correct. You can recad the source file into the editor to fix and
recompile the function that was unbalanced.

A similar thing happens on end of file in the middle of a list, so that you get to sce any
warnings for the function that was unbalanced.

- PS:<ILMAN>COMPIL. TEXT.106 _ 8-JUN-84

Input to the Compiler o4 I isp Machine Manual

Certain special forms including eval-when, progn. local-declare, declare-flavor-instance-
variables. and comment arc customarily used around lists that start in column zero. These
symbols have a non-nil si:may-surround-defun property that makes the compiler permit this.
You can add such propertics 1o other symbols if you want.

compiler:qc-file-check-1indentation Variable
If nil, inhibits the compiler from checking for open-parentheses in column zero.

Whan a macro definition (macro and defmacro forms) is encountered at top level in the file
being compiled, the macro definition is recorded for the rest of the compilation so that the macro
thus defined can be used in the same file following its definition. This is in addition to writing
the compiled macro definition into the QIFASI. file.

Flavor definitions (defflavor forms, sce page 414) and global special declarations (made with
proclaim, page 54, or with defvar, page 33) are likewise recorded for the rest of the compilation,
as well as written into the QIFASL. file so that they will be recorded permanently when the file is
loaded.

sys:file-local-declarations Variable
During file-to-file compilation, the value of this variable is a list of all declarations that
arc in cffect for the rest of the file. Macro definitions, defdecl’s, proclaim’s and special
declarations that come from defvars arc all recorded on this list.

Package-defining and aliering functions such as defpackage, in-package. export and use-
package arc cxecuted by the compiler in the ordinary, permanent fashion. They are also written
in the QFASL file so that the form is exccuted just the same when the file is loaded. 1f you load
the file later in the same session, the package altering form is cexccuted twice. 'This is normally
harmless. require receives the same treatment.

You can control explicitly whether a form is cvaluated by the compiler, and whether it is
written into the QFASL file to be cxecuted when the file is loaded, using the eval-when
construct. You might want a form to be:

Put into the QFASL file (compiled, of course), or not.
Evaluated within the compiler, or not.

Evaluated if the source file loaded, or not.

An eval-when form looks like
(eval-when times-list
Sorml form2 ...)

The times-list may contain one or morc of the symbols load, compile, or eval. If load is
present, the forms are written into the QFASL file to be evaluated when the QFASL file is
loaded (except that defun forms put the compiled definition into the QFASL file instead). If
compile is present, the forms are cvaluated in the compiler. If eval is present, the forms are
cvaluated when read into Lisp; this is because eval-when is defined as a special form in Lisp.
(The compiler ignores eval in the rimes-list.) For example,

(eval-when (compile eval) (macro foo (x) (cadr x)))
would define foo as a macro in the compiler and when the file is read in interpreted, but not
when the QFASL file is fasloaded.

PS:KLLMAN>COMPIL.TEXT 106 8-JUN-84

Lisp Machine Manual - 305 Input to the Compiler

eval-when (1ime...) body... Special form
When scen by the interpreter, if one of the rimes is the symbol eval then the body forms
are evaluated: otherwise eval-when does nothing.

But when seen by the compiler, this special form docs the special things described above.

Nested use of eval-when is permitted but its meaning is tricky. If an inner eval-when form
appears in an ordinary context where a general form would be written intw the QFFASL file but
not executed at compile time, then it behaves in the usual fashion: the body forms arc written
into the QFASL. file if load is onc of the rimes, and they are cvaluated at compile time if
compile is one of the times.

If the inner eval-when form appears in a context which says to cvaluate at compile time
only, then the body forms are cvaluated if eval is onc of the fimes.

If the inner eval-when appecars in a context which says to write into the QFASI. file and
evaluate at compile time. the the body forms are written into the QEFASL. file if load is one of
the times, and they are cvaluated at compile time if cither compile or eval is one of the fimes.

For the rest of this scction, we will use lists such as arc given to eval-when, c.g. (load
eval), (load compile), ctc., to describe when forms are evaluated.

If a form is not enclosed in an eval-when, then the times at which it is cvaluated depend on
the form. The following table summarizes at what times cvaluation takes place for any given form
seen at top level by the compilcr.

(eval ~-when times-list form ...
times-list spec1ﬁcs when the Sorm... should be performed.

(declare (special ...)) or (declare (unspecial ...))
The special or unspecial is performed at (load compile) time.

(declare anything-else)
anything-else is performed only at (compile) time.

(proclaim...) is performed at (load compile eval) time.

(special ...) or (unspecial ...)
(load compile eval)

(macro ...) or (defmacro ...) or (defsubst ...)
or (defflavor ...) or (defstruct ...)
(load eval). However, during file to file compilation, the definition is recorded

temporarily and used for cxpanding calls to the macro, or macros defined by the
defstruct for the rest of the file.

(comment...) Ignored at all times.

(compiler-let ((var val) ...) body...)
Processes the body in its normal fashion, but with the indicated variable bindings
in cffect. These variables will typically affect the operation of the compiler or of
macros. Scc scction 18.5.6, page 339.

PS:<I.MAN>COMPIL.TEXT.106 - 8-JUN-84

Input (o the Compiler 06 [isp Machine Manual

(local-declare (decl decl ...) body...)
Processes the body in its normal fashron, with the indicated declarations added to
the front of the list which is the value of local-declarations.

(defun ...) or (defmethod ...) or (defselect ...)
(load eval), but at load time what is processed is not this form itsclf, but the

result of compiling it.

(require ...) or (in- package ...)
or various other package functions
(load compile eval)

anvthing-clse (load eval)

Sometimes a macro wants to return more than one form for the compiler top level to sce
{and to be cevaluated). ‘The following facility is provided for such macros. If a form
(progn forml form2 ...)
is seen at the compiler top level, all of the forns are processed as if they had been at compiler
top level. (Of course, in the interpreter they are all evaluated.)

To prevent an expression from being optimized by the compiler, surround it with a call to
dont-optimize. '

dont-optimize jform Special form
In exccution, this is cquivalent to simply form. However, -any source-level optimizations
that the compiler would normally perform on the top level of form arc not done.
Examples:
(dont-optimize (apply 'foo (list 'a 'b)))
actually makes a list and calls apply, rather than doing
(foo 'a 'b) ‘

(dont-optimize (si:flavor-method-table flav))
actually calls si:flavor-method-table as a function, rather than substituting the definition

of that defsubst.

dont-optimize can cven bc used around a defsubst inside of setf or locf, to prevent
open-coding of the defsubst. In this case, a function will be created at load time to do

the sctting or return the location.
(setf (dont-optimize (zwei:buffer-package buffer))
(pkg-find-package "foo"))

Subforms of form, such as arguments, are still optimized or open coded, unless additional
dont-optimize’s appecar around them.

PS:KL.MAN>COMPIL.TEXT.106 8-JUN-84

Lisp Machine Manual 307 Compile-"Time Properties of Symbols

17.4 Compile-Time Properties of Symbols

When symbol properties are referred to during macro expansion, it is desirable for propertics
defined in a file to be “in effeet” for the the rest of the file if the file is compiled. This does not
happen if get and defprop arc used. because the defprop will not be exccuted until the QIFASIL.
filc is loaded. Instead. you can use getdecl and defdecl. These are normally the same as get
and defprop, but during file-to-file compilation they also refer to and create declarations.

getdecl symbol property
This is a version of get that allows the propertics of the nmbol to be overridden by

declarations.

If a declaraton of the form (property symbol velue) is in clfect, getdec! returns value.
Otherwise, getdec! returns the result of (get symbol property).

If you intend to create such declarations with proclaim or local use of declare, you must
make sure that a declaration declaration is in cffect for pmp(’rl) You can do this with ,
(proclaim '(declaration property)).

getdecl! is typically used in macro definitions. For example, the setf macro uscs getdecl
to get the propertics which say how to store in the specified place. Sce page 340 for an
cxample of a macro that uscs getdecl.

putdecl symbol property value
Causes (getdecl symbol property) to return value.

putdec! usually simply does a putprop. But if executed at compile time during file-to-file
compilation, it instecad makes an cntry on file-local-declarations of the form (property
symbol value).

In cither case, this stores value where getdecl can find it; but if putdecl is done during
compilation, it affects only the rest of that compilation.

defdecl symbol property value Special form
When exccuted, this is like putdecl except that the arguments are not cvaluated. It is
usually the same as defprop except for the order of the arguments.

Unlike defprop, when defdecl is encountered during file-to-file compilation, a declaration
is recorded which remains in effect for the rest of the compilation. - (The defdecl form
also goes into the QFASL file to be executed when the ﬁle is loaded). defprop would
have no cffect whatever at compile time.

defdecl is often useful as a part of the cxpansion of a macro. It is also uscful as a top-
level expression in a source file.

Example:

(defdecl foo locf foo-location)
in a source file would allow (locf (foo args...)) to be used in the rest of that source file;
and, once the file was loaded, by anyone.

PS:<L.MAN>COMPIL.TEXT.106 | - 8-JUN-84

Using Compiler Warnings 08 Lisp Machine Manual

Simple use defsetf expands into a defdecl.

17.5 Using Compiler Warnings

When the compiler prints warnings, it also records them in a data base, organized by file and
by function within file. Old warnings for previous compilations of the same function are thrown
away. so the data base contains only warnings that are still applicable. This data base can be
used to visit, in the editor, the functions that got warnings. You can also save the data base and
restore it later.

There are three editor commands that you can usc (o begin visiting the sites of the recorded
warnings. ‘They differ only in how they decide which files o look through:

Meta-X Edit Warnings _
For cach file that has any warnings. asks whether to edit the warnings for that file.

Meta-X Edit File Warnings
Reads the name of a file and then cdits the warnings for that file.

Meta- X Edit System Warnings ,
Reads the name of a system and then cdits the warnings for all files in that system (sce

defsystem, page 660).

While the warnings are being cdited, the warhings themsclves appear in a small window at
the top of the cditor frame, and the code appears in a large window which occupies the rest of
the cditor frame.

As soon as you have finished specifying the file(s) or system to process, the editor proceeds to
visit the code for the first warning. From then on, to move to the next warning, use the
command Control-Shift-W. To move to the previous warning, use Meta-Shift-W. You can also
switch to the warnings window with Control-X O or with the mouse, and move around in that
buffer. When you usc Control-Shift-W and there arc no more warnings after the cursor, you
return to single-window mode.

You can also insert the text of the warnings into any editor buffer:

Meta-X Insert File Warnings
Reads the name of a file and inserts into the buffer after point the text for that file's
warnings. The mark is left after the warnings, but the region is not turned on.

Meta-X Insert Warnings
Inserts into the buffer after point the text for the warnings of all files that have warnings.
The mark is left after the warnings, but the region is not turned on.

You can also dump the warnings data base into a filc and rcload it later. Then you can do
Meta-X Edit Warnings again in the later session. You dump the warnings with si:dump-
warnings and load the file again with load. In addition, make-system with the :batch option
writes all the warnings into a file in this way.

PS:KL.LMAN>COMPIL.TEXT.106 8-JUN-84

I isp Machine Manual 309 Using Compiler Warnings

si:dump-warnings output-file-pathname &rest warnings-file-pathnames
Writes the warnings for the files named in warnings-file-pathnames (a list ot pathnamcs or
strings) into a file named outpur-file-pathname.

compiler:warn-on-errors Variable
If this variable is non-nil, errors in rcading code to be compiled, and crrors in macro
expansion within the compiler, produce only warnings; they do not enter the dcbugger.
‘The variable is normally t.

The default setting is useful when you do not anticipate crrors during compilation,
because it allows the compilation to proceed past such crrors. If you have walked away
from the machine, you do not come lmck to find that your compilation stopped in the
first file and did not finish.

If you find an inexplicable crror in reading or macrocxpansion, and wish to use the
debugger to localize it, sct compiler:warn-on-errors to nil and recompile.

'17.5.1 Controlling Compiler Warnings

- By controlling the compile-time values of the variables run-in-maclisp-switch, obsolete-
function-warning-switch, and inhibit-style-warning-switch (cxplained above), you can enable
or disable somc of the warning messages of the compiler. The following special form is also
uscful:

inhibit-style-warnings form Macro

Prevents the compiler from performing style-checking on the top level of form. Style-
checking is still done on the arguments of form. Both obsolete function warnings and
won't-run-in-Maclisp warnings arc donc by means of the style-checking mechanism, so, for
example,

(setq bar (inhibit-style-warnings (value-cell-location foo)))
does not warn that value-cell-location will not work in Maclisp, but

(inhibit-style-warnings (setq bar (value-cell-location foo)))
does warn, since inhibit-style-warnings applics only to the top level of the form inside
it (in this case, to the setq).

Sometimes functions take arguments that they deliberately do not use. Normally the compiler
warns you if your program binds a variable that it never references. In order to disable this
warning for variables that you know you are not going to use, there are three things you can do.

The first thing is to name the variables ignore or ignored. The compiler docs not complain
if a variable by one of thesc names is not used. Furthermore, by special dispensation, it is all
right to have more than one variable in a lambda-list that has onc of these names.

Another thing you can do is write an ignore declaration. Example:
(defun the-function (list fraz-name fraz-size)
(declare (ignore fraz-size)))
This has the advantage that arglist (sce page 242) will return a more mecaningful argument list for

the function, rather than returning something with ignore’s in it.

PS:KI.LMAN>COMPIL.TEXT.106 8-JUN-84

Using Compiler Warnings 310 I isp Machine Manual

Finally, you can simply use the variable for cffect (ignoring its value) at the front of the -
function. Example:
(defun the-function (list fraz-name fraz-size)
fraz-size : This argument is not used.

c)

The following function is useful for requesting compiler warnings in certain esoteric cases.
Normally, the compiler notices whenever any function x uses (calls) any other function y; it
makes notes of all these uses. and then warns yvou at the end of the compilation if the function y
got called but no definition of it has been seen. This usually does what you want, but sometimes
there is no way the compiler can tell that a certain function is being used. Suppose that instead
of x’s containing any forms that call y, x simply stores y away in a data structurce somewhere,
and someplace clse in the program that data structure is accessed and funcall is done on it
There is no way that the compiler can see that this is going to happen, and so it can’t notice the
function usage, and so it can’t creatc a warning message. In order to make such warnings
happen, you can explicitly call the following function at compile-time.

compiler:function-referenced what by
what is a symbol that is being used as a function. by may be any function spec.
compiler:function-referenced must be called at compile-time while a compilation is in
progress. - It iclls the compiler that the function what is referenced by by. When the
compilation is finished, if the function what has not been defined, the compiler issues a
warning to the cffect that by referred to the function whar, which was never defined.

You can also tell the compiler about any function it should consider “defined”:

compiler:compilation-define fincrion-spec
Junction-spec is marked as “defined” for the sake of the compiler; future calls to this
function will not produce warnings.

compiler:make-obsolete fiunction reason Macro
This special form declares a function to be obsolete; code that calls it will get a compiler
warning, under the control of obsolete-function-warning-switch, This is used by the
compiler to mark as obsolcte some Maclisp functions which cxist in Zetalisp but should
not be used in new programs. It can also be useful when maintaining a large system, as
a reminder that a function has become obsolete and usage of it should be phased out.
An cxample of an obsolete-function declaration is:
(compiler:make-obsolete create-mumblefrotz _
"use MUMBLIFY with the :FROTZ option instead")

PS:<L.MAN>COMPIL.TEXT.106 8-JUN-84

1isp Machine Manual 3t ‘ Using Compiler Warnings

17.5.2 Recording Warnings

‘The warnings data basc is not just for compilation. It can record operations for any number
of different operations on files or parts of files. Compilation is merely the only operation in the

system that uscs it.
)

Fach operation about which warnings can bhe recorded should have a name. preferably in the
kevword package. ‘This symbol should have four properties that tell the system how to print out
the operation name as various parts of speech. or compilation, the operation name is :compile
and the propertics are defined as follows: '

(defprop :compile "compilation" si:name-as-action)

(defprop :compile "compiling” si:name-as-present-participle)
(defprop :compile "compiled" si:name-as-past-participle)
(defprop :compile "compiler" si:name-as-agent)

‘The warnings system considers that these operations are normally performed on files that are
composed of named objects. Each warning is associated with a filename and then with an object
within the file. It is also possible to record warnings about objects that arc not within any file.

To tell the warnings system that you are starting to process all or part of a file, usc the
macro si:file-operation-with-warnings.

sys:file-operation-with-warnings Macro
(generic-pathname operation-name whole-file-p) body...
body is exccuted within a context st up so that warnings can be recorded for operation
operation-nante about the file specified by generic-pathname (sce page 563).

In the case of compilation, this is done at the level of compile-file (actually, it is done
in compiler:compile-stream).

whole-file-p should be non-nil if the cntire contents of the file are to be processed inside
the body if it finishes; this implies that any warnings left over from previous iterations of
this operation on this file should be thrown away on exit. This is only relevant to objects
that are not found in the file this time; the assumption is that the objects must have been
deleted from the file and their warnings are no longer appropriate.

All three of the special arguments are specified as expressions that are evaluated.

Within the processing of a file, you must also announcc when you are beginning to process
an object:

sys:object-operation-with-warnings (object-name location-function) body...Macro
Exccutes body in a context set up so that warnings arc recorded for the object named
object-name, which can be a symbol or a list. Object names arc compared with equal.

In the case of compilation, this macro goes around the processing of a single function.

PS:KI.MAN>COMPIL.TEXT.106 8-JUN-84

Using Compiler Warnings 312 Lisp Machine Manual

location-fiunction is cither nil or a function that the editor uses to find the text of the
object. Refer to the file SYS: ZWEI; POSS LISP for more details on this.

object-name and Jocation-function are specified with expressions that are evaluated.

You can enter this macro recursively. 1 the inner invocation is for the same object as the
outer one, it has no effect. Otherwise, warnings recorded in the inner invocation apply to
the object specified therein.

Finally, when you detect exceptions, you must make the actual warnings:

sys:record-warning npe severity location-info format-string &rest args
Records one warning for the object and file currently being processed. ‘The text of the
warning is specified by formar-stringand args, which are suitable arguments for format,
but the warning is nos printed when you call this function. Those arguments will be used
to reprint the warning later.

sys:record-and-print-warning /pe severity location-info format-string &rest args
Records a warning and also prints it

ype is a symbol that identifies the specific cause of the warning. Types have meaning
only as defined by a particular operation, and at present nothing makes much use of
them. The system defines one type: si:premature-warnings-marker.

severity measures how important a warning this is, and the general causal classification. It
should be a symbol in the keyword package. Several severitics are defined, and should be
used when appropriate, but nothing looks at them:

iimplausible This warning is about somecthing that is not intrinsically wrong but is
probably duc to a mistake of some sort.

impossible This warning is about somecthing that cannot have a mecaning cven if
circumstances outside the text being processed are changed.

:probable-error
This is used to indicate something that is certainly an error but can be
made correct by a change somewhere else; for example, calling a function
with the wrong number of arguments.

:missing-declaration ,
This is used for warnings about free variables not declared special, and
such. It means that the text was not actually incorrect, but something else
that is supposed to accompany it was missing.

:obsolete This warning is about something that you shouldn’t use any more, but
which still does work.

:very-obsolete
This is about something that docsn’t even work any more.

:maclisp This is for something that doesn’t work in Maclisp.

fatal This indicates a problem so scvere that no sense can be made of the
object at all. It indicates that the presence or absence of other warnings is

PS:KLLMAN>COMPIL.TEXT.106. 8-JUN-84

1 isp Machine Manual RIR] Compiler Source-t evel Optimizers

not significant.

:error There was a Lisp error in processing the object.

Jocation-info is intended to be used to inform the editor of the precise location in the text
of the cause of this warning. 1t is not defined as yet, and you should use nil.

If @ warning is cncountered while processing data that docesn’t really have a name (such as
forms in a source file that arc not function definitions). you can record a warning cven though
you are not inside an invocation of sys:object- operation-with-warnings. This warning is known
as a premature warning and it will be recorded with the next object that is processed; a message
will be added so that the user can tell which warnings were premature.

Refer to the file SYS: SYS; QNEW LISP for more information on the warnings data basc.

17.6 Compiler Source-Level Optimizers

The compiler stores optimizers for source code on property lists so as to make it casy for the
user to add them. An optimizer can be used to transform code into an equivalent but more
cfficient form (for cxample, (eq obj nil) is transformed into (null obj), which can be compiled
better). An optimizer can also be used to tell the compiler how to compile a special form. For
example, in the interpreter do is a special form, implemented by a function which takes quoted
arguments and calls eval. In the compiler, do is cxpanded in a macro-like way by an optimizer
into equivalent Lisp code using prog, cond, and go, which the compiler understands.

The compiler finds the optimizers to apply to a form by looking for the compiler.optimizers
property of the symbol that is the car of the form. The value of this property should be a list of
optimizers, each of which must be a function of one argument. The compiler tries cach optimizer
in turn, passing the form to be optimized as the argument. An optimizer that returns the original
form unchanged (eq to the argument) has “done nothing”, and the next optimizer is triecd. 1If the
optimizer returns anything else, it has “done something”, and the whole process starts over again.

Optimizers should not be used to define new language featurcs, because they only take effect
in the compiler; the interpreter (that is, the cvaluator) doesn’t know about optimizers. So an
optimizer should not change the effect of a form; it should produce another form that does the
same thing, possibly faster or with less memory or something. That is why they are called
optimizers. In principle, the code ought to compile just as correctly if the optimizer is climinated.

compiler:add-optimizer function optimizer optimized-info.. Macro
Puts optimizer on functions optimizers list if it isn't there already. optimizer is the name
of an optimization function, and function is thc name of the function calls which are to
be processed. Neither is evaluated.

(compiler:add-optimizer function optimizer optimize-into-1 optimize-into-2...) also
remembers optintize-into-1, etc., as names of functions which may be called in place of
function as a result of the optimization. Then who-calls of function will also mention
callers of optimize-into-1, efc.

PS:<1.MAN>COMPIL.TEXT.106 : 8-JUN-84

Maclisp Compatibility 314 Lisp Machine Manual

compiler:defoptimizer Macro
Sunction optimizer-name (optimizes-into...) lambda-list body...
Defines an optimizer and installs it. Equivalent to
(progn
(defun optimizer-name lumbda-list
body. . .) ' :
(compiter:add-optimizer function optimizer-name
optimizes-into. . . '))

compiler:defcompiler-synonym finction forfunction Macro
Makes fimction a synonym for for-function in code being compiled. Example:
(compiler:defcompiler-synonym plus +)
is how the compiler is told how to compile plus.

17.7 Maclisp Compatibility

Certain programs arc intended to be run both in Maclisp and in Zetalisp. Their source files
nced some special conventions. For cxample, all special declarations must be enclosed in
declare’s, so that the Maclisp compiler will sce them. The main issue is that many functions and
special forms of Zetalisp do not exist in Maclisp. 1t is suggested that you turn on run-in-
maclisp-switch in such files, which will warn you about a lot of problems that your program
may have if you try to run it in Maclisp. -

The macro-character combination # +lispm causes the object that follows it to be visible only
when compiling for Zetalisp. The combination # +maclisp causcs the following object to be
visible only when compiling for Maclisp. These work both on subexpressions of the objects in the
file and at top level in the file. To conditionalize top-level objects, however, it is better to put
the macros if-for-lispm and if-for-maclisp around them. The if-for-lispm macro turns off run-
in-maclisp-switch within its object, preventing spurious warnings from the compiler. The
+lispm reader construct does not dare do this, since it can be used to conditionalize any
object, not just a expression that will be evaluated.

To allow a file to detect what cnvironment it is being compiled in, the following macros are
provided:

if-for-lispm form Macro
If (if-for-lispm forn) is scen at the top level of the compiler, form is passed to the
compiler top level if the output of the compiler is a QFASL file intended for Zectalisp. If
the Zetalisp interpreter sces this it evaluates forn (the macro cxpands into form).

if-for-maclisp form Macro
If (if-for-maclisp form) is scen at the top level of the compiler, form is passed to the
compiler top level if the output of the compiler is a FASL file intended for Maclisp (e.g.
if the compiler is COMPLR). If the Zetalisp interpreter ignores this form cntirely (the
macro cxpands into nil).

PS:K<LLMAN>COMPIL.TEXT.106 8-JUN-84

I isp Machine Manual RIS Maclisp Compatibility

if-for-maclisp-else Vispm wmaclisp-form lispm-form Mucro
It (if-for-maclisp-else-lispm ‘form! form2) is scen at the top level of the compiler,
Jorml is passed to the compiler top level if the output of the compiler is a FFASL file
intended for Maclisp; otherwise form? is passed 1o the compiler top level.

if-in-Tispm form ' Macro

In Zetalisp, (if-in-lispm form) causes form to be evaluated: in Maclisp, form is ignored.
if-in-maclisp form Macro

In Maclisp, (if-in-maclisp form) causes form to be evaluated: in Zetalisp, form s

ignored.

In order to make sure that those macros arc ‘defined when reading the file into the Maclisp
compiler, you must make the file start with a prelude, which should look like:
(eval-when (compile)
(cond ((not (status feature lispm))
(Toad ’|PS:<L.SYS2>CONDIT.LISP|))))
i+ Or other suitable filename
This does nothing when you compile the program on the Lisp Machine. If you compile it with
the Maclisp- compiler. it loads in definitions of the above macros, so that they will be available to
your program. The form (status feature lispm) is gencrally useful in other ways; it cvaluates to
t when evaluated on the Lisp Machine and to nil when evaluated in Maclisp.

There are some advertised variables whose compile-time values affect the operation of the
compiler. Mostly these are for Maclisp compatibility features. You can set these variables by
including in his file forms such as

(eval-when (compile) (setq open-code-map-switch t))
However, these variables scem not to be nceded very often.

run-in-maclisp-switch Variable
If this variable is non-nil, the compiler tries to warn the user about any constructs that
will not-work in Maclisp. By no mecans all Lisp Machine system functions not built in to
Maclisp cause warnings; only those that could not be written by the user in Maclisp (for
example, make-array, value-cell-location, etc.). Also, lambda-list keywords such as
&optional and initialized prog variables arc be mentioned. This switch also inhibits the
warnings for obsolete Maclisp functions. The default value of this variable is nil.

obsolete-function-warning-switch ’ Variable
If this variable is non-nil, thc compiler trics to warn the user whenever an obsolete
Maclisp-compatibility function such as maknam or samepnamep is used. The default
value is t.

allow-variables-in-function-position-switch Variable
If this variable is non-nil, the compiler allows the use of the name of a variable in
function position to mean that the variable's value should be funcalled. This is for
compatibility with old Maclisp programs. The default value of this variable is nil.

PS:KLMAN>COMPIL.TEXT.106 ' 8-JUN-84

Maclisp Compatibility 310 , Lisp Machine Manual

open-code-map-switch Variable
If this variable is non-nil. the compiler attempts to produce inline code for the mapping
functions (mapc. mapcar. cic., but not mapatoms) if the function being mapped is an
anonymous lambda-cxpression. The generated code is faster but larger. The default value
ist. ‘

If you want to turn off open coding of these functions, [t is preferable to usc (declare
(notinline mapc mapcar ...)).

inhibit-style-warnings-switch Variable
If this variable is non-nil. all compiler style-checking is turned off. Style checking is used
to issuc obsolete function warnings, won't-run-in-Maclisp warnings, and other sorts of
warnings. ‘The default value is nil. Sce also the inhibit-style-warnings macro, - which
acts on one level only of an expression.

compiler-let ((variable value)..) body... Macro

Allows local rebinding of global switches that affect cither compilation or the behavior of
user-written macros. Its syntax is like that of let, and in the interpreter it is identical to
let. When encountered in compiled code, the variables arc bound around the compilation
of body rather than around the cxecution at a later time of the compiled code for body.
For cxample,
Example:

(compiler-let ((open-code-map-switch nil))

(mapc (function (lambda (x) ...)) foo))

prevents the compiler from open-coding the mapc.

The same results can be obtained more clcanly using declare. User-written macros can
examine the declarations using getdecl.

The next three functions are primarily for Maclisp compatibility. In Maclisp, they are
declarations, uscd within a declare at top level in the file.

*axpr symbol.. Special form
Declares cach symbol to be the name of a function. In addition it prevents these
functions from appearing in the list of functions referenced but not defined, printed at the

cnd of the compilation.

*lexpr symbol... Special form
Declares cach symbol to be the name of a function. In addition it prevents these
functions from appcaring in the list of functions referenced but not defined, printed at the

end of the compilation.

*fexpr symbol.. Special form
Declares cach symbol to be the name of a special form. In addition it prevents these
names from appcaring in the list of functions referenced but not defined, printed at the

end of the compilation.

PS:<ILMAN>COMPIL.TEXT.106 8-JUN-84

Lisp Machine Manual 37 . Putting Data in QIFAST. Files

17.8 Putting Data in QFASL Files

It is possible to make a QFASL file containing data, rather than a compiled program. This
can be useful to speed up loading of a data structure into the machine, as compared with reading
in printed representations. Also, -certain data structures such as arrays do not have a convenient
printed representation as text, but can be saved in QFASL files. For example, the system stores
fonts this way. Bach font is in a QIFASL. file (on the SYS: FONTS; dircctory) that contains the
data structures for that font. When the file is loaded. the symbol that is the name of the font
gets sct to the array that represents the font. Putting data into a QFASL. file is often referred to
as “fasdumping the data”.

In compiled programs, the constants are saved in the QFASI. file in this way. The compiler
optimizes by making constants that are equal become eq when the file is loaded. 'This does not
happen when you make a data file yourself; identity of objects is preserved. Note that when a
QEASL file is loaded, objects that were eq when the file was written are still eq: this does not
normaily happen with text files.

The following types of objects can be represented in QFFASL files: Symbols (uninterned or
uninterned), numbers of all Kinds, lists, strings, arrays of all kinds, namecd structurcs, instances,
and FEFs.

:fasd-form o Operation on instances

When an instance is fasdumped (put into a QFASL file), it is sent a :fasd-form message,
which must return a Lisp form that, when evaluated. will recreate the cquivalent of that
instance. 'This is because instances arc often part of a large data structure, and simply
fasdumping all of the instance variables and making a new instance with those same
values is unlikely to work. Instances remain eq; the :fasd-form message is only sent the
first time a particular instance is encountered during writing of a QIFASL file. If the
instance does not accept the :fasd-form message, it cannot be fasdumped.

Loading a QFASL. file in which a named structure has been fasdumped creates a new named
structure with components identical to those of the one that was dumped. Then the :fasd-fixup
operation is invoked, which gives the new structure the opportunity to correct its contents if they
are not supposed to be just the same as what was dumped. :

The meaning of a QFASL file is greatly affected by the package used for loading it.
Thercfore, the file itsclf says which package to use.

In dump-forms-to-file, you can spccify the package to use by including a :package
attribute in the attribute-list argument. For cxample, if that argument is the list (:package "SI")
then the file is dumped and loaded in the si package. If the package is not specificd in this way,
user is used. The other fasdumping functions always use user.

dump-forms-to-file filename forms-list &optional attribute-list
Writes a QFASL file named filename which contains, in cffect, the forms in forms-list.
That is to say, when the file is loaded, its effect will be the same as evaluating those

forms.

PS:KLLMAN>COMPIL.TEXT.106 8-JUN-84

Putting Data in QIFASIL Files RIE I isp Machine Manual

Ixample:
(dump-forms-to-file "foo" ‘((setq x 1) (setq y 2)))
(1oad "foo")
X =>

1
y = 2

attribute-list is the file attribute list to store in the QFASI. file. It is a list of alternating
keywords and values. and corresponds to the -*- line of a source file. The most useful
keyword in this context is :package. whose value in the attribute list specifies the package
to be used both in dumping the forms and in loading the file. If no :package keyword
is present, the file will be loaded in whatever package is current at the time.

compiler:fasd-symbol-value filcname symibol
Writes a QIFASI. file named filename which contains the value of symbol. When the file
is loaded. symbol will be setq'ed to the same value. filename is parsed and defaulted with
the default pathname defaults. The file type defaults to :gfasl.

compiler:fasd-font name
Writes the font named name into a QFASL file with the appropriate name (on the SYS:

FONTS; dircctory).

compiler:fasd-file-symbols-properties filename symbols properties dump-values-p
dump-functions-p new-symbol-function
This is a way to dump a complex data structure into a QFASL file. The values, the
function dcfinitions, and some of the properties of certain symbols are put into the
QFASL file in such a way that when the file is loaded the symbols will be setqed,
fdefined, and putpropped appropriately. The user can control what happens to symbols
discovered in the data structurcs being fasdumped.

filename is the name of the file to be written. It is dcfaulted with the default pathname
defaults. The file type defaults to "QFASL".

symbols is a list of symbols to be processed. properties is a list of propertics which are to
be fasdumped if they are found on the symbols. dump-values-p and dump-functions-p
control whether the values and function definitions are also dumped.

new-symbol-function is called whenever a new symbol is found in the structure being
dumped. It can do nothing, or it can add the symbol to the list to be processed by
calling compiler:fasd-symbol-push. The value returncd by new-symbol-function is
ignored.

PS:KI.MAN>COMPIL.TEX'T.106 8-JUN-84

Lisp Machine Manual 319 - Analyzing QIFASI. Files

17.9 Analyzing QFASL Files

QIFASL. files are composed of 16-bit nibbles. The first two nibbles in the file contain fixed
values, which arc there so the system can tell a proper QEFASL. file. ‘the next nibble is the
beginning of the first group. A group starts with a nibble that specifies an operation. It may be
followed by other nibbles that are arguments.

Most of the groups in a QIFASI. file arc there to construct objects when the file is loaded.
These objects are recorded in the fasl-table. Fach time an object is constructed. it is assigned the
next sequential index in the fasl-table. "The indices arc used by other groups later in the file, to
refer back to objects alrcady constructed.

‘To prevent the fasl-table from becoming too large, the QFASL. file can be divided into
whacks. ‘The fasl-table is cleared out at the beginning of cach whack.

The other groups in the QFASL file perform operations such as cvaluating a list previously
constructed or storing an object into a symbol’s function cell or value cell.

If you are having trouble with a QFASL. file and want to find out cxactly what it does when
it is loaded;- you can use UNFASI. to find out.

si:unfasl-print input-file-name :
Prints on *standard-output* a description of the contents of the QFASL file input-file-

name.

si:unfas1-file Input-file-name &optional output-file-name
Writes a description of the contents of the QFASL file input-file-name into the output file.
‘The output file type defaults to :unfasl and the rest of the pathname defaults from input-
Jile-name.

PS:KLLMAN>COMPIL.TEXT.106 ' 8-JUN-84

	301_TheCompiler
	302_TheCompiler
	303_TheCompiler
	304_TheCompiler
	305_TheCompiler
	306_TheCompiler
	307_TheCompiler
	308_TheCompiler
	309_TheCompiler
	310_TheCompiler
	311_TheCompiler
	312_TheCompiler
	313_TheCompiler
	314_TheCompiler
	315_TheCompiler
	316_TheCompiler
	317_TheCompiler
	318_TheCompiler
	319_TheCompiler

