I isp Machine Manual 401 Objects, Message Passing. and Ilavors

21. Objects, Message Passing, and Flavors

The object-oriented programming style used in the Smalltalk and Actor familics of languages
is available in Zetalisp and used by the Lisp Machine software system. Its purpose is to perform
generic operations on objects. Part of its implementation is simply a convention in procedure-
calling style: part is a powerful language feature, called Favors, for defining abstract objects.
This chapter attempts to explain what programming with dbjects and with message passing mcans,
the various means of implementing these in Zetalisp. and when you should use them. It assumes
no prior knowledge of any other languages.

21.1 Objects

When writing a program, it is often convenient to model what the program docs in terms of
objects, conceptual entities: that can be likened to real-world things. Choosing what objects to
provide in a program is very important to the proper organization of the program. In an object-
oriented design, specifying what objects cxist is the first task in designing the system. In a text
cditor, the objects might be “picces of text”, “pointers into text”, and “display windows™. In an
clectrical design system, the objects might be “resistors™, “capacitors”, “transistors”, “wires”, and
“display windows”. After specifying what objects there are, the next task of the design is to
figure out what operations can be performed on cach object. In the text editor example,
operations on “picces of text” might include inserting text and deleting text; operations on
“pointers into text”™ might include moving forward and backward; and operations on “display
windows™ might include redisplaying the window and changing which “picce of text” the window
is associated with.

In this model, we think of the program as being built around a set of objects, cach of which
has a set of operations that can be performed on it. More rigorously, the program dcfines several
types of object (the cditor above has three types), and it can create many instances of each type
(that is, therc can be many pieces of text, many pointers into text, and many windows). The
program defincs a set of types of object and, for each type, a set of operations that can be
performed on any object of the type.

The new types may cxist only in the programmer’s mind. For example, it is possible to think
of a disembodied property list as an abstract data typc on which certain operations such as get
and putprop are defined. This type can be instantiated with (cons nil nil) (that is, by evaluating
this form you can create a new disembodied property list); the operations arc invoked through
functions defined just for that purpose. The fact that disembodied property lists are really
implemented as lists, indistinguishable from any other lists, does not invalidate this point of view.
However, such conceptual data types cannot be- distinguished automatically by the system; one
cannot ask “is this object a disembodied property list, as opposed to an ordinary list”. ’

The defstruct for ship carly in chapter 20 defines another conceptual type. defstruct
automatically defines some opcrations on this object, the operations to access its clements. We
could define other functions that did useful things with ship’s, such as computing their speed,
anglc of travel, momentum, or velocity, stopping them, moving them clsewhere, and so on.

PS:KL.MAN>FLLAVOR.TEXT.134 : 8-JUN-84

Modularity 402 Iisp Machine Manual

In both cases, we represent our conceptual object by one Lisp object. 'The Lisp object we use
for the representation has structure and refers to other Lisp objects. In the disembodicd property
list casc. the Lisp object is a list of pairs: in the ship case. the Lisp object is an array whose
details are taken care of by defstruct. In both cases, we can say that the object keeps track of
an internal state. which can be examined and altered by the operations available for that type of
object. get cxamines the state of a property list. and putprop alters it ship-x-position
examines the state of a ship, and (setf (ship-x-position ship) 5.0) alters it.

We have now seen the essence of object-oriented programming. A conceptual object is
modeled by a single Lisp object, which bundles up some state information. For every type of
object. there is a sct of operations that can be performed Lo cxamine or alter the state of the
object.

21.2 Modularity

An important benefit of the object-oriented style is that it lends itsclf to a particularly simple
and lucid kind of modularity. If you have modular programming constructs and techniques
available, they help and encourage you to write programs that are casy to rcad and understand,
and so arc morc rcliable and maintainable. Object-oriented programming lets a programmer
implement a uscful facility that presents the caller with a sct of external interfaces, without
requiring the caller to understand how the internal details of the implementation work. In other
words, a program that calls this facility can treat the facility as a black box: the program knows
what the facility’s external interfaces guarantee to do, and that is all it knows.

For cxample, a program that uses disembodied property lists never neceds to know that the
property list is being maintained as a list of alternating indicators and valucs: the program simply
performs the operations, passing them inputs and getting back outputs. 'The program only
depends on the external definition of these operations: it knows that if it putprop’s a property,
and doesn't remprop it (or putprop over it), then it can do get and be sure of getting back the
same thing it put in. The important thing about this hiding of the details of the implementation
is that somecone reading a program that uses disembodied property lists need not concern himself
with how they are implemented; he need only understand what they undertake to do. This saves
the programmer a lot of time and lets him concentrate his energics on understanding the program
he is working on. Another good thing about this hiding is that the representation of property lists
could be changed and the program would continue to work. For cxample, instcad of a list of
alternating clements, the property list could be implemented as an association list or a hash table.
Nothing in the calling program would change at all. '

The same is true of the ship cxample. The caller is presented with a collection of operations,
such as ship-x-position, ship-y-position, ship-speed, and ship-direction; it simply calls these
and looks at their answers, without caring how they did what they did. In our example above,
ship-x-position and ship-y-position would be accessor functions, defined automatically by
~ defstruct, while ship-speed and ship-direction would be functions dcfined by the implementor
of the shilp type. The code might look like this:

PS:KI.MAN>FI.AVOR.TEXT.134 8-JUN-84

Lisp Machine Manual a0 Modularity

(defstruct (ship :conc-name)
x-position '
y-position
x-velocity
y-velocity
mass)

~ (defun ship-speed (ship)
{sqrt (+ (~ (ship-x-velocity ship) 2)
(~ (ship-y-velocity ship) 2))))

(defun ship-direction (ship)
(atan2 (ship-y-velocity ship)
(ship-x-velocity ship)))

The caller need not know that the first two functions were structure accessors and that the
sccond two were written by hand and do arithmetic. Those facts would not be considered part of
the black box characteristics of the implementation of the ship type. ‘The ship type does not
- guarantee which functions will be implemented in which ways:; such aspects arc not part of the
contract between ship and its callers. In fact, ship could have been written this way instead:

(defstruct (ship :conc-name)
x-position ’
y-position
speed
direction
mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship))))

(defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction ship))))

In this second implementation of the ship type, we have decided to store the velocity in polar
coordinates instead of rectangular coordinates. This is purely an implementation decision. The
caller has no idca which of the two ways the implementation uses; he just performs the
operations on the object by calling the appropriate functions.

‘We have now created our own types of objects, whose implementations are hidden from the
programs that use them. -Such types are usually referred to as abstract types. 'The object-oricnted
style of programming can be used to create abstract types by hiding the implementation of the
operations and simply documenting what the operations are defined to do.

Some more terminology: the quantities being held by the clements of the ship structure are
referred to as instance variables. Fach instance of a type has the same operations defined on it
what distinguishes onc instance from another (besides eg-ness) is the values that reside in its
instance variables. The example above illustrates that a caller of operations does not know what
the instance variables arc; our two ways of writing the ship opcrations have different instance

PS:KILMANDFLAVOR.TEXT.134 8-JUN-84

Modularity 404 Lisp Machine Manual

variables, but from the outside they have exactly the same operations.

One might ask: “But what if the caller evaluates (aref ship 2) and notices that he gets back
the x velocity rather than the speed? Then he can tell which of the two implementations were
used.”™ This is true: if the caller were to do that. he could tell. However, when a facility is
implemented in the object-oriented style. only certain functions are documented and advertised,
the functions that are considered to be operations on the type of object. ‘The contract from ship
(o its callers only speaks about what happens if the caller calls these functions. ‘The contract
makes no guarantees at all about what would happen if the caller were to start poking around on
his own using aref. A caller who does so is in error; he is depending on something that is not
specified in the contract. No guarantees were ever made about the results of such action, and so
anything may happen: indeed. ship may get reimplemented overnight, and the code that docs the
aref will have a different effect entirely and probably stop working. ‘This example shows why the
concept of a contract between a callee and a caller is important: the contract specifies the
interface between the two modules.

Unlike some other languages that provide abstract types, Zctalisp makes no attempt to have
the language automatically forbid constructs that circumvent the contract. This is intentional. One
reason for this is that the Lisp Machine is an interactive system, and so it is important to be able
to cxamine and alter internal state interactively (usually from a debugger). Furthermore, there is
no strong distinction between the “system™ programs and the “user” programs on the Lisp
Machine: users are allowed to get into any part of the language system and change what they
want to change. Another rcason is the traditional MIT Al Lab philosophy that opposes “fascist”
restrictions which imposc on the user “for his own good”. The user himself should decide what is
good for him.

In summary: by defining a sct of operations and making only a specific set of external
entrypoints available to the caller, the programmer can crcate his own abstract types. These types
can be uscful facilities for other programs and programmers. Since the implementation of the
type is hidden from the callers, modularity is maintained and the -implementation can be changed
casily.

We have hidden the implementation of an abstract type by making its operations into
functions which the user may call. The important thing is not that they are functions—in Lisp
everything is done with functions. The important thing is that we have defined a new conceptual
operation and given it a name, rather than rcquiring anyonc who wants to do the operation to
write it out step-by-step. Thus we say (ship-x-velocity s) rather than (aref s 2).

Often a few abstract operation functions are simple enough that it is desirable to compile
special code for them rather than really calling the function. (Compiling special code like this is
often called open-coding.) The compiler is directed to do this through use of macros, substs, or
optimizers. defstruct arranges for this kind of special compilation for the functions that get the
instance variables of a structure.

When we use this optimization, the implementation of the abstract type is only hidden in a
certain sense. It does not appear in the Lisp code written by the user, but docs appear in the
compiled code. The rcason is that there may be some compiled functions that usc the macros (or
whatever); even if you change the definition of the macro, the existing compiled code will
continue to use the old definition. Thus, if the implementation of a module is changed programs

PS:KI.MAN>FI.LAVOR.TEX'T.134 8-JUN-84

Iisp Machine Manual 405 Generic Operations

that use it may need to be recompiled. This is something we sometimes accept for the sake of
ciliciency. :

In the present implementation of flavors, which is discussed below, there is no such compiler
incorporation of nonmodular knowledge into a program, cxcept when the :ordered-instance-
variables fcaturc is used: scc page 427, where this problem is explained further. If you dont
use the :ordered-instance-variables feature, you don’t have to worry about this.

21.3 Generic Operations

Suppose we think about the rest of the program that uses the ship abstraction. It may want
to deal with other objects that arc like ship’s in that they arc movable objects with mass, but
unlike ships in- other ways. A more advanced model of a ship might include the concept of the
ship's engine power, the number of passengers on board, and its namc. An object representing a
meteor probably would not have any of these, but might have another attribute such as how
much iron is in it. '

However, ‘all kinds of movable objects have positions, velocitics, and masses, and the system
will contain some programs that deal with these quantitics in'a uniform way, regardless of what
kind of object the attributes apply to. For example, a picce of the system that calculates every
object’s orbit in space need not worry about the other, more peripheral attributes of various types
of objects; it works the same way for all objects. Unfortunately, a program that trics to calculate
the orbit of a ship necds to know the ship’s attributes, and must therefore call ship-x-position
and ship-y-velocity and so on. The problem is that these functions won’t work for meteors.
There would have to be a sccond program to calculate orbits for meteors that would be exactly
the same, ecxcept that where the first onc calls ship-x-position, the second one would call
meteor-x-position, and so on. This would be very bad; a great deal of code. would have to
exist in multiple copics, all of it would have to be maintained in parallel, and it would take up
space for no good reason. '

What is needed is an operation that can be performed on objects of scveral different types.
For cach type, it should do the thing appropriate for that type. Such operations are called
generic operations. The classic example of generic operations is the arithmetic functions in most
programming languages, including Zetalisp. The + (or plus) function accepts integers, floats,
ratios and complex numbers, and perform an appropriate kind of addition, based on the data
types of the objects being manipulated. In our example, we neced a generic x-position operation
that can be performed on cither ship’s, meteor's, or any other kind of mobile object represented
in the system. This way, we can writc a single program to calculate orbits. When it wants to
know the x position of the object it is decaling with, it simply invokes the generic x-position
operation on the object, and whatever type of object it has, the correct operation is performed,
and the x position is returned. ‘

Another terminology for the usc of such generic operations has emerged from the Smalltalk
language: performing a generic operation is called sending a message. The message consists of an
operation name (a symbol) and arguments. The objects in the program are thought of as little
people, who get sent messages and respond with answers (returned values). In the example above,
the objects are sent x-position messages, to which they respond with their x position.

PS:KLLMAND>FLAVOR.TEXT.134 8-JUN-84

Generic Operations in Lisp 4006 1 isp Machine Manual

Sending a message is a way of invoking a function without specifying which function is to be
called. Instead. the data determines the function o use. The caller specifies an operation name
and an object; that is. it said what operation to perform, and what object to perform it on. The
function to invoke is found from this information.

The wwo data used to figure out which function to call are the npe of the object, and the
name of the operation. ‘The same set of functions are used for all instances of a given type, so
the type is the only attribute of the object used o figure out which function to call. ‘The rest of
the message besides the operation is data which are passed as arguments to the function, so the
operation is the only part of the message used to find the function. Such a function is called a
method. Tor example, if we send an x-position message to an object of type ship, then the
function we find is “the ship type's x-position method”. A method is a function that handles a
specific operation on a specific kind of object: this method handles messages named x-position to
objects of type ship.

In our new terminology: the orbit-calculating program finds the x position of the object it is
working on by sending .that object a message consisting of the operation x-position and no
arguments. The returned value of the message is the x position of the object. If the object was
of type ship, then the ship type’s x-position mcthod was invoked: if it was of typc meteor,
then the meteor type's x-position method was invoked. The orbit-calculating program just sends
the message, and the right function is invoked based on the type of the object. We now have
truc generic functions, in the form of message passing: the same opceration can mean different
things depending on the type of the object. :

21.4 Generic Operations in Lisp

How do we implement message passing in Lisp? Our convention is that objects that receive
messages are always functional objects (that is, you can apply them to arguments). A message is
sent to an object by calling that object as a function, passing the operation name as the first
argument and the arguments of the message as the rest of the arguments. Operation names are
represented by symbols: normally these symbols are in the keyword package (sce chapter 27, page
636), since messages are a protocol for communication between different programs, which may
reside in different packages. So if we have a variable my-ship whose value is an object of type
ship, and we want to know its x position, we send it a message as follows:

(send my-ship :x-position)
To set the ship’s x position to 3.0, we send it a message like this:
(send my-ship :set :x-position 3.0)

It should be stressed that no new featurcs arc added to Lisp for message sending; we simply
define a convention on the way objects take arguments. The convention says that an object
accepts messages by always interpreting its first argument as an operation name. The object must
consider this operation name, find the function which is the mcthod for that operation, and
invoke that function.

PS:KLLMAN>FLLAVOR.TEXT.134 8-JUN-84

Lisp Machine Manual ' 407 ‘ Generic Operations in Lisp

send object operation &vest arguments
Sends object a message with operation and arguments as specified. Currently send is
identical to funcall, but preferable when a message is being sent. just for clarity.

There are vague ideas of making send different from Suncall if object is a symbol, list,
number, or other object that does not normally handle messages when funcalled, but the
meaning of this is not completely clear, -

lexpr-send object operation &rest arguments
Currently lexpr-send is the same as apply.

This raises the question of how message receiving works. The object must somchow find the
right method for the message it is sent. Furthermore, the object now has to be callable as a
function. But an ordinary function will not do. We need something that can store the instance
variables (the internal state) of the object. We need a function with internal state; that is, we
need a coroutine. '

Of the Zetalisp features presented so far, the most appropriate is the closure (sce chapter 12,
page 250). A message-receiving object could be implemented as a- closure over a set of instance
variables. ‘The function inside the closure would have a big selectq form to dispatch on its first
argument. (Actually, rather than using closurcs and a selectq, you would probably use entities
(section 12.4, page 255) and defselect (page 236).)

While using closures (or entitics) does work, it has several serious problems. The main
problem is that in order to add a new operation to a system, it is necessary to modify a lot of
code; you have to find all the types that understand that operation, and add a new clause to the
selectg. The problem with this is that you cannot textually scparate the implementation of your
new opecration from the rest of the system; the mecthods must be interlcaved with the other
operations for the type. Adding a new operation should only require adding Lisp code; it should
not require modifying Lisp code. '

The conventional way of making generic operations is to have a procedure for cach operation,
which has a big selectq for all the types; this means you have to modify code to add a type.
The way described above is to have a procedure for each type, which has a big selectq for all
the operations; this mecans you have to modify code to add an opcration. Neither of these has
the desired property that extending the system should only require adding code, rather than
modifying code.

Closures (and entitics) are also somewhat clumsy and crude. A far more streamlined,
convenient, and powerful system for creating message-recciving objects exists; it is called the
Slavor mechanism. With flavors, you can add a new mcthod simply by adding code, without
modifying anything. Furthermore, many common and uscful things are very easy to do with
flavors. The rest of this chapter describes flavors.

PS:KL.MAN>FLLAVOR.TEXT.134 | 8-JUN-84

Simple Use of Flavors 408 I isp Machine Manual

21.5 Simple Use of Flavors

A flavor. in its simplest form, is a definition of an abstract type. New flavors are created
with the defftavor special form, and methods of the flavor arc created with the defmethod special
form. New instances of a flavor. are created with the make-instance function. This scction
explains simple uses of these forms. '

lFor an cxample of a simple use of flavors, here is how the ship cxample above would be
implemented.

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

()

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (~ x-velocity 2)
(~ y-velocity 2))))

(defmethad (ship :direction) ()
(atan2 y-velocity x-velocity))

The code above creates a new flavor. The first subform of the defflavor is ship, which is the
name of the new flavor. Next is the list of instance variables; they are the five that should be
familiar by now. The next subform is something we will get to later. The rest of the subforms
arc the body of the defflavor, and cach onc specifies an option about this flavor. In our
cxample, there is only onc option, namely :gettable-instance-variables. This mecans that for
cach instance variable. a method should automatically be gencrated to return the value of that
instance variable. The name of the operation is a symbol with the same name as the instance
variable, but interned on the keyword package. Thus, mcthods are created to handle the
operations :x-position, :y-position, and so on.

Each of the two defmethod forms adds a method to the flavor. The first one adds a handler
to the flavor ship for the operation :speed. The second subform is the lambda-list, . and the rest
is the body of the function that handles the :speed operation. The body can refer to or set any
instance variables of the flavor, just like variables bound by a containing let. When any instance
of the ship flavor is invoked with a first argument of :direction, the body of the second
defmethod is evaluated in an environment in which the instance variables of ship refer to the
instance variables of this instance (the one to which the message was sent). So the arguments
passed to cli:atan are the the velocity components of this particular ship. The result of cli:atan
becomes the value returned by the :direction operation.

Now we have seen how to create a new abstract type: a new flavor. Every instance of this
flavor has the five instance variables named in the defflavor form, and the seven methods we
have scen (five that were automatically generated because of the :gettable-instance-variables
option, and two that we wrotc ourselves). The way to create an instance of our new flavor is
with the make-instance function. Here is how it could be used:

PS:<[.LMANDFL.LAVOR.TEXT.134 8-JUN-84

Lisp Machine Manual 409 Simple Use of Flavors

(setq my-ship (make-instance 'ship))

This returns an object whose printed representation is # <SHIP- 13731210, (Of course, the
value of the magic number will vary; it is just the object address in octal) The argument to
make-instance is the name of the flavor to be instantiated. Additional arguments, not used here,
arc init options, that is, commands to the flavor of which we are making an instance, sclecting
optional features. "This will be discussed more in a moment.

Fxamination of the flavor we have defined shows that it is quite uscless as it stands, since
there is no way to sct any of the parameters. We can fix this up casily by putting the :settable-
instance-variables option into the defflavor form. ‘This option tells defflavor to generate
methods for operation :set for first argument :x-position. :y-position. and so on: cach such
method takes one additional argument and sets the corresponding instance variable to that value.
It also generates methods for the operations :set-x-position, :set-y-position and so on; cach of
these takes onc argument and sets the corresponding variable.

Another option we can add to the defflavor is :inittable-instance-variables, which allows us
to initializc the values of the instance variables when an instance is first created. inittable-
instance-variables docs not create any methods; instead, it makes initialization keywords named
:x-position,. :y-position, ctc., that can be used as init-option arguments to make-instance to
initialize the corresponding instance variables. The list of init options is sometimes called the init-
plist because it is like a property list.

Here is the improved defflavor:
(defflavor ship (x-position y-position
x-velocity y-velocity mass)
()
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

All we have to do is cvaluate this new defflavor, and the existing flavor definition is updated
and now includes the new mecthods and initialization options. In fact, the instance we generated a
while ago now accepts the new operations! We can set the mass of the ship we created by
evaluating

(send my-ship :set-mass 3.0)
or

(send my-ship :set :mass 3.0)
and the mass instance variable of my-ship is properly set to 3.0. Whether you use :set-mass
or the gencral operation :set is a matter of style; :set is used by the cxpansion of (setf (send
my-ship :mass) 3.0).

If you want to play around with flavors, it is uscful to know that describe of an instance
tells you the flavor of the instance and the valucs of its instance variables. 1f we were to evaluate
(describe my-ship) at this point, the following would be printed:

PS:KLLMAN>FLAVOR.TEXT.134 | 8-JUN-84

Simple Use of Flavors 410 Lisp Machine Manual

#<SHIP 13731210>, an object of flavor SHIP,
has instance variable values:

X-POSITION: void
Y-POSITION: void
X-VELOCITY: void
Y-VELOCITY: . void
MASS : ‘ 3.0

Now that the instance variables are inittable, we can create another ship and initialize some of
the instance variables using the init-plist. I.eU's do that and describe the result:

(setq her-ship (make-instance *ship :x-position 0.0
:y-position 2.0
:mass 3.5))
=> #<SHIP 13756521>

(describe her-ship)
#<SHIP 13756521>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 0.0
Y-POSITION: 2.0
X-VELOCITY: void
Y-VELOCITY: void
MASS: 3.5

A flavor can also cstablish default initial values for instance variables. These default values are
used when a new instance is created if the valucs are not initialized any other way. The syntax
for specifying a default initial value is to rcplace the name of the instance variable by a list,
whose first element is the name and whose second is a form to evaluate to produce the default
initial value. For example:

PS:<LLMAN>FLLAVOR.TEXT.134 - 8-JUN-84

Lisp Machine Manual 411 .h4ning11uvum

(defvar xdefault-x-velocity* 2.0)
(defvar =default-y-velocity* 3.0)

(defflavor ship ((x-position 0.0)
(y-position 0.0)
(x-velocity *default-x-velocitys)
(y-velocity *default-y-velocitys)
mass)
()
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

(setq another-ship (make- 1nstance *ship :x-position 3.4))
=> #<SHIP 14563643>

(describe another-ship)
#<SHIP 14563643>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 3.4
Y-POSITION: 0.0
X-VELOCITY: 2.0
Y-VELOCITY: 3.0
id

MASS: vo

x-position was initialized explicitly, so the default was ignored. y-position was initialized
from the default value, which was 0.0. The two velocity instance variables were initialized from
their default values, which came from two global variables. mass was not explicitly initialized
and did not have a default initialization, so it was left void.

There are many other options that can be used in defflavor, and the init options can be used
more flexibly than just to initialize instance variables; full details are given later in this chapter.
But even with the small sct of features we have seen so far, it is casy to write object-oriented
programs,

21.6 Mixing Flavors

Now we have a system for defining message-recciving objects so that we can have generic
operations. If we want to create a new type called meteor that would accept the same generic
opcrations as ship, we could simply write another defflavor and two more defmethod’s that
looked just like those of ship, and then metcors and ships would both accept the same
operations. ship would have some more instance variables for holding attributes specific to ships
and somc more methods for operations that are not gcncnc but are only defined for ships; the
same would be truc of meteor.

However;, this would be a a wasteful thing to do. The same code has to be repeated in
several places, and several instance variables have to be repeated. The code now needs to be
maintained in many places, which is always undesirable. The power of flavors (and the name

PS:{L.MAN>FILLAVOR.TEXT.134 8-JUN-84

Mixing Flavors C4n I isp Machine Manual

“flavors”) comes from the ability to mix several flavors and get a new flavor. Since the
functionality of ship and meteor partially overlap, we can take the common functionality and
move it into its own flavor, which might be called moving-object. We would define moving-
object the same way as we defined ship in the previous section. ‘Then, ship and meteor could
be defined like this: :

(defflavor ship (engine-power number-of-passengers name)
' (moving-object)
:gettable-instance-variables)

(defflavor meteor (percent-iron)
(moving-object)
:inittable-instance-variables)

These defflavor forms use the second subform, which we ignored previously. The sccond
subform is a list of flavors to be combined to form the new flavor; such flavors are called
components. Concentrating on ship for a moment (analogous things are truc of meteor), wc sce
that it has cxactly one component flavor: moving-object. It also has a list of instance variables,
which includes only the ship-specific instance variables and not the ones that it sharcs with
meteor. By incorporating moving-object, the ship flavor acquires all of its instance variables,
and so need not name them again. It also acquires all of moving-object’s mcthods, too. So
with the new definition, ship instances still implement the :x-velocity and :speed operations,
with the same meaning as before. However, thé :engine-power operation is also understood
(and returns the value of the engine-power instance variable).

What we have done here is to take an abstract type, moving-object, and build two more
specialized and powerful abstract types on top of it. Any ship or metcor can do anything a
moving object can do, and cach also has its own specific abilitics. This kind of building can
continue: we could define a flavor called ship-with-passenger that was built on top of ship,
and it would inherit all of moving-object’s instance variables and methods as well as ship’s
instance variables and mecthods. Furthermore, the second subform of defflavor can be a list of
several components, meaning that the new flavor should combine all the instance variables and
methods of all the flavors in the list. as well as the ones those flavors arc built on, and so on.
All the components taken together form a big trec of flavors. A flavor is built from its
components, its components’ components, and so on. We sometimes usc the term “components”
to mean the immediate components (the oncs listed in the defflavor), and sometimes to mean all
the components (including the components of the immediatc components and so on). (Actually, it
is not strictly a trec, since some flavors might be components through more than onc path. It is
really a directed graph; it can even be cyclic.)

The order in which the components are combined to form a flavor is important. The tree of
flavors is turned into an ordered list by performing a top-down. depth-first walk of the tree,
including non-terminal nodes before the subtrees they head, ignoring any flavor that has been
encountered previously somewhere else in the tree. For cxample, if flavor-1's immediate
components arc flavor-2 and flavor-3, and flavor-2's components arc flavor-4 and flavor-5,
and flavor-3's component was flavor-4, then the complete list of components of flavor-1 would
be:

flavor-1, flavor-2, flavor-4, flavor-5, flavor-3
The flavors carlicr in this list are the more specific, less basic ones; in our example, ship-with-

PS:<LLMAN>FLLAVOR.TEX'T'134 8-JUN-84

I isp Machine Manual 413 Mixing I’Iu\.'urs

passengers would be first in the list, followed by ship, followed by moving-object. A flavor is
always the first in the list of its own components. Notice that flavor-4 does not appear twice in
this Tist. Only the first occurrence of a flavor appears: duplicates are removed. (1he climination
of duplicates is donce during the walk; if there is a cycle in the directed graph, it docs not cause
a non-terminating computation.)

The set of instance variables for the new flavor is the union of all the sets of instance
variables in all the component flavors. If both flavor-2 and flavor-3 have instance variables
named foo, then flavor-1 has an instance variable named foo. and any methods that refer to foo
refer to this same instance variable. Thus different components of a flavor can communicate with
onc another using shared instance variables. (Typically, only one component ever sets the
variable; the others only look at it.) 'The default mmal value for an instance variable comes from
the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor system.
When a flavor is defined, a single function, called a combined method, is constructed for cach
operation supported by the flavor. This function is constructed out of all the methods for that
operation from all the components of the flavor. ‘There are many different ways that methods can
be combined; these can be sclected by the user when a flavor is defined. The user can also
create new forms of combination,

There are several kinds of methods, but so far, the only kinds of mcthods we have seen are
primary methods. The default way primary methods are combined is that all but the carlicst one
provided are ignored. In other words, the combined method is simply the primary method of the
first flavor to provide a primary method. What this means is that if you are starting with a flavor
foo and building a flavor bar on top of it, then you can override foo's mcthod for an operation
by providing your own method. Your method will be called, and foo’s will never be called.

Simple overriding is often useful; for example, if you want to make a new flavor bar that is
just like foo except that it reacts completely differently to a few operations. However, often you
don’t want to completely override the basc flavor's (foo's) method; sometimes you want to add
some extra things to be done. This is where combination of methods is used.

The usual way methods are combined is that one flavor provides a primary method, and other
flavors provide daemon methods. The idea is that the primary method is “in charge” of the main
business of handling the operation, but other flavors just want to keep informed that the message
was sent, or just want to do thc part of the operation associated with their own area of
responsibility.,

daemon mcthods come in two kinds, before and afier. There is a special syntax in defmethod
for defining such mecthods. Here is an cxample of the syntax. To give the ship flavor an after-
dacmon mcthod for the :speed operation, the following syntax would be used:
(defmethod (ship :after :speed) () body)

Now, when a message is sent, it is handled by a new function called the combined method.
The combined method first calls all of the before dacmons, then the primary method, then all the
after dacmons. Each method is passed the same arguments that the combined method was given.
The returned values from the combined method are the values returned by the primary method;
any values rcturned from the daemons arc ignored. Before-dacmons are called in the order that

PS:KILMAN>FLAVOR.TEXT.134 8-JUN-84 -

Ilavor IFunctions 414 Fisp Machine Manual

flavors are-combined, while after-dacmons are called in the reverse order. In other words, if you
build bar on top of foo. then bar’s before-dacmons run before any of those in foo, and bar’s
after-dacmons run after any of those in foo.

The reason for this order is to keep the modularity order correct. 1f we create flavor-1 built
on flavor-2, then it should not matter what flavor-2 is built out of. Our new before-dacmons
go before all methods of flavor-2, and our new after-dacmons go after all methods of flavor-2.
Note that if you have no dacmons, this reduces o the form of combination described above. ‘The
most recently added component flavor is the highest level of abstraction: you build a higher-level
object on top of a lower-level object by adding new components to the front. The syntax for
defining dacmon methods can be found in the description of defmethod below.

To make this a bit more clear, let's consider a simple example that is casy to play with: the
:print-self method. ‘The Lisp printer (i.e. the print function: see section 23.1, page 506) prints
instances of flavors by sending them :print-self messages. The first argument to the :print-self
operation is a stream (we can ignore the others for now). and the recciver of the message is
supposed to print its printed representation on the stream. In the ship example above, the reason
that instances of the ship flavor printed the way they did is because the ship flavor was actually
built on top of a very basic flavor called vanilla-flavor: this component is provided automatically
by defflavor. It was vanilla-flavor's :print-self method that was doing the printing. Now, if we
give ship its own primary method for the :print-self operation, then that method completely
takes over the job of printing; vanilla-flavor’s method will not be called at all. However, if we
give ship a before-dacmon method for the :print-self operation, then it will get invoked before
the vanilla-flavor method, and so whatever it prints will appear before what vanilla-flavor prints.
So we can use before-dacmons to add prefixes to a printed representation; similarly, after-
dacmons can add suffixes.

There are other ways to combine mecthods besides daemons, but this way is the most
common. The more advanced ways of combining methods arc explained in a later section; see
section 21.11, page 433. vanilla-flavor and what it does for you arc also explained later; see
scction 21,10, page 432.

21.7 Flavor Functions

defflavor Macro
A flavor is defined by a form
(defflavor flavor-name (varl var2...) (flavl flav2...)
optl opi2...)
flavor-name is a symbol which serves to namc this flavor. It is given an siflavor property
which is the internal data-structure containing the details of the flavor.

(type-of obj), where obj is an instance of the flavor named flavor-name, returns the
symbol flavor-name. (typep obj flavor-name) is t if obj is an instance of a flavor, onc of
whose components (possibly itsclf) is flavor-name.

varl, var2, ctc. arc the names of the instance-variables containing the local state for this
flavor. A list of the name of an instancc-variable and a default initialization form is also
acceptable; the initialization form is cvaluated when an instance of the flavor is created if

PS:<LLMAN>FLLAVOR.TEXT.134 8-JUN-84

1 isp Machine Manual 415 I'lavor FFunctions

no other iitial value for the variable is obtained. If no initialization is specified, the
variable remains void. :

Slavl . flav2, cte. are the names of the component flavors out of which this flavor is built.
The features of those flavors are inherited as described previously.

optl, opi2, ctc. arc options: cach option may be cither a keyword symbol or a list of a
keyword symbol and arguments. ‘the options to defflavor are described in section 21.8.
page 424.

all-flavor-names Variable
A list of the names of all the flavors that have ever been defflavor'ed.

defmethod Macro

' A method, that is, a function to handle a particular operation for instances of a particular

flavor, is defined by a form such as
(defmethod (flavor-name method-type operation) lambda-list
Jorml form2...)

Sflavor-name is a symbol which is the name of the flavor which is to receive the method.
operation is a keyword symbol which names the operation to be handled. method-type is a
keyword symbol for the type of method; it is omitted when you are defining a primary
method. For some method- typcs additional information is expected. It comes after
operation.

The meaning of method-1ype depends on what style of method combination is declared for
this operation. For instance, if :daemon combination (the default style) is in use, method
types :before and :after arc allowed. Sce section 21.11, page 433 for a complete
description of method types and the way methods are combined.

lambda-list describes the arguments and aux variables of the function; the first argument
to the method, which is the operation name itsclf, is automatically handled and so is not
included in the lambda-list. Note that mecthods may not have unevaluated ("e)
arguments; that is, thcy must be functions, not special forms. forml, form2, etc. are the
function body; the value of the last form is returned.

The variant form ,

(defmethod (flavor-name operation) function)
where function is a symbol, says that flavor-name’s method for operation is Sfunction, a
symbol which names a function. That function must take appropriatc arguments; the first
argument is the operation. When the function is called, self will be bound.

If you redefine a method that is already defined, the old definition is replaced by the new
one. Given a flavor, an operation name, and a method type, there can only be one
function (with the exception of :case methods; sce page 437), so if you define a :before
dacmon method for the foo flavor to handle the :bar operation, then you replace the
previous before-dacmon; however, you do not affect the primary method or methods of
any other type, operation or flavor.

PS:KLLMAN>FLLAVOR.TEXT.134 8-JUN-84

FFlavor Functions 416 Lisp Machine Manual

The function spee for a method (see section 11.2, page 225) looks like:

(:method fluvor-nume operation) - -or -

(:method fluvor-name method-type operation) — or

(:method flavor-nume method-type operation suboperation)
This is useful to know il you want to trace (page 738). breakon (page 741) or advise
(page 742) a mcthod. or if you want to poke around at the method function itself, c.g.
disassemble it (sce page 792). '

make-1instance flaovor-name init-option! valuel init-option2 valuel...
Creates and returns an instance of the specified flavor. Arguments after the first are
alternating init-option keywords and arguments to those keywords. These options are used
Lo initialize instance variables and o sclect arbitrary options, as described above. An :init
message is sent o the newly-created object with one argument, the init-plist. 'This is a
disembodicd property-list containing the init-options specified and those defaulted from the
flavor's :default-init-plist (however, init keywords that simply initialize instance variables,
and the corresponding values, may be absent when the :init methods are called). make-
instance is an casy-to-call interface to instantiate-flavor, bclow.

If :allow-other-keys is used as an init keyword with a non-nil value, this error check is
suppressed. ‘Then unrecognized keywords arc simply ignored. Example:

(make-instance *foo :lose 5 :allow-other-keys t)
specifies the init keyword :lose, but prevents an crror should the keyword not be handled.

instantiate-flavor flavor-name init-plist &optional send-init-message-p
return-unhandled-keywords area
This is an cxtended version of make-instance, giving you morc features. Note that it
takes the init-plist as an individual argument, rather than taking a rest argumcnt of init
options and values.

The init-plist argument must be a disembodicd property list; locf of a rest argument is
satisfactory. Beware! This property list can be modified; the propertics from the default
init plist are putprop'ed on if not alrcady present, and some :init methods do explicit
putprop’s onto the init-plist. '

In the event that :init methods remprop propertics already on the init-plist (as opposed to
simply doing get and putprop), then the inir-plist is rplacd’ed. This means that the
actual supplied list of options is modificd. 1t also means that locf of a rest argument does
not work: the caller of instantiate-flavor must copy its rest argument (c.g. with copylist);
this is because rplacd is not allowed on stack lists.

Do not use nil as the init-plist argument. This would mean to usc the propertics of the
symbol nil as the init options. If your goal is to have no init options, you must provide
a property list containing no propertics, such as the list (nil).

Here is the scquence of actions by which instantiate-flavor creates a new instance:

First, the specified flavor's instantiation flavor function (page 429), if it exists, is called to
determine which flavor should actually be instantiated. If there is no instantiation flavor
function, the spccified flavor is instantiated.

PS:KI.MAN>FLLAVOR.TEXT.134 8-JUN-84

I isp Machine Manual 417 Flavor FFunctions

If the flavor's method hash-table and other internal information have not been computed
or are not up o date, they are computed. 'This may take a substantial amount of time or
even invoke the compiler. but it happens only once for cach time you define or redefine
a particular flavor. -

Next, the instance itself is created. If the area argument is specified, it is the number of
an arca in which to cons the instance; otherwise the flavor's instance arca function is
called 1o choose an arca if there is one; otherwise, default-cons-area is used. Sce page
429,

‘Then the initial values of the instance variables are computed. I an instance variable is
declared -inittable, and a keyword with the same spelling as its name appears in inir-plist,
the property for that keyword is used as the-initial value.

Otherwise, if the default init plist specifies such a property, it is cvaluated and the value
is used. Otherwise, if the flavor definition specifies a default initialization form, it is
" evaluated and the value is used. The initialization form may not refer to any instance .
variables. It can find the new instance in self but should not invoke any opcrations on it
and should not refer directly to any instance variables. It can get at instance variables
using accessor macros created by the :outside-accessible-instance-variables option

(page 427) or the function symeval-in-instance (page 423).

If an instance variable does not get initialized cither of these ways it is left void; an :init
method may initialize it (sece below).

All remaining keywords and values specified in the :default-init-plist option to defflavor,
that do not initialize instance variables and are not overridden by anything cxplicitly
specified in init-plist are then merged into init-plist using putprop. The default init plist
of the instantiated flavor is considered first, followed by those of all the component flavors
in the standard order. See page 425.

Then keywords appearing in the init-plist but not defined with the :init-keywords option
or the :inittable-instance-variables option for some component flavor are collected. If
the :allow-other-keys option is specificd with a non-nil value (either in the original init-
plist argument or by some default init plist) then these unhandled keywords are ignored.
If the return-unhandled-keywords argument is non-nil, a list of thesc keywords is rcturned
as the sccond value of instantiate-flavor. Otherwise, an error is signaled if any
unrecognized init keywords are present.

If the send-init-message-p argument is supplied and non-nil, an :init message is sent to the
newly-created instance, with one argument, the init-plist. get can be used to extract
options from this property-list. Each flavor that nceds initialization can contribute an :init
mecthod by defining a daemon. :

The :init methods should not look on the init-plist for keywords that simply initialize
instance variables (that is, keywords defined with :inittable-instance-variables rather than

sinit-keywords). The corresponding instance variables arc already set up when the :init '
methods are called, and sometimes the keywords and their values may actually be missing
from the init-plist if it is more efficient not to put them on. To avoid problems, always

PS:<I.MAN>FLLAVOR.TEXT.134 ' ~ 8-JUN-84

Flavor Functions ' 418 : Iisp Machine Manual

:init

refer to the instance variables themsclves rather than looking for the init keywords that
initialize them.

init-plist Operation on all fluvor instances

This operation is implemented on all flavor instances. Its purpose is to cxamine the init

keywords and perform whatever initializations are appropriate. inir-plist is the argument
that was given to instantiate-flavor. and may be passed directly to get to examine the
value of any particular init option.

The default definition of this operation does nothing. However, many flavors add :before
and :after dacmons to it.

instancep object

Returns t if object is an instance. This is equivalent to (typep object ‘instance).

defwrapper Macro

This is hairy and if you don’t understand it you should skip it.

Sometimes the way the flavor system combines the methods of different flavors (the
dacmon system) is not powerful cnough. In that casc defwrapper can be used to define a '
macro that cxpands into code that is wrapped around the invocation of the methods. This
is best explained by an example; suppose you nceded a lock locked during the processing
of the :foo operation on flavor bar, which takes two arguments, and you have a lock-
frobboz special-form that knows how to lock the lock (presumably it generates an
unwind-protect). lock-frobboz nceds to sce the first argument to the operation; perhaps
that tells it what sort of operation is going to be performed (read or write).
(defwrapper (bar :foo) ((argl arg2) . body)
*(lock-frobboz (self argl)
. ,body))
The usce of the body macro-argument prevents the macro defined by defwrapper from
knowing the exact implementation and allows scveral defwrapper's from different flavors
to be combined properly.

Note well that the argument variables, argl and arg2, are not referenced with commas
before them. These may look like defmacro “argument™ variables, but they are not.
Those variables are not bound at the time the defwrapper-defined macro is expanded and
the back-quoting is done; rather the result of that macro-expansion and back-quoting is
code which, when a message is sent, will bind those variables to the arguments in the
message as local variables of the combined method.

Consider another cxample. Suppose you thought you wanted a :before dacmon, but
found that if the argument was nil you nceded to return from processing thc message
immediately, without executing the primary method. You could write a wrapper such as
(defwrapper (bar :foo) ((argl) . body)
‘(cond ((null argl))
(t (print "About to do :FOO")

,body)))

PS:KI.MAN>FILLAVOR.TEX'T.134 8-JUN-84

Iisp Machine Manual 419 IFlavor [Functions

Suppose you need a variable for communication among the dacmons for a particular
operation: perhaps the :after daemons need to know what the primary method did, and it
is something that cannot be casily deduced from just the arguments. You might use an
instance variable for this, or you might create a special variable which is bound during
the processing of the operation and used free by the methods.

(defvar xcommunicationx)

(defwrapper (bar :foo) (ignore . body)

“(let ((*communication* nil))
.body))

Similarly you might want a wrapper that puts a catch around the processing of an
operation so that any one of the methods could throw out in the event of an unexpected
condition. '

Like dacmon methods, wrappers work in outside-in order; when you add a defwrapper
to a flavor built on other flavors, the new wrapper is placed outside any wrappers of the

- component flavors. However, all wrappers happen before any dacmons happen. When
the combined method is built, the calls to the before-dacmon methods, primary methods,
and after-dacmon methods are all placed together, and then the wrappers are wrapped
around- them. Thus, if a component flavor defines a wrapper, mcthods added by new
flavors exccute within that wrapper’s context.

:around methods can do some of the same things that wrappers can. Sec page 439. If
one flavor defines both a wrapper and an :around method for the same operation, the
:around method is exccuted inside the wrapper.

By careful about inserting the body into an internal lambda-expression within the
wrapper’s code. Doing so interacts with the internals of the flavor system and requires
knowledge of things not documented in the manual in order to work properly. It is much
simpler to use an :around mecthod instead.

undefmethod (flavor [1ype] operation [suboperation]) Macro
(undefmethod (flavor :before :operation))
removes the method created by
(defmethod (flavor :before :operation) (args) ...)

To remove a wrapper, usc undefmethod with :wrapper as the mecthod type.

undefmethod is simply an interface to fundefine (seec page 241) that accepts the same
syntax as defmethod.

If a file that used to contain a method definition is reloaded and if that method no longer

seems to have a definition in the file, the user is asked whether to undefmethod that

mcthod. 'This may be important to enablc the modified program to inherit the methods it

is supposed to inherit. If the method in question has been redefined by some other file,
- this is not done, the assumption being that the definition was merely moved.

PS:KL.MAN>FLLAVOR.TEXT.134 8-JUN-84

Ilaver Functions - 420 1isp Machine Manual .

undefflavor fluvor .
" Undefines flavor flevor. Al methods of the flavor are lost. flavor and all flavors that
depend on it are no longer valid to instantiate.

If instances of the discarded definition cxist, they continuc to use that definition.

self ' Variable
When' a message is sent to an. object. the variable self is automatically bound to that
object. for the benefit of methods which want o manipulate the object itsell (as opposed
to its instance variables). ‘

funcall-self opcration arguments...

lexpr-funcall-self opcration arguments.. list-of-argunients
funcall-self is ncarly cquivalent to funcall with self as the first argument. funcall-self
used to be faster. but now funcall of self is just as fast. ‘Thercfore, funcall-self is
obsolete. It should be replaced with funcall or send of self.

Likewisc, lexpr-funcall-self should be replaced with use of lexpr-send to self.

funcall-with-mapping-table function mapping-table &rest arguments
Applics function w0 arguments with sys:self-mapping-table bound to mapping-table. This
is faster than binding the variable yoursclf and doing an ordinary funcall, because the
system assumes that the mapping table you specify is the correct onc for function to be
run with. However, if you pass the wrong mapping table, incorrect exccution will take
place.

This function is usced in the code for combined methods and is also useful for the user in
:around methods (scc page 439).

lexpr-funcall-with-mapping-table function mapping-table &rcst arguments
Applics function to arguments using lexpr-funcall, with sys: self mapping-table bound to
mapping-table.

declare-flavor-instance-variables (flavor) body... Macro
Sometimes it is useful to have a function which is not itself a method, but which is to be
called by methods and wants to be able to access the instance variables of the ebject self.
The form
(declare-flavor-instance-variables (flavor-name)
(defun function args body...))

surrounds the function definition with a peculiar kind of declaration which makes the
instance variables of flavor flavor-name accessible by name. Any kind of function
definition is allowed: it docs not have to use defun per se.

If you call such a function when self's valuc is an instance whose flavor docs not include
Sflavor-name as a component, it is an error.

Cleancer than using declare-flavor-instance-variables, because it does not involve
putting anything around the function dcfinition, is using a local declaration. Put (declare
(:self-flavor flavorname)) as the first expression in the body of the function. For example:

PS:KL.MAN>FLLAVOR.TEXT.134 8-JUN-84

Lisp Machine Manual 421 Flinvor FFunctions

(defun foo (a b)
(declare (:self-flavor myobject))
(+ a (x b speed)))

(where speed is an instance variable of the flavor myobject) is cquivalent to
(declare-flavor-instance-variables (myobject)
(defun foo (a b)

(+ a (* b speed))))

with-self-variables-bound body.. Special form
Within the body of this special form. all of self's instance variables are bound as specials
o the values inside self. (Normally this is true only of those instance variables that are
specified in :special-instance-variables when self's flavor was defined.) As a result,
inside the body you can usc set, boundp and symeval, cic., freely on the instance
variables of self.

recompile-flavor flavor-name &optional single-operation (use-old-combined-methodst)
(do-dependentst)

Updates the internal data of the flavor and any flavors that depend on it. If single-
operation is supplicd non-nil, only the mecthods for that operation are changed. The
system docs this when you define a new method that did not previously cxist. If use-old-
combined-methods is t, then the cxisting combined method functions are used if possible.
New ones are generated only if the set of methods to be called has changed. This is the
default. If use-old-combined-methods is nil, automatically-generated functions to call
multiple methods or to contain code generated by wrappers are regencrated
unconditionally. If do-dependents is nil, only the specific flavor you specified is
recompiled. Normally all flavors that depend on it are also recompiled.

recompile-flavor affects only flavors that have already been compiled. Typically this
means it affects flavors that have been instantiated, but does not bother with mixins (see
page 431).

si:*dont-recompile-flavors®* Variable
If this variable is non-nil, automatic recompilation of combined methods is turned off.

If you wish to make several changes each of which will cause recompilation of the same
combined mcthods, you can use this variable to speed things up by making the
recompilations happen only once. Sct the variable to t, make your changes, and then set
the variable back to nil. Then use recompile-flavor to rccompile whichever combined
methods need it. For example: '

(setq si:+«dont-recompile-flavors» t)

(undefmethod (tv:sheet :after :bar))

(defmethod (tv:sheet :before :bar) ...)

(setq si:*dont-recompile-flavors+ nil)

(recompile-flavor 'tv:sheet :bar) ,
tvisheet has very many dependents; recompile-flavor even once takes painfully long. It’s
nice to avoid spending the time twice.

PS:<I.MAN>FLAVOR.TEXT.134 8-JUN-84

FFlavor Functions 422 1 isp Machine Manual

compile-flavor-methods fluvor... Macro
The form (compile-flavor-methods flavar-nume-1 flavor-name-2...), placed in a file to be
compiled. directs the compiler to include the automatically-generated combined mecthods
for the named flavors in the resulting QIFASL. file, provided all of the necessary Havor
definitions have been made. Furthermore, all internal data structures needed to instantiate
the flavor will be computed when the QFASL. file is loaded rather than waiting until the
first altempt to instantiate it. '

‘This means that the combined methods get compiled at compile time and the data
structures get generated at load time, rather than both things happening at run time. This
is a very good thing. since if the the compiler must be invoked at run time, the program
will be slow the first time it is run. (The compiler must be called in any case if
incompatible changes have been made, such as addition or deletion of methods that must
be called by a combined method.)

You should only usc compile-flavor-methods for flavors that arc going to be
instantiated. Ior a flavor that is never to be instantiated (that is, a flavor that only serves
0 be a component of other flavors that actually do get instantiated), it is a complete
waste of time, cxcept in the unusual casc where those other flavors can all inherit the
combined methods of this flavor instead of cach one having its own copy of a combined
method which happens to be identical to the others. In this unusual case, you should use
the :abstract-flavor option in defflavor (page 428).

The compile-flavor-methods forms should be compiled after all of the information
needed to create the combined methods is available. You should put these forms after all
of the definitions of all relevant flavors, wrappers, and mecthods of all components of the
flavors mentioned.

The methods used by compile-flavor-methods to form the combined methods that go in
the QFASL file arc all those present in the file being compiled and all those defined in
the Lisp world.

When a compile-flavor-methods form is seen by the interpreter, the combined methods
are compiled and the internal data structurcs are gencrated.

get-handler-for object operation
Given an object and an operation, this returns the object's method for that operation, or
nil if it has none. When object is an instance of a flavor, this function can be useful to
find which of that flavor's components supplies the method. If you get back a combined
method, you can use the Meta-X List Combined Methods cditor command (page 444) to
find out what it does.

This is related to the :handler function spec (sce section 11.2, page 223).

It is preferable to usc the gencric operation :get-handler-for.

PS:<I.MAN>FI.AVOR.TEXT.134 8-JUN-84

Lisp Machine Manual 423 Flavor IFunctions

flavor-allows-init-keyword-p fluvor-name keyword
Returns non-nil if the avor named fluvor-name allows keyword in the init options when it
is instantiated. or nil if it does not. The non-nil value is the name of the component
flavor that contributes the support of that keyword.

si:flavor-all-allowed-init-keywords flavor-name
Returns a list of all the init keywords that may be used in instantiating flavor-name.

symeval-in-instance instance symbol &optional no-error-p
Returns the value of the instance variable symbol inside instance. If there is no such
instance variable, an crror is signaled, unless no-error-p is non-nil in which case nil is
returned.

set-in-instance instance symbol value
Scts the value of the instance variable symbol inside instance to value. If there is no such
instance variable, an crror is signaled.

locate-in-instance instance symbol
Returns a locative pointer to the cell inside instance which holds the value of the instance

variable named symbol.

describe-flavor flavor-name
Prints descriptive information about a flavor: it is sclf-explanatory. An important thing it
tells you that can be hard to figure out yoursclf is the combined list of component flavors;
this list is what is printed after the phrase ‘and directly or indirectly depends on’.

si:*flavor-compilations* Variable
Contains a history of when the flavor mechanism invoked the compiler. It is a list;
clements toward the front of the list represent more recent compilations. Elements are
typically of the form
(function-spec pathname)
where the function spec starts with :method and has a mcthod type of :combined.

You may setq this variable to nil at any time; for instance before loading some files that
you suspect may have missing or obsolcte compile~-flavor-methods in them.

sys:unclaimed-message (error) Condition
This condition is signaled whenever a flavor instance is sent a message whose operation it
doces not handle. The condition instance supports these operations:

:object The flavor instance that received the message.
:operation The operation that was not handled.

:arguments The list of arguments to that operation

PS:KILMAN>IFLLAVOR.TEXT.134 8-JUN-84

Defllavor Options 424 Lisp Machine Manual

21.8 Deflflavor Options

I'here are quite a few options to defflavor. They are all described here, although some are
for very specialized purposes and not of interest o most users. ach option can be written in two
forms; cither the keyword by itsclf, or a list of the keyword and arguments to that keyword.

Several of these options declare things about instance variables. ‘These options can be given
with arguments which arc instance variables. or without any arguments in which case they refer to
all of the instance variables Tisted at the top of the defffavor. This is nor necessarily all the
instance variables of the component flavors, just the ones mentioned in this flavor’s defflavor.
When arguments are given, they must be instance variables that were listed at the top of the
defflavor; otherwise they are assumed to be misspelled and an error is signaled. It is legal to
declare things about instance variables inherited from a component flavor, but to do so you must
list these instance variables explicitly in the instance variable list at the top of the defflavor.

:gettable-instance-variables
Enables automatic generation of mcthods for getting the values of instance variables. The
operation name is the name of the variable, in the keyword package (i.c. it has a colon in
front of it).

Note that there is nothing special about these methods: you could casily define them
yourself. This option generates them automatically to save you the trouble of writing out
a lot of very simple method definitions. (The same is true of methods defined by the
:settable-instance-variables option.) If you define a mcthod for the same operation
name as onc of the automatically gencrated methods, the explicit definition overrides the
automatic one.

:settable-instance-variables
Enables automatic generation of methods for setting the valucs of instance variables. The
opcration name is “set-' followed by the name of the variable. All scttable instance
variables are also automatically made gettable and inittable. (Sec the note in the
description of the :gettable-instance-variables option, above.)

 In addition, :case mecthods are generated for the :set operation with suboperations taken
from the names of the variables, so that :set can be uscd to set them.

sinittable -instance-variables
The instance variables listed as arguments, or all instance variables listed in this defflavor
if the keyword is given alone, arc made inirtable. This means that they can be initialized
through use of a keyword (a colon followed by the name of the variable) as an init-option
argument to make-instance. '

:special-instance-variables 4
The instance variables listed as arguments, or all instance variables listed in this defflavor
if the keyword is given alone, will be bound dynamically when handling messages. (By
default, instance variables arc bound lexically with the scope being the method.) You must
do this to any instance variablcs that you wish to be accessible through symeval, set,
boundp and makunbound, since they sce only dynamic bindings.

PS:KIL.MAN>FI.AVOR.TEXT.134 | 8-JUN-84

Fisp Machine Manual ' 425 DefMavor Options

This should also be done for any instance variables that are declared globally special. |If
you omit this, the flavor system docs it for you automatically when you instantiate the
flavor, and gives you a warning to remind you to fix the defflavor.

;init-keywords _
‘The arguments are declared to be valid keywords to use in instantiate-flavor when
creating an instance of this flavor (or any flavor containing it). ‘The system uses this for
- crror-checking: - before the system sends the cinit message. it makes sure that all the
keywords in the init-plist arc cither inittable instance variables or clements of this list. If
any is not recognized, an crror is signaled. When you write a :init method that accepts
some keywords, they should be listed in the :init-keywords option of the flavor.

If :allow-other-keys is used as an init keyword with a non-nil value, this error check is
suppressed. ‘Then unrecognized keywords are simply ignored.

default-init-plist
The arguments arc alternating keywords and value forms, like a property list. When the
flavor is instantiated, these propertics and values are put into the init-plist unless already
present. ‘This allows one component flavor to default an option to another component
flavor. The value forms arc only cvaluated when and if they are used. For example,
(:default-init-plist :frob-array
(make-array 100))

would provide a default “frob array” for any instance for which the user did not provide
one explicitly.

(:default-init-plist ﬁallow—other-keys t)
prevents errors for unhandled init keywords in all instantiation of this flavor and other
flavors that depend on it.

rrequired-init-keywords
The arguments arc init keywords which are to be required cach time this flavor (or any
flavor containing it) is instantiated. An error is signaled if any required init keyword is
missing.

rrequired-instance-variables :
Declares that any flavor incorporating this one that is instantiated into an object must
contain the specified instance variables. An crror occurs if there is an attempt to
instantiate a flavor that incorporates this one if it does not have these in its set of instance
variables. Notc that this option is not one of those that checks the spelling of its
arguments in the way described at the start of this section (if it did, it would be useless).

Required instance variables may be freely accessed by methods just like normal instance
variables. The difference between listing instance variables here and listing them at the
front of the defflavor is that the latter declares that this flavor “owns” those variables and
accepts - responsibility for initializing them, while the former declares that this flavor
depends on those variables but that some other flavor must be provided to manage them
and whatever features they imply,

‘required-methods
The arguments are names of operations that any flavor incorporating this onc must handle.
An crror occurs if there is an attempt to instantiate such a flavor and it is lacking a

PS:<I.MAN>FI.AVOR TEXT.134 8-JUN-84

Defllavor Options 426 Lisp Machine Manual

method for one of these operations. Typically this option appears in the defflavor for a
base Mavor (sce page 431). Usually this is used when a base flavor does a (send self ...)
w send itself a message that is not handled by the base flavor itself; the idea is that the
base flavor will not be instantiated alone, but only with other components (mixins) that do
handle the message. This keyword allows the error of having no handler for the message
10 be detected when the flavor instantiated or when compile-flavor-methods is done,
rather than when the missing operation is used.

-required-flavors
The arguments are names of flavors that any flavor incorporating this onc must include as
components, directly or indirectly. ‘The difference between declaring flavors as required
and listing them directly as components at the top of the defflavor is that declaring
flavors 1o be required does not make any commitments about where those flavors will
appear in the ordered list of components: that is left up to whoever does specify them as
components. ‘The purpose of declaring a flavor to be required is to allow instance
variables declared by that flavor to be accessed. It also provides crror checking: an
attempt to instantiate a favor that does not include the required flavors as components
signals an ecrror. Comparc this with :required-methods and :required-instance-
variables.

For an cxample of the use of required flavors, consider the ship cxample given earlier,
and suppose we want to define a relativity-mixin which increases the mass dependent on
the speced. We might write,
(defflavor relativity-mixin () (moving-object))
(defmethod (relativity-mixin :mass) ()
(// mass (sqrt (- 1 (~ (// (send self :speed)
sspeed-of-light*)
2)))))
but this would lose because any flavor that had relativity-mixin as a component would get
moving-object right after it in its component list. As a base flavor, moving-object
should be last in the list of components so that other componcents mixed in can replace its
methods and so that dacmon methods combine in the right order. relativity-mixin has no
business changing the order in which flavors arc combined, which should be under the
control of its caller. For example,
(defflavor starship () .
(relativity-mixin long-distance-mixin ship))
puts moving-object last (inheriting it from ship).

So instcad of the definition above we write,
(defflavor relativity-mixin () ()
(:required-flavors moving-object))
which allows relativity-mixin's methods to access moving-obiject instance variables such as
mass (the rest mass), but does not specify any place for moving-object in the list of
components.

It is very common to specify the base flavor of a mixin with the :required-flavors option
in this way.

sincluded-flavors
The arguments are names of flavors to be included in this flavor. The difference between

PS:KL.MAN>FLAVOR.TEXT.134 8-JUN-84

Lisp Machine Manual 427 Deflinvor Options

declaring flavors here and declaring them at the top of the defflavor is that when
component flavors are combined, it an included flavor is not specified as a normal
component, it is inserted into the list of components immediately after the last component
to include it. Thus included flavors act like defaults. ‘The important thing is that if an
included flavor is specified as a component, its position in the list of components is
completely controlled by that specification, independently of where the flavor that includes
it appears in the list.

iincluded-flavors and :required-flavors are used in similar ways: it would have been
reasonable o use :included-flavors in the relativity-mixin example above, ‘The difference
is that when a flavor is required but not given as a normal component, an crror is
signaled. but when a flavor is included but not given as a normal component, it is
automatically inserted into the list of components at a rcasonable place.

:no-vanijlla-flavor
Normally when a flavor is instantiated, the special flavor si:vanilla-flavor is included
automatically at the end of its list of components. ‘The vanilla flavor provides some
default methods for the standard operations which all objects are supposed to understand.
These include :print-self. :describe, :which-operations, and scveral other operations.
See section 21.10, page 432. '

If any component of a flavor specifies the :no-vanilla-flavor option, then si:vanilla-flavor
is not included in that flavor. This option should not be used casually.

:default-handler
The argument is the name of a function that is to be called to handle any operation for
which there is no mecthod. Its arguments are the arguments of the send which invoked
the operation, including the operation name as the first argument. Whatever values the
default handler returns are the values of the operation.

Dcfault handlers can be inherited from component flavors. If a flavor has no default
handler, any operation for which there is no method signals a sys:unclaimed-message
error,

:ordered-instance-variables
This option is mostly for esoteric internal system uses. The arguments are names of
instance variables which must appear first (and in this order) in all instances of this flavor,
or any flavor depending on this flavor. This is used for instance variables that are
specially known about by microcode, and also in connection with the :outside-
accessible-instance-variables option. If the keyword is given alone, the arguments
default to the list of instance variables given at the top of this defflavor.

Removing any of the :ordered-instance-variables, or changing their positions in the list,
requires that you recompile all methods that use any of the affected instance variables.

:outside-accessible-instance-variables
The arguments are instance variables which are to be accessible from outside of this
flavor’s methods. A macro (actually a subst) is defined which takes an object of this flavor
as an argument and returns the value of the instance variable; setf may be used to set
the value of the instance variable. The name of the macro is thc name of the flavor
concatenated with a hyphen and the name of the instance variable. These macros are

PS:KLLMAN>FILAVOR.TEXT.134 _ 8-JUN-84

Defllvor Options 428 Lisp Machine Manual

similar to the aceessor macros created by defstruct (see chapter 20, page 372))

~This feature works in two different ways. depending on whether the instance variable has
been declared to have a-fixed slot in all instances, via the :ordered-instance-variables
option.

If the variable is not ordered, the position of its value ccll in the instance must be
computed at run time. This takes noticcable time, although less than actually sending a
message would take. An error is signaled if the argument to the accessor macro is not an
instance or is an instance that does not have an instance variable with the appropriate
name. owever. there is no crror check that the flavor of the instance is the flavor the
accessor macro was defined for, or a flavor built upon that flavor. This error check would
be too expensive.

If the variable is ordered. the compiler compiles a call o the accessor macro into a
subprimitive which simply accesses that variable’s assigned slot by number. ‘This
subprimitive is only three or four times slower than car. The only error-checking
performed is to make sure that the argument is really an instance and is rcally big enough
to contain that slot. There is no check that the accessed slot really belongs to an instance
variable of the appropriatc name.

:accessor-prefix :
Normally the accessor macro created by the :outside-accessible -instance-variables
option to access the flavor f's instance variable v is named fv. Spccifying (:accessor-
prefix get$) causcs it to be named get$v instead.

:alias-flavor
Marks this flavor as being an alias for another flavor. This flavor should have only one
component, which is the flavor it is an alias for, and no instance variables or other

options. No methods should be defined for it.

The effect of the :alias-flavor option is that an attempt to instantiate this flavor actually
produces an instance of the other flavor. Without this option, it would make an instance
of this flavor, which might bchave identically to an instance of the other flavor. -alias-
flavor climinates the need for separate mapping tables, method tables, ctc. for this flavor,
which becomes truly just another name for its component flavor.

The alias flavor and its base flavor are also equivalent when used as an argument of
subtypep or as the sccond argument of typep: however, if the alias status of a flavor is
changed, you must recompile any code which uses it as the sccond argument to typep in
order for such code to function.

-atias-flavor is mainly uscful for changing a flavor’s name gracefully.

:abstract-flavor
This option marks the flavor as one that is not supposed to be instantiated (that is, is
supposed to be used only as a component of other flavors). An atiempt to instantiate the
flavor signals an error.

PS:<ILMAN>FLAVOR.TEXT.134 8-JUN-84

[isp Machine Manual - 429 Deflinvor Options

It is sometimes useful to do compile-flavor-methods on a flavor that is not going to be
instantiated. i the combined methods for this flavor will be inherited and shared by many
others. abstract-flavor tclls compilé-flavor-methods not to complain about missing
required flavors, methods or instance variables. Presumably the favors that depend on
this one and actually are instantiated will supply what is lacking.

:method-combination
- Specifies the method combination style to be used for certain operations. Fach argument
to this option is a list (siyle order operation! operation2...). operation!, operation2, ctc.
are names of operations whose methods are to be combined in the declared fashion. style
is a keyword that specifies a style of combination; see section 21.11. page 433. order is a
keyword whose interpretation is up to siyle; typically it is cither :base-flavor-first or
:base-flavor-last. ‘

Any component of a flavor may specify the type of method combination to be used for a

- particular operation. If no component specifies a style of method combination, then the
default style is used, namely :daemon. If more than onc component of a flavor specifies 3
the combination style for a given operation,. then they must agree on the specification, or
clse an error is signaled.

sinstance-area-function
The argument is the name of a function to be used when this flavor is instantiated, to
determine which arca to create the new instance in. Use a function name rather than an
cxplicit lambda expression,
(:instance-area-function function-name)

When the instance arca function is called, it is given the init plist as an argument, and
should return an arca number or nil to use the default. Init keyword valucs can be
accessed using get on the init plist.

Instance arca functions can be inherited from component flavors. If a flavor does not
have or inherit an instance arca function, its instances are created in default-cons-area.

rinstantiation-flavor-function
You can define a flavor foo so that, when you try to instantiate it, it calls a function to
decide what flavor it should really instantiate (not necessarily foo). This is done by giving
foo an instantiation flavor function:
(:instantiation-flavor-function fiunction-name)

When (make-instance 'foo keyword-args...) is done, the instantiation flavor function is
called with two arguments: the flavor name specified (foo in this case) and the init plist
(the list of keyword args). It should return the name of the flavor that should actually be
instantiated.

Note that the instantiation flavor function applics only to the flavor it is specified for. It
is not inherited by dependent flavors.

rrun-time-alternatives

‘mixture
A run-time-alternative flavor defines a collection of similar flavors, all built on the same
base flavor but having various mixins as well. Instantiation chooscs a flavor of the

PS:KLLMAN>FLAVOR.TEXT.134 8-JUN-84

Deffavor Options 430 Lisp Machine Manual

collection at run time based on the init keywords specified, using an automatically
generated instantiation flavor function.

A simple example would be
(defflavor foo () (basic-foo)
(:run-time-alternatives
(:big big-foo-mixin))
(:init-keywords :big))

Then (make-instance 'foo :big t) makes an instance of a flavor whose components arc
big-foo-mixin as well as foo. But {(make-instance 'foo) or (make-instance 'foo :big
nil) makes an instance: of foo itself. "The clause (tbig big-foo-mixin) in the :run-time-
alternatives says to incorporate big-foo-mixin if :big's value is t. but not if it is nil.

There may be several clauses in the run-time-alternatives. Fach onc is processed
independently. ‘Thus, two keywords :big and :wide could independently control two
mixins, giving four possibilitics.
(defflavor foo () (basic-foo)
(:run-time-alternatives
(:big big-foo-mixin)
(:wide wide-foo-mixin))
(:init-keywords :big))

It is possible to test for values other than t and nil. The clause
(:size (:big big-foo-mixin)

(:small small-foo-mixin)

(nil nil))
allows the value for the keyword :size to be :big, :small or nil (or omitted). If it is nil
or omitted, no mixin is used (that'’s what the second nil means). If it is :big or :small,
an appropriate mixin is used. This kind of clause is distinguished from the simpler kind
by having a list as its sccond clement. The values to check for can be anything, but eq
is used to compare them.

The value of one keyword can control the interpretation of others by nesting clauses
within clauses. If an alternative has more than two clements, the additional clements are
subclauses which arc considered only if that alternative is sclected. For cxample, the
clause
(:etherial (t etherial-mixin)
(nil nil
(:size (:big big-foo-mixin)
(:small small-foo-mixin)
(nil nil))))

says to consider the :size keyword only if :etherial is nil.

‘mixture is synonymous with :run-time-alternatives. It cxists for compatibility with
Symbolics systems.

:documentation
Specifics the documentation string for the flavor dcfinition, which is made accessible

PS:<1.MAN>FLAVOR.TEXT.134 8-JUN-84

lisp Machine Manual 431 Flavor Families

through (documentation fluvorname flavor).

‘This documentation can be viewed with the describe-flavor function (sce page 423) or
the cditor’s Meta-X Describe Flavor command (sce page 443).

Previously this option expected two arguments, a keyword and a string. The keyword was
intended to classify the flavor as a base flavor, mixin or combination. But no way was
found for this classification to serve a uscful purpose. Keyword are still accepted but no
longer recommended for use.

21.9 Flavor Families
"The following organization conventions are recommended for programs that usc flavors.

A base flavor is a flavor that defines a whole family of rclated flavors, all of which have that
basc flavor as a component. Typically the base flavor includes things relevant to the whole family,
such as instance variables, :required-methods and ‘required-instance-variables declarations,
default methods for certain operations. :method-combination declarations. and documentation on
the general protocols and conventions of the family. Some base flavors are complete and can be
instantiated, but most arc not instantiatable and merely serve as a base upon which to build other
flavors. The base flavor for the foo family is often named basic-foo.

A mixin flavor is a flavor that defines onc particular feature of an object. A mixin cannot be
instantiated, because it is not a complete description. Each module or feature of a program is
defined as a separate mixin; a usable flavor can be constructed by choosing the mixins for the
desired characteristics and combining them, along with the appropriate base flavor. By organizing
your flavors this way, you keep separate features in separate flavors, and you can pick and choose
among them. Somectimes the order of combining mixins does not matier, but often it does,
because the order of flavor combination controls the order in which dacmons are invoked and

- wrappers are wrapped. Such order dependencies should be documented as part of the conventions
of the appropriatc family of flavors. A mixin flavor that provides the mumble feature is often
named mumble -mixin.

If you are writing a program that uses somcone clse’s facility to do somcthing, using that
facility’s flavors and methods, your program may still define its own flavors, in a simple way.
The facility provides a base flavor and a set of mixins: the caller can combine these in various
ways depending on exactly what it wants, since the facility probably does not provide all possible
uscful combinations. Even if your private flavor has exactly the same components as a pre-
cxisting flavor, it can still be uscful since you can use its :default-init-plist (scc page 425) to
select options of its component flavors and you can define one or two methods to customize it
“just a little”,

PS:KILMAN>FLAVOR.TEXT.134 ' 8-JUN-84

Vanilla Flavor 432 1isp Machine Manual

21.10 Vanilla Flavor

‘The operations described in this section are a standard protocol, which all message-receiving
objects are assumed o understand. ‘The standard methods that implement this protocol are
automatically supplicd by the flavor system unless the user specifically tells it not to do so. These
methods are associated with the flavor si:vanilla-flavor:

si:vanilla-flavor Flavor
Unless you specify otherwise (with the :no-vanilla-flavor option to defflavor), cvery
flavor includes the “vanilla™ flavor, which has no instance variables but provides some
basic uscful methods.

:print-self sircam prindepth escape-p : Operation

The object should output its printed-representation to a stream. The printer scnds this
message when it encounters an instance or an entity. 'The arguments arc the stream, the
current depth in list-structure (for comparison with prinlevel), and whether escaping is
cnabled (a copy of the value of *print-escape®: scc page 514). si:vanilla-flavor ignores
the last two arguments and prints somcthing like # flavor-name octal-address>. 'The
flavor-name tells you what type of object it is and the octal-address allows you to tell
different objects apart (provided the garbage collector doesn’t move them behind your
back).

:describe Operation
The object should describe itsclf, printing a description onto the *standard-output®
stream. The describe function sends this message when it encounters an instance.
si-vanilla-flavor outputs in a reasonable format the object, the name of its flavor, and the
names and valucs of its instance-variables.

:set keyword value Operation
The object should set the internal value specified by keyword to the new value value. For
flavor instances, the :set operation uses :case method combination, and a method is
generated automatically to set each scttable instance variable, with keyword being the
variable’s name as a keyword.

:which-operations Operation
The object should return a list of the operations it can handle. si:vanilla-flavor gencrates
the list once per flavor and remembers it, minimizing consing and compute-time. 1If the
set of operations handled is changed, this list is regenerated the next time someconc asks

for it.

:operation-handled-p operation ' , Operation
operation is an operation name. The object should return t if it has a handler for the
specified operation, nil if it does not.

:get-handler-for operation Operation
operation is an operation name. The object should return the method it uses' to handle
operation. If it has no handler for that operation, it should return nil. This is like the
get-handler-for function (scc page 422), but, of course, you can usc it only on objects
known to accept messages.

PS:KI.MAN>FLAVOR.TEXT.134 8-JUN-84

Lisp Machine Manual 433 Mcthod Combination

:send-1if-handles operation &rest arguments Operation
operation is an operation name and arguments is a list of arguments for the operation. If
the object handles the operation, it should send itself a message with that operation and
arguments, and return whatever values that message returns. If it doesn't handle the
operation it should just return nil.

:eval-inside-yourself form ‘ Operation
~ ‘The argument is a form that is cvaluated in an cnvironment in which special variables
with the names of the instance variables are bound to the values of the “instance variables.
It works to setq one of these special variables; the instance variable is modified. 'This is
intended to be used mainly for debugging.

:funcall-inside-yourself function &rest args Operation
Junction is applied to args in an environment in which special variables with the names of
the instance variables are bound to the values of the instance variables. It works to setq
onc of these special variables; the instance variable is modified. This is a way of allowing
callers to provide actions to be performed in an environment sct up by the instance.

:break Operation

break is called in an environment in which special variables with the names of the
instance variables arc bound to the valucs of the instance variables.

21.11 Method Combination

When a flavor has or inherits more than onc method for an operation, they must be called in
a spccific sequence. The flavor system creates a function called a combined method which calls all
the uscr-specificd methods in the proper order. Invocation of the operation actually calls the
combined mecthod, which is responsible for calling the others.

For example, if the flavor foo has components and methods as follows:

{(defflavor foo () (foo-mixin foo-base))
(defflavor foo-mixin () (bar-mixin))

(defmethod (foo :before :hack) ...)
(defmethod (foo :after :hack) ...)

(defmethod (foo-mixin :before :hack) ...)
(defmethod (foo-mixin :after :hack) ...)

(defmethod (bar-mixin :before :hack) ...)
(defmethod (bar-mixin :hack) ...)

(defmethod (foo-base :hack) ...)
(defmethod (foo-base :after :hack) ...)

then the combined method gencrated looks like this (ignoring many important details not related
to this issue):

PS:KLMAN>FILAVOR.TEX'T.134 8-JUN-84

Method Combination 434 |isp Machine Manual

(defmethod (foo :combined :hack) (&rest args)
(apply #'(:method foo :before :hack) args)
(apply #'(:method foo-mixin :before :hack) args)
(apply #'(:method bar-mixin :before :hack) args)
(multiple-value-progl
(apply #'(:method bar-mixin :hack) args)
(apply #'(:method foo-base :after :hack) args)
(app]y #'(:method foo-mixin :after :hack) args)
(apply #'(:method foo :after :hack) args))).

This cxample shows the default style of method combination, the onc described in the
introductory parts of this chapter, called :daemon combination. Fach style of method
combination defines which merthod types it allows, and what they mcan. :daemon combination
accepts method types :before and :after, in addition to untyped methods; then it creates a
combined method which calls all the :before methods, only one of the untyped methods, and
then all the :after methods. returning the value of the untyped method. The combined method is
constructed by a function much like a macro’s expander function, and the precise technique used
to create the combined method is what gives :before and :after their meaning.

Note that the :before mcthods are called in the order foo, foo-mixin, bar-mixin and foo-
base. (foo-base docs not have a :before method, but if it had one that onc would be last.)
This is the standard ordering of the components of the flavor foo (see page 412). since it puts
the base flavor last, it is called :base-flavor-last ordering. The :after methods are called in the
opposite order, in which the basc flavor comes first. This is called :base-flavor-first ordering.

Only onc of the untyped methods is used; it is the onc that comes first in :base-flavor-last
ordering. An untyped method used in this way is called a primary method.

Other styles of method combination define their own method types and have their own ways
of combining them. Usc of another style of method combination is requested with the :method-
combination option to defflavor (scc page 429). Here is an cxamplec which uses :list method
combination, a style of combination that allows :list methods and untyped methods:

PS:<L.MAN>FLAVORTEXT.134 8-JUN-84

1isp Machine Manual 435 Mecthod Combination

(defflavor foo () (foo-mixin foo-base))
(defflavor foo-mixin () (bar-mixin))
(defflavor foo-base () ()
(:method-combination (:1ist :base-flavor-last :win)))

(defmethod (foo :1ist :Win) ced)

(defmethod (foo :win) ...)
(defmethod (foo-mixin :1ist :win) ...)
(defmethod (bar-mixin :1list :win) ...)

(defmethod (bar-mixin :win) ...)
(defmethod (foo-base :win) ...)
yiclding the combined method

(defmethod (foo :combined :win) (&rest args)
(list '
“(apply #'(:method foo :1list :win) args)
#’(:method foo-mixin :1ist :win) args)
#'(:method bar-mixin :1ist :win) args)
(apply #'(:method foo :win) args)
#'(:method bar-mixin :win) args)
#'(:method foo-base :win) args)))

The :method-combination option in the defflavor for foo-base causes :list mcthod
combination to be used for the :win opcration on all flavors that have foo-base as a component,
including foo. The result is a combined method which calls all the methods, including all the
untyped mecthods rather than just one, and makes a list of the valucs they rcturn. ~All the :list
methods arc called first, followed by all the untyped methods: and within cach type, the :base-
flavor-last ordering is used as specified. If the :method-combination option said :base-flavor-
first, the relative order of the :list mcthods would be reversed, and so would the untyped
methods, but the :list methods would still be called before the untyped ones. :base-flavor-last
is more often right, since it means that foo’s own mecthods are called first and si:vanilla-flavor’s
methods (if it has any) are called last.

A few specific method types, such as :default and :around, have- standard meanings
independent of the style of method combination, and can be used with any style. They are
described in a table below. ” '

Here are the standardly defined method combination styles.

:daemon The default style of method combination. All the :before methods are called,
then the primary (untyped) method for the outermost flavor that has one is called,
then all the :after methods are called. - The value returned is the value of the
primary method.

:daemon-with-or
Like the :daemon mecthod combination style, except that the primary method is

PS:<I.MAN>FLAVOR.TEXT.134 8-JUN-84

Method Combination 430 ' Lisp Machine Manual

wrapped in an cor special form with all :or methods. Multiple values can be
returned from the primary method, but not from the :or methods (as in the or
special form). This produces code like the following in combined methods:
(progn (foo-before-method)
(multiple-value-progl
(or (foo-or-method)
(foo-primary-method))
(foo-after-method)))

This is useful primarily for flavors in which a mixin introduces an alternative to
the primary method. Fach :or method gets a chance to run before the primary
method and w decide whether the primary method should be run or not; if any
:or method returns a non-nib value, the primary method is not run (nor are the
rest of the :or methods). Note that the ordering of the combination of the :or
methods is controlled by the order keyword in the :method-combination option.

:daemon-with-and

l.ike :daemon-with-or cxcept that it combines :and mcthods in an and special
form. ‘The primary method is run only if all of the :and methods return non-nil
values.

:daemon-with-override

:progn

or

:and

:append

Like the :daemon mcthod combination style, except an or special form is
wrapped around the entire combiried method with all :override typed mcthods
before the combined method. This differs from :daemon-with-or in that the
:before and :after dacmons arc run only if none of the :override methods returns
non-nil. The combined method looks somcthing like this:
(or (foo-override-method)
(progn (foo-before-method)
(foo-primary-method)
(foo-after-method)))

Calls all the methods inside a progn special form. Only untyped and :progn
methods are allowed. The combined method calls all the :progn methods and
then all the untyped mcthods. The result of the combined method is whatever the
last of the methods returns.

Calls all the methods inside an or speccial form. This mecans that cach of the
mcthods is called in turn. Only untyped methods and :or methods are allowed;
the :or mcthods are called first. If a mcthod returns a non-nil value, that value is
returncd and none of the rest of the methods arc called; otherwise, the next
method is called. In other words, cach mecthod is given a chance to handle the
message; if it doesn’t -want to handle the message, it can return nil, and the next
method gets a chance to try.

Calls all the methods inside an and special form. Only untyped methods and
:and mcthods are allowed. The basic idea is much like :or; see above.

Calls all thc mecthods and appends the values togcther. Only untyped methbds
and :append mecthods are allowed; the :append methods are called first.

PS:KI.MAN>FILAVOR.TEXT.134 8-JUN-84

I isp Machine Manual 437 Mecthod Combination

.nconc

list

sinverse- list

‘pass-on

.case

Calls all the methods and nconc’s the values together. Only untyped methods
and :nconc methods are allowed, clc.

Calls all the mecthods and returns a list of their returned valucs. Only untyped
methods and :list methods are allowed, cte.

Calls cach method with ‘once argument; these arguments are successive clements of
the list that is the sole argument to the operation. Returns no particular value.
Only untyped methods and :inverse-list methods are allowed, ectc.

If the result of a :list-combined operation is sent back with an :inverse-list-
combined operation, with the same ordering and with corresponding method
definitions, cach component flavor receives the value that came from that flavor.

Calls cach method on the values returned by the preceeding one. The values
returned by the combined method are those of the outermost call. The format of
the declaration in the defflavor is: :
(:method-combination (:pass-on (ordering . arglist))
operation-names)

where ordering is :base-flavor-first or :base-flavor-last. arglist may include the
&aux and &optional keywords.

Only untyped mecthods and :pass-on mecthods are allowed. The :pass-on
methods are called first.

With :case method combination, the combined method automatically does a
selectq dispatch on the first argument of the operation, known as the
suboperation. Mcthods of type :case can be used, and cach onc specifies one
suboperation that it applies to. If no :case mcthod matches the subopcration, the
primary mcthod, if any, is called.

Example:
(defflavor foo (a b) ()
(:method-combination (:case :base-flavor-last :win)))

This method handles (send a-foo :win :a):
(defmethod (foo :case :win :a) ()
a)

This method handles (send a-foo :win :a*b):
(defmethod (foo :case :win :asb) ()

(» ab))

This method handles (send a-foo :win :something-else):
(defmethod (foo :win) (suboperation)
(1ist 'something-random suboperation))

:case methods are unusual in that onc flavor can have many :case methods for
the same operation, as long as they are for different suboperations.

PS:KLMAN>FLAVOR.TEXT.134 8-JUN-84

Method Combination 438 I isp Machine Manual

The suboperations :which-operations, :operation-handled—p. :send-if-handles
and :get-handler-for arc all handled automatically based on the collection of
:case methods that are present. ‘

Methods of type :or are also allowed. 'They arc called just before the primary
method, and if onc of them ‘returns a non-nil value, that is the value of the
operation, and no more methods are called. :

Here is a table of all the method types recognized by the standard styles of method
combination. :

(no type) If no type is given to defmethod. a primary method is created. 'This is the most
common type of method.

‘before

:after Used for the before-daemon and after-dacmon methods used by :daemon method
combination,

default If there are no untyped methods among any of the flavors being combined, then

the :default methods (if any) are treated as if they were untyped. If there are any
untyped methods, the :default methods are ignored.
Typically a basc-flavor (sce page 431) defines some default methods for certain of
the operations understood by its family. When using the default kind of method
combination these default methods are suppressed if another component provides a
primary method.

or , ‘

:and Used for :daemon-with-or and :daemon-with-and mecthod combination. The
:or methods are wrapped in an or, or the :and methods arc wrapped in an and,
together with the primary method, between the :before and :after methods.

:override Allows the features of :or method combination to be used together with daemons.

If you spccify :daemon-with-override mcthod combination, you may use
:override mcthods. The :override methods are executed first, until one of them
returns non-nil. If this happens, that method’s value(s) are returned and no more
methods are used. If all the :override methods return nil, the :before, primary
and :after methods are exccuted as usual.

In typical usages of this feature, the :override method usually returns nil and does
nothing, but in cxceptional circumstances it takes over the handling of the
operation.

:or, :and, :progn, :list, :inverse-list, pass-on, :append, :ncongc.
Each of these methods types is allowed in the mcthod combination style of the
same name. In those method combination styles, these typed methods work just
like untyped ones, but all the typed mcthods are called before all the untyped
ones.

:case :case methods arc used by :case method combination.

These mcthod types can be used with any mcthod combination style; they have standard
meanings independent of the method combination style being used.

PS:KILMAN>FLAVOR.TEXT.134 _ 8-JUN-84

Eisp Machine Manual 439 Method Combination

:around An :around mecthod is able to control when, whether and how the remaining
methods are exccuted. It is given a continuation that is a function that will
execule the remaining methods, and has complete responsibility for calling it or
not, and deciding what arguments to give it. For the simplest behavior, the
arguments should be the operation name and operation arguments that the
:around mcthod itself received: but sometimes the whole purpose of the :around
mcthod is to modify the arguments before the remaining methods see them.

The :around mcthod receives three special arguments before the arguments of the
operation itself: the continuation, the mapping-table, and the original-argument-
list. The last is a list of the operation name and operation arguments. ‘The
simplest way for the :around method to invoke the remaining methods is to do
(1expr-funcall-with-mapping-table

continuation. mapping-table

original-argument-list)
In general, the cominuation should be called with cither funcall-with-mapping-
table or lexpr-funcall-with-mapping-table, providing the continuation, the
mapping-table. and the operation name (which you know becausce it is the same as
in the defmethod), followed by whatever arguments the remaining methods are
supposcd to sce.

(defflavor foo-one-bigger-mixin () ())

(defmethod (foo-one-bigger-mixin :around :set-foo)
(cont mt ignore new-foo)
(funcall-with-mapping-table cont mt :set-foo
(1+ new-fo00)))

is a mixin which modifics the :set-foo opcration so that the value actually used in
it is one greater than the value specified in the message.

tinverse-around
sinverse-around methods work like :around mecthods, but they are invoked at a
different time and in a different order.

With :around methods, those of earlier flavor components components are
invoked first, starting with the instantiated flavor itsclf, and those of -carlier
components arc invoked within them. inverse-around mcthods are invoked in
the opposite order: si:vanilla-flavor would come first. Also, all :around methods
and wrappers arc invoked inside all the :inverse-around methods.

For cxample, the :inverse-around :init method for tvisheet (a basc flavor for all
window flavors) is used to handle the init kcywords :expose-p and :activate-p,
which cannot be handled correctly until the window is cntircly set up. They are
handled in this method because it is guaranteed to be the first method invoked by
the :init operation on any flavor of window (bccausc no component of tvisheet
defines an :inverse-around mcthod for this operation). All the rest of the work
of making a new window valid takes place in this method’s continuation; when
the continuation returns, the window must be as valid as it will ever be, and it is

PS:<L.LMAN>FLLAVOR.TEXT.134 8-JUN-84

Mcthod Combination 440 ‘ Lisp Machine Manual

ready to be exposed or activated.
:wrapper Used internally by defwrapper.

Note that if one flavor defines both a wrapper and an :around method for the
same opceration, the :around mcthod is exccuted inside the wrapper.

:combined Used internally for automatically-generated combined methods.

The most common form of combination is :daemon. One thing may not be clear: when do
you ‘use a :before dacmon and when do you use an :after daemon? In some cases the primary
method performs a clearly-defined action and the choice is obvious: :before :launch-rocket puts
in the fuel, and :after :launch-rocket turns on the radar tracking.

In other cases the choice can be less obvious. Consider the :init message, which is sent to a
newly-created object. To decide what kind of dacmon 1o use, we observe the order in which
dacmon methods are called. First the :before dacmon of the instantiated flavor is called, then
:before dacmons of successively more basic flavors are called, and finally the :before dacmon (if
any} of the basc flavor is called. Then the primary method is called. After that, the :after
dacmon for the base flavor is called, followed by the :after dacmons at successively less basic
flavors.

Now, if there is no interaction among all these mecthods, if their actions are completely
independent, then it doesn’t matter whether you usc a :before dacmon or an :after dacmon.
There is a difference if there is some interaction. ‘The intcraction we arc talking about is usually
done through instance variables; in general, instance variables are how the mcthods of different
component flavors communicate with cach other. In the casc of the :init operation, the init-plist
can be used as well. The important thing to remember is that no mecthod knows beforchand
which other flavors have been mixed in to form this flavor; a mcthod cannot make any
assumptions about how this flavor has been combined, and in what order the various components
arc mixed.

This means that when a :before dacmon has run, it must assume that none of the mcthods
for this operation have run yet. But the :after dacmon knows that the :before dacmon for each
of the other flavors has run. So if one flavor wants to convey infonmation to the other, the first
one should “transmit™ the information in a :before daemon, and the second onc should “receive”
it in an :after dacmon. So while the :before dacmons are run, information is “transmitted”; that
is, instance variables get set up. Then, when the :after daemons arc run, they can look at the
instance variables and act on their values.

In the case of the :init method. the :before dacmons: typically sct up instance variables of the
object based on the init-plist. while the :after dacmons actually do things, relying on the fact that
all of the instance variables have been initialized by the time they are called.

The problems become most difficult when you are creating a network of instances of various
flavors that are supposed to point to each other. For example, suppose you have flavors for
“buffers” and “streams”, and cach buffer should be accompanicd by a stream. If you create the
strcam in the :before :init mcthod for buffers, you can inform the strcam of its corresponding
buffer with an init keyword, but the strcam may try sending messages back to the buffer, which
is not yet ready to be used. If you create the stream in the :after :init method for buffers, there

PS:<I.MAN>FLLAVOR.TEXT.134 8-JUN-84

I isp Machine Manual 441 . Implementation of Flavors

will be no problem with stream creation, but some other :after :init methods of other mixins may
have run and made the assumption that there is to be no stream. The only way to guarantee
success is to create the strcam in a :before method and inform it of its associated bufler by
sending it a message from the buffer's :after :init method. This scheme—creating associated
objects in :before methods but linking them up in :after methods—often avoids problems,
because all the various associated objects used by various mixins at lcast exist when it is time to
make other objects point to them, ‘

Since flavors are not hicrarchically organized, the notion of levels of abstriction is not rigidly
applicable, However, it remains a uscful way of thinking about systems.

21.12 Implementation of Flavors

An object that is an instance of a flavor is implemented using the data type dtp-instance.
The representation is a structure whose first word, tagged with dtp-instance-header, points to a
structure (known to the microcode as an “instance descriptor™) containing the internal data for the "
flavor. The remaining words of the structure are value cells containing the values of the instance
variables. The instance descriptor is a defstruct that appears on the si:flavor property of the
flavor name.. It contains, among other things, the name of the flavor. the size of an instance, the
table of methods for handling operations, and information for accessing the instance variables.

defflavor creates such a data structure for cach flavor, and links them together according to
the dependency relationships between flavors.

A message is sent to an instance simply by calling it as a function, with the first argument
being the opcration. The microcode binds self to the object and binds those instance variables
that are supposed to be special to the value cells in the instance. Then it passes on the -operation
and arguments to a funcallable hash table taken from the flavor-structure for this flavor.

When the funcallable hash table is called as a function, it hashes the first argument (the
opcration) to find a function to handle the operation and an array called a mapping table. The
variablc sys:self-mapping-table is bound to the mapping table, which tclls the microcode how
to access the lexical instance variables, those not defined to be special. Then the function is
called. If there is only onc mcthod to be invoked, this function is that mcthod; othcrwise it is
an automatically-generated function called the combined method (sce page 413), which calls the
appropriate methods in the right order. If there are wrappers, they are incorporated into this
combined method.

The mapping table is an array whose elements correspond to the instance variables which can
be accessed by the flavor to which the currently executing method belongs. - Fach clement contains
the position in self of that instance variable. This position varies with the other instance variables
and component flavors of the flavor of self.

Each time the combined method calls another method, it scts up the mapping table required
by that mcthod—not in general the same one which the combined method itself uses. The
mapping tables for the called methods are extracted from the array leader of the mapping table
uscd by the combined method, which is kept in a local variable of the combined method’s stack
frame whilc sys:self-mapping-table is sct to the mapping tables for the component methods.

PS:KLLMAN>FLAVOR.TEXT.134 8-JUN-84

Implementation of Flavors 442 Lisp Machine Manual

sys:self-mapping-table _ Variable
Holds the current mapping table, which tells the running flavor method where in self to
find cach instance variable.

Ordered instance variables are referred (o directly without going through the mapping table.
This is a little faster, and reduces the amount of space needed for mapping tables. It is also the
rcason why compiled code contains the positions of the ordered instance variables and must be
recompiled when they change.

21.12.1 Order of Definition

There is a certain amount of freedom to the order in which you do defflavor’s. defmethod’s,
and defwrapper’s. This frecdom is designed to make it casy to load programs containing complex
flavor structures without having to do things in a certain order. It is considered important that
not all the methceds for a flavor nced be defined in the same file. Thus the partitioning of a
program into files can be along modular lines.

The rules for the order of definition are as follows.

Before a method can be defined (with defmethod or defwrapper) its flavor must have been
defined (with defflavor). This makes sense because the system has to have a place to remember
the method, and because it has to know the instance-variables of the flavor if the method is to be
compiled.

When a flavor is defined (with defflavor) it is not neccessary that all of its component flavors
be defined alrcady. This is to allow defflavor’s to be sprecad between files according to the
modularity of a program, and to provide for mutually-dependent flavors. Methods can be defined
for a flavor some of whose component flavors are not yet dcfined; however, in certain cases
_compiling those methods may produce a warning that an instance variable was declared special
(becausc the system did not realize it was an instance variable). If this happens, you should fix
the problem and recompile.

The methods automatically gencrated by the :gettable-instance-variables and :settable-
instance-variables defflavor options (sce page 424) arc gencrated at the time the defflavor is
done.

The first time a flavor is instantiated, or when compile-flavor-methods is done, the system
looks through all of the component flavors and gathers various information. At this point an error
is signaled if not all of the components have been defflavor'ed. This is also the time at which
certain other errors are detected, for instance lack of a required instance-variable (sec the
rrequired-instance-variables defflavor option, page 425). The combined methods (see page 413)
are gencrated at this time also, unless they already exist. ‘

After a flavor has been instantiated, it is possible to make changes to it. Such changes affect
all existing instances if possible. This is described more fully immediately below.

PS:K<LLMAN>FILAVOR.TEXT.134 8-JUN-84

I isp Machine Manual 443 Useful Editor Commands

21.12.2 Changing a Flavor

You can change anything about a flavor at any time. You can change the flavor's general
atributes by doing another defflavor with the same name. You can add or modify methods by
doing defmethod’s. 1If you do a defmethod with the same flavor-name, operation (and
suboperation if any). and (optional) méthod-type as an existing method, that method is replaced
by the new definition. You can remove a method with undefmethod (sce page 419).

These changes always propagate to all flavors that depend upon the changed flavor. Normally
the system propagates the changes to all existing instances of the changed flavor and its dependent
flavors. However, this is not possible when the flavor has been changed so drastically that the old
instances would not work properly with the new flavor. This happens if you change the number
of instance variables. which changes the size of an instance. It also happens if you change the
order of the instance variables (and hence the storage layout of an instance), or if you change the
component flavors (which can change several subtle aspects of an instance). The system does not
keep a list of all the instances of cach flavor, so it cannot find the instances and modify them to
conform to the new flavor definition. Instead it gives you a warning message. on the *error-
output* strcam, to the cffect that the flavor was changed incompatibly and the old instances will
not get the new version. The system lcaves the old flavor data-structure intact (the old instances
continue o point at it) and makes a new one 10 contain the new version of the flavor. If a less
drastic change is made, the system modifies the original flavor data-structure, thus affecting the
old instances that point at it. However, if you redefine methods in such a way that they only
work for the new version of the flavor, then trying to use those methods with the old instances
won’t work.

21.13 Useful Editor Commands

This scction bricfly documents some cditor commands that are useful in conjunction with
flavors.

Meta-. _
The Meta-. (Edit Definition) command can find the definition of a flavor in the same

way that it can find the definition of a function.

Edit Definition can find the definition of a method if you give it a suitable function spec
starting with :method, such as (:method tv:sheet :expose). The keyword :method may
be omitted if the definition is in the editor alrcady. Completion is available on the flavor
name and operation name, as usual only for definitions loaded into the editor.

Meta-X Describe Flavor »

Asks for a flavor name in the mini-buffer and describes its characteristics. When typing
the flavor name you have completion over the names of all defined flavors (thus this
command can be used to aid in gucssing the name of a flavor). The display produced is
mousc sensitive where there are names of flavors and of methods; as usual the right-hand
mousc button gives you a menu of editor commands to apply to the name and the left-
hand mouse button docs one of them, typically positioning the editor to the source code
for that name,

Meta-X List Methods
Meta-X Edit Methods

PS:KL.MAN>FLLAVOR.TEXT.134 8-JUN-84

Useful Editor Commands 444 : Lisp Machine Manual

Asks you for an operation in the mini-buffer and lists all the flavors that have a method
for that operation. You may type in the operation name, point to it with the mouse, or
fet it default o the operation of the message being sent by the Lisp form the cursor i
on. List Methods produces a mousc-sensitive display allowing you to cdit selected
methods or just to see which flavors have methods. while Edit Methods skips the display
and proceeds directly to cditing the methods. ‘

As usual with this type of command. the cditor command Control-Shift-P advances the
editor cursor to the next method in the Tist. reading in its source file if nccessary. Typing
Control-Shift-P, while the display is on the screen, cdits the first method.

In addition, you can find a copy of the list in the editor buffer *Possibilities*. While in
that buffer. the command Control-/ visits the definition of the method described on the
line the cursor is pointing at.

These techniques of moving through the objects lisied apply to all the following
commands as well.

Meta-X List Combined Methods

Meta-X Edit Combined Methods
Asks you for an operation name and a flavor in two mini-buffers and lists all the methods
that would be called to handle that operation for an instance of that flavor.

List Combined Methods can be very uscful for telling what a flavor will do in response
to a message. It shows you the primary method, the dacmons, and the wrappers and lets
you see the code for all of them; type Control-Shift-P to get to successive ones.

Meta-X List Flavor Components
Meta- X Edit Flavor Components
Asks you for a flavor and lists or begins visiting all the flavors it depends on.

Meta-X List Flavor Dependents
Meta-X Edit Flavor Dependents
Asks you for a flavor and lists or begins visiting all the flavors that depend on it

Meta-X List Flavor Direct Dependents
Meta-X Edit Flavor Direct Dependents
Asks you for a flavor and lists or begins visiting all the flavors that depend directly on it

Meta-X List Flavor Methods
Meta-X Edit Flavor Methods
Asks you for a flavor and lists or begins visiting all the methods defined for that flavor.

(This does not include methods inherited from its component flavors.)

PS:KI.MAN>FI.AVOR.TEXT.134 | 8-JUN-84

I isp Machine Manual 445 ' ~ Property List Operations

21.14 Property List Operations

Itis often useful to associate a property list with an abstract object, for the same reasons that
it is uscful to have a property list associated with a symbol. This section describes a mixin flavor
that can be used as a component of any new flavor in order to provide that new flavor with a
property list. FFor more details and examples, sce the general discussion of property lists (section
5.10. page 113). ‘T'he usual property list functions (get. putprop, ctc.) all work on instances by
sending the instance the corresponding message.

si:property-list-mixin Flavor
This mixin flavor provides the basic operations on property lists.

:get property-name &optional default : Operation on si:property- list-mixin
Looks up the object's property-name property. If it finds such a property, it returns the
value; otherwise it returns default. '

:getl property-name-list : Operation on si:property-list-mixin
Like the :get operation, except that the argument is a list of property names. The :getl
operation scarches down the property list until it finds a property whose property name is
one of the clements of property-name-list. It returns the portion of the property list
begining with the first such property that it found. If it docsn't find any, it returns nil.

:putprop value property-name . } Operation on si:property - list-mixin
Gives the object an property-name property of value.
(send object :set :get property-name value)
also has this effect.

sremprop property-name Operation on si:property-list-mixin
Removes the object’s property-name property, by splicing it out of the property list. It
retrns onc of the cells spliced out, whose. car is the former value of the property that
was just removed. If there was no such property to begin with, the value is nil.

:get-location-or-ni1 properry-name Operation on si:property-list-mixin
:get-location property-name Operation on si:property-list-mixin
Both return a locative pointer to the cell in which this object’s property-name property is
stored. If there is no such property, :get-location-or-nil returns nil, but :get-location
adds a cell to the property list and initialized to nil, and a pointer to that cell is returned.

:push-property value property-name Operation on si:property-list-mixin
The property-name property of the object should be a list (note that nil is a list and an
absent property is nil). This operation sets the property-name property of the object to a
list whose car is value and whose cdr is the former property-name property of the list,
This is analogous to doing
(push value (get object property-name))
Sce the push special form (page 88).

PS:{LLMAN>FLLAVOR.TEXT.134 ' 8-JUN-84

Printing Flavor Instances Readably 446 Lisp Machine Manual

:property-list Operation on si:property - list-mixin
Returns the list of alternating property names and values that implements the property list.

:property-1ist-location ' Operation on si:property-list-mixin
Returns a locative pointer to the cell in the instance which holds the property list data.

:set-property-1ist /iss Operation on sizproperty - list-mixin
Sets the list of alternating property names and values that implements the property list to
list. So docs
(send object :set :property-list list)

:property-1ist lis/ Init option for si:property-list-mixin
‘This initializes the list of alternating property names and values that implements the
property list to list.

21.15 Printing Flavor Instances Readably

A flavor instance can print out so that it can be read back in, as long as you give it a :print-
self method that produces a suitable printed representation, and provide a way to parse it.. The
convention for doing this is to print as '

#cflavor-name additional-data>
and make sure that the flavor defines or inherits a .read-instance mcthod that can parse the
additional-data and return an instance (scc page 527). A convenient way of doing this is to use
si:print-readably-mixin.

si:print-readably-mixin Flavor
Provides for flavor instances to print out using the #c syntax, and also for reading things
that were printed in that way.

:reconstruction-init-plist Operation on si:print-readably-mixin
When you use si:print-readably-mixin, you must define the operation :reconstruction-
init-plist. This should return an alternating list of init options and valucs that could be
passed to make-instance to create an instance “like” this one. Sufficient similarity is
defined by the practical purposes of the flavor’s implementor.

21.16 Copying Instances

Many people have asked “How do I copy an instance?”” and have expressed surprisc when
told that the flavor system docs not include any built-in way to copy instances. Why isn't there
just a function copy-instance that creates a new instance of the same flavor with all its instance
variables having the same valucs as in the original instance? This would work for the simplest use
of flavors, but it isn’t good cnough for most advanced uses of flavors. A number of issucs are
raised by copying:

* Do you or do you not send an :init message 0 the new instance? If you do, what init-plist
options do you supply?

* If the instance has a property list, you should copy the property list (e.g. “with copylist) so
that putprop or remprop on one of the instances docs not affect the properties of the other

PS:<I.MAN>FLAVOR.TEXT.134 8-JUN-84

Lisp Machine Manual 447 Copying Instances

instance,

* Af the instance is a pathname, the concept of copying is not even meaningful. Pathnames are
interned, which mcans that there can only be onc pathname object with any given sct of
instance-variable valucs. '

* If the instance is a stream connected o a network, some of the instance variables represent
an agent in another host clsewhere in the network.” Should the copy talk to the same agent,
or should a new agent be constructed for it?

* If the instance is a stream conneeted to a file, should copying the stream make a copy of the
file or should it make another stream open to the same file? Should the choice depend on
whether the file is open for input or for output?

In general, you can see that in order to copy an instance one must understand a lot about
the instance. One must know what the instance variables mean so that the values of the instance
variables can be copied if necessary. ‘One must understand what relations to the cxternal
environment the instance has so that new relations can be established for the new instance. Onc
must cven understand what the general concept “copy’ means in the context of this particular
instance, and whether it means anything at all.

Copying is a generic operation, whose implementation for a particular instance depends on
detailed knowledge relating to that instance. Modularity dictates that this knowledge be contained
in the instance’s flavor, not in a “general copying function”. Thus the way to copy an instance is
to send it a message, as in (send object :copy). It is up to you to implement the operation in a
suitable fashion, such as

(defflavor foo (a b ¢) ()
(:inittable-instance-variables a b))

(defmethod (foo :copy) ()
(make-instance 'foo :a a :b b))

The flavor system chooses not to provide any default method for copying an instance, and
does not even suggest a standard name for the copying message, because copying involves so
many semantic issues.

If a flavor supports the :reconstruction-init-plist operation. a suitable copy can be made by
invoking this operation and passing the result to make-instance along with the flavor name. This
is because the definition of what the :reconstruction-init-plist operation should do requires it to
address all the problems listed above. Implementing this operation is up ‘to you, and so is
making sure that the flavor implements sufficient init keywords to transmit any information that is
to be copied. Sce page 446. ' '-

PS:KL.LMANDFI ;AVOI(.'I’EX'I‘.134 8-JUN-84

	401_Objects
	402_Objects
	403_Objects
	404_Objects
	405_Objects
	406_Objects
	407_Objects
	408_Objects
	409_Objects
	410_Objects
	411_Objects
	412_Objects
	413_Objects
	414_Objects
	415_Objects
	416_Objects
	417_Objects
	418_Objects
	419_Objects
	420_Objects
	421_Objects
	422_Objects
	423_Objects
	424_Objects
	425_Objects
	426_Objects
	427_Objects
	428_Objects
	429_Objects
	430_Objects
	431_Objects
	432_Objects
	433_Objects
	434_Objects
	435_Objects
	436_Objects
	437_Objects
	438_Objects
	439_Objects
	440_Objects
	441_Objects
	442_Objects
	443_Objects
	444_Objects
	445_Objects
	446_Objects
	447_Objects

