The 1.OOP Heration Macro 350 I isp Machine Manual

19. The LOOP Iteration Macro

19.1 Introduction

loop is a Lisp macro that provides a programmable iteration facility. The same loop module
operates compatibly in Zetalisp, Maclisp (PDP-10 and Multics). and NII, and a moderately
compatible package is under development for the MDI. programming cnvironment. loop was
inspired by the FOR facility of CLISP in Interlisp; however, it is not compatible and differs in
several details.

‘I'he general approach is that a form introduced by the word loop generates a single program
loop. into which a large varicty of features can be incorporated. The loop consists of some
initialization (prologue) code, a body that may be cxccuted several times, and some cxit (epilogue)
code. Variables may be declared local to the loop. ‘The special features of loop arc concerned
with loop variables, deciding when to end the iteration, putting user-written code into the loop,
returning a value from the construct, and iterating a variable through various real or virtual scts
of values.

‘The loop form consists of a series of clauses, cach introduced by a “keyword™ symbol. These
symbols are keywords from loop’s point of view; they arc not keywords in the usual sense
(symbols in the keyword package). loop ignores the package when it compares a symbol against
the known kcywords.

Forms appearing in or implied by the clauses of a loop form are classed as those to be
executed as initialization code, body code, and/or cxit code; within cach part of the template
filled in by loop, they arc exccuted strictly in the order implied by the original composition.
Thus, just as in ordinary Lisp code, side-cffects may be used, and one picce of code may depend
on following another for its proper operation. This is the principal philosophic difference from
InterLisp’s FOR facility.

Note that loop forms are intended to look like stylized English rather than Lisp code. There
is a notably low density of parcntheses, and many of the keywords are accepted in several
synonymous forms to allow writing of more cuphonious and grammatical English. Some find this
notation verbose and distasteful, while others find it flexible and convenient. The former are
invited to stick to do.

Here are some examples to illustrate the use of loop.

(defun print-elements-of-1ist (list-of-elements)
(loop for element in list-of-elements
do (print element)))
prints cach clement in its argument, which should be a list. It returns nil.

PS:<LLMAN>LOOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual - 351 Clauses

(bar (defun gather-alist-entries (list-of-pairs).
(loop for pair in list-of-pairs
collect (car pair)))
takes an association list and returns a list of the keys: that is, (gather-alist-entries '((foo 1 2)
(bar 259) (baz))) returns (foo bar baz).

(defun extract-interesting-numbers (start-value end-value)
(loop for number from start-value to end-value
when (interesting-p number) collect number))
takes two arguments, which should be integers, and returns a list of all the numbers in that range
(inclusive) which satisfy the predicate interesting-p.

(defun find-maximum-element (an-array)
(1oop for i from 0 below (array-dimension-n 1 an-array)
~maximize (aref an-array i)))
returns the maximum of the clements of its argument, a onc-dimensional array.

(defun my-remove (object list)
(loop for element in list
‘ unless (equal object element) collect element))
is like the standard function remove, except that it copics the entire list.

(defun find-frob (1list)
(loop for element in 1list
when (frobp element) return element
finally (ferror nil "No frob found in the list ~S"
list)))
returns the first element of its list argument which satisfics the predicate frobp. If none is found,
an error is signaled.

Common Lisp defines loop as cquivalent to do-forever: it is used with a body consisting
only of forms to be cvaluated until a nonlocal exit happens. This is incompatible with the
traditional loop macro which this chapter is about. However, it is possible to tell which meaning
of loop the programmer intended: in the traditional loop macro, it must be a symbol, while in
the Common Lisp loop it is useless to use a symbol there, Therefore, if the first argument of a
loop form is not a symbol, it is treated as a Common Lisp loop.

19.2 Clauses

Internally, loop constructs a prog which includes variable bindings, pre-iteration (initialization)
code, post-iteration (exit) code, the body of the iteration, and stepping of variables of iteration to
their next values (which happens on cvery iteration after the body is executed).

A clause consists of a keyword symbol and any Lisp forms and keywords that it deals with.
For example, :
(loop for x in 1 do (print x)),
contains two clauses, for x in 1 and do (print x). Certain of the parts of the clause will be
described as being expressions, c.g. (print x) in the above. An cxpression can be a single Lisp

PS:KLL.MAN>LOOPTM.TEXT.320 | _ , 8-JUN-84

Clauses 352 Lisp Machine Manual

form. or a serics of forms implicitly collected with progn. An expression is terminated by the
next following atom, which is taken to be a keyword. ‘This syntax allows only the first form in
an expression to be atomic, but makes misspelled keywords more casily detectable.

loop uscs print-name cquality to compare keywords so that loop forms may be written
without package prefixes; in Lisp implementations that do not have packages, eq is used for
comparison.

Bindings and iteration variable steppings may be performed cither sequentially or in parallel.
This affects how the stepping of one iteration variable may depend on the value of another. ‘The
syntax for distinguishing the two will be described with the corresponding clauses. When a set of
variables arc to be bound in parallel, all of the initial values are computed and then all the
bindings arc cstablished. Subscquent bindings will be performed inside of that binding
environment. When the same variables are stepped, all the new values are computed and then
the variables are set.

19.2.1 Iteration-Driving Clauses

These clauses all create a variable of iteration, which is bound locally to the loop and takes
on a new value on cach successive iteration. Note that if more than onc iteration-driving clause is
used in the same loop, several variables arc created that all step together through their values;
when any of the iterations terminates, the entike loop terminates. Nested itcrations are not
generated; for those, you need a second loop form in the body of the loop. In order not to
produce strange interactions, iteration-driving clauses arc required to precede any clauses that
produce body code: that is, all except those that produce prologue or epilogue code (initially and
finally), bindings (with), the named clause, and the iteration termination clauses (while and
until).

Clauses which drive the iteration may be arranged to perform their testing and stepping either
in scrics or in parallel. They arc by default grouped in scries, which allows the stepping
computation of onc clausc to usc the just-computed. values of the itcration variables of previous
clauses. They may be made to step in parallel, as is the casc with the do special form, by
“joining” the iteration clauses with the keyword and. The form this typically takes is something
like

(loop ... for x = (f) and for y = inif then (g x) ...)
which scts x to (f) on cvery iteration, and binds y to the value of init for the first iteration, and
on every iteration thercafter sets it to (g x), where x still has the value from thc previous
iteration. Thus, if the calls to f and g arc not order-dependent, this would be best written as

(1oop ... for y = init then (g x) for x = (f) ...)
because, as a general rule, paralicl stepping has more overhcad than scquential stepping.
Similarly, the ecxample

(Toop for sublist on some-list

and for previous = ’'undefined then sublist y

)

which is cquivalent to the do construct

PS:KLL.MAN>L.OOPTM.TEX'T.320 _ 8-JUN-84

Lisp Machine Manual 353 ‘ " Clauses

(do ((sublist some-tlist (cdr sublist))
(previous ’undefined sublist))
((null sublist) ...)
cel) '
in terms of stepping, would be better written as
(loop for previous = 'undefined then sublist
for sublist on some-list '

-)

When iteration-driving clauses are joined with and. if the token following the and is not a
keyword that introduces an iteration driving clause, it is assumed (o be the same as the keyword
that introduced the most recent clause: thus. the above example showing parallel stepping could
have been written as '

(1oop for sublist on some-list
and previous = 'undefined then sublist

-)

The order of cvaluation in iteration-driving clauses is as follows: thosc expressions that are
~only cvaluated once are cvaluated in order at the beginning of the form, during the variable-
binding phase, while thosc expressions that are evaluated cach time around the loop are cvaluated
in order in the body.

Onc common and simple itcration-driving clause is repeat:;

repeat expression
Evaluates expression (during the variable binding phase), and causes the loop to
iterate that many times. expression is expected to evaluate to an integer. If expression
evaluates to a zero or negative result, the body code will not be exccuted.

All remaining itcration-driving clauses are subdispatches of the keyword for, which is
synonomous with as. In all of them a variable of iteration is specified. Note that, in general, if
an itcration-driving clause implicitly supplies an endtest, the value of this itcration variable is
undefined as the loop is exited (i.e., when the epilogue code is run). This is discussed in more
detail in section 19.5.

Here are all of the varietics of for clauses. Optional parts arc enclosed in curly brackets.

for varin exprl {by expr2}
Itcrates over each of the clements in the list exprl. 1If the by subclause is present,
expr2 is cvaluated once on entry to the loop to supply the function to be used to
fetch successive sublists, instead of cdr.

for var on expri {by expr2}
Like the previous for format, except that var is set to successive sublists of the list
instead of successive clements. Note that loop uscs a null rather than an atom test to
implement both this and the preceding clause.

for var = expr
On cach iteration, expr is evaluated and var is set to the result.

for var = expri then expr2
var is bound to expr/ when the loop is entered, and st to expr2 (re-evaluated) at all

PS:KL.MAN>LOOPTM.TEXT.320 8-JUN-84

Clauses 354 I isp Machine Manual

but the first iteration. Since exprl is evaluated during the binding phase, it cannot
reference other iteration vaiiables set before it for that, use the following:

for var first exprl then expr2
Sets var 10 exprl on the first iteration, and to expr? (re-evaluated) on cach succeeding -
iteration. ‘The cvaluation of both expressions is performed inside of the loop binding
environment, before the toop body. This allows the first value of var to come from
the first value of some other iteration variable, allowing such constructs as '
(1oop for term in poly
for ans first (car term)
then (gcd ans (car term))
finally (return ans))

for varfrom exprl {to expr2} {by expr3}

This performs numeric iteration. var is initialized 10 expr/, and on cach succceding
iteration is incremented by cxprd (default 1). If the to phrase is given, the iteration
terminates when var becomes greater than expr2. Fach of the expressions is cvaluated
only once, and the to and by phrases may be written in cither order. Alternative
keywords may be used in place of to; this choice controls the direction of stepping
and the step at which the loop terminates. downto instead of to says that var is
decremented by the step value, and the endtest is adjusted accordingly. If below is
used instead of to. or above instcad of downto, the itcration terminates before expr2
is reached, rather than after. Note that the to variant appropriate for the direction of
stepping must be used for the endiest to be formed correctly; ie. the code will not
work if expr3 is negative or zero. If no limit-specifying clause is given, then the
direction of the stepping may be specified as decreasing by using downfrom instead of
from. upfrom may also be used instead of from; it forces the stepping direction to
be increasing.

for varbeing exprand its path ...

for varbeing {each|the} path ...
Provides a uscr-definable iteration facility. parh names the manner in which the
iteration is to be performed. The cllipsis indicates where various path dependent
preposition/cxpression pairs may appear. Sec the scction on lteration Paths (page 363)
for complete documentation.

19.2.2 Bindings

The with keyword may be used to establish initial bindings, that is, variables that are local to
the loop but are only sct once, rather than on cach iteration. The with clause looks like:
with varl { = exprl} ‘
{and var2 { = expr2}}...
If no expr is given, the variable is initialized to nil.

with bindings linked by and arc performed in parallel; those not linked are performed
scquentially. That is,
(1oop with a = (foo) and b = (bar) and ¢
)

binds the variables like

PS:KL.MAN>LOOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual 155 Clauses

(Tet ((a (foo)) (b (bar)) c) eel)
whereas
(loop with a = (foo) with b = (bar a) with ¢ ...)
binds the variables like
(let ((a (foo)))
(et ((b (bar)))
| (et (c) ...)))
All expr's in with clauses are evaluated in the order they are written, in lambda expressions
surrounding the generated prog. "The loop expression
(loop with a = xa and b = xb
with ¢ = x¢
for d = xd then (f d)
and e = xe then (g e d)
for p in xp
with q = xgq

produccs the following binding contour, where t1 is a loop-generated temporary:
(Tet ((a xa) (b xb))
(et ((c xc))
“(Tet ((d xd) (e xe))
(Tet ((p nil) (t1 xp))
(Tet ((q xq))
--)))))

Because all expressions in with clauses are evaluated during the variable binding phase, they are
best placed ncar the front of the loop form for stylistic reasons.

For binding more than one variable with no particular initialization, one may use the
construct
with variable-list {and ...}
as in
with (i j k t1 t2)
These are cases of destructuring which loop handles specially; destructuring and data type
keywords arc discussed in section 19.4.

19.2.3 Entrance and Exit

initially expression
Puts expression into the prologue of the iteration. It will be cvaluated before any
other initialization code except for initial bindings. For the sake of good style, the
initially clause should therefore be placed after any with clauses but before the main
body of the loop.

finally expression
Puts expression into the epilogue of the loop. which is evaluated when the itcration
terminates (other than by an explicit return). For stylistic rcasons, then, this clause
should appear last in the loop body. Note that certain clauses may generate code
which terminates the iteration without running the cpiloguc code; this behavior is
noted with those clauses. Most notable of these are those described in the scction

PS:<LLMAN>LOOPIM.TEXT.320 8-JUN-84

Clauses 356 Lisp Machine Manual

19.2.7, Aggregated Boolean Tests. This clause may be used to causc the loop to
return values in i non-standard way:
(toop for n in 1
sum n into the-sum
count t into the-count
finally (return (quotient the-sum the-count)))

19.2.4 Side Effects

do expression

doing expression
expression is evaluated cach time through the loop, as shown in the print-elements-
of-list example on page 350.

19.2.5 Values

The following clauses accumulate -a return value for the iteration in somc manner. The
general form is :
type-of-collection expr {into var}
where nype-of-collection is a loop keyword, and expr is the thing being accumulated somchow. If
no into is specified, then the accumulation will be returned when the loop terminates. If there is
an into. then when the cpilogue of the loop is reached, var (a variable automatically bound
locally in the loop) will have been sct to the accumulated result and may be tsed by the cpilogue
code. In this way, a user may accumulatc and somchow pass back multiple valucs from a single
loop, or use them during the loop. It is safe to reference these variables during the loop, but
they should not be modified until the cpilogue code of the loop is rcached. For example,
(1oop for x in list
collect (foo x) into foo-list
collect (bar x) into bar-list
collect (baz x) into baz-list
finally (return (1list foo-list bar-list baz-1ist)))
has the same effect as
(do ((#:90001 list (cdr #:90001))
(x) (foo-list) (bar-list) (baz-list))
((null #:90001)
(1ist (nreverse foo-list)
(nreverse bar-list)
(nreverse baz-1list)))
(setq x (car #:g0001))
(setq foo-1list (cons (foo x) foo-1ist))
(setq bar-1ist (cons (bar x) bar-list))
, (setq baz-1list (cons (baz x) baz-1ist)))
except that loop arranges to form the lists in the correct order, obviating the nreverses at the
end, and allowing the lists to be examined during the computation. (This is how the expression
would print; this text would not read in properly because a new uninterned symbol would be
created by cach usc of #:.) '

PS:<I.MAN>1.OOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual _ 357 ' Clauses

. collect expr {into var}
collecting ...
Causes the values of expr on cach iteration to be collected into a list.

nconc expr {into var}
nconcing ...
append ...
appending ...
Like collect. but the results are nconc'ed or append’ed together as appropriate.
(loop for i from 1 to 3
nconc (list i (* i i)))
=> (1124309)

count expr {into var}
counting ...
If expr evaluates non-nil, a counter is incremented.,

sum expr {into var}
summing ...
Evaluates expr on cach iteration and accumulates the sum of all the values.

maximize expr {into var}

minimize ...
Computes the maximum (or minimum) of expr over all iterations.
Note that if the loop iterates zero times, or if conditionalization prevents the code of
this clause from being exccuted, the result will be meaninglcss.

Not only may there be multiple accumulations in a loop, but a single accumulation may
come from multiple places within the same loop form. Obviously, the types of the collection
must be. compatible. collect, nconc, and append may all bc mixed, as may sum and count,
and maximize and minimize. For example,

(Toop for x in *(a b ¢) for y in "((1 2) (3 4) (5 6))
collect x
append y)
=>(a12b34chb56)
The following computes the average of the entries in the list list-of-firobs:
(Toop for x in list-of-frobs
count t into count-var
sum x into sum-var
finally (return (cl1i:// sum-var count-var)))

PS:<1.MAN>LOOPTM.TEXT.320 8-JUN-84

Clauses 358 Lisp Machine Manual

19.2.6 Endtests

The following clauses may be used to provide additional control over when the iteration gets
terminated, possibly causing exit code (due to finally) to be performed and possibly returning a
value (c.g.. from collect).

while expr
If expr cvaluates to nil, the loop is exited, performing exit code (if any) and rcturning
any accumulated value. ‘The test is placed in the body of the loop where it is written.
It may appear between sequential for clauses.

until expr
ldentical to while (not expr).

This may be needed, for example, to step through a strange data structure, as in
(1oop until (top-of-concept-tree? concept)
for concept = expr then (superior-concept concept)
cn)
Note that the placement of the until clause before the for clause is valid in this case because of
the definition of this particular variant of for, which binds concept to its first value rather than
sctting it from inside the loop.

The following may also be of usc in terminating the iteration:

.

Toop-finish Macro
(loop-finish) causes the iteration to terminate “normally”, like implicit termination by an
iteration-driving clause, or by the use of while or until—the cpilogue code (if any) will be
run, and any implicitly collected result will be returned as the value of the loop. For

cxample, :
(1oop for x in '(1 2 3 4 5 6)
collect x
do (cond ((= x 4) (loop-finish))))
=> (12 3 4)
This particular cxample would be better written as until (= x 4) in place of the do
clause.

19.2.7 Aggregated Boolean Tests

All of these clauses perform some test and may immediately terminate the iteration depending
on the result of that test.
always expr
Causes the loop to return t if expr always cvaluates non-null. If expr cvaluates to nil
the loop immediatcly returns nil, without running the cpilogue code (if any, as
specified with the finally clausc); otherwise, t will be returned when the loop finishes,
after the cpilogue code has been run.

never expr :
Causes the loop to return t if expr never evaluates non-null. This is equivalent to

always (not expr).

PS:<.MAN>LOOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual 359 Clauses

. thereis cfxpf
If expr cvaluates non-nil, then the iteration is terminated, and that value is returned
without running the epilogue code. '

19.2.8 Comlilionaﬁzation

These clauses may be used to “conditionalize™ the following clause. They may precede any of
the side-cffecting or value-producing clauses, such as do. collect. always, or return.

when expr
if expr :
If expr evaluates to nil, the following clause will be skipped, otherwise not.

unless expr
~'This is cquivalent to when (not expr)).

Multiple conditionalization clauscs may appear in sequence. If one test fails, then any
following tests in the immediate sequence, as well as the clause being conditionalized, are

skipped.

Multiple clauses may be conditionalized under the same test by joining them with and, as in
(loop for i from a to b
when (zerop (remainder i 3))
collect i and do (print i))
which returns a list of all multiples of 3 from a to b (inclusive) and prints them as they are
being collected.

If-then-else conditionals may be written using the else keyword, as in
(loop for i from a to b
when (oddp i)
" collect i into odd-numbers
else collect i into even-numbers) :
Multiple clauses may appear in an else-phrasc, using and to join them in the same way as above,

Conditionals may be nested. For example,
(loop for i from a to b
when (zerop (remainder i 3))
do (print i)
and when (zerop (remainder i 2))
‘ collect 1)
returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from a to b.

When else is used with nested conditionals, the “dangling elsc” ambiguity is resolved by
matching the else with the innermost when not alrcady matched with an else. Here is a

complicated example. '

PS:<L.MAN>LOOPTM.TEXT.320 8-JUN-84

Clauses 360 Lisp Machine Manual

(loop for x in 1
when (atom x)
when (memq x *distinguished-symbols*)
do (processl x) '
else do (process2 x)
else when (memq (car x) *special-prefixes*)
collect (process3 (car x) (cdr x))
and do (memoize Xx)
else do (processd x))

Useful with the conditionalization clauses is the return clause, which causes an cxplicit return
of its argument as the value of the iteration, bypassing any epilogue code. That is,
when expri return expr2 ‘
is cquivalent to
when cxprl do (return expr?)

Conditionalization of one of the “aggregated boolean value™ clauses simply causes the test that
would cause the iteration to terminate carly not to be performed unless the condition succeeds.
For example,

(1oop for x in 1
when (significant-p x)
do (print x) (princ "is significant.")
and thereis (extra-special-significant-p x))
does not make the extra-special-significant-p check unless the significant-p check succeeds.

The format of a conditionalized clausc is typically something like
when exprl keyword expr2 '
If expr2 is the keyword it, then a variable is gencrated to hold the value of exprl, and that
variable gets substituted for expr2. Thus, the composition
when exprreturn it
is cquivalent to the clause
thereis expr
and onc may collect all non-null values in an iteration by saying

when expression collect it ’
If multiple clauses are joined with and, the it keyword may only be used in the first. If multiple
whens. unlesses, and/or ifs occur in sequence, the value substituted for it will be that of the last

test performed. The it keyword is not recognized in an else-phrase.

19.2.9 Miscellaneous Other Clauses

named name
Defines a block named name around the code for the loop, so that one may use

return-from to return explicitly out of this particular loop. This is obsolete now that
block exists: it is clcancr to writc (block name ...) around the loop.

Note that every loop generates a block named nil, so the function return can always
be used to exit the innermost loop (assuming no other construct gencrating a block

nil intervenes).

PS:<I.MAN>LOOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual ‘ Jol I oop Synonyms

return expression
Immediately returns the value of expression as the value of the loop, without running
the cpilogue code. This is most uscful with some sort of conditionalization, as
discussed “in the previous scction. Unlike most of the other clauses, return is not
considered to “generate body code”, so it is allowed to occur between iteration
clauses, as in '
(loop for entry in list
‘when (not (numberp entry))

return (ferror ...)
as frob = (times entry 2)
) s

Although ferror is called only for cffect, return is used so that it can be called from
that point in the loop. '

If one instcad desires the loop to have some return value when it finishes normally,
onc may place a call to the return function in the cpiloguc (with the finally clause,
page 355).

19.3 Loop Synonyms

define-loop-macro keyword Macro
May be used to make keyword, a loop keyword (such as for), into a Lisp macro that
may introducc a loop form. For cxample, after cvaluating
(define-loop-macro for),
One may now writc an iteration as
(for i from 1 below n do ...)

This facility exists primarily for diehard users of a predecessor of loop. Its unconstrained use
is not reccommended, as it tends to decrease the transportability of the code and needlessly uses
up a function name.

19.4 Destructuring

Destructuring provides onc with the ability to “simultancously” assign or bind multiple
variables to components of some data structure. Typically this is used with list structure. For
cxample, '

(loop with (foo . bar) = "(a b c) ...)
has the effect of binding foo to a and bar to (b c).

loop’s destructuring support is intended to parallel and perhaps augment that provided by the
host Lisp implementation, with a goal of minimally providing destructuring over list structure
patterns. Thus, in Lisp implementations with no system destructuring support at all, one may still
use list-structure patterns as loop itcration variables and in with bindings.

One may specify the data types of the components of a pattern by using a corresponding
pattern of the data type keywords in place of a single data type kcyword. This syntax remains
unambiguous because wherever a data type keyword is possible, a loop keyword is the only other

PS:KLLMAN>LOOPTM.TEXT.320 , 8-JUN-84

The fteration Framework 362 Lisp Machine Manual

possibility.. Thus, if one wants to do
(1oop for x in 1
as i = (car x)
and j (cadr x)
and k (cddr x)
. cel)
and no reference to x is needed, one may instead write
(loop for (i j . k) in 1 ...)
To allow some abbreviation of the data type pattern. an atomic component of the data type
pattern is considered to state that all components of the corresponding part of the variable pattern
arc of that type. ‘That is, the previous form could be written as
(toop for (i j . k) in 1 ...)

H

[}

(defun map-over-properties (fn symbol)
(1oop for (propname propval) on (plist symbol) by ’cddr
do (funcall fn symbol propname propval)))
maps fir over the properties on symbol, giving it arguments of the symbol, the property name,
and the valuc of that property.

19.5 The Iteration Framework

This section describes the way loop constructs iterations. It is necessary if you will be writing
your own itcration paths, and may be uscful in clarifying what loop docs with its input.

loop considers the act of stepping to have four possible parts. Each iteration-driving clause
has some or all of thesc four parts, which are cxccuted in this order:

pre-step-endtest
This is an endtest which determines if it is safe to step to the next value of the

iteration variable.

steps Variables that get stepped. This is internally manipulated as a list of the form (varl
vall var2 val2 ...); all of thosc variables are stcpped in parallel, meaning that all of the
vals are cvaluated before any of the vars are set.

post-step-endtest
Sometimes you can't sce if you arc done until you step to the next value; that is, the
endtest is a function of the stcpped-to value.

pseudo-steps
Other things that nced to be stepped. This is typically used for internal variables that
arc more conveniently stepped here, or to sct up iteration variables that are functions of
some internal variable(s) actually driving the itcration. This is a list like steps, but the
variables in it do not get stepped in parallel.

The above alone is actually insufficient in just about all the iteration-driving clauses that loop
handles. What is missing is that in most cascs the stepping and testing for the first time through
the loop is different from that of all other times. So, what loop deals with is two four-tuples as
above: one for the first iteration, and one for the rest. The first may be thought of as describing
code that immediately precedes the loop in the prog, and the sccond following the body code—in

PS:KI..MAN>L.OOPTM.TEXT.320 8-JUN-84

Iisp Machine Manual 303 lteration Paths

fact, loop does just this, but severely perturbs it in order to reduce code duplication. Two lists
of forms arc constructed in paraliel: one is the first-iteration endiests and steps, the other the
remaining-iterations endtests and steps. ‘These lists have dummy entries in them so that identical
expressions will appear in the same position in both. When loop is done parsing all of the
clauses, these lists get merged back together such that corresponding identical expressions in both
lists arc not duplicated unless they are “simple™ and it is worth doing.

Thus, one may get some duplicated code iff one has multiple iterations. Alternatively, loop
may decide o use and test a flag variable that indicates whether one iteration has been performed.
In general, sequential iterations have less overhead than parallel iterations, both from the inherent
overhead of stepping multiple variables in parallel, and from the standpoint of potential code
duplication.

Onc other point that must be noted about parallel stepping is that although the user iteration
variables are guaranteed to be stepped in parallel, the placement of the endtest for any particular
itcration may be cither before or afier the stepping. A notable case of this is

(loop for i from 1 to 3 and dummy = (print ’'foo)
collect i)
=> (1 2 3)
but prints foo four times. Certain other constructs, such as for var on, may or may not do this
depending on the particular construction.

This problem also means that it may not be safe to cxamine an iteration variable in the
epilogue of the loop form. As a general rule, if an itcration-driving clause implicitly supplics an
endtest, then one cannot know the state of the iteration variable when the loop terminates.
Although onc can guess on the basis of whether the iteration variable itsclf holds the data upon
which the endtest is based, that guess may be wrong., Thus,

(loop for subl on expr

finally (f subl))
is incorrect, but
(1oop as frob = expr while (g frob)

finally (f frob))
is safc becausc the endtest is explicitly dissociated from the stepping.

19.6 Iteration Paths

Iteration paths provide a mechanism for user extension of iteration-driving clauses. The
interface is constrained so that the definition of a path need not depend on much of the internals
of loop. The typical form of an iteration path is

for var being {each|the} path {preposition] exprl}...
path is an atomic symbol which is defined as a loop path function.
Any number of preposition/expression pairs may be present; the prepositions allowable for any
particular path are defined by that path. For example,
(Toop for x being the array-elements of my-array from 1 to 10
.)

To cnhance readability, paths are usually defined in both the singular and plural forms; this

PS:KKLLMAN>LOOPTM.TEXT.320 ’ ' 8-JUN-84

Heration Paths o4 Lisp Machine Manual

particular example could have been written as
(1oop for x being each array-element of my-array from 1 to 10

-)

Another format, which is not so gencrally applicable, is
for var being exp) and its path {prepositionl exprl}. ..
In this format. var takes on the value of expr0 the first time through the loop. Support for this
format is usually limited to paths for- which the next value is obtained by operating on the
previous value. Thus, we can hypothesize the cdrs path, such that
(1oop for x being the cdrs of '(a b ¢ . d) collect x)
=> ((b ¢ . d) (c . d) d)
but
(1oop for x being *(a b c . d) and its cdrs collect x)
=> ((a b c . d) (b ¢ . d) {(c . d) d)
To satisfy the anthropomorphic among vou, his, her, or their may be substituted for the its
keyword, as may each. Fgocentricity is not condoned. Some example uses of iteration paths are
shown in section 19.6.1.

Very often, iteration paths step internal variables which the user docs not specify, such as an
index into some data-structure. Although in most cases the user docs not wish to be concerned
with such low-level matters, it is occasionally useful to have a handle on such things. loop
provides an additional syntax with which onc may provide a variable name to bc used as an
“internal” variable by an iteration path, with the using “prepositional phrase”. The using phrase
is placed with the other phrases associated with the path, and contains any number of
keyword/variable-name pairs:

(1oop for x being the array-elements of a using (index i)
cel)
which says that the variable i should be used to hold the index of the array being stepped
through. The particular keywords which may be used are defined by the iteration path; the index
keyword is recognized by all loop scquence paths (scction 19.6.1.3). Note that any individual
using phrase applics to only onc path; it is parsed along with the “prepositional phrases”. It is
an crror if the path does not call for a variablc using that keyword.

By special dispensation, if a path is not recognized, then the default-loop-path path will be

invoked upon a syntactic transformation of the original input. Esscntially, the loop fragment

for var being frob
is taken as if it were

for var being default-loop-path in frob
and .

for var being expr and its frob ...
is taken as if it were

for var being expr and its default-loop-path in frob
Thus, this “undecfined path hook™ only works if the default-loop-path path is defined.
Obviously, the usc of this “hook™ is competitive, since only onc such hook may be in use, and
the potential for syntactic ambiguity exists if frob is the name of a defined iteration path. This
feature is not for casual usc; it is intended for usc by large systems that wish to usc a special
syntax for some feature they provide.

PS:<I.MAN>LOOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual 365 lteration Paths

19.6.1 Pre-Defined Paths

loop comes with two pre-defined iteration path functions: one implements a mapatoms-likc
iteration path facility and the other is used for defining iteration paths for stepping through
sequences. ’ :

19.6.1.1 The Interned-Symbols Path .

The interned -symbols iteration path is like a mapatoms for loop.
(Toop for sym being interned-symbols ...)
iterates over all of the symbols in the current package and its superiors.
This is the same set of symbols over which mapatoms iferates, although not necessarily in the
same order. ‘The particular package to look in may be specified as in
(loop for sym being the interned-symbols in package ...)
which is like giving a second argument to mapatoms.

You can restrict the iteration to the symbols directly present in the specified package,
excluding inherited symbols, using the local-interned-symbols path:
(Toop for sym being the local-interned-symbols {in package}

-)

Example: .
(defun my-apropos (sub-string &optional (pkg package))
(loop for x being the interned-symbols in pkg
when (string-search sub-string x) :
when (or (boundp x) (fboundp x) (plist x))
do (print-interesting-info x)))
In the Zetalisp and NII. implementations of loop, a package specified with the in preposition may
be anything acceptable to the pkg-find-package function. The code generated by this path will
contain calls to internal loop functions, with the effect that it will be transparent to changes to
the implementation of packages. In the Maclisp implementation, the obarray must be an array
pointer, not a symbol with an array property.

19.6.1.2 The Hash-Elements Path

The hash-elements path provides an cffect like that of the function maphash. It can find

all the occupicd entrics in a hash table.

(loop for value being the hash-elements of hash-table . ..)
itcrates over all the occupied entries in hash-table. Each time, value is the value stored in the
entry. To examine the keys of the entrics as well, write

(loop for value being the hash-elements of hash-table

with-key keysym ...)

and then keysym's value cach will be the hash key that corresponds to value.

PS:KI.MAN>L.OOPTM.TEXT.320 ‘ 8-JUN-84

Iteration Paths Jo6 _ Lisp Machine Manual

19.6.1.3 Sequence Iteration

One very common form of iteration is done over the clements of some object that is
accessible by means of an integer index. loop defines an itcration path function for doing this in
a general way and provides a simple interface to allow users to define iteration paths for various
kinds of “indexable™ data. :

define-loop-sequence-path , Muacro
path-name-or-names fetch-fun size-fin - &optional - sequence-1ype
default-var-type

path-name-or-names is cither an atomic path name or list of path names. fetch-fun is a
function of two arguments, the sequence and the index of the item o be fetched.
(Indexing is assumed to be zero-origined.) size-fun is a function of one argument, the
sequence; it should return the number of clements in the sequence. sequence-lype is the
name of the data-type of the sequence. and default-var-type the name of the data-type of
the clements of the sequence. ‘These are applicable to use of loop in other lisp systems;
on the Lisp Machine they might as well be omitted.

The Zetalisp implementation of loop utilizes the Zetalisp array manipulation primitives to
definc both array-element and array-elements as iteration paths:
(define-loop-sequence-path (array-element array-elements)

aref array-active-length)
Then, -the loop clause
for var being the array-elements of array
will step var over the clements of array, starting from clement 0. The scquence path function
also accepts in as a synonym for of.

The range and stepping of the iteration may be specified with the use of all of the same
keywords which are accepted by the loop arithmetic stepper (for var from ...); they arc by, to,
downto, from. downfrom, below, and above, and are interpreted in the same manner. Thus,

(1oop for var being the array-elements of array
from 1 by 2
cel)
steps var over all of the odd clements of array, and
(1oop for var being the array-elements of array
downto 0

)

steps in reverse order.

(define-loop-sequence-path (vector-elements vector-element)
vref vector-length notype notype)
is how the vector-elements itcration path can be defined in NIL (which it is). Onc can then do
such things as
(defun cons-a-lot (item &restv other-items)
(and other-items
(1oop for x being the vector-elements of other-items
collect (cons item x))))

PS:<I.MAN>L.OOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual 367 [teration Paths

. All such sequence iteration paths allow one to specify the variable to be used as the index
variable, by usce of the index keyword with the using prepositional phiase. as described (with an
example) on page 304,

19.6.2 Defining Paths

- This section and the next may not be of interest to those not interested in defining their own
iteration paths. ‘

In addition to the code which defines the iteration (section 19.5). a loop itcration clause (c.g.
a for or as clausc) produces variables to be bound and pre-iteration (prologue) code. ‘This
breakdown allows a user-interface to loop which does not have to depend on or know about the
~internals of loop. To complete this separation, the iteration path mechanism parses the clause
before giving it to the user function that will return those items. A function to gencrate code for
a path may be declared to loop with the define-loop-path function: :

~define-Toop-path Macro

o ' pathname-or-names path-function list-of-allowable-prepositions &rest data

This defines path-function to be the handler for the path(s) path-or-names, which may be
cither a symbol or a list of symbols. Such a handler should follow the conventions
described below. 'The datum-i are optional; they arc passed in to path-function as a list.

The handler will be called with the following arguments:

path-name
The name of the path that caused the path function to be invoked.

variable
The “itcration variable”.

data-type
The data type supplied with the iteration variable, or nil if none was supplied. This
is a facility of the loop intended for other Lisp systems in which declaring the type of
a variable produces more cfficient code. It is not documented in this manual since it
is never uscful on the Lisp Machine,

prepositional-phrases
This is a list with entries of the form (preposition expression), in the order in which
they were collected. This may also include some supplied implicitly (c.g. an of phrase
when the iteration is inclusive, and an in phrase for the default-loop-path path); the
ordering will show the order of evaluation that should be followed for the expressions.

inclusive?
This is t if variable should have the starting point of the path as its value on the first
itcration (by virtue of being specified with syntax like for var being expr and its
path), nil otherwise. When t, expr will appear in prepositional-phrases with the of
preposition; for example, for x being foo and its cdrs gets prepositional-phrases of
((of foo)).

allowed-prepositions
This is the list of allowable prepositions declared for the path that caused the path

PS:K1LMAN>LOOPTM.TEXT.320 » 8-JUN-84

lteration Paths 368 Lisp Machine Manual

function to be invoked. It and dure (immediately below) may be used by the path
function such that a single function may handle similar paths.

data This is the list of “data” declared for the path that caused the path function to be
invoked. It may, for instance, contain a canonicalized path, or a sct of functions or
flags o aid the path function in determining what o do. In this way, the same path
function may be able to handle different paths.

The handler should return a list of cither six or ten clements:

variable-bindings
This is a list of variables that nced to be bound. The entrics in it may be of the
form variable or (variable expression).
Note that it is the responsibility of the handler to makc surc the iteration mrmb]c gets
bound. ANl of these variables will be bound in parallel; if initialization of one
depends on others, it should be done with a setq in the prologue-forms. Returning
only the variable without any initialization expression is not allowed if the variable is

a destructuring pattern.

prologue-forms
"This is a list of forms that should be included in the loop prologue.

the four items of the iteration specification
These are the four items described in section 195 page 362: pre-step-endlest, sleps,

post-step-endtest, and pseudo-sieps.

another four items of iteration specification
If these four items are given, they apply to the first iteration, and the previous four
apply to all succeeding iterations; otherwise, the previous four apply to all iterations.

Here arc the routines that are used by loop to compare keywords for cquality. In all cases, a
foken may be any Lisp object, but a keyword is expected to be an atomic symbol. In certain
implementations these functions may be implemented as macros.

s1:1oop-tequal token keyword
This is the loop token comparison function. foken is any Lisp object; keyword is the
keyword it is to be compared against. It returns t if they represent the same token,
comparing in a manner appropriate for the implementation.

si:1oop-tmember foken keyword-list
'The member variant of si:loop-tequal.

si:loop-tassoc token keyword-alist
The assoc variant of si:loop-tequal.

If an itcration path function desires to make an intcrnal variable accessible to the user, it
should call the following function instcad of gensym:

PS:<I.MAN>L.OOPTM.TEXT.320 8-JUN-84

Iisp Machine Manual 369 leration Paths

si:loop-named-variable keyword
This should only be called from within an iteration path function. [If kepword has been
specified in a using phrase for this path, the corresponding variable is returned:
otherwise, gensym is called and that new symbol returned. Within a given path function,
this routine should only be called once for any given keyword. :

If the user specifies a using preposition containing any keywords for which the path
function docs not call si:loop-named-variable, loop will inform the user of his error.
19.6.2.1 Path Definition Example
Here is an example function that defines the string-characters iteration path. This path steps

a variable through all of the characters of a string. It accepts the format
(locop for var being the string-characters of sir ...)

PSKL.MAN>LLOOPTM.TEXT.320 8-JUN-84

lteration Paths 370 I isp Machine Manual

The function is defined to handle the path by
(define-loop-path string-characters string-chars-path (of))
Here is the function: :
(defun string-chars-path (path-name variable data-type
prep-phrases inclusive?
allowed-prepositions data
&aux (bindings nil)
(prologue nil)
(string-var (gensym))
(index-var (gensym))
(size-var (gensym)))
allowed-prepositions data :unuscd variables
data-type »
- To iterate over the characters of a string, we need
- to save the string. save the size of the string,
- step an index variable through that range, setting
< the user's variable to the character at that index.
- We support exactly one ““preposition™, which is required,
: so this check suffices:
(cond ((null prep-phrases)
(ferror nil "OF missing in ~S iteration path of ~8"
path-name variable)))
- We do not support “inclusive” iteration:
(cond ((not (null inclusive?))
(ferror nil
"Inclusive stepping not supported in ~S path ~
of ~S (prep phrases = ~:S)"
path-name variable prep-phrases)))
; Sct up the bindings
(setq bindings (1ist (list variable nit)
(1ist string-var (cadar prep-phrases))
(1ist index-var 0)
(1ist size-var 0)))
: Now sct the size variable
(setq prologue (list '(setq ,size-var (string-length
,string-var))))
- and return the appropriate stuff, explained below.
(1ist bindings prologue
‘(= ,index-var ,size-var)
nil nil
(1ist variable ‘(aref ,string-var ,index-var)
index-var '(1+ ,index-var))))

The first clement of the returned list is the bindings. The second is a list of forms to be
placed in the prologue. The remaining clements specify how the iteration is to be performed.
This cxample is a particularly simple case, for two rcasons: the actual “variable of iteration”,
index-var, is purcly internal (being gensymmed), and the stepping of it (1+) is such that it
may be performed safcly without an cndtest. Thus index-var may be stepped immediately after

PS:<1.MAN>LOOPTM.TEXT.320 8-JUN-84

Lisp Machine Manual 371 lteration Paths

the setting of the user's variable, causing the iteration specification for the first iteration to be
identical to the iteration specification for all remaining iterations. This is advantageous from the
standpoint of the optimizations loop is able to perform, although it is frequently not possible duc
to the semantics of the iteration (e.g., for var first expr/ then expr2) or to subtleties of the
stepping. 1t is safe for this path to step the user’s variable in the pseudo-steps (the fourth item of
an iteration specification) rather than the “real™ steps (the sccond). because the step value can
have no dependencies on any other (user) iteration variables. Using the pscudo-steps generally
results in some efficiency gains. -

If once desired the index variable in the above definition to be user-accessible through the
using phrase feature with the index keyword, the function would need o be changed in two
ways. Iirst, index-var should be bound 10 (si:loop-named-variable 'index) instcad of
(gensym). Sccondly, the cfficiency hack .of stepping the index variable ahead of the iteration
variable must not be done. This is cffected by changing the last form to be

(list bindings prologue

nil

(1ist index-var ‘(1+ ,index-var))

‘(= ,index-var ,size-var)

(1ist variable ‘(aref ,string-var ,index-var))

nil

nil

‘(= ,index-var ,size-var)

(list variable *(aref ,string-var ,index-var)))
Note that although the sccond ‘(= ,index-var ,size-var) could have been placed carlicr (where
the second nil is), it is best for it to match up with the cquivalent test in the first itcration
specification grouping.

PS:<LLMAN>LOOPTM.TEXT.320 8-JUN-84

	350_LOOPmacro
	351_LOOPmacro
	352_LOOPmacro
	353_LOOPmacro
	354_LOOPmacro
	355_LOOPmacro
	356_LOOPmacro
	357_LOOPmacro
	358_LOOPmacro
	359_LOOPmacro
	360_LOOPmacro
	361_LOOPmacro
	362_LOOPmacro
	363_LOOPmacro
	364_LOOPmacro
	365_LOOPmacro
	366_LOOPmacro
	367_LOOPmacro
	368_LOOPmacro
	369_LOOPmacro
	370_LOOPmacro
	371_LOOPmacro

