Defstruct 372 Lisp Machine Manual

20. Defstruct

defstruct provides a facility in Lisp for creating and using aggregate datatypes with named
clements. These are like structures in PL/ZL, or records in Pascal. In the last two chapters we saw
how to use macros to extend the control structures of Lisp: here we see how they can be used to
extend Lisp's data structures as well. '

20.1 Introduction to Structure Macros

To cxplain the basic idea, assume you were writing a Lisp program that dealt with space
ships. In your program, you want to represent a space ship by a Lisp object of some kind. 'The
interesting things about a space ship, as far as your program is concerned, arc its position (x and
v), velocity (x and y), and mass. How do you represent a space ship?

Well, the representation could be a list of the x-position, y position, and so on. Equally weil
it could be an array of five clements, the zeroth being the x position, the first being the y
position, and so on. The problem with both of these representations is that the “clements™ (such
as x position) occupy places in the object which are quite arbitrary, and hard to remember
(Hmm. was the mass the third or the fourth clement of the array?). This would make programs
harder to write and read. It would not be obvious when rcading a program that an cxpression
such as (cadddr ship1) or (aref ship2 3) mecans “the y component of the ship’s velocity”, and it
would be very easy to write caddr in place of cadddr.

What we would like to sec are names, casy to remember and to understand. If the symbol
foo were bound to a representation of a space ship, then
(ship-x-position foo)
could return its x position, and
(ship-y-position foo)
its y position, and so forth. The defstruct facility does just this.

defstruct itself is a macro which defines a structure. For the space ship example above, we
might define the structure by saying:

(defstruct (ship)
"Represents a space ship."
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

This says that cvery ship is an objcct with five named components. (This is a very simple
case of defstruct; we will sce the gencral form later.) The evaluation of this form does scveral
things. First, it defines ship-x-position to be a function which, given a ship, returns the x
component of its position. This is called an accessor function, because it accesses a component of
a structure. defstruct defines the other four accessor functions analogously. '

PS:KL.MAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual 373 Introduction to Structure Macros

- defstruct also defines make-ship 1o be a macro or function (you can specify which one) that
can create a ship object. So (setq s (make-ship)) makes a new ship. and sets s to it. This is
called the constructor, because it constructs a new structure,

We also want to be able to change the contents of a structure. To do this, we usc the setf
macro (see page 36), as follows (for cxample):
(setf (ship-x-position s) 100)
Here s is bound to a ship, and after the evaluation of the setf form, the ship-x-position of that
ship is 100. Another way (o change the contents of a structure is to use the alterant macro,
which is described later, in section 20.4.3, page 387. ‘

How docs all this map into the familiar primitives of Lisp? In this simple example, we left
the choice of implementation technique up to defstruct: by default, it chooses to represent a ship
as an array. ‘The array has five clements, which arc the five components of the ship. ~ The
accessor functions are defined thus:

(defun ship-x-position (ship)
(aref ship 0))
The constructor form (make-ship) performs (make-array 5), which makes an array of the
appropriate size to be a ship. Note that a program which uses ships need not contain any explicit
knowledge that ships are represented as five-clement arrays: this is kept hidden by defstruct.

The accessor functions arc not actually ordinary functions:; instcad they arc substs (scc section
11.5.1, page 230). This difference has two implications: it allows setf to understand the accessor
functions, and it allows the compiler to substitute the body of an accessor function directly into
any function that uses it, making compiled programs that use defstruct exactly cqual in cfficiency
to programs that “do it by hand”. Thus writing (ship-mass s) is exactly cquivalent to writing
(aref s 4), and writing (setf (ship-mass s) m) is cxactly cquivalent to writing (setf (aref s 4)
m), when the program is compiled. It is also possible to tell defstruct to implement the accessor
functions as macros; this is not normally done in Zctalisp, however.

We can now use the describe-defstruct function to look at the ship object, and see what its

contents are:
(describe-defstruct x 'ship) =>

#<art-q-5 17073131> is a ship

ship-x-position: 100
ship-y-position: nil
ship-x-velocity: nil
ship-y-velocity: nil
ship-mass: , - nil

#<art-q-5 17073131>
(The describe-defstruct function is explained more fully on page 376.)

By itsclf, this simple example provides a powerful structure definition tool. But, in fact,
defstruct has many other features. First of all, we might want to specify what kind of Lisp
object to use for the “implementation” of the structure. The cxample above implemented a ship
as an array, but defstruct can also implement structures as array-leaders, lists, and other things.
(For array-lcaders, ‘the accessor functions call array-leader, for lists, nth, and so on.)

PS:KILMAN>DEFSTR.TEXT.117 8-JUN-84

How to Use Defstruct 374 1 isp Machine Manual

Most structures are implemented as arrays. Lists take slightly less storage. but clements near
the end of a long list are slower to access. Array leaders. allow you to have a homogencous
aggregate (the array) and a heterogencous aggregate with named clements (the leader) tied together
into onc object. Packages are this sort of an object, and so are the strings which Zmacs uses for
storing lines of text.

The constructor function or macro allows you to specify values for slots in the new structure.
defstruct allows you to specify default initial values for slots: whenever a structure is constructed
and no value is specified for a slot, the slots default initial value is stored in it

The defstruct in Zetalisp also works in various dialects of Maclisp, and so it has some
features that are not useful in Zetalisp. When possible, the Maclisp-specific features attempt to do
somcthing reasonable or harmless in Zetalisp, to make it casicr to write code that will run cqually
well in Zetalisp and Maclisp. (Note that this defstruct is not necessarily the one installed in
Maclisp!)

Note that there is another version of defstruct used in Common Lisp programs, which is
slightly incompatible. Sce scction 20.8, page 393.

20.2 How to Use Defstruct

defstruct Macro
A call to defstruct looks like:
(defstruct (name options...)

[doc-string]

slot-description-1

slot-description-2

)
name must be a symbol; it is the name of the structure. It is given a si:defstruct-
description property that describes the attributes and clements of the structure; this is
intended to be used by programs that examine Lisp programs and that want to display the
contents of structurcs in a helpful way. name is used for other things, described below.

Each option may be cither a symbol, which should be one of the recognized option namecs
listed in the next section, or a list, whose car should be one of the option names and the
rest of which should be arguments to the option. Some options have arguments that
default; others require that arguments be given explicitly.

doc-string is a string which is recorded as the documentation of name as a structure. It
can be accessed via (documentation ’name 'structure). It is not required.

Each slot-description may be in any of three forms:

) slot-name

) (slot-name [default-init slot-options...])

3) ((slot-name-1 Dbyte-spec-1 [default-init-1 slot-options...])
(slot-name-2 byte-spec-2 [default-init-2 slot-options...])

)

Each slot-description allocates onc element of the physical structure, even though in form

PS:<L.MAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual 375 ' Flow to Use Defstruct

(3) several slots are defined.
Each slo-name must always be a symbol; an accessor function is defined for cach slot.

In form (1), slor-name simply defines a slot with the given name. An accessor function is
delined with the name slor-name (but see the :conc-name option, page 379). Form (2)
i similar. but allows a default initialization for the slot. Initialization is explained further

©on page 385, Torm (3) lets you pack several slots into a single clement of the physical
underlying structure, using the byte field feature of defstruct. which is cxplained on page
387.

Forms (2) and (3) allow slor-options which are alternating keywords and values
(uncvaluated). These slot option keywords are” defined:

:read-only flag . 1f flug is non-nil, this specifies that this slot should not be changed in an
existing structure. setf will not be allowed on the slot’s accessor.

‘type fype-spec Declares that the contents of this slot must be of type #ype-spec. The .
Lisp machine compiler does not use this information, but sometimes it
cnables defstruct to deduce that it can pack the structure into less space
by using a specialized array type.

:documentation documentation-string
Makes documentation-string the documentation for the slot’s accessor
function. It also goes in the sidefstruct-slot-description-
documentation for this slot in the defstruct-description structure.

Here is an cggsample of using slot options:

(defstruct (eggsample :named :conc-name)
(yolk ’'a
:documentation "First thing you need in an eggsample.")
(grade 3)
(albumen nil :read-only t))

(documentation 'eggsample-yolk ’function)
=> "First thing you need in an eggsample."

(setf (eggsample-albumen (make-eggsample)) ’'eggsistential)
>>ERROR: SETF is forbidden on EGGSAMPLE-ALBUMEN.
While in the function ...

Because evaluation of a defstruct form causes many functions and macros to be defined, you
must take care not to define the same name with two different defstruct forms. A name can only
have onc function definition at a time; if it is redefined, the latest definition is the one that takes
effect, and the carlier definition is clobbered. (This is no different from the requirement that each
defun which is intended to define a distinct function must have a distinct name.)

To systematize this necessary carefulness, as well as for clarity in the code, it is conventional
to prefix the names of all of the accessor functions with some text unique to the structure. In the
example above, all the names started with ship-. The :conc-name option can be used to

PS:KL.MAN>DEFSTR.TEXT.117 8-JUN-84

Options to Defstruct 376 Lisp Machine Manual

provide such prefixes automatically (sce page 379). Similarly, the conventional name for the
constructor in the example above was make-ship, and the conventional name for the alterant
macro (sce section 20.4.3, page 387) was alter-ship.

The describe-defstruct function lets you cxamine an instance of a structure.

describe-defstruct instance &optional name
describe-defstruct takes an instance of a structure, and prints out a description of the
instance, including the contents of cach of its slots. name should be the name of the
structure; you must provide the name of the structure so that describe-defstruct can
know what structure instance is an instance of, and thercfore figure out what the names of
the slots of instance are.

If instance is a named structure, you don't have to provide name. since it is just the
named structure symbol of instance. Normally the describe function (sce page 791) calls
describe-defstruct if it is asked to describe a named structure: however some named
structures have their own idea of how to describe themselves. See page 390 for more
information about named structurcs.

20.3 Options to Defstruct

This scction explains cach of the options that can be given to defstruct. Here is an example
that shows the typical syntax of a call to defstruct that gives several options.
(defstruct (foo (:type (:array (mod 256)))
(:make-array (:leader-length 3))
:conc-name
(:size-macro foo))

type The :type option specifics what kind of Lisp object to usc to implement the
structure. It must be given one argument, which must be one of the symbols
enumerated below, or a user-defined type. If the option itself is not provided,
the type defaults to :array in traditional programs, or :vector in Common Lisp
programs. You can define your own types; this is cxplained in scction 20.10,
page 396. :

list Uses a list.

:named-list :
Like :list, but the first clement of the list holds the symbol that is the
name of the structure and so is not used as a component.

:array

typed-array

:vector
These are all synonymous. They use an array, storing components in the
body of the array.

:named-array
Like :array, but makes the array a named structure (sce page 390) using
the name of the structure as the named structure symbol. Element 0 of

PS:KILMAN>DEFSTR.TEXT.117 ' 8-JUN-84

Lisp Machine Manual 377 Options to Defstruct

the array holds the named structure symbol and so is not used to hold a
component of the structure.,

:named-typed-array.

:named-vector -
These two synonyms arc like :named-array but the array always has a
leader and the named structure symbol is stored there. As a result, it is
possible to use the :subtype option to specify a restricted array type, such
as art-8b.

:phony-named-vector
This is what you get in Common Lisp if you say (type :wvector) and
:named.

:array-leader »
Use an array, storing components in the leader of the array. (Sce the
:make-array option, described below.)

:named-array-leader
Like :array-leader, but makes the array a named structure (sce page 390)
using the name of the structure as the named structure symbol. Flement 1
of the leader holds the named structure symbol and so is not used to hold
a component of the structure.

fixnum-array
Like :array, but the type of the array is art-32b.

:flonum-array
Like :array, but the type of the array is art-float.

:named-fixnum-array

:named-flonum-array
Like :fixnum-array or :flonum-array but also a named structure, with a
leader to hold the named structure symbol.

itree The structure is implemented out of a binary tree of conscs, with the
leaves serving as the slots.

fixnum
This unusual type implements the structure as a single fixnum. The
structurc may only have one slot. This is only useful with the byte field
feature (sce page 387); it lets you store a bunch of small numbers within
ficlds of a fixnum, giving the ficlds names.

:grouped-array :
This is described in section 20.6, page 389.

The argument of :type may also have the form (1ype subiype). This is equivalent
~ to specifying fype for the :type option and subiype for the :subtype option. For
example, (‘type (:array (mod 16.))) specifics an array of four-bit bytes.

:subtype For structures which are arrays, :subtype permits the array type to be specified.
It requires an argument, which must be cither an array type name such as art-4b
or a type specifier restricting the clements of the array. In other words, it should

PSKL.MAN>DEFSTR.TEXT.117 8-JUN-84

Options to Defstruct 378 . 1isp Machine Manual

.constructor

:alterant

:predicate

‘copier

be a suitable value for cither the fype or the clement-fype argument o make-
array.

If no :subtype option is specificd but a :type slot option is given for cvery slot,
defstruct may deduce a subtype automatically to make the structure more
compact. '

See section 2.3, page 14 for more information on type specifiers.

Specifies how to make a constructor for the structure. In the simplest use, there
is onc argument, which specifies the name to give to the standard keyword-
argument constructor. 1f the argument is not provided or if the option itself is
not provided, the name of the constructor is made by concatenating the string
"make-" to the name of the structure. If the argument is provided and is nil,
no constructor is defined. More complicated usage is explained in section 20.4.1,
page 385.

Takes onc argument, which specifies the name of the alterant macro. If the
argument is not provided. the name of the alterant is made by concatcnating the
string "alter-" to the name of the structure. If the argument is provided and is
nil. no alterant is defined. Use of the alterant macro is cxplained in scction
20.4.3, page 387. :

In Common Lisp programs. the default for :alterant is nil; no altcrant is defined.
In traditional programs, the default is alter-name.

Causcs defstruct to gencrate a predicate to recognize instances of the structure.
Naturally it only works for “named” types. The argument to the :predicate
option is the name of the predicate. If the option is present without an argument,
then the name is formed by concatenating ‘-p' to the end of the name symbol of
the structure. If the option is not present, then no predicate is generated.
Example: '
(defstruct (foo :named :predicate)

a

b)
defines a single argument function, foo-p, that is truc only of instances of this
structure.

The defaulting of the :predicate option is different (and complicated) in Common
Lisp programs. Scc section 20.8, page 393. : :

Causes defstruct to gencrate a single argument function that can copy instances of
this structure. Its argument is the name of the copying function. If the option is
present without an argument, then the name is formed by concatcnating ‘copy-’
with the name of the structure. Example:
(defstruct (foo (:type :1ist) :copier)

foo-a

foo-b)
Generates a function approximately like:

PS:<[.MAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual 379 Options to Defstruct

(defun copy-foo (x)
(list (car x) (cadr x)))

:default-pointer .
Normally, the accessors defined by defstruct expeet to be given exactly one
argument. However, if. (the :default-pointer argument is used, the argument to
cach accessor is optional. If the accessor is used with no argument, it cvaluates
the default-pointer form to find a structure and accesses the appropriate
component of that structure. Here is an example:
(defstruct (room
(:default-pointer *default-rooms))
room-name
room-contents)

(room-name x) ==> (aref x 0)
(room-name) ==> (aref =*default-room* 0)

If the argument to the :default-pointer argument is not given, it defaults to the
name of the structure.

‘conc-name It is conventional to begin the names of all the accessor functions of a structure
with a specific prefix, usually the name of the structure followed by a hyphen.
The :conc-name option allows you to specify this prefix and have it concatenated
onto the front of all the slot names to make the names of the accessor functions.
The argument should be a string to be used as the prefix, or a symbol whose
pname is to be used. If :conc-name is specified without an argument, the prefix
is the name of the structure followed by a hyphen. If the argument is nil or "",
the names of the accessors are the same as the slot names, and it is up to you to
name the slots according to some suitable convention.

In Common Lisp programs, the default for :conc-name, when this option is not
specificd, is the structure name followed by a hyphen. For traditional programs,
the default is nil, , :

The keywords recognized by the constructor and alterant are the slot names, not
the accessor names, transfered into the keyword package. It is important to keep
this in mind when using :conc-name, since it causes the slot and accessor names
to be different. Here is an example:

(defstruct (door :conc-name)
knob-color
width)

(setq d (make-door :knob-color 'red :width 5.0))

(door-knob-color d) ==> red

:include Builds a new structure definition as an extension of an old structure dcfinition.
Suppose you have a structure called person that looks like this:

PS:<L.MAN>DEFSTR.TEXT.117 8-JUN-84

Options to Defstruct ' 380 Iisp Machine Manual

(defstruct (person :named :conc-name)
name
age
sex)

Now supposce you want 1o make a new structure to represent an astronaut. Since
astronauts are people o, you would like them to also have the attributes of
name, age. and sex, and you would like Lisp functions that operate on person
structures to operate just as well on astronaut SUUCLUTCS. You can do this by
defining astronaut with the :include option, as follows:
(defstruct (astronaut :named (:include person)

:conc-name)

helmet-size ‘
(favorite-beverage 'tang))

The argument to the :include option is required, and must be the name of some
previously defined structure of the same type as this structure. :include docs not
work with structures of type :tree or of typc :grouped-array.

The :include option inscrts the slots of the included structure at the front of the
list of slots for this structure. That is, an astronaut has five slots: first the three
defined in person, and then after those the two defined in astronaut itsclf. The
accessor functions defined by the person structure, such as person-name, can be
used also on astronaut’s. New accessor functions are generated for these slots in
the astronaut structure as if they were defined afresh; their names start with
astronaut- instcad of person-. In fact, the functions person-age and
astronaut-age reccive identical definitions.

Since the structurcs are named structurcs, recognizable by typep. subtypep
considers astronaut a subtype of person, and typep considers any astronaut to
be of type person.

The following examples illustrate how you can construct and use astronaut
structures:

(setq x (make-astronaut :name 'buzz
:age 45.
:sex t .
:helmet-size 17.6))

(person-name x) => buzz
(astronaut-name x) => buzz

(astronaut-favorite-beverage x) => tang

(typep x ’'astronaut) => t
(typep x ’person) => t

PS:<1.MAN>DEFSTR.TEXT.117 8-JUN-84

I isp Muchine Manual 381 Options to Defstruct

Note that the :conc-name option was nor inherited from the included structure;
it is present for c:astronaut only because it was specified explicitly in the
definition. Similarly, the :default-pointer and :but-first options are not inherited
from the :include’'d structure.

The following is an advanced feature. Somectimes, when one structure includes
another, the default values or slot options for the slots that came from the
included structure are not what you want.. ‘The new structure can specify new
default values or slot options for the included slots by giving the :include option
as:

(:include name new-descriptor-1 ... new-descriptor-n)

Each new-slor-descriptor is just like the slot descriptors used for defining new slots,
cxcept that byte ficlds are not allowed. ‘The default initialization specified in new-
slot-descriptor, or the absence of one, overrides what was specified in the included”
structure type (person). Any slot option values specified in new-slot-descriptor also -
override the values given in the included structure’s definition. Any inherited slots
for which no new-slor-descriptor is given, and any slot options not explicitly
overridden, arc inherited.

For example, if we had wanted to definc astronaut so that the default age for an
astronaut is 45., and provide documentation for its accessor, then we could have
said:
(defstruct (astronaut :conc-name
(:include person
(age 45. :documentation
"The ASTRONAUT's age in years.")))
helmet-size
(favorite-beverage 'tang))

If the :read-only option is specified as nil when t would have been inherited, an
crror is signaled.

:named “This means that you want to use one of the “named” types. If you specify a type
of :array, :array-leader, or :list, and give the :named option, then the :named-
array, :named-array-leader, or :named-list type is used instcad. Asking for
type :array and giving the :named option as well is the same as asking for the
type :named-array; the only dlﬁ'crcncc is stylistic.

The :named option works quite dxﬁ’crcmly in Common Lisp programs; sce¢ scction
20.8, page 393.

:make-array If the structurc being defined is implemented as an ‘array, this option may be
used to control those aspects of the array that are not othcrwisc constrained by
defstruct. For example, you might want to control the arca in which the array is
allocated. “Also, if you are creating a structure of type :array-leader, you almost
certainly want to specify the dimensions of the array to be crcated, and you may
want to specify the type of the array.

PS:KL.MAN>DEFSTR.TEXT.117 8-JUN-84

Options to Defstruct 382 ‘ Lisp Machine Manual

times

:size-macro

:size-symbol

The argument to the :make-array option should be a list of alternating keyword
symbols for the make-array function (sce page 167), and forms whose values are
the arguments to those keywords. [For example, (:make-array (:area
‘permanent-storage-area)) would request that the array be allocated in a
particular arca. Note that the keyword symbol is nor cvaluated.

defstruct overrides any of the :make-array options that it nceds to. For
example, if' your structure is of type :array, then defstruct supplies the size of
that array regardless of what you say in the :make-array option. If you use the
sinitial-element make-array option, it initializes all the slots, but defstruct’s own
initializations arc done afterward. If a subtype has been specified to or deduced
by defstruct, it overrides any :type keyword in the :make-array argument.

Constructors for structures implemented as arrays recognize the keyword argument
:make-array. Attributes supplied thercin overide any :make-array option
attributes supplied in the original defstruct form. If some attribute appears in
neither the invocation of the constructor nor in the :make-array option to
defstruct, then the constructor chooses appropriate defaults. The :make-array
option may only be used with the default style of constructor that takes keyword
arguments,

If a structurc is of typc :array-leader, you probably want to spccify the
dimensions of the array. The dimensions of an array are given to :make-array as
a position argument rather than a keyword argument, so there is no way to
specify them in the above syntax. To solve this problem, you can use the
keyword :dimensions or the keyword :length (they mecan the same thing), with a
valuc that is anything acceptable as make-array’s first argument.

Used for structurcs of type :grouped-array to control the number of repctitions
of the structure to be allocated by the constructor. (Sce scction 20.6, page 389.)
The constructor also accepts a keyword argument :times to override the value
given in the defstruct. If :times appecars in neither the invocation of the
constructor nor as a defstruct option, the constructor allocates only onc instance
of the structure.

Defines a special macro to expand into the size of this structure. The exact
mcaning of the size varics, but in genceral this number is the one you would need
to know if you werc going to allocate onc of thesc structures yourself (for
example, the length of the array or list). The argument of the :size-macro
option is the name to be used for the macro. If this option is present without an
argument, then the name of the structure is concatenated with ‘-size' to produce
the macro name.

Example:
(defstruct (foo :conc-name :size-macro)
ab)
(macroexpand ’(foo-size)) => 2

Like :size-macro but defines a global variable rather than a macro. The size of
the structure is the variable’s value. Use of :size-macro is considered cleaner.

PS:KLLMAN>DEFSTR.TEXT.117 8-JUN-84

I isp Machine Manual 383 Options to Defstruct

initial-offset This allows you to tell defstruct to skip over a certain number of slots before it
starts allocating the slots described in the body. ‘This option requires an argument
(which must be a fixnum), which is the number of slots you want defstruct to
skip. To ‘make usc of this option requires that you have some familiarity with
how defstruct is implementing your structure; otherwise, you will be unable to
make use of the slots that defstruct has left unused.

‘but-first ‘This option is best explained by example:

(defstruct (head (:type :1list)
(:default-pointer person)
(:but-first person-head))
nose
mouth
eyes)

The accessors expand like this:

(nose x) ==> (car (person-head x))
(nose) ==> (car (person-head person))

The idea is that :but-first's argument is an accessor from some other structure,
and it is never expected that this structure will be found outside of that slot of
that other structurc. Actually, you can use any onc-argument function, or a
macro that acts like a onc-argument function. It is an crror for the :but-first
option to be used without an argument,

:callable-accessors
Controls whether accessors are really functions, and therefore ‘“callable”, or
whether they are really macros. With an argument of t, or with no argument, or
if the option is not provided, then the accessors are really functions. Specifically,
they arc substs, so that they have all the efficiency of macros in compiled
programs, while still being function objects that can be manipulated (passed to
mapcar, ctc.). If the argument is nil then the accessors are really macros.

:callable-constructors
Controls whether constructors arc rcally functions, and therefore “callable”, or
macros. An argument of t makes them functions; nil makes them macros. The
default is t in Common Lisp programs, nil in traditional programs. Secec scction
20.4.1, page 385 for more information.

:property For cach structure defined by defstruct, a property list is maintained for the

: recording of arbitrary properties about that structure. (That is, there is one
property list per structure dcfinition, not one for ecach instantiation of the
structure.)

The :property option can be used to give a defstruct an arbitrary property.
(:property property-name value) gives the defstruct a property-name property of
value. Neither argument is evaluated. To access the property list, the user must
look inside the defstruct-description structurc himsclf (sce page 394).

PS:KL.MAN>DEFSTR.TEXT.117 8-JUN-84

Options to Defstruct 384 Lisp Machine Manual

print

:print-function

type

other

Controls the printed representation of his structure in a way independent of the
Lisp dialeet in use. Here is an example:
(defstruct (foo :named
(:print "#<Foo ~S§ ~S>" _
{foo-a foo) (foo-b foo)))
foo-a
foo-b)

Of course, this only works if you use some named type, so that the system can
recognize examples of this structure automatically.

The arguments to the :print option are arguments to the format function (except
for the stream of course!). They are evaluated in an environment where the name
symbol of the structure (foo in this casc) is bound to the instance of the structure
to be printed.

This works by gencrating a defselect that creates a named structure handler. Do
not use the :print option if you definc a named structure handler yourself, as they
will conflict.

is the Common Lisp version of the :print option. Its argument is a function to
print a structure of this type, and it is called with three arguments: the structure
to be printed. the stream to print it on, and the current printing depth (which
should be compared with *print-level* to decide when to cut off recursion and
print “#°). The function is expected to observe the values of the various printer-
control variables such as *print-escape* (scc page 514). Example:

(defstruct (bar :named :conc-name
(:print-function
(1ambda (struct stream depth)
depth ;unused
(sys:printing-random-object
(struct stream :type)
(format stream "with zap ~S"
(bar-zap struct))))))
"The famous BAR structure."
(zap ’'yow)
random-slot)

(make-bar) => #<BAR with zap YOW>

In addition to the options listed above, any currently defined type (any legal
argument to the :type option) can be used as an option. This is mostly for
compatibility with the old version of defstruct. It allows you to say just fype
instcad of (:type fype). It is an error to give an argument to onc of these
options.

Finally, if an option isn’t found among thosc listed above, it should be.a valid
defstruct-keyword for the type of structurc being defined, and the option should

PS:KILMAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual 385 Using the Constructor and Alterant

be of the form (option-name value). 1 so, the option is treated just like
(:property option-name value). ‘That is, the defstruct is given an optrion-name
property of value. '

This provides a primitive way for you to define your own options to defstruct,
particularly in connection with user-defined types (sec section 20,10, page 396).
Several of the options listed above are actually implemented using this mechanism.
They include :times, :subtype and :make-array.

The valid defstruct-keywords of a type are in a list in the defstruct-keywords
slot of the defstruct-type-description structure for fype.

20.4 Using the Constructor and Alterant

After you have defined a new structure with defstruct, you can create instances of this
structure using the constructor, and you can alter the values of its slots using the alterant macro.
By default, traditional defstruct defines both the constructor and the alterant, forming their
names by concatcnating ‘make-" and ‘alter-’, respectively, onto the name of the structure. The
defstruct for Common Lisp programs defines no alterant by default. You can specify the names
yourself by passing the name you want to use as the argument to the :constructor or :alterant
options, or specify that you don't want the macro created at all by passing nil as the argument,

.

20.4.1 Constructors

A call to a constructor, in general, has the form
(name-of-constructor keyword-1 value-1 keyword-2 value-2 ...)
Each keyword is a keyword (a symbol in the keyword package) whose name matches one of the
slots of the structure, or one of a few specially recognized keywords,

The name of the constructor is specified by the :constructor option, which can also specify a
documentation string for it:
(:constructor name-of-constructor [doc-string])

If a keyword matches the name of a slot (nor the name of an accessor), then the
corresponding value is used to initialize that slot of the new structure. Any slots whose values are
not specified in this way are initialized to the valucs of the default initial value forms specified in
the defstruct. If no dcfault initial value was spccified cither for a slot, that slot’s initial value is
undcfined. You should always specify the initialization, cither in thce defstruct or in the
constructor invocation, if you care about the initial value of the slot.

Constructors may be macros or functions. They arc functions ‘if the :callable-constructors
option to defstruct is non-nil. By default, they are functions in Common Lisp programs and
macros in traditional programs. '

Constructor macros allow the slot name (in its own package) to be used instead of a keyword.
Constructor functions do not, as they arc ordinary functions defined using &key. Old code using
slot names not in the keyword package should be converted.

PS:KI.LMAN>DEFSTR.TEXT.117 8-JUN-84

Using the Constructor and Alterant 386 ' Iisp Machine Manual

The default initial value forms are cvaluated (if needed) cach time a structure is constructed,
so that if (gensym) is used as a default initial value form then a new symbol is gencrated for
cach structure. ‘The order of evaluation of the default initial value forms is unpredictable. When
the constructor is a macro, the order of evaluation of the keyword argument forms it is given is
also unpredictable.

The two special keyword arguments recognized by constructors arc :make-array and :times.
:make-array should be used only for structures which are represented as arrays. and :times only
for :grouped-array structures. If onc of these arguments is given, then it overrides the :make-
array option or the :times option (scc page 381) specified in the defstruct. FFor example:

Ior example,
(make-ship :ship-x-position 10.0
:ship-y-position 12.0
:make-array '(:leader-length 5 :area disaster-area))

Uscr-defined types of structures can define their own special constructor keywords.

20.4.2 By-Position Constructors

If the :constructor option is given as (:constructor name arglist [doc-string]), then instead of
making a keyword driven constructor, defstruct defines a positional constructor, taking arguments
whose meaning is determined by the argument's position rather than by a keyword. The arglist is
used to describe what arguments the constructor should accept. In the simplest casc something
like (:constructor make-foo (a b c)) defincs make-foo t be a three-argument constructor macro
whose arguments arc used to initialize the slots named a, b, and c.

In addition, the keywords &optional, &rest, and &aux are rccognized in the argument list.
They work in the way you might expect, but there are a few fine points worthy of explanation:

(:constructor make-foo :
(a &optional b (c 'sea) &rest d &aux e (f ’eff))
"Make a FOO, with positional arguments")

This defines make-foo to be a constructor of one or morc arguments. The first argument is
used to initialize the a slot.. The sccond argument is used to initialize the b slot. If there isn’t
any second argument, then the default value given in the body of the defstruct (if given) is used
instecad. The third argument is uscd to initialize the c slot. If there isn't any third argument,
then the symbol sea is used instead. Any arguments following the third argument are collected
into a list and used to initialize the d slot. If there arc three or fewer arguments, then nil is
placed in the d slot. The e slot is not initialized; its initial value is undefined, cven if a default
value was specified in its slot-description. Finally, the f slot is initialized to contain the symbol
eff.

The actions taken in the b and e cases were carcfully chosen to allow the user to specify all
possible behaviors, Note that the aux “variables” can be uscd to override completely the default

initializations given in the body.

PS:<LLMAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual , »7 - Byte iclds

-Since there is so much freedom in defining constructors this way, it would be cruel to only
allow the :constructor option to be given once. So, by special dispensation, vou arc allowed to
give the :constructor option more than once, so that you can define several different constructors,
cach with a different syntax. These may include both keyword and positional constructors. If
there are multiple keyword constructors, they all behave the same. differing only in the name. It
is important to have a keyword constructor because otherwise the #S reader construct cannot
work.

Note that positional constructors may be macros or functions, just like keyword constructors,
and based on the same criterion: they are functions if the :callable-constructors option to
defstruct is non-nil. By default, they are functions in Common Lisp programs and macros in
traditional programs. If the positional constructor is a macro, then the actual order of evaluation
of its arguments is unpredictable, '

Also note that you cannot specify the :make-array or :times information in a positional
constructor.

20.4.3 Alterant Macros

A call to the alterant macro, in general, has the form
(name-of-alterant-macro instance-form
slot-name-1 form-1
slot-name-2 form-2
:) ,
instance-form is cvaluated and should return an instance of the structurc. Fach form is cvaluated
and the corresponding slot is changed to have the result as its new value. The slots are altered
after all the forms arc evaluated, so you can cxchange the values of two slots, as follows:
{alter-ship enterprise
:ship-x-position (ship-y-position enterprise)
:ship-y-position (ship-x-position enterprise))

As with constructor macros, the order of evaluation of the forms is undefined. Using the
alterant macro can produce more cfficient Lisp than using consccutive setfs when you are altering
two byte ficlds of the same object, or when you arc using the :but-first option.

20.5 Byte Fields

The byte ficld featurc of defstruct allows you to specify that several slots of your structure
are bytes (sce section 7.9, page 155) in an integer stored in one clement of the structure. For
cxample, supposc we had the following structure: v

(defstruct (phone-book-entry (:type :1list))
name
address
(area-code 617.)
exchange
Tine-number)

PS:KLL.MAN>DEFSTR.TEXT.117 ' 8-JUN-84

Byte Ficlds 88 Lisp Machine Manual

This works correctly but it wastes space. Arca codes and cxchange numbers are always less
than 1000, and so both can fit into 10 bit ficlds when expressed as binary numbers. Since Lisp
Machine fixnums have (more than) 20 bits, both of these values can be packed into a single
fixnum. To tell defstruct to do so. you can change the structure definition to the following:

(defstruct (phone-book-entry (:type :1list))
name
address
((area-code (byte 10. 10.) 617.)
(exchange (byte 10. 0)))
Tine-number)

‘The expressions (byte ...) calculate byte specifiers to be used with the functions Idb and dpb.
The accessors, constructor, and alterant will now operate as follows:

(area-code pbe) ==> (1db (byte 10. 10.) (caddr pbe))
(exchange pbe) ==> (1db (byte 10. 0) (caddr pbe))

(make-phone-book-entry
:name "Fred Derf"
:address "259 Octal St."
:exchange ex
:line-number 7788.)

==> (1ist "Fred Derf" "259 Octal St."
(dpb ex (byte 10. 0) 631808.)
7788.)

(alter-phone-book-entry pbe
:area-code ac
:exchange ex)

==> ((lambda (#:90530)
(setf (nth 2 #:90530)
(dpb ac (byte 10. 10.)
(dpb ex (byte 10. 0) (nth 2 #:90530)))))

pbe)

(This is how the expression would print; this text would not read in properly because a new
uninterned symbol would be created by cach use of #:.)

Note that the alterant macro is optimized to only rcad and write the sccond clement of the
list once, even though you arc altering two different byte ficlds within it. This is more ecfficient
than using two setf's. Additional optimization by the alterant macro occurs if the byte specifiers
in the defstruct slot descriptions are constants. However, you don’t nced to worry about the
details of how the alterant macro does its work.

PS:KL.MAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual 389 Grouped Arrays

- f the byte specifier is nil, then the accessor is defined o be the usual kind that accesses the
entire Lisp object, thus returning all the byte field components as a fixnum. These slots may
have default initialization forms,

The byte specifier nced not be a constant; a variable or, indeed, any Lisp form, is legal as a
byte specifier. It is cvaluated cach time the slot is accessed. Of course, unless you are doing
something very strange you will not want the byte specifier-to change between aceesscs.

Constructors (both functions and macros) initialize words divided into byte fields as if they
were deposited in in the following order:

1) Initializations for the entire word given in the defstruct form.

2) Initializations for the byte fields given in lhé defstruct form.

3) Initializations for the entire word given in the constructor invocation.
4) Initializations for the byte ficlds given in the constructor invocation.

Alterant macros work similarly: the modification for the entire lisp object is done first,
followed by modifications to specific byte ficlds. If any byte ficlds being initialized or altered
overlap cach other, the action of the constructor and alterant is unpredictable.

20.6 Grouped Arrays

The grouped array feature allows you to store several instances of a structurc side-by-side
within an array. ‘This featurc is somewhat limited; it does not support the :include and :named
options.

The accessor functions arc defined to take an extra argument, which should be an integer,
and is the index into the array of where this instance of the structure starts. This index should
normally be a multiple -of the size of the structure, for things to make sense. Note that the index
is the first argument to the accessor function and the structure is the second argument, the
opposite of what you might expect. This is because the structure is &optional if the :default-
pointer option is used.

Note that the “size” of the structure (for purposes of the :size-symbol and :size-macro
options) is the number of clements in one instance of the structure; the actual length of the array
is the product of the size of the structure and the number of instances. The number of instances
to be created by the constructor is taken from the :times keyword of the constructor or the
argument to the :times option to defstruct.

PS:KILMAN>DEFSTR.TEXT.117 8-JUN-84

Named Structures 390 I isp Machine Manual

20.7 Named Structures

“'The named structure feature provides a very simple form of user-defined data type. (Flavors
arc another, more powerful, facility for defining data types, but they are more expensive in
simple cases. Sce chapter 21, page 401.) A named structure is actually an array, containing
clements and optionally a leader. The difference between a named structure and an ordinary array
is that the named structure also contains an explicit slot to hold its ostensible data type. This data
type is a symbol, any symbol the programmer cares to use. In traditional programs, named
structures are normally defined using defstruct with the :named option. In Common Lisp
programs, defstruct defines a named structure by default. Individual named structures arc made
with the constructors defined by defstruct.

The data type symbol of a named structure is also called the named structure symbol. 1t is
stored in array clement 0 if the structure has no leader. If there is a leader, the type symbol is
stored in array leader clement 1 (recall that clement 0 is reserved for the fill pointer). If a
numeric-type array is to be a named structure, it must have a leader, since a symbol cannot be
an clement of a numeric array.

Named structurc are recognizable; that is, if you define a named structure called foo, you
can always tell whether an object is a foo structure. No array created in the normal fashion, no
matter what components it has, will be mistaken for a genuine foo.

Named structures can recognized by typep. Specify foo, the named structure name, as the
seccond argument, and the object to be tested as the first argument. type-of of an ordinary array
returns array, but type-of of a named structure returns the explicitly recorded data type symbol.

(defstruct (foo :named) a b)
(type-of (make-foo)) => foo
(typep (make-foo) 'foo) => t

Named structures of other types which include foo are also recognized as foo’s by typep. For
cxample, using the previously-given definitions of person and astronaut, then
(typep (make-astronaut) 'person) => t
because the type person was cxplicitly included by the defstruct for astronaut. Indirect includes
count also:

(defstruct (mission-specialist :named
(:include astronaut))

)

(typep (make-mission-specialist) ’'person) => t
(subtypep ’person 'mission-specialist) => t

It should be cmphasized that the named structure is an array. All the usual array functions,
such as aref and array-dimension, can be used on it. If it is onc-dimensional (as is usually the
case) then the named structure is a vector and the generic sequence functions can be used on it.

PS:KLLMAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual : 391 Named Structures

(typep (make-astronaut) ’array) => 1t
(arrayp (make-astronaut)) => t
(array-rank (make-astronaut)) => 1

Because named structure data types are recognizable, they can define generic operations and
say how to handle them. A few such operations arc defined by the system and are invoked
automatically from well-defined places. For example print automatically invokes the :print-self
operation if you give it a named structure. Thus, cach type of named structure can define how it
should print. ‘The standardly defined named structure operations are listed below. You can also
define new named structure operations and invoke them by calling the named structure as a
function just as you would invoke a flavor instance.

Operations on a named structure are all handled by a single function, which is found as the
named-structure-invoke property of the structure type symbol. It is OK for a named structure
type to have no handler function. ‘Then invocation of any operation on the named structure
returns nil, and system routines such as print take default actions.

If a handler function cxists, it is given these arguments:
operation The name of the operation being invoked; usually a keyword.
structure The named structure which is being operated on.

additional-arguments...
Any other arguments which were passed when the operation was invoked. The

handler function should have a rest parameter so it can accept any number of
arguments.

The handler function should return nil if it does not recognize the operation. These are the
named structure operations used by the system at present:

:which-operations
Should return a list of the names of the operations the function handles. Every
handler function must handle this operation, and every opertation that the
function handles should be included in this list.

:print-self Should output the printed representation of the named structure to a strcam. The
' additional arguments are the strcam to output to, the current depth in list-
structure, and the current value of *print-escape*. If :print-self is not in the
value returned by :which-operations, or if there is no handler function, print

uses #'s syntax. '

:describe Is invoked by describe and should output a description of the structure to
standard-output. If there is no handler function or :describe is not in its
:which-operations list, describe prints the names and values of the structure’s
fields as defined in the defstruct.

:sxhash Is invoked by sxhash and should return a hash code to use as the value of
sxhash for this structure. It is often uscful to call sxhash on some (perhaps all)
of the components of the structure and combine the results in some way.

PS:<ILMAN>DEFSTR.TEXT.117 | 8-JUN-84

Named Structures 392 Lisp Machine Maniual

There is one additional argument to this operation: a flag saying whether it is
permissible to use the structure’s address in forming the hash code. For some
kinds of structure, there may be no way to generate a good hash code except to
usc the address. If the flag is nil, they must simply do the best they can, even if
it means always returning zcro.

It is permissible to return nil for :sxhash. Then sxhash produces a hash code in
its default fashion.

fasd-fixup Is invoked by fasload on a named structure that has been created from data in a
QEASL. file. "The purpose of the operation is to give the structure a chance to
“clean itself up™ if. in order to be valid. it nceds to have contents that are not
cxactly identical to those that were dumped. For example, rcadtables push
themselves onto the list si:*all-readtables* so that they can be found by name,

For most kinds of structures it is acceptable not to define this operation at all (so
that it returns nil).

Example handler function:
(defun (:property person named-structure-invoke)
(op self &rest args)
(selectq op
(:which-operations '(:print-self :describe))
(:describe
(format (car args)
"This is a ~D-year-old person"
(person-age self)))
(:print-self
(if =print-escapes»
(si:printing-random-object (self (car args) :type)
(princ (person-name self) (car args)))
(princ (person-name self) (car args))))))
or
(defselect ((:property person named-structure-handler)
ignore)
(:print-self (self stream ignore &optional ignore)
(if *print-escape»
(si:printing-random-object (self stream :type)
(princ (person-name self) stream))
{(princ (person-name self) stream)))
(:describe (self) ‘
(format #standard-outputs
"This is a ~D-year-old person"
(person-age self))))

This handler causes a person structure to include its name in its printed representation; it also

causes princ of a person to print just the name, with no *#< syntax. This simple example could
have been done even more simply with the :print-function option.

PSKLLMAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machinc Manual 393 Common Lisp Defstruct

It is often convenient to define a handler function with defselect; but you must be carcful.
defselect by default defines the function to signal an crror if it is called with a first argument
that is not rccognized. A handler function should return nil and get no crror. To avoid the
problem, specify ignore as the default handler when you write the defselect. Sce page 236.

Note that the handler function of a named structure type is nof inherited by other named
structure types that include it. For example, the above definition of a handler for person has no
effect at all on the astronaut structure. If you need such inheritance, you must use flavors rather
than named structures (sce chapter 21, page 401).

The following functions operatc on named structures.

named-structure-p x
This semi-predicate returns nil if x is not a named structurc; otherwise it rcturns x's

named structure symbol.

make-array-into-named-structure array
Marks array as a named structure and returns it. This is used by make-array when

creating named structures. You should not normally call it explicitly.

named-structure-1invoke operation structure &rest args
Invokes a named structure operation on structure. operation should be a keyword symbol,
and structure should be a named structure. ‘The handler function of the named structure
symbol, found as the valuc of the named-structure-invoke property of the symbol, is

called with appropriatc arguments.

If the structure type has no named-structure-invoke property, nil is returned. By
convention, nil is also returned by the handler if it docs not recognize operation.

(send structure operation args...) has the same cffect, by calling named-structure-invoke.

Sce also the :named -structure-symbol keyword to make-array, page 167.

20.8 Common Lisp Defstruct

cli:defstruct Macro
The version of defstruct used in Common Lisp programs differs from the traditional
defstruct in the defaults for a few options and the mcanings of a few of them.

The :conc-name option defaults to the structure type name followed by a hyphen in
cli:defstruct. In traditional defstruct it defaults to nil.

The :callable-constructors option defaults to t in cli:defstruct, so that the constructor is -
a function. Traditionally, it defaults to nil.

The :alterant option defaults to nil in cli:defstruct, so that no alterant is defined.
Traditionally, an altcrant is defined by default with the name alter-name.

PS:<L.MAN>DEFSTR.TEXT.117 8-JUN-84

‘The sizdefstruct-description Structure 394 Lisp Machine Manual

The :type option defaults to :named-vector in cli:defstruct. 'This makes a named
structure, and you may specify how o print it. The :predicate opiion defaults to t in
this casc.

If the :type option is specified in cli:defstruct, you never get a named structure. You get
cither a plain list or a plain vector. ‘There is no type-testing predicate. and you may not
request onc. You may not say how to print the structure, cither.

If you specify the :named option along with :type. you still do nor get a named structure.
You get a plain list or a plain vector in which the structure name happens to be stored.
The type is cither :named-list or :phony-named-vector. 'I'hc :predicate option defaults
to nil. but you may specify t yourself. However, any randomly created list or vector with
the structure name stored in the right place will satisfy the predicate thus defined. typep
cannot recognize these phony named structurcs, and you may not specify how to print
them (they do not understand named -structure-invoke.)

20.9 The si:defstruct-description Structure

This scction discusses the internal structurcs used by defstruct that might be useful to
programs that want to interface to defstruct nicely. For example, if you want to writc a program
that cxamines structurcs and displays them the way describe (see page 791) and the Inspector do,
your program should work by cxamining these structurcs. The information in this scction is also
nccessary for anyone who is thinking of defining his own structure types.

Whenever the user defines a new structure using defstruct, defstruct creates an instance of
the si:defstruct-description structure.. This can be found as the si:defstruct-description
property of the name of the structure; it contains such uscful information as the number of slots
in the structure, the defstruct options specified, and so on.

This is a simplified version of the way the si:defstruct-description structure is defined. It
omits some slots whose mcaning is not worth documenting here. (The actual definition is in the
system-internals package.)

(defstruct (defstruct-description

(:default-pointer description)
(:conc-name defstruct-description-))

name

size

property-alist

slot-alist

documentation)

The name slot contains the symbol supplicd by the user to be the name of his structure,
such as spaceship or phone-book-entry.

The size slot contains the total number of slots in an instance of this kind of structure. This
is nor the samc¢ number as that obtained from the :size-symbol or :size-macro options to
defstruct. A named structure, for cxample, usually uscs up an extra location to storc the name

PS:KILMAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual 395 The sizdefstruct-description Structure

of the structure, so the :size-macro option will get a number one larger than that stored in the
defstruct description.

The property-alist slot contains an alist with pairs of the form (property-name . property)
containing propertics placed there by the ‘property option to defstruct or by property names used
as options o defstruct (sce the :property option, pagc 383).

The slot-alist slot contains an alist of pairs of the form (slor-name . slot-description). A slot-
description is an instance of the defstruct-slot-description structure. The defstruct-slot-
description structure is defined something like this (with other slots that are omitted here), also
in the si package:

(defstruct (defstruct-slot-description

(:default-pointer slot-description)
:conc-name)

number

Ppss

init-code

type

property-alist

ref-macro-name

documentation)

The number slot -contains the number of the location of this slot in an instance of the
structure. locations are numbered, starting with 0, and continuing up to a number one less than
the size of the structure. The actual location of the slot is determined by the reference-consing
function associated with the type of the structure; sce page 397.

The ppss slot contains the byte specifier code for this slot if this slot is a byte ficld of its
location. If this slot is the entirc location, then the ppss slot contains nil.

The init-code slot contains the initialization code supplied for this slot by the user in his
defstruct form. If there is no initialization code for this slot then the init-code slot contains a
canonical object which can be obtained (for comparison using eq) as the result of (si:defstruct-

empty). ‘

The ref-macro-name slot contains the symbol that is defined as a macro or a subst that
cxpands into a reference to this slot (that is, the name of the accessor function),

PS:KILMAN>DEFSTR.TEXT.117 8-JUN-84

Extensions to Defstruct 396 Lisp Machine Manual

20.10 Fxtensions to Defstruct

‘I'he macro si:defstruct-define-type can be used to tcach defstruct about new types that it
can use to implement structurces.

si:defstruct-define-type ’ Macro
Is used for tcaching defstruct about new types.

The syntax of si:defstruct-define-type is:
(si:defstruct-define-type hpe
option-1_option-2 ...))
where cach oprion is cither the symbolic namce of an option or a list of the form (option-
name . rest). Different options interpret rest in different ways. The symbol fype is given
an si:defstruct-type-description property of a structure that describes the type
completely.

‘The semantics of si:defstruct-define-type is the subject of the rest of this section.

20.10.1 Example

{ct us start by cxamining a sample call to defstruct-define-type. This is how the :list type
of structure might have been defined:

(si:defstruct-define-type :Tist
(:cons (initia]ization-list description
keyword-options)
:1ist
“(list . ,initialization-1list))
(:ref (slot-number description argument)
*(nth ,slot-number ,argument)))

This is the simplest possible form of defstruct-define-type. It provides defstruct with two
Lisp forms: one for creating forms to construct instances of the structure, and one for creating
forms to become the bodies of accessors for slots of the structure.

The keyword :cons is followed by a list of three variables that will be bound while the
constructor-creating form is cvaluated. The first, initialization-list, will be bound to a list of the
initialization forms for the slots of the structurc. The second, description, will be bound to the
defstruct-description structure for the structurc (scc page 394). The third variable and the :list
keyword will be explained later. ' '

The keyword :ref is followed by a list of three variables that will be bound while the
accessor-creating form is cvaluated. The first, ‘slot-number, will bound to the number of the slot
that the new accessor should reference. The sccond, description, will be bound to the
defstruct-description structure for the structurc. The third, argument, will be bound to the
form that was provided as the argument to the accessor.

PS:<L.MAN>DEFSTR.TEXT.117 8-JUN-84

Lisp Machine Manual 397 Lxtensions to Defstruct

20.10.2 Options to si:defstruct-define-type

This section is a catalog of all the options currently known about by si:defstruct-define-type.

:cons Specifies the code to cons up a form that will construct an instance of a structure
of this type.

The :cons option has the syntax:
(:cons (inits description keywords) - kind
body)
body is some code that should construct and return a picce of code that will
construct, initialize, and return an instance of a structure of this type.

The symbol inits ‘will be bound to the information that the constructor conser
should usc to initialize the slots of the structure. The exact form of this argument
is determined by the symbol kind. 'There arc currently two kinds of initialization.
‘There is the :list kind, where inits is bound to a list of initializations, in the
correct order, with nils in uninitialized slots. And there is the :alist kind, where
inits is bound to an alist with pairs of the form (slo-number . init-code).
Additional kinds may be provided in the future.

The symbol description will be bound to the instance of the defstruct-description
structure (see page 394) that defstruct maintains for this particular structure. This
is so that the constructor conser can find out such things as the total size of the
structure it is supposed to create.

The symbol keywords will be bound to an alist with pairs of the form (keyword .
value), where each keyword was a keyword supplied to the constructor that wasn’t
the name of a slot, and value was the Lisp object that followed the keyword.
This is how you can make your own special keywords, like the existing :make-
array and :times keywords. See the scction on using the constructor, scction
20.4.1, page 385. You specify the list of acceptable keywords with the :cons-
keywords option (sce page 398).

It is an error not to supply the :cons option to si:defstruct-define-type.

iref Specifies the code to cons up a form that will reference an instance of a structure
of this type.

The :ref option has the syntax:
(:ref (number description arg-1 ... arg-n)
body) '
body is some code that should construct and- return a piecc of code that will

reference an instance of a structure of this type.

The symbol number will be bound to the location of the slot that is to be
referenced. This is the same number that is found in the number slot of the
defstruct-slot-description structure (sec page 395).

PS:<LLMAN>DEFSTR.TEXT.117 8-JUN-84

Extensions to Defstruct 398 I.isp Machine Manual

The symbol description will be bound to the instance of the si:defstruct-
description structure that defstruct maintains for this particular structure.

The symbols arg-i are bound ‘to the forms supplicd to the accessor as arguments.
Normally there should be only one of these. The lasr argument is the one that
will be defaulted by the :default-pointer option (scc page 379). defstruct will
check that the user has supplied cxactly n arguments to the accessor function
before calling the reference consing code.

It is an error not to supply the :ref option to si:defstruct-define-type.

:overhead Declares to defstruct that the implementation of this particular type of structure
“uses up” some number of locations in the object actually constructed. This
option is used by various “named” types of structures that store the name of the
structure in one location. For cxample, named arrays have an overhcad of one,
and named array leaders an overhead of two, but named typed arrays have no
overhead since the structure type symbol is stored in the array lcader whilst the
actual data specifying the values of the slots is stored in the array proper.

The syntax of :overhead is (:overhead n), where n is a fixnum that says how
many locations of overhead this type nceds.

This number is used only by the :size-macro and :size-symbol options to
defstruct (sce page 382).

:named Controls the use of the :named option to defstruct. With no argument, the
:named option means that this type is one which records the structure type name
somchow (not nccessarily by using an actual named structure). With an argument,
as in (:named Iype-name), the symbol type-name should be the name of some
other structure type that defstruct should usc if the user spccifies this type and
:named as well. For example, the definition of the :list type contains (:named
:named-list), saying that a defstruct that specifies (:list :named) really uses type
:named-list.

:cons-keywords

Defines additional constructor kecywords for this type of structure. Using these
keywords, one may specify additional information about a structure at the time it
is created (“consed”) using onc of its constructor functions or macros. (The :times
constructor keyword for structures of type :grouped-array is an example.) The
syntax is: (:cons-keywords keyword-1 ... keyword-n) where each keyword is a
symbol that the constructor conser cxpects to find in the keywords alist (cxplained
above). «

‘keywords :keywords is an old name for the :cons-keywords option.

defstruct-keywords .
Defines additional defstruct options allowed for this type of structure. (The
:subtype option for structures of type :array is an example.) These options take
effect at thc time the structurc is defined using defstruct, and thus affect all
structures of a particular type (unless overridden in some way.) In contrast, the
:cons-keywords options affect the creation of individual structurcs of a particular

PS:KLLMANDDEFSTR.TEXT.117 8-JUN-84

[.isp Machine Manual 399 Extensions to Defstruct

:predicate

:copier

:defstruct

type.

The syntax is: (:defstruct—keyWords keyword-1 ... keyword-n) where each

- keyword is a kecyword that defstruct will recognize as an option. defstruct puts

such options, with their values, in the property-alist slot of the defstuct-
description structure (defined above)

Tells defstruct how to produce predicates for a particular type (for the :predicate
option to defstruct). lts syntax is:
(:predicate (description name)
body...)
The variable - description is bound to the defstruct-description structure
maintained for the structure for which a predicate is being generated. The
variable name is bound to the symbol that is to be defined as a predicate. body is
a picce of code to compute the defining form for the predicate. A typical use of
this option might look like: -
(:predicate (description name)
‘(defun ,name (x)
(and (frobbozp x)
(eq (frobbozref x 0)
',(si:defstruct-description-name
description)))))

defstruct knows how to generate a copicr function using the constructor and
reference code that must be provided with any new defstruct type. Nevertheless it
is sometimes dcsirable to specify a specific method of copying a particular
defstruct type. The :copier option to si:defstruct-define-type allow this to be
done:
(:copier (description name)
body)
As with the :predicate option, description is bound to an instance of the
defstruct-description structure, name is bound to the symbol to be defined, and
body is some code to evaluate to get the defining form. For example:
(:copier (description name)
*(fdefine ’',name ’copy-frobboz))

The :defstruct option to si:defstruct-define-type allows the user to run some
code and return some forms as part of the expansion of the defstruct macro.

The :defstruct option has the syntax:
(:defstruct (description)
-body)
body is a picce of code that will be run whenever defstruct is expanding a
defstruct form that defines a structure of this type. The symbol description will
be bound to the instance of the defstruct-description structure that defstruct
maintains for this particular structure.

The value returned by the body should be a list of forms to be included with
those that the defstruct expands into. Thus, if you only want to run some code
at defstruct-cxpand time, and you don’t want to actually output any additional

PS:KLMAN>DEFSTR.TEXT.117 8-JUN-84

Extensions to Defstruct 400 lLisp Machine Manual

code, then you should be careful to return nil from the code in this option.

defstruct will causc the body forms to be cvaluated as carly as possible in the
parsing of a structure definition, and causc the returned forms to be cvalutated as
late as possible in the macro-expansion of the defstuct forms. This is so that
body can rchack arguments, signal errors, and the like before many of defstruct’s
internal forms are cxecuted, while cnabling it to return code which will modify or
cxtend the default forms produced by a vanilla defstruct.

PS:KI.MAN>DEFSTR.TEXT.117 8-JUN-84

	372_Defstruct
	373_Defstruct
	374_Defstruct
	375_Defstruct
	376_Defstruct
	377_Defstruct
	378_Defstruct
	379_Defstruct
	380_Defstruct
	381_Defstruct
	382_Defstruct
	383_Defstruct
	384_Defstruct
	385_Defstruct
	386_Defstruct
	387_Defstruct
	388_Defstruct
	389_Defstruct
	390_Defstruct
	391_Defstruct
	392_Defstruct
	393_Defstruct
	394_Defstruct
	395_Defstruct
	396_Defstruct
	397_Defstruct
	398_Defstruct
	399_Defstruct
	400_Defstruct

