Macros 320 . Lisp Machine Manual

18. Macros

18.1 Introduction to Macros

If eval is handed a list whose car is a symbol, then eval inspects the definition of the symbol
w find out what to do. If the definition is a cons, and the car of the cons is the symbol macro,
then the definition (i.c. that cons) is called a macro. The cdr of the cons should be a function of
two arguments. eval applies the function to the form it was originally given, takes whatever is
returned, and evaluates that in licu of the original form.

Here is a simple example. Supposc the definition of the symbol first is
(macro lambda (x ignore) '
(list 'car (cadr x)))
This thing is a macro: it is a cons whose car is the symbol macro. What happens if we try to
cevaluate a form (first (@ b ¢))? Well. eval sces that it has a list whose car is a symbol (namely,
first), so it looks at the definition of the symbol and sces that it is a cons whose car is macro;
the definition is a macro.

eval takes the cdr of the cons, which is supposed to be the macro’s expander function, and
calls it providing as arguments the original form that eval was handed. and an environment data
structure that this macro docs not use. So it calls (lambda (x ignore) (list 'car (cadr x))) and
the first argument is (first '(@ b c)). Whatever this returns is the expansion of the macro call. It
will be cvaluated in place of the original form.

In this casc, x is bound to (first '(a b ¢)), (cadr x) cvaluates to ‘(@ b ¢), and (list 'car
(cadr x)) cvaluates to (car (@ b ¢)), which is the cxpansion. eval now cvaluates the expansion.
(car ’(a b ¢)) returns a, and so the result is that (first '(a b ¢)) rcturns a.

What have we done? We have defined a macro called first. What the macro docs is to
translate the form to some other form. Our translation is very simple—it just translates forms that
look like (first x) into (car x), for any form x. We can do much more interesting things with
macros, but first we show how to define a macro.

macro Special form
The primitive special form for defining macros is macro. A macro dcfinition looks like
this:
(macro name (form-arg env-arg)
body)
name can be any function spec. form-arg and env-arg must be variables. body is a
sequence of Lisp forms that expand the macro; the last form should return the expansion.

To define our first macro, we would say
(macro first (x ignore)
(list ’'car (cadr x)))
Only sophisticated macros need to use value passed for the env-arg; this one docs not need it, so
the argument variable ignore is used for it. Sce page 324 for information on it.

PS:KILMAN>MACROS.TEXT.104 : 8-JUN-84

Lisp Machine Manual 321 Introduction to Macros

- Here are some more simple examples of macros. Suppose we want any form that Jooks like
(addone) to be translated mto (plus™ 1°x). To define a macro to do this we would say
(macro addone (x ignore)
(1ist "plus '1 (cadr x)))

Now say we wanted a macro which would translate (mcrement Xx) into (setq x (1+ x). ‘This

wuuld be:
(macro increment (x ignore)

(Tist 'setq (cadr x) (list '1+ (cadr x))))
Of course. this macro is of limited uscfulness. The reason is that the form in the cadr of the
~increment form had better be a symbol. If you tried (increment (car x)). it would be translated
into (setq (car x) (1+ (car x))), and setq would complain. (If you're interested in how to fix
this problem. sce setf (page 30): but this is irrclevant to how macros work.)

You can see from this discussion that macros arc very different from functions. A function
would not be able to tell what kind of subforms are present in a call to it; they get evaluated
before the function ever sees them. However, a macro gets to look at the whole form and see
just what is going on there. Macros are nor functions; if first is defined as a macro, it is not
meaningful to apply first to arguments. A macro does not take arguments at all; its cxpander
function takes a Lisp form and turns it into another Lisp form.

‘The purpose of functions is to compute; the purpose of macros is to rranslate. Macros are
used for a variety of purposes, the most common being extensions to the Lisp language. For
example, Lisp is powerful cnough to express many different control structures, but it does not
provide cvery control structurc anyone might ever possibly want. Instead, if a user wants some
kind of control structure with a syntax that is not provided, he can translate it into some form
that Lisp does know about,

For cxample, somcone might want a limited iteration construct which increments a variable by
one until it cxceeds a limit (like the FOR statement of the BASIC language). He might want it
to look like

(for a 1 100 (print a) (print (= a a)))
To get this, he could write a macro to translate it into
(do ((a 1 (1+ a))) ((> a 100)) (print a) (pr1nt (* a a)))
A macro to do this could be defined with
(macro for (x ignore)
(list* 'do
(list (list (second x) (third x)
(list "1+ (second x))))
(list (list '> (second x) (fourth x)))
(cddddr x)))
for can now be used as if it were a built-in Lisp control construct.

PS:<LMAN>MACROS.TEXT.104 8-JUN-84

[2]

Aids for Defining Macros » Lisp Machine Manual

18.2 Aids for Defining Macros

The main problem with the definition for the for macro is that it is verbose and clumsy. - If it
is that hard to write a macro o do a simple specialized iteration construct, one would wonder
how anyone could writec macros of any rcal sophistication,

There are two things that make the definition so inclegant. One is that the programmer must
write things like (second x) and (cddddr x) to refer to the parts of the form he wants to do
things with. ‘The other problem is that the long chains of calls to the list and cons functions are
very hard to read.

Two features are provided to solve these two problems. The defmacro macro solves the
former, and the “backquote™ (*) reader macro solves the latter.

18.2.1 Defmacro

Instead of referring to the parts of our form by (second x) and such, we would like to give
names to the various picces of the form. and somchow have the (second x) automatically
generated. ‘This is- done by a macro called defmacro. It is casiest to explain what defmacro
does by showing an ecxample. Here is how you would write the for macro using defmacro:

(defmacro for (var lower upper . body)
(list+ 'do
(list (list var Tower (1list "1+ var)))
(list (1ist '> var upper))
body))

The (var lower upper . body) is a parrern to match against the body of the form (to be
more precise, to match against the cdr of the argument to the macro’s expander function). If
defmacro trics to match the two lists

(var lower upper . body)
and

(a1 100 (print a) (print (* a a)))
var is bound to the symbol a, lower to the fixnum 1, upper to the fixnum 100, and body to
the list ((print a) (print (* a a))). var, lower, upper, and body arc¢ then used by the body of
the macro definition.

defmacro Macro

defmacro is a gencral purposc macro-defining macro. A defmacro form looks like
‘(defmacro name pattern . body)

name is the name of the macro to be defined; it can be any function spec (see section
11.2, page 223). Normally it is not uscful to define anything but a symbol, since that is
the only place that the evaluator looks for macro dcfinitions. However, sometimes it is
uscful to definc a :property function spec as a macro, when some part of the system
(such as locf) will look for an expander function on a property.

The pattern may be anything made up out of symbols and conscs. When the macro is
called, pattern is matched against the body of the macro form; both pattern and the form

PS:KLMAN>MACROS. TEXT.104 o 8-JUN-84

Lisp Machine Manual 323 Aids for Defining Macros

are car'ed and cdried identically, and whenever a non-nil symbol is hit in partern, the
symbol is bound to the corresponding part of the form. All of the symbols in pattern can
be used as variables within body. body is cevaluated with these bindings in effect, and its
result is returned to the cvaluator as the expansion of the macro.

Note that the pattern need not be a list the way a lambda-list must. In the above cxample,
the pattern was a dotted list, since the symbol body was supposed to match the cddddr of the
‘macro form. If we wanted a new iteration form, like for except that our example vmuld look like

(for a (1 100) (print a) (print (* a a)))
(just because we thought that was a nicer syntax), then we could do it merely by modifying the
pattern of the defmacro above: the new pattern would be (var (lower upper) . body).

Here is how we would write our other examples using defmacro:

(defmacro first (the-list)
(1ist ’'car the-list))

(defmacro addone (form)
(list 'plus 1 form))

(defmacro increment (symbol)
(1ist 'setq symbol (list '1+ symbol}))

All of these were very simple macros and have very simple patterns, but these examples show
that we can replace the (cadr x) with a rcadable mnemonic name such as the-list or symbol,
which makes the program clearer, and cnables documentation facilities such as the arglist function
to describe the syntax of the special form defined by the macro.

The pattern in a defmacro is more like the lambda list of a normal function than revealed
above. It is allowed to contain certain &-kecywords. Subpatterns of the lambda list pattern can
also use &-keywords, a usage not allowed in functions,

&optional is followed by variable, (variable), (variable default), or (variable default present-p),
cxactly the same as in a function. Note that default is still a form to be cvaluated, even though
variable is not being bound to the value of a form. variable docs not have to be a symbol; it can
be a pattern. In this case the first form is disallowed becausc it is syntactically ambigous. The
pattern must at lcast be cnclosed in a singleton list. If variable is a pattern, default can be
evaluated more than once. FExample:

(defmacro foo (&optional ((x &optional y) '(a)))
, o) ‘ '
Here the first argument of foo is optional, and should be a list of onc or two clements which
become x and y. If foo is given no arguments, the list (a) is decomposed to get x and y, so
that x’s valuc is a and ys valuc is nil.

Using- &rest is the same as using a dotted list as the pattcrn except that it may be casier to
read and leaves a place to put &aux.

PS:KI.MAN>MACROS.TEXT.104 8-JUN-84

Aids for Defining Macros R Lisp Machine Manual

When 8key is used in a definacro pattern, the keywords are decoded at macro expansion
time. Therefore, they must be constants. Iixample: ‘

(defmacro 11 (&key a b c¢)
(1ist "list a b c))

(11 :b 6 :c (car d))
==> (list nil 5 (car d))

&aux is the same in a macro as in a function, and has nothing 0 do with pattern matching.
defmacro implements a few additional keywords not allowed in functions.

&body is identical to &rest except that it informs the cditor and the grinder that the
remaining subforms constitute a “body™ rather than ordinary arguments and should be indented
accordingly. Example:

(defmacro with-open-file
((streamvar filename &rest options)
&body body)

-)

&whole causcs the variable that follows it to be bound to the entire macro call, just as the
SJorm-arg variable in macro would be. &whole cxists to make defmacro able to do anything that
macro can be used for, for the sake of Common Lisp, in which defmacro is the primitive and
macro does not exist. &whole is also uscful in macrolet.

&environment causcs the variable that follows it to be bound to the Jocal macros environment
of the macro call being expanded. This is uscful if the code for expanding this macro nceds to
invoke macroexpand on subforms of the macro call. Then, to achicve correct interaction with
macrolet, this local macros environment should be passed to macroexpand as its second
argument.

&list-of pattern requires that the corresponding position of the form being translated must
contain a list (or nil). It matches partern against cach eclement of that list. Each variable in
pattern is bound to a list of the corresponding values in cach element of the list matched by the
&list-of. This may be clarificd by an example. Supposc we want to be able to say things like:

(send-commands (aref turtle-table i)
(forward 100)
(beep)
(1eft 90)
(pen 'down ‘red)
(forward 50)

(pen 'up))

PS:KLLMAN>MACROS. TEXT.104 8-JUN-84

I isp Machine Manual 325 Aids for Defining Macros

- We could define a send-commands macro as follows

(defmacro send-commands (object
&body &list-of (command . arguments))
‘(let ((o .,object))
, (mapcar #'(lambda (com args) ‘(send o ’',com . ,args))
command arguments)))

Note that this example uses &body together with &list-of. so you don't sce the list itself; the list
is just the rest of the macro-form.

You can combine &optional and &list-of. Consider the following cxample:

(defmacro print-let (x &optional &list-of
((vars vals)
"((*print-basex* 10.)
(*print-radix* nil))))
*((lambda (,@vars) (print ,x))
,@vals))

(print-let foo) ==
((1ambda (*print-base* *print-radix»)
(print foo))
10 nil)

(print-let foo ((bar 3))) ==>
((lambda (bar)
(print foo))

In this example we aren’t using .&body or anything like it, so you do sec the list itself; that is
why you sce parentheses around the (bar 3). :

18.2.2 Backquote

Now we dcal with the other problem: the long strings of calls to cons and list. This
problem is rclieved by introducing some new characters that are special to the Lisp reader. Just
as the single-quote character makes it easier to type things of the form (quote x), so backquote
and comma make it casicr to type forms that crcate new list structure. They allow you to create
a list from a template including constant and variable parts. '

The backquote facility is used by giving a backquote character ('), followed by a list or
vector. If the comma character does not appear within the text for the list or vector, the
backquote acts just like a single quote: it creates a form which, when evaluated, produces the list

or vector specified. For cxample,

PS:KI.MAN>MACROS, TEXT.104 8-JUN-84

Alds for Defining Macros 326 Lisp Machine Manual

'(abc)=>(abc)

‘(abc)=>(abc)

‘#(a b) => #(a b)
So in the simple cases, backquote is just like the regular single-quote macro. The way to get it to
do interesting things is o include a comma somewhere inside of the form following the
backquote. The comma is followed by a form, and that form gets evaluated cven though it is
inside the backquote. For example,

(setq b 1)

‘(fabc) => (abc)

‘(a ,bc) =>(alc)

‘(abc ,(+ b 4) ,(- b 1) (def ,b)) => (abc 5 0 (def 1))

"#(a ,b) => #(a 1)
In other words, backquote quotes everything excepr expressions preceded by a comma; those get
cvaluated.

The list or vector following a backquote can be thought of as a template for some new data
structure. ‘The parts of it that arc preceded by commas are forms that fill in slots in the template;
cverything else is just constant structure that appears as written in the result. This is usually what
you want in the body of a macro. Some of the form gencrated by the macro is constant, the
same thing on every invocation of the macro. Other parts are different every time the macro is
called, often being functions of the form that the macro appeared in (the arguments of the
macro). ‘The latter parts are the ones for which you would use the comma. Several examples of
this sort of use follow. ’

When the reader sces the *(a ,b ¢©) it is actually gencrating a form such as (list 'a b 'c).
The actual form generated may use list, cons, append, or whatever might be a good idea; you
should never have to concern yourself with what it actually turns into. All you need to care
about is what it cvaluates to. Actually, it docsn't use the regular functions cons, list, and so
forth, but uses special ones instcad so that the grinder can recognize a form which was created
with the backquote syntax, and print it using backquote so that it looks like what you typed in.
You should never write any program that depends on this, anyway, bccause backquote makes no
guarantecs about how it does what it does. In particular, in some circumstances it may decide to
create constant forms, which will cause sharing of list structure at run time, or it may decide to
create forms that will create new list structure at run time. For cxample, if the reader sees *(r
.,nil), it may producc the same thing as (cons’rnil), or *(r.nil). Be careful that your program
does not depend on which of these it does.

This is generally found to be pretty confusing by most people; the best way to explain
further scems to be with examples. Here is how we would write our three simple macros using
both the defmacro and backquote facilities.

PS:<LLMAN>MACROS.TEX'T.104 8-JUN-84

Lisp Machine Manual 327 Aids for Defining Macros

(defmacro first (the-list)
‘(car ,the-list))

(defmacro addone (form)
‘(plus '1 ,form))

(defmacro increment (symbol)
‘(setq ,symbol (1+ .symbol)))

To demonstrate finally how casy it is to define macros with these two facilities, here is the
final form of the for macro,
(defmacro for (var lower upper . body)
‘(do ((.,var ,lower (1+ ,var))) ((> ,var ,upper)) . ,body))
Look at how much simpler that is than the original definition. Also. look how closely it
resembles the code it is producing. The functionality of the for really stands right out when
written this way.

If a comma inside a backquote form is followed by an at-sign character (‘|@’), it has a special
meaning. The *,@" should be followed by a form whose value is a list; then cach of the
clements of -the list is put into the list being created by the backquote. In other words, instcad of
generating a call to the cons function, backquote gencrates a call to append. For cxample, if a
is bound to (x y z), then ‘(1 ,a 2) would cvaluate to (1 (x y z) 2), but ‘(1 ,@a 2) would
evaluate to (1 x y z 2).

Here is an cxample of a macro dcfinition that uses the ,@" construction. One way to define
do~-forever would be for it to expand
(do-forever forml form2 form3)
into
(tagbody
a forml
Jorm2
Jorm3

(go a))

You could define the macro by
(defmacro do-forever (&body body)
‘(tagbody
a ,@body
(go a)))
(This definition has the disadvantage of intcrfering with use of the go tag a to go from the body
of the do-forever to a tag dcfined outside of it. A more robust implementation would construct
a new tag cach time, using gensym.) '

A similar construct is ‘,’ (comma, dot). This means thc same thing as ‘,@’ except that the
list which is the value of the following form may be modified destructively; backquote uses
nconc rather than append. This should, of course, be used with caution.

PS:<I.LMAN>MACROS.TEXT.104 8-JUN-84

Aids for Defining Macros 128 Lisp Machine Manual

Backquote does not make any guarantees about what parts of the structure it shares and what
parts it copies. You should not do destructive operations such as nconc on the results of
backquote forms such as

“(.a b c d)
since backquote might choose to implement this as
(cons a (b c d)) '
and nconc would smash the constant. On the other hand, it would be safe to nconc the result
of ' :
‘(ab .c ,d)
since any possible expansion of this would make a new list. One possible expansion is
(1ist 'a 'b c d)

Backquote of course guarantees not to do any destructive operations (rplaca, rplacd, nconc)
on the components of the structure it builds. unless the *,." syntax is used.

Advanced macro writers sometimes write macro-defining “macros: forms which expand into
forms which., when cvaluated, define macros. In such macros it is often uscful to use nested
backquote constructs. For example, here is a very simple version of defstruct (sce page 374)
which does not allow any options and only the simplest slot descriptors. Its invocation looks like:

(defstruct (name)

iteml item2 ...)
We would like this form to cxpand into

(progn

(defmacro iteml (x) *(aref ,x 0))
(defmacro item2 (x) ‘'(aref ,x 1))
(defmacro irem3 (x) ‘(aref ,x 2))
(defmacro item4d (x) '(aref ,x 3))

:)

Here is the macro to perform the expansion:
(defmacro defstruct ((name) . items)
(do ((item-list items (cdr item-1list))
(ans nil)
(i 0 (1+1)))
({null item-1ist)
“(progn . ,(nreverse ans)))
(push ‘(defmacro ,(car item-list) (x)
‘(aref ,x ,’,1))

ans)))

The interesting part of this definition is the body of the (inner) defmacro form:
‘(aref ,x ,’,i)
Instead of using this backquote construction, we could have written
(1ist 'aref x ,i)
That is, the ,, acts like a comma that matches the outer backquote, while the comma preceding
the x matches with the inner backquote. Thus, the symbol i is cvaluated when the defstruct
form is expanded, whercas the symbol x is evaluated when the accessor macros are expanded.

PS:<LLMAN>MACROS.TEXT.104 8-JUN-84

I.isp Machine Manual 329 ' I ocal Macro Definitions

- Backquote can be useful in situations other than the writing of macros. Whenever there s a
picce of list structure to be consed up, most of which is constant, the use of backquote can make
the program considerably clearer.

18.3 Local Macro Definitions

defmacro or macro defines a macro whose name has global scope; it can be used in any
function anywhere (subject to separation of name spaces by packages). You can also make local
macro definitions which are in cffect only in one piece of code. 'This is done with macrolet.
Like lexical variable bindings made by let or the local function definitions made by flet, macrolet
macro definitions are in cffect only for code contained lexically within the body of the macrolet
construct. '

macrolet (local-macros...) body... Special form
Executes body and returns the values of the last form in it, with local macro definitions in

cffect according to local-macros.

Each element of Jocal-macros looks like the cdr of a defmacro form:

~ (name lambda-list macro-body...)
and it is interpreted just thce same way. However, name is only thus defined for
expressions appearing within body.

(macrolet ((ifnot'(x y . z) ‘(if (not ,x) ,y . ,2)))
(ifnot foo (print bar) (print t)))

==> (if (not foo) (print bar) (print t))

It is permissible for name to have a global definition also, as a macro or as a function.
The global definition is shadowed within body.
(macrolet ((car (x) ‘(cdr (assq ,x '((a . ferrari)
‘ (b . ford))))))
...(print (car symbol))...)
makes car have an unusual meaning for its ¢xplicit use, but duc to lexical scoping it has
no cffect on what happens if print calls car.

macrolet can also hide other local definitions made by macrolet, flet or labels (page 45).

18.4 Substitutable Functions

A substitutable function is a function that is open coded by the compiler, It is like any other
function when applied, but it can be expanded instead, and in that regard resembles a macro.

defsubst Special form
defsubst is used for defining substitutable functions. It is used just like defun.
(defsubst name lambda-list . body)
and does almost the same thing. 1t defines a function that exccutes identically to the one
that a similar call to defun would define. The difference comes when a function that calls
this onc is compiled. 'Then, the call is open-coded by substituting the substitutable

PS:KLLMAN>MACROS.TEXT.104 8-JUN-84

Substitutable IFunctions : 330 ‘ Lisp Machine Manual

function’s definition into the code being compiled. The function itsell” looks like (named-
subst name lambda-list . body). Such a function is called a subst. For example, if we
define

(defsubst square (x) (* x x))

(defun foo (a b) (square (+ a b)))
then if foo is used interpreted. square works just as if it had been defined by defun. If
foo is compiled, however, the squaring is substituted into it and it produccs the same
code as 4

(defun foo (a b) (let ((tem (+ a b))) (* tem tem)))
square’s definition would be

(named-subst square (x) (* x x))
(The internal formats of substs arc explained in scction 11.5.1, page 230.)

A similar square could be defined as a macro, but the simple way
(defmacro square (x) ‘(* .x ,x))
has a bug: it causes the argument to be computed twice. The simplest correct definition
as a macro is
(defmacro square (x)
(once-only (x)
(* ox ,x)))

See page 338 for information on once-only.

In general, anything that is implemented as a subst can be re-implemented as a macro,
just by changing the defsubst to a defmacro and putting in the appropriatc backquote
and commas, using once-only or creating temporary variables to make sure the
arguments arc computed once and in the proper order. The disadvantage of macros is
that thcy are not functions, and so cannot be applied to arguments. Also, the cffort
required to guarantec the order of evaluation is a disadvantage. 'Their advantage is that
they can do much more powerful things than substs can. This is also a disadvantage since
macros provide more ways to get into trouble. If something can be implemented cither as
a macro or as a subst, it is generally better to make it a subst.

The lambda-list of a subst may contain &optional and &rest, but no other lambda-list
keywords. If there is a rest argument, it is replaced in the body with an explicit call to
list:
(defsubst append-to-foo (&rest args)
(setq foo (append args foo0)))

(append-to-foo x y z)
expands to
(setq foo (append (list x y z) foo))

Rest arguments in substs are most useful with apply. Because of an optimization, if
(defsubst xhack (&rest indices)
(apply 'xfun xargl indices))
has been done then
(xhack a (car b))
is equivalent to

PS:KL.MAN>MACROS.TEXT.104 8-JUN-84

Lisp Machine Manual 33 Hints to Macro Writers

(xfun xargl a {car b))
If xfun is itsclf a subst, it is expanded in turn,

When a defsubst is compiled, its list structure definition is kept around so that calls can
still be open=coded by the compiler. But non-open-coded calls to the function run at the
speed of compiled code. The ‘interpreted definition is kept in the compiled definition’s
debugging info alist (sce page 242). Undeclared free variables used in a defsubst being
compiled do not get any warning, because this is a common practice that works properly
with nonspecial variables when calls arc open coded.

If you arc using a defsubst from outside the program to which it belongs, you -might
sometimes be bhetter off if it is not open-coded. The decrease in speed might not be
significant, and you would have the advantage that you would not need to recompile your
program if the definition is changed. You can prevent open-coding by putting dont-
optimize around the call to the defsubst.

(dont-optimize (xhack a (car b)))
Sce page 306. '

Straightforward substitution of the arguments could cause arguments to be computed more
than once, or in the wrong order. For instance, the functions

(defsubst reverse-cons (x y) (cons y x))

(defsubst in-order (a b c) {(and (< a b) (< b c)))
would present problems. When compiled, because of the substitution a call to reverse-
cons would evaluate its arguments in the wrong order, and a call to in-order could
cvaluate its second argument twice. In fact, a morc complicated form of substitution
(implemented by si:sublis-eval-once, page 348) is used so that local variables are
introduced as necessary to prevent such problems.

Note that all occurrences of the argument names in the body arc replaced with the
argument forms, wherever they appear. Thus an argument name should not be used in
the body for anything clse, such as a function name or a symbol in a constant.

As with defun, name can be any function spec.

18.5 Hints to Macro Writers

There are many useful techniques for writing macros. Over the ycars, Lisp programmers have
discovered techniques that most programmers find uscful, and have identificd pitfalls that must be
- avoided. - This scction discusses some of these techniques and illustrates them with examples.

The most important thing to kcep in mind as you learn to writc macros is that the first thing
you should do is figure out what the macro form is supposed to cxpand into, and only then
should you start to actually write the code of the macro. If you have a firm grasp of what the
generated Lisp program is supposed to look like, you will find the macro much ecasier to write.

In general any macro that can be written as a substitutable function (see page 329) should be
written as one, not as a macro, for several rcasons: substitutable functions are casier to write and
to rcad; they can be passed as functional arguments (for cxample, you can pass them to

PS:KILMAN>MACROS. TEXT.104 8-JUN-84

ints to Macro Writers iR Lisp Machine Manual

mapcar): -and there are some subtleties that can occur in macro definitions that need not be
worried about in substitutable functions, A macro can be a substitutable function only if it has
exactly the semantics of a function, rather than of a special form. The macros we will see in this
section are not semantically like functions; they must be written as macros.

18.5.1 Nam_e Conflicts

One of the most common errors in writing macros is best illustrated by example. Supposc we
wanted o write dolist (see page 74) as a macro that expanded into a do (sce page 70). The first
step, as always, is to figure out what the expansion should look like. l.et's pick a representative
example form, and figure out what.its cxpansion should be. Here is a typical dolist form.

(dolist (element (append a b))
(push element *big-lists)
(foo 2lement 3))

We want to create a do form that does the thing that the above dolist form says to do. That
is the basic goal of the macro: it must cxpand into code that does the same thing that the
original code says to do, but it should be in terms of cxisting Lisp constructs. The do form
might look like this;

(do {(1ist (append a b) (cdr list))
(element))
((null 1list))
(setq element (car list))
(push element *big-lists)
(foo element 3))

Now we could start writing the macro that would generate this code, and in general convert
any dolist into a do, in an analogous way. However, therc is a problem with the above scheme
for expanding the dolist. The above example’s expansion works fine. But what if the input form
had been the following:

(dolist (list (append a b))
(push list »big-liste)
(foo Tist 3))

This is just like the form we saw above, cxcept that the programmer happened to decide to
name the looping variable list rather than element. The corresponding expansion would be:

(do ((1ist (append a b) (cdr 1list))
(list))
((npull list))
(setq 1list (car 1list))
(push Tist »big-lists)
(foo list 3))

PS:KLLMAN>MACROS.TEXT.104 8-JUN-84

1 isp Machine Manual KRR} . [ints to Macro Writers

This doesn’t work at allt In fact, this is not even a valid program, since it contains a do that
uses the same variable in two different iteration clauses.

Here's another example that causes trouble:

(let ((1ist nil))
(dolist (element (append a b))
(push element list)
(foo list 3)))

If you work out the expansion of this form, you will sce that there are two variables named
list, and that the programmer meant to refer to the outer one but the generated code for the
push actually uses the inner one. :

The problem here is an accidental name conflict. This can happen in any macro that has to
create a new variable. If that variable ever appears in a context in which user code might access
it, then you have to worry that it might conflict with some other name that the user is using for
his own program.

Onc way to avoid this problem is to choose a name that is very unlikely to be picked by the
user, simply by choosing an unusual name, in a package which only you will write code in. 'This
will probably work, but it is inclegant since there is no guarantce that the user won't just happen
to choosc the same name. ‘The way to avoid the name conflict reliably is to use an uninterned
symbol as the variable in the gencrated code. 'The function gensym (sce page 133) is useful for
creating such symbols. '

Here is the expansion of the original form, using an uninterned symbol created by gensym.

(do ((#:90005 (append a b) (cdr #:90005))
(element))
((nrull #:90005))
(setq element (car #:900056))
(push element *big-lists)
(foo element 3))

This is the right kind of thing to expand into. (This is how the expression would print; this
text would not rcad in properly because a new uninterned symbol would be created by each use
of #:.) Now that we understand how the expansion works, we arc rcady to actually write the
macro. Here it is:

(defmacro dolist ((var form) . body)
(let ((dummy (gensym)))
‘(do ((,dummy ,form (cdr ,dummy))
(.var))
((nul ,dummy))
(setq ,var (car ,dummy))

,body)))

PS:KI.MAN>MACROS. TEXT.104 8-JUN-84

Hints 1o Macro Writers RRE) L isp Machine Manual

Many system macros do not use gensym for the internal variables in their oxpansions.
Instead they use symbols whose print names begin and end with a dot. "This provides meaningful
names for these variables when looking at the generated code and when looking at the state of a
computation in the error-handler. ‘These symbols are in the si package: as a result, @ name
conflict is possible only in code which uses variables in the si package. This would not normally
happen in user code. which resides in other packages.

18.5.2 Block-Name Conflicts

A related problem occurs when you write a macro- that cxpands into a prog or do (or
anyvthing equivalent) behind the user’s back (unlike dolist, which is documented o be like do).
Consider the error-restart special form (sec page 724). Suppose we wanted to implement it as a
macro that expands into a do-forever, which becomes a prog. Then the following (contrived)
Lisp program would not behave correctly:

(dolist (a list)
(error-restart ((sys:abort error) "Return from F00.")
(cond ((> a 10)
(return 5))
((> a 4)
(ferror 'lose "You lose.")))))

The problem is that the return would return from the error-restart instcad of the prog.

There are two possible ways to avoid this. The best is to make the cxpanded code use only
explicit block’s with obscure or gensymmed block names, and ncver a prog or do.

The other is to give any prog or do the namc t. t as a prog name is special; it causcs the
prog to generate only a block named t, omitting the usual block named nil which is normally
generated as well. Because only blocks named nil affect return, the problem is avoided.

When error-restart’s expansion is supposed to rcturn from the prog named t, it uses return-
from t.

Macros like dolist specifically should cxpand into an ordinary do, because the user expects to
be able to exit them with return.

18.5.3 Macros Expanding into Many Forms

Somctimes a macro wants to do several different things when its cxpansion is ecvaluated.
Another way to say this is that somectimes a macro wants to cxpand into several things, all of
which should happen scquentially at run time (not macro-expand time). For cxample, suppose
you wanted to implement defconst (scc page 34) as a macro. defconst must do two things,
declare the variable to be special and set the variable to its initial value. (Here we implement a
simplificd defconst that docs only these two things. and doesn’t have any options.) What should
a defconst form cxpand into? Well, what we would like is for an appcarance of

(defconst a (+ 4 b))
in a file to be the same thing as the appearance of the following two forms:

PS:KKLLMAN>MACROS. TEX'T.104 , 8-JUN-84

Lisp Machine Manual ' 335 Hints to Macro Writers

(proclaim '(special a))

(setq a (+ 4 b))
However, because of the way that macros work, they only expand into one form. not two. So
we need to have a defconst form cexpand into once form that is just like having two forms in the
file.

There is such a form. 1t looks like this:
~ (progn (proclaim ’(special a))
(setq a (+ 4 b)))
In interpreted Lisp, it is casy to sce what happens here. This is a progn special form, and so all
its subforms are cvaluated, in turn. The proclaim form and the setq form are evaluated. The
compiler recognizes progn specially and treats cach argument of the progn form as if it had been
cncountered at top level. Here is the macro definition:

(defmacro defconst (variable init-form)
‘(progn (proclaim '(special ,variable))
(setq ,variable ,init-form)))

Here is another example of a form that wants to expand into scveral things. We implement a
special form. called define-command, which is intended to be used in order to define commands
in some interactive user subsystem. For cach command, there are two things provided by the
define-command form: a function that exccutes the command, and a character that should
invoke the function in this subsystem: Suppose that in this subsystem, commands are always
functions of no arguments, and characters arc used to index a vector called dispatch-table to
find the function to use. A typical call 10 define-command would look like;

(define-command move-to-top #\meta-<
(do () ((at-the-top-p))
(move-up-one)))

Expanding into:

(progn (setf (aref dispatch-table #\meta-<)
'move-to-top)
(push 'move-to-top «command-name-1ist»*)
(defun move-to-top ()
(do ()
((at-the-top-p))
(move-up-one)))

)

The define-command cxpands into three forms. The first one scts up the specified character
to invoke this command. The second one puts the command name onto the list of all command
names. The third onc is the defun that actually defines the function itsclf. Note that the setf
and push happen at load-time (when the file is loaded); the function, of course, also gets defined
at load time. (See the description of eval-when (page 305) for more discussion of the differences
between compile time, load time, and eval time.)

PS:KILMAN>MACROS. TEXT.104 | | 8-JUN-84

Hints to Macro Writers 336 I isp Machine Manual

This technique makes Lisp a powerful language in which to implement your own language.
When vou write a large system in Lisp, frequently you can make things much more convenient
and clear by using macros to extend Lisp into a customized language for your application. In the
above example. we have created a little language cxtension: a new special form that defines
commands for our system. It lets the writer of the system attach the code for a command
character to the character itself. Macro cxpansion allows the function definitions and the
command dispatch table to be made from the same source code.

18.5.4 Macros that Surround Code

There is a particular kind of macro that is very useful for many applications. This is a macro
that you place “around” some Lisp code. in order to make the evaluation of that code happen in
a modified context. For a very simple example, we could define a macro called with-output-in-
base. that exccutes the forms within its body with any output of numbers that is done defaulting
to a specified base.

(defmacro with-output-in-base ((base-form) &body body)
“(let ((#*print-base* ,base-form))
.body))
A typical use of this macro might look like:
(with-output-in-base (*default-bases)
(print x) (print y))
which would ¢xpand into
(let ((*print-base+ »default-bases))

(print x) (print y))

This example is too trivial to be very useful; it is intended to demonstrate some stylistic
issucs. ‘There arc standard Zctalisp constructs that arc similar to this macro; sce with-open-file
(page 580) and with-input-from-string (page 473), for cxample. The really interesting thing, of
course, is that you can define your own such constructs for your applications. One very powerful
application of this technique was used in a system that manipulates and solves the Rubik’s cube
puzzle. The system hcavily uses a construct called with-front-and-top, whosc meaning is
“evaluate this code in a context in which this specified face of the cube is considered the front
face, and this other specified face is considered the top face”.

The first thing to keep in mind when you write this sort of macro is that you can make your
macro much clearer 10 people who might read your program if you conform to a set of loose
standards of syntactic style. By convention, the names of such constructs start with “with-". This
scems to be a clear way of expressing the concept that we are setting up a context; the meaning
of the construct is “do this stuff with the following things truc™. Another convention is that any
“parameters” to the construct should appear in a list that is the first subform of the construct,
and that the rest of the clements should make up a body of forms that arc cvaluated sequentially
with the last one returned. All of the examples cited above work this way. In our with-output-
in-base cxample, there was one parameter (the base), which appears as the first (and only)
clement of a list that is the first subform of the construct. The extra level of parcntheses in the
printed representation serves to scparate the “parameter” forms from the “body™ forms so that it
is textually apparent which is which: it also provides a convenient way to provide default
parameters (a good example is the with-input-from-string construct (page 473), which takes two
required and two optional parameters). Another convention/technique is to usc the &body

PS:KI.MAN>MACROS. TEXT.104 8-JUN-84

Lisp Machine Manual : 337 Hints to Macro Writers

keyword in the defmacro (o tell the editor how to indent the clements of the body (see page
324).

The other thing w keep in mind is that control can leave the construct cither by the last
form’s returning, or by a non-tocal exit (go. return or throw). You should write the definition in
such a way that everything is cleaned up appropriately no matter how control exits. In our with -
output-in-base cxample. there is no problem, because non-local exits undo lambda-bindings.
However, in cven slightly more complicated cases. an unwind-protect form (sce page 82) is
needed: the macro must cxpand into an unwind-protect that surrounds the body. with
“cleanup™ forms that undo the context-setting-up that the macro did. For example, using-
resource (sce page 126) expands v

(using-resource (window menu-resource) body...)
into '

(let ((window nil))

(unwind-protect
(progn (setq window
(allocate-resource ’menu-resource))
body. . .)
(and window
(deallocate-resource 'menu-resource window))))

This way the allocated resource item is deallocated whenever control leaves the using-resource
special form.

18.5.5 Multiple and Out-of-Order Evaluation

In any macro, you should always pay attention to the problem of multiple or out-of-order
evaluation of user subforms. Herc is an cxample of a macro with such a problem. This macro
defines a special form with two subforms. The first is a reference, and the second is a form.
The special form is defined to create a cons whose car and cdr are both the valuc of the second
subform, and then to set the reference to be that cons. Here is a possible dcfinition:

(defmacro test (reference form)
‘(setf ,reference (cons ,form ,form)))
Simple cases work all right:
(test foo 3) ==>
(setf foo (cons 3 3))
But a more complex example, in which the subform has side effects, can produce surprising
results:
(test foo (setq x (1+ x))) ==>
(setf foo (cons (setq x (1+ x))
(setq x (1+ x))))
The resulting code cvaluates the setq form twice, and so x is increased by two instcad of by one.
A better definition of test that avoids this problem is:
(defmacro test (reference form)
(let ((value (gensym)))
“(let ((,value ,form))
(setf ,reference (cons ,value yvalue)))))
With this definition, the expansion works as follows:

PS:<LLMAN>MACROS.TEXT.104 8-JUN-84

Hints to Macro Writers ' RR} Lisp Machine Manual

(test foo (setg x (1+ x))) ==>
(let ((#:90005 (setq x (1+ x))))
(setf foo (cons #:g0005 #:¢0005))) ,
Once again, the cxpansion would print this way, but this text would not read in as a valid
expression duc to the inevitable problems of #:.

In general, when you define a new construct which contains onc or more argument forms,
you must be carcful that the expansion. cvaluates the argument forms the proper number of times
and in the proper order. ‘There’s nothing fundamentally wrong with multiple or out-of-order
evalation if that is really what you want and if it is what you document your special form to do.
But if this happens unexpectedly, it can make invocations fail to work as they appear they should.

once-only is a macro that can be used to avoid - multiple evaluation. It is most casily

explained by example. You would write test using once-only as follows:
(defmacro test (reference form)
(once-only (form)
"(setf ,reference (cons ,form ,form))))

‘This defines test in such a way that the form is only cvaluated once, and references to form
inside the macro body refer to that value. once-only automatically introduces a lambda-binding
of a generated symbol to hold the value of the form. Actually, it is morc clever than that; it
avoids introducing the lambda-binding for forms whosc cvaluation is trivial and may be repeated
without harm or cost, such as numbers. symbols, and quoted structure. This is just an
optimization that helps produce more cfficient code.’

'The once-only macro makes it casicr to follow the principle, but it does not completely or
automatically solve the problems of multiple and out-of-order evaluation. It is just a tool that can
solve some of the problems some of the time; it is not a panacca.

The following description attempts to explain what once-only docs, but it is a lot casier to
use once-only by imitating the example above than by trying to undcrstand once-only’s rather
tricky definition.

once-only varlist body.. Macro

var-list is a list of variables. The body is a Lisp program that presumably uses the values
of those variables. When the form resulting from the cxpansion of the once-only is
evaluated, the first thing it does is to inspect the values of cach of the variables in var-
list; these values are assumed to be Lisp forms. For cach of the variables, it binds that
variable cither to its current value, if the current valuc is a trivial form, or to a generated
symbol. Next, once-only cvaluates the body in this new binding environment and, when
they have been evaluated, it undocs the bindings. The result of the evaluation of the last
form in body is presumed to be a Lisp form, typically the expansion of a macro. If all of
the variables have been bound to trivial forms, then once-only just returns that result.
Otherwise, once-only rcturns the result wrapped in a lambda-combination that binds the
generated symbols to the result of evaluating the respective non-trivial forms,

The effect is that the program produced by evaluating the once-only form is coded in
such a way that, cach of the forms which was the value of one of the variables in var-list
is cvaluated only once, unless the form is such as to have no side effects. At the same
time. no unneccssary temporary variables appear in the generated code, but the body of

PS:KI.MAN>DMACROS.TEXT.104 8-JUN-84

Lisp Machine Manual 339 Hints to Macro Writers

the once-only is not cluttered up with extrancous code to decide whether temporary
variables are needed.

18.5.6 Nesting Macros

A useful technique for building language extensions is to define programming constructs that
emplay two special forms, onc of which is used inside the body of the other. Here is a simple
example. ‘There are two special forms, 'The outer one is called with-collection, and the inner
one is called collect. collect takes one subform. which it cvaluates: with-collection just has a
body. whose forms it evaluates sequentially. - with-collection returns a list of all of the valucs
that were given to collect during the evaluation of the with-collection’s body. For cxample,

(with-collection (dotimes (i 5) (collect i)))
=> (1 2 3 4 5)
Remembering the first picee of advice we gave about macros, the next thing to do is to figure out
what the expansion looks like. Here is how the above example could expand:

(let ((#:90005 nil))

~ (dotimes (i 5)
. (push i #:90005))
(nreverse #:90005))

Now, how do we write the definition of the macros? Well, with-collection is pretty easy:

(defmacro with-collection (&body body)
(let ((var (gensym)))
“(let ((,var nil))
,@body
(nreverse ,var))))

The hard part is writing collect. Let's try it:
(defmacro collect (argument) *(push ,argument ,var))

Note that something unusual is going on here: collect is using the variable var freely. It is
depending on the binding that takes place in the body of with-collection in order to get access
to the value of var. Unfortunately, that binding took place when with-collection got expanded;
with-collection’s cxpander function bound var, and the binding of var was unmade when the
cxpander function was done. By the time the collect form gets expanded, the binding is long
gone. The macro definitions above do not work. Somchow the expander function of with-
collection has to communicate with the expander function of collect to pass over the gencrated
symbol.

The only way for with-collection to convey information to the expander function of collect
is for it to expand into something that passes that information.

One way to write these macros is using macrolet:

PS:KI.LMAN>MACROS.TEXT.104 8-JUN-84

Hints to Macro Writers 340 1 isp Machine Manual

(defmacro with-collection (&body body)
(let ((var (gensym)))
*(macrolet ((collect (argument)
‘(push ,argument ,',var)))
(tet ((,var nil))
,@body
(nreverse ,var)))))

Here with-collection expands into code which defines collect specially to know about which
variable to collect into. ', causes var’s value to be substituted when the outer backquote, the one
around the macrolet, is cxccuted. argument, however, is substituted in when the inner
backquote is executed, which happens when collect is cxpanded.

This technique has the interesting conscquence that collect is defined only within the body of
a with-collection. It would simply not be recognized elsewhere: or it could have another
definition, for some other purpose, globally. This has both advantages and disadvantages. ‘

Another technique is to communicate through local declarations. The code generated by with-
collection can contain a local-declare. The cxpansion of collect can examine the declararion
with getdecl to decide what to do. Here is the code:

(defmacro with-collection (&body body)

(let ((var (gensym)))
"(let ((,var nil)) ,
(local-declare ((collection-var nil ,var))
,@body
(nreverse ,var)))))

(defmacro collect (argument)
(let ((var ,(getdecl nil *collection-var)))
(unless var
(ferror nil "COLLECT not within a WITH-COLLECTION"))

‘(push ,argument var)))

Another way. used before getdecl cxisted, was with compiler-let (scc page 316). compiler-
let is identical to let as far as the interpreter is concerned, so the macro continues to work in the
interpreter with this change. When the compiler encounters a compiler-let, however, it actually
performs the bindings that thc compiler-let specifies and proceeds to compile the body of the
compiler-let with all of thosc bindings in cffect. In other words, it acts as the interpreter would.

Here's the right way to write these macros in this fashion:

PS:KI.MAN>MACROS.TEXT.104 8-JUN-84

I isp Muchine Manual | 341 Hints to Macro Writers

(defvar *collect-variablex)

(defmacro with-collection (&body body)
(et ((var (gensym)))
“(let ((.var nil)) _
(compiler-let ((*collect-variables ‘,var))
. ~veabody) .
(nreverse ,var))))

(defmacro collect (argument)
‘(push..,argument .*collect-variablex))

18.5.7 Functions Used During Expansion

The technique of defining functions o be used during macro cxpansion descerves explicit
mention here. It may not occur to you, but a macro cxpander function is a Lisp program like
any other Lisp program, and it can benefit in all the usual ways by being broken down into a
collection of functions that do various parts of its work. Usually macro expander functions are
pretty simple Lisp programs that take things apart and put them together slightly differently, but
some macros are quite complex and do a lot of work. Several features of Zetalisp, including
flavors, loop, and defstruct, are implemented using very complex macros, which, like any
complex well-written Lisp program, are broken down into modular functions. You should keep
this in mind if you ever invent an advanced language extension or ever find yoursclf writing a
five-page expander function.

A particular thing to note is that any functions uscd by macro-expander functions must be
available at compile-time. You can make a function available at compile time by surrounding its
defining form with an (eval-when (compile load eval) ..); see page 305 for more details.
Doing this means that at compile time the definition of the function is interpreted, not compiled,
and hence runs more slowly.

Another approach is to separate macro definitions and the functions they call during expansion
into a separate file, often called a “defs” (dcfinitions) file. This filc defines all the macros, and
also all functions that the macros call. It can be separatcly compiled and loaded up before
compiling the main part of the program, which uses the macros. The system facility (sce chapter
- 28, page 660) helps keep these various files straight, compiling and loading things in the right
order. -

PS:KI.LMAN>MACROS.TEXT.104 8-JUN-84

Aids for Debugging Macros 42 Lisp Machine Manual

18.6 Aids for Debugging Macros

mexp &optional form
mexp goes into a loop in which it rcads forms and sequentially expands them, printing
out the result of cach expansion (using the grinder (see page 528) to improve readability).
When the form itself has been cxpanded until it is no longer a macro call,
macroexpand-all is used to expand all its subforms, and the result is printed iff it is
different from what preceded. This allows you to see whal your macros arc cxpanding
into. without actually evaluating the result of the expansion.

If the form you type is an atom, mexp returns. Usually one simply uses Abort to exit it

If the form you type is a fist that not a macro call, nothing is printed. You are
prompted immediately for another form.

If the argument form is given, it is cxpanded and printed as usual, and then mexp
returns immediately.

If you type
(mexp)
followed by
(rest (first x))
then mexp will print
(cdr (first x))
and then
(cdr (car x))
You would then type Abort to exit mexp.

18.7 Displacing Macro Calls

Fvery time the the evaluator sees a macro form, it must call the macro to expand the form.
This is time consuming. To spced things up, the cxpansion of the macro is recorded
automatically by modifying the form using rplaca and rplacd so that it no longer appears to need
expansion. If the same form is evaluated again, it can be processed straight away. This is done
using the function displace.

A consequence of the evaluator's policy of displacing macro calls is that if you change the
definition of a macro, the new definition does not take cffect in any form that has alrcady been
displaced. An existing form which calls the macro will use the new definition only if the form
has never been cvaluated. :

displace form expansion
form must be a list. displace replaces the car and cdr of form so that it looks like:
(si:displaced form expansion)
When a form whose car is si:displaced is evaluated, the evaluator simply extracts the
expansion and cvaluates it. old-form-copy is a newly consed pair whose car and cdr are
the same as the original car and cdr of the form; thus, it rccords the macro call which
was cxpanded. grindef uses this information to print the code as it was, rather than as it

PS:<1.MAN>MACROS.TEXT.104 8-JUN-84

Lisp Machine Manual ' 343 Fanctions to Expand Macros

has been expanded.
displace rcturns expansion.

The precise format of a displaced macro call may be changed in the future to facilitate
the implementation of automatic reexpansion if the called macro changes.

18.8 Functions to Expand Macros

The following two functions are provided to allow the user to control expansion of macros;
they are often useful for the writer of advanced macro systems, and in tools that want to cxamine
and understand code that may contain macros.

macroexpand-1 form &optional local-macros-cnvironment
If form is a macro form, this cxpands it (once) and returns the cxpanded form.
Otherwise it just returns form. The second value is t if Jorm has been expanded.

local-macros-environment is a data structure which specifies the local macro definitions
(made by macrolet) to be used for this expansion in addition to the global macro
definitions (made by defmacro and recorded in function cells of symbols). When
macroexpand-1 is called by the cvaluator, this argument comes from the evaluator's own
data structures sct up by any macrolet forms which Jorm was found within. When
macroexpand-1 is called by the compiler, this argument comes from data structures kept
by the compiler in its handling of macrolet.

Somectimes macro definitions call macroexpand-1; in that case, if form was a subform of
the macro call, a &environment argument in the macro definition can be used to obtain a
value to pass as local-macros-environment. Sce page 324. setf is onc cxample of a macro
that needs (o use &environment since it expands some of its subforms in deciding what
code to expand into. Sce setf, page 36.

If local-macros-environment is omitted or nil, only global macro definitions are used.
macroexpand-1 expands defsubst function forms as well as macro forms,

macroexpand form &optional Jocal-macros-environment
If form is a macro form, this expands it repeatedly until it is not a macro form and
returns the final expansion. Otherwise, it just returns form. The sccond value is t if one
or more cxpansions have take place. Everything said about local-macros-environment under
macroexpand-1 applies here too. '

macroexpand cxpands defsubst function forms as well as macro forms.

macroexpand-all form &optional local-macros-environment
Expands all macro calls in form, including those which are its subforms, and returns the
result. By contrast, macroexpand would not cxpand the subforms. This function knows
the syntax of all Lisp special forms, so the result is completely accurate, Note, however,
that quoted list structure within form is not altered; there is no way to know whether you
intend such list structure to be code or to be used in constructing code.

PS:(’I ~MAN>MACROS.TEXT.104 8-JUN-84

Definitions of Macros 344 Lisp Machine Manual

macroexpand-hook Variable
The value is a function which is used by macroexpand-1 to invoke the cxpander
function of a macro. It reccives arguments just like funcall: the expander function, and
the arguments for it. :

In fact. the default value of this variable is funcall. The variable exists so that the user
can set it to some other function, which performs the funcall and possibly other
associated record-keeping.

macroexpand-hook is not used when a macro is cxpanded by the interpreter.

18.9 Definitions of Macros

The definition of a macro is a list whose car is the symbol macro. The cdr of the list is the
macro's expander function. ‘This expander function contains the code written in the defmacro or
other construct which was used to define the macro. It may be a lambda expression, or it may
be a compiled function object (FEF). Expanding the macro is donc by invoking the cxpander
function.

When an. expander function is called. it receives two arguments: the macro call to be
expanded, and the local macros environment. If the cxpansion is being done by macroexpand-1
then the local macros cnvironment passed is the one that was given to macroexpand-1. In a
macro defined with defmacro, the local macros cnvironment can be accessed by writing an
&environment parameter (scc page 324).

Expander functions used to be given only onc argument. For compatibility, it is useful to
definc expander functions so that the sccond argument is optional; defmacro docs so. In
addition. old macro definitions still work, becausc macroexpand-1 actually checks the number of
arguments which the cxpander function is ready to receive, and passes only one argument if the
cxpander function expects only one. This is done using call (sec page 48).

macro-function finction-spec
If function-spec is defined as a macro, then this returns its expander-function: the
function which should be called, with a macro call as its solc argument, to producc the
macro expansion. For certain special forms, macro-function rcturns the “alternate macro
definition” (sce below). Otherwise, macro-function returns nil.

Since a definition as a macro is really a list of the form (macro . expander-function), you
can get the cxpander function using (cdr (fdefinition function-spec)). But it is cleaner to
usc macro-function. '

(setf (macro-function function-spec) expander)
is permitted, and is equivalent to
(fdefine function-spec (cons ‘'macro expander))

Certain constructs which Common Lisp specifics as macros arc actually implemented as
special forms (cond. for example). These special forms have “alternatc macro definitions”
which are the definitions they might have if they were implemented as macros. This is so
that the caller of macro-function, if it is a portable Common Lisp program, need not

PS:<I.MAN>MACROS.TEXT.104 8-JUN-84

Lisp Machine Manual 345 Extending setf and locf

know about any special forms cxcept the standard Common Lisp ones in order o make
deductions about all valid Common Lisp programs. It can instead regard as a macro any
symbol on which macro-function returns a non-nil value, and treat that valuc as the
macro expander function.

The alternate macro definition of a symbol such as cond is not actually its function
definition. It exists only for ‘macro-function to rewurn. The existence of alternate macro
definitions means that macro-function is not uscful for testing whether a symbol really is
defined as a macro.

18.10 Extending setf and locf

This section would logically belong within section 3.2, page 35, but it is too advanced to 20
there. It is placed in this chapter because it deals with concepts related to macro-expansion.

There are three ways to tell the system how to setf a function: - simple defsetf when it is’
trivial, general defsetf which handles most other cases; and define-setf-method which provides
the utmost generality.

defsetf : Macro

The simple way to usc defsetf is useful when there is a setting function which does all
the work of storing a value into the appropriatc place and has the proper calling
conventions. '

(defsetf function setting- -function)
says that the way to store into (function args...) is to do (setring-function args... new
value). For example,

(defsetf car sys:setcar)
is the way setf of car is defined. Its meaning is that (setf (car x) y) should cxpand into
(sys:setcar x y). (setcar is like rplaca except that setcar returns its second argument).

The more general form of defsetf is used when there is no sctting function with exactly
the right calling sequence. Thus, :
(defsetf function (function-args. . .) (value-arg) body. . .)

tells setf how to store into (function args...) by providing something like a macro
defininition to expand into code to do the storing. body computes the code; the last form
in body returns a suitable cxpression. Junction-args should be a lambda list, which can
have optional and rest args. body can substitute the valucs of the variables in this lambda
list, to refer to the arguments in the form being setf'ed. Likewise, it can substitute in
value-arg to refer to the value to be stored.

In fact, the function-args and value-arg are not actually the subforms of the form being
setfd and the value to be stored; they are gensyms. After the body returns, the
corresponding expressions may be substituted for the gensyms, or the gensyms may remain
as local variables with a suitable let provided to bind them. This is how setf ensures a
correct order of evaluation.

Example:

(defsetf car (1ist) (value) ‘(sys:setcar ,list ,value))

is how one could define the setfing of car using the general form of defsetf. The

PS:<ILMAN>MACROS.TEXT.104 _ 8-JUN-84

Extending setf and locf . 346 1 isp Machine Manual

simple form of defsetf can be regarded as an abbreviation for somcthing like this.

Since setf automatically expands macros, if you define a macro whose cxpansion is usable
in setf then the macro is usable there also. Sometimes this is not desirable. For cxample,
the accessor subst for a slot in a defstruct structure probably expands into aref, but if
the slot is declared :read-only this should not be allowed. 1t is prevented by means of a
defsetf like this:

(defsetf accessor-fiunction)
This means that setf is explicitly prohibited on that function,

define-setf-method function (function-args...) (valuc-arg) body... Macro
Defines how 1o do setf on place’s starting with function, with more power and gencrality
than defsetf provides. but more complexity of use.

The define-setf-method form reccives its arguments almost like an analogous defsetf.
However. the values it receives are the actual subforms, and the actual form for the
value, rather than gensyms which stand for them. ‘The function-args arc the actual
subforms of the place to be setfed, and the full power of defmacro arglists can be used
to match against it. value-arg is the actual forn used as the sccond argument to setf.

body is once again cvaluated, but it does not return an expression to do the storing.
Instead, it returns five values which contain sufficient information to cnable anyone to
cxamine and modify the contents of the -place. ‘This information tells the caller which
subforms of the place need to be cvaluated, and how to use them to examine or sct the
value of the place. (Generally the function-args arglist is arranged to make cach arg get
one subform.) A temporary variable must be found or made (usually with gensym) for
cach of them. Another temporary variable should be made to correspond to the value to
be stored.

Then the five values to be returned are:
0 A list of the temporary variables for the subforms of the place.
1 A list of the subforms that they correspond to.

2 A list of the temporary variables for the valucs to be stored. Currently there can
only be one valuc to be stored, so there is only one variable in this list, always.

3 A form to do the storing. This form refers to some or all of the temporary
variables listed in value 1.

4 A form to get the value of the place. setf docs not need to do this, but push and
incf do. This too should refer only to the temporary variables. No cxpression of
contained it it should be a subexpression of the place being stored in.

This information is cverything that the macro (setf or somcthing more complicated) neceds
to know to decide what to do.

PS:<I.LMAN>MACROS. TEXT.104 8-JUN-84

Iisp Machine Manual : 347 Fxtending setf and locf

Example:
(define-setf-method car (function-spec)
(tet ((tempvars (1list (gensym)))
(tempargs (list (list-form)))
(storevar (gensym)))
(values tempvars tempargs (list storevar)
‘(sys:setcar J(first tempvars) ,storevar)
“(car ,(first tempvars)))))
is how one could define the setf'ing of car using define-setf-method. 'T'his definition is
cquivalent to the other two definitions using the simpler techniques.

get-setf-method form
Invokes the setf method for form (which must be a list) and returns the five valuecs
produced by the hody of the define-setf-method for the symbol which is the car of
form. The meanings of these five values are given immediately above. If the way to setf
that symbol was defined with defsetf you still get five values, which you can interpret in
the same ways: thus, defsetf is cffectively an abbreviation for a suitable define-setf-
method.

There are two ways to use get-setf-method. Onc is in a macro which, like setf or incf
or push, wants to storc into a place. The other is in a define-setf-method for
something like Idb, which is setf by setting one of its arguments. You would append
your new tempvars and tempargs to the ones you got from get-setf-method to get the
combined lists which you return.” ‘The forms returned by the get-setf-method you would
stick into the forms you return.

An example of a macro which uses get-setf-method is pushnew. (The rcal pushnew is
a little hairicr than this, to handle the fest, test-nor and key arguments).

(defmacro pushnew (value place)
(multiple-value-bind
(tempvars tempargs storevars storeform refform)
(get-setf-method place)
(si:sublis-eval-once

(cons ‘(-val- . ,value) (pairlis tempvars tempargs))
"(if (memq -val- ,refform)
,refform

»(sublis (1list (cons (car storevars)
‘(cons -val- ,refform)))
storeform))

tt)))

PS:KL.LMAN>MACROS.TEXT.104 8-JUN-84

Fxtending sett and locf 348 Iisp Machine Manual

Ancmmnﬂcm}umﬁneﬁmﬁ—memoduuuuwsgebseﬁ~memodhuhmlbndm

(define-setf-method 1db (bytespec int)
(multiple-value-bind
(temps vals stores store-form access-form)
(get-setf-method int) '
(let ((btemp (gensym))
(store (gensym))
(itemp (first stores)))
(values (cons btemp temps)
(cons bytespec vals)
(Tist store)
'(progn
,(sublis
(1ist (cons itemp
"(dpb ,store ,btemp
,access-form)))
store-form)
,store) i
“(1db ,btemp ,access-form)))))

What this says is that the way to setf (idb byte (foo)) is computed based on the way to
setf (foo).

si:sublis-eval-once alist form &optional reuse-tempvars sequential-flag
Replaces temporary variables in form with corresponding values according to alist, but
gencrates local variables when necessary to make surc that the corresponding valucs are
evaluated exactly once and in same order that they appear in alist. (This complication is
skipped when the values arc constant). alist should be a list of clements (tempvar .
value). 'The result is a form equivalent to '
‘(let ,(mapcar #’(lambda (elt) (1list (car elt) (cdr elt)))
alist)
,form)
but it usually contains fewer temporary variables and executes faster.,

If reuse-tempvars is non-nil, the temporary variables which appear as the cars of the
clements of alist arc allowed to appear in the resulting form. Otherwise, none of them
appears in the resulting form, and if any local variables turn out to be neceded, they are
made afresh with gensym. reuse-tempvars should be used only when it is guarantecd that
none of the temporary variables in alist is referred to by any of the values to be
substituted; as, when the temporary variables have been freshly made with gensym.

If sequential-flag is non-nil, then the value substituted for a temporary variable is allowed
to refer to the temporary variables preceding it in alist. setf and similar macros should all
usc this option.

PS:KI.LMAN>MACROS.TEXT.104 8-JUN-84

Lisp Machine Manual 349 Fxtending setf and locf

define-modify-macro macro-name (lambda-list..) combiner-function [doc-string]
Is a quick way to define setfing macros which resemble incf. For example, here is how:
incf is defined:
(define-modify-macro incf (&optional (delta 1)) +
“Increment PLACE's value by DELTA.")

~ Jambda-list describes any arguments the macro accepts, but not first argument, which is

~always the place o be examined and modified. ‘The old value of this place, and any
additional arguments such as delta in the case of incf, are combined using the combiner-
Junction (in this case, +) to get the new value which is stored back in the place.

deflocf Macro
Defines how to perform locf on a gencralized variable. There are two forms of usage,
analogous to those of defsetf.

(deflocf fiunction locating-function)
says that the way to get the location of (function args..) is to do (locating-function
args...). For example,

(deflocf car sys:car-location).
could be used to define locf on car forms. is the way setf of car is defined. Its
meaning is that (locf (car x)) should expand into (sys:car-location x). '

The more general form of deflocf is used when there is no locating function with exactly
the right calling sequence. Thus,

(deflocf function (function-args...) body...)
tells loct how to locate (function args...) by providing something like a macro defininition
to expand into code to do the locating. body computes the code: the last form in body
returns a suitable expression. function-args should be a lambda list, which can have
optional and rest args. body can substitute the values of the variables in this lambda list,
to refer to the arguments in the form being locfed.
Example:

(deflocf car (1ist) ‘(sys:car-location ,list))
is how one could define the locfiing of car using the gencral form of deflocf. The
simple form of deflocf can be regarded as an abbreviation for something like this.

(deflocf function)
says that locf should not be allowed on forms starting with function. This is useful only
when function is defined as a macro or subst, for then locf's normal action is to expand
the macro call and try again. In other cases there is no way to locf a function unless you
define one, so you can simply refrain from defining any way.

PS:KL.MAN>MACROS.TEXT.104 | 8-JUN-84

	320_Macros
	321_Macros
	322_Macros
	323_Macros
	324_Macros
	325_Macros
	326_Macros
	327_Macros
	328_Macros
	329_Macros
	330_Macros
	331_Macros
	332_Macros
	333_Macros
	334_Macros
	335_Macros
	336_Macros
	337_Macros
	338_Macros
	339_Macros
	340_Macros
	341_Macros
	342_Macros
	343_Macros
	344_Macros
	345_Macros
	346_Macros
	347_Macros
	348_Macros
	349_Macros

