The 170 System 448 Lisp Machine Manual

22. The 170 System

Zetalisp provides a powerful and flexible system for performing input and output o peripheral
devices. Device independent 170 is generalized in the concept of an 170 stream. A stream is a
source or sink for data in the form of characters or integers: sources arc called input streams and
sinks are called output streams. A stream may be capable of use in cither dircction, in which
case it is a bidirectional strecam. In a few unusual cascs, it is useful to have a ‘stream’ which
supports ncither input nor output; for example, opening a file with dircction :probe rcturns one
(page 583). Strcams on which characters arce transferred are called character streams, and arc uscd
more often than binary streams, which usually transfer integers of type (unsigned-byte n) for
some .

Streams automatically provide a modular separation between the program which imiplements
the stream and the program which uses it. because strcams obey a standard protocol. ‘The stream
protocol is a special case is based on the gencral message passing protocol: a stream operation is
invoked by calling the stream as a function, with a first argument that is a keyword and identifics
the 170 operation desired (such as, :tyi to read a character) and additional arguments as that
operation calls for them. ‘The stream protocol consists of a particular sct of operation names and
calling conventions for them. It is documented in scction 22.3, page 459,

Many programs do not invoke the strcam opcrations dircctly; instcad. they call standard 170
functions which then invoke stream operations. This is done for two reasons: the functions may
provide useful services. and they may be transpoitable to Common Lisp or Maclisp. Programs
that use stream operations dircctly are not transportable outside Zetalisp. The 170 functions are
documented in the first sections of this chapter.

The generality of the Zetalisp 1/0 stream comes from the fact that 170 operations on it can
invoke arbitrary Lisp code. For example, it would be very simple to implement a "morse code”
stream that accepted character output and used beep with appropriate pauscs to ‘display’ it. How
to implement a stream is documented in section 22.3.12, page 474, and the following sections.

The most commonly used streams are windows, which read input from the keyboard and
dispose of output by drawing on the screen, file strcams, cditor buffer streams which get input
from the text in a buffer and inscrt output into the buffer, and string streams which do likewise

with the contents of a string.

Another unusual aspect of Lisp 170 is the ability to input and output general Lisp objects,
represented as text. These are done using the read and rclated functions and using print and
related functions. They are documented in chapter 23.

PS:<1.MAN>IOS.TEXT.247 8-JUN-84

Lisp Machine Manual 449 Input Functions

22.1 Input Functions

The input functions read characters, lines, or bytes from an input strcam. This argument is
called stream. If omitted -or nil, the current value of *standard-input*. 'This is the “default
input stream™, which in simple usc rcads from the terminal keyboard. If the argument is t. the
current value of *terminal-io* is uscd: this is conventionally supposed to access “the user's
terminal™ and ncarly always reads from the keyboard in processes belonging to windows.

If the stream is an interactive one, such as the terminal, the input is cchoed, and functions
which rcad more than a single character allow cditing as well. peek-char cchoes all of the
characters that were skipped over if read-char would have echoed them; the character not
removed from the stream is not cchoed cither.

When an input stream has no more data to return, it reports end of file. Each stream input
operation has a convention for how to do this. The input functions accept an argument eofoption
or two arguments ecof-error and eof-value t tell them what to do if end of file is encountered
instcad of any input. The functions that take two eof -arguments arc the Common Lisp ones. -
For them, end of file is an error if coferror is non-nil or if it is unsupplied. If eof-error is nil,
then the function returns eofvalue at end of file,

The functions which have one -argument called eof-option arc from Maclisp. End of file causes
an crror if the argument is not supplied. Otherwise, end of file causes the function to return the
argument’s value. - Note that an eof-option of nil means to rcturn nil if the end of the file is
rcached; it is not equivalent to supplying no eof-option.

sys:end-of-file (error) - Condition
All crrors signaled to report end of file possess this condition name.

The :stream operation on the condition instance rcturns the stream on which end of file
was reached. S

22.1.1 String Input Functions

read-1ine &optional stream (eof-errorpt) eof-value ignore options
Reads a linc of text, terminated by a Return. It returns the linc as a character string,
without the Return character that ended the line. The argument ignore must be accepted
for the sake of the Common Lisp specifications but it is not used.

This function is usually used to get a linc of input from the user. If rubout processing is
happening, then options is passed as the list of options to the rubout handler (see section
22.5, page 500). :

There is a second value, t if the line was terminated by end of file.

PS:KLLLMAN>IOS.TEXT.247 8-JUN-84

Input Functions 450 I isp Machine Manual

readiine . &optional stream cof-option options
l.ike read-line but uses the Maclisp convention for specifying what to do about end of
file. ‘This function can take its first two arguments in the other order, for Maclisp
compatibility only; sce the note in scction 22.1.3, page 451.

readline-trim &optional stream cof-option -oplions
This is like readline cxcept that lcading and trailing spaces and tabs are discarded -from
the value before it is returned.

readline-or-nil &optional stream eof-option options
| ik readline-trim cxcept that nil is returned if the line is empty or all blank.

read-delimited-string &optional delimiter stream eof rubout-handler-options buffer-size
Reads input from stream until a delimiter character is reached. then returns as a string all
the input up to but not including the delimiter. delimiter is cither a character or a list of
characters which all serve as delimiters. It defaults to the character End. stream defaults
to the value of *standard-input®.

If eof is non-nil, then end of file on attempting to read the first character is an error.
Otherwise it just causes an cmpty string to be returned. End of file once at least one
character has been read is never an crror but it does cause the function to return all the
input so far.

Input is done using rubout handling and echoing if strcam supports the :rubout-handler
operation. In this case, rubout-handler-options are passed as the options argument to that
operation.

buffer-size specifies the size of string buffer to allocate initially.
The sccond value returned is t if input ended due to end of file.

The third value is the delimiter character which terminated input, or nil if input
terminated due to end of file. This character is currently represented as a fixnum, but
perhaps someday will be a character object instead.

22.1.2 Character-Level Input Functions

read-char &optional stream (eof-errorpt) eof-value
Reads a character from stream and returns it as a character object. End of file is an error
if eof-errorp is mon-nil; otherwise, it causes read-char to return eof-value. This uses the
ityi stream operation.

read-byte strcam &optional (eoferrorpt) eof-value
Like read-char but returns an integer rather than a character object. In strict Common
Lisp, only read-char can be uscd on character strcams and only read-byte can be used
on binary streams.

PS:<1.MANDIOS. TEXT.247 ~ 8-JUN-84

Lisp Machine Minual 451 Input I'unctions

read-char-no-hang &optional stream (ecof-crromt) cofvalue v
Similar but returns nil immediately when no input is available on an interactive stream.
Uses the :tyi-no-hang strcam operation (page 466).

unread-char char &optional stream
Puts char back into srream so that it will be read again as the next input character. char
~ must be the same character that was read from stream most recently. It may not work to -
unrcad two characters in a row before reading again. Uses the untyi strcam operation
(page 461).

peek-char peck-type &optional stream (eof-errorpt) eof value
If' peck-type is nil, this is like read-char cxcept leaves the character to be read again by
the next input operation. '

If peek-type is t, skips whitespace characters and pecks at the first nonwhitespace
character. 'That character is the value, and is also left to be rercad.

If peek-type is a character, rcads input until that character is scen. That character is
unrcad and also returned.

listen &optional sl}eam
t if input is now available on stream. Uses the :listen operation (page 466).

clear-input &optional srream
Discards any input now available on stream, if it is an interactive strcam. Uses the

:clear-input strcam operation (page 469).

22.1.3 Maclisp Compatibility Input Functions

These functions accept an argument eofoption to tell them what to do if end of file is
cncountered instead of any input. End of file signals an error if the argument is not supplied.
Otherwise, end of file causes the function to return the argument’s value. Note that an eofoption
of nil means to return nil if the end of the file is reached; it is not equivalent to supplying no
eof-option.

The arguments stream and eof-option can also be given in the reverse order for compatibility
with old Maclisp programs. The functions attempt to figure out which way they were called by
sceing whether cach argument is a plausible stream. Unfortunately, there is an ambiguity with
symbols: a symbol might be a stream and it might be an cof-option. If there are two arguments,
onc being a symbol and the other being something that is a valid stream, or only one argument,
which is a symbol, then these functions interpret the symbol as an cof-option instcad of as a
stream. To force them to interpret a symbol as a stream, give the symbol an si:io-stream-p
property whosc value is t.

PS:KILMAN>IOS.TEXT.247 . v 8-JUN-84

Input Functions : 452 Lisp Machine Manual

ty1 &optional swream eofoption
Reads one character from stream and returns it The character is echoed if stream is
interactive, except that Rubout is not cchoed. ‘The Control, Meta, clc. shifts echo as C-,
M-, ctc. '

The :tyi stream operation is preferred over the tyi function for some purposes. Note that
it does not ccho. Sce page 461,

(This function can take its arguments in the other order, for Maclisp compatibility only;
sce the note above.)

readch &optional siream eofoption :
Iike tyi except that instead of returning a fixnum character, it returns a symbol whose
print name is the character. The symbol is interned in the current package. This is just
Maclisp’s version of character object. (This function can take its arguments in the other
order, for Maclisp compatibility only: sce the note above.)

This function is provided only for Maclisp compatibility, since in Zctalisp never uscs
symbols to represent characters in this way.

tyipeek &optional peek-1ype stream eof-option
This function is provided mainly for Maclisp compatibility; the :tyipeek strcam operation
is usually clearer (sec page 461).

What tyipeek does depends on the peek-rype, which defaults to nil. With a peck-type of
nil, tyipeek returns the next character to be read from stream, without actually removing
it from the input strecam. The next time input is done from stream the character will still
be there; in general, (= (tyipeek) (tyi)) is t.

If peek-type is a fixnum lcss than 1000 octal, then tyipeek reads characters from stream
until it gets one cqual to peek-1ype. That character is not removed from the input strcam.

If peek-type is t, then tyipeek skips over input characters until the start of the printed
representation of a Lisp object is reached. As above, the last character (the one that starts
an object) is not removed from the input strecam.

The form of tyipeek supportcd by Maclisp in which peek-fype is a fixnum not lcss than
1000 octal is not supported, since the readtable formats of the Maclisp reader and the
Zetalisp reader are quite different. ' '

Characters passed over by tyipeek are echoed if stream is interactive.

PS:KI.MAN>IOS. TEXT.247 8-JUN-84

Lisp Machine Manual 453 ' Input FFunctions

22.1.4 Interactive Input with Prompting

prompt-and-read npe-ofparsing formarstring &rest SJormar-args ‘
Reads some sort of object from *query-io*, parsing it according to fype-of-parsing, and
prompting by calling format using formart-string and SJormat-args.

ype-of-parsing is cither a keyword or a list starting with a keyword and continuing with a
list of options and values, whose meanings depend on the keyword uscd.

Most keywords specify reading a line of input and parsing it in some way. ‘The line can
be terminated with Return or End. Sometimes typing just End has a special meaning.

The keywords defined are

eval-sexp ‘
:eval-form This keyword directs prompt-and-read to accept a Lisp expression. It is
cevaluated, and the value is returned by prompt-and-read.

If the Lisp cxpression is not a constant or quoted, the user is asked to
confirm the value it evaluated to.

A default value can be specified with an option, as in

(:eval-sexp :default defaull)
Then, if the user types Space, prompt-and-read returns the defaull as
the first value and :default as the second value.

:eval-sexp-or-end
:eval-form-or-end ,
~ - Synonymously direct prompt-and-read to accept a Lisp expression or just
the character End. If End is typed, prompt-and-read rcturns nil as its
first value and :end as its second value. Otherwise, things proceed as for
:eval-sexp,

A default value is allowed, as in :eval-sexp.

‘read
:expression Synonymously direct prompt-and-read to rcad an object and return it,
with no evaluation,

:expression-or-end :
Is like :expression except that the user is also allowed to type just End.
If he does so, prompt-and-read returns the two values nil and :end.

:number Directs prompt-and-read to read and return a number. It insists on
~ getting a number, forcing the user to rub out anything else. Additional
features can be specificd with options:
(:number :input-radix radix :or-nil nil-ok-flag)
parscs the number using radix radix if the number is a rational. (By
default, the ambicnt radix is used). If nil-ok-flag is non-nil, then the user
is also permitted to type just Return or End, and then nil is returned.

PS:<L.MAN>IOS.TEXT.247 _ v 8-JUN-84

Input Functions 454 Lisp Machine Manual

:decimal-number
:number-or-nil
.decimal-number-or -nil
Abbreviations for
(:number :input-radix 10)
(:number :or-nil t)
(:number :input-radix 10 :or-nil t)

.date Directs prompt-and-read to rcad a datc and time, terminated with-
Return or End. and return it as a universal time (see page 777). It allows
several options;

(:date :never-p never-ok :past-p pasi-required)
If past-required is non-nil, the date must be before the present time, or
the user must rub out and use a different date. If never-ok is non-nil, the
user may also type “never™; then nil is returned.

:date-or-never
:past-date
:past-date-or-never
Abbreviations for
(:date :never-p t)
(:date :past-p t)
(:date :never-p t :past-p t)

:character Directs prompt-and-read to rcad a single character and return a
character object representing it.

:string Directs prompt-and-read to read a linc and return its contents as a
string, using readline. :

string-or-nil Dirccts prompt-and-read to rcad a line and return its contents as a
string, using readline-trim. In addition, if the result would be empty, nil
is returncd instead of the empty string.

:string-list Like :string-trim but regards the line as a scquence of input strings
scparaied by commas. Each substring between commas is trimmed, and a
list of the strings is returned.

‘keyword-list Like :string-list but converts cach string to a keyword by interning it in
the keyword package. The valuc is thercfore a list of keywords.

font-list Like :string-list but converts cach string to a font name by interning it in
the fonts package. The symbols must already exist in that package or the
user is required to retype the input.

:delimited-string
Dirccts prompt-and-read to read a string terminated by specified
delimiters. With
(:delimited-string :delimiter delimiter-list
:buffer-size size)
you can specify a list of delimiter characters and an initial size for the
buffer. The list defaults to (# \end) and the size to 100.

PS:KI.MAN>IOS.TEXT.247 ~ 8-JUN-84

I isp Machine Manual _ ' 455 o Input FFunctions

lhc work is done by read-delimited-string (pag,c 450). - ‘The dclimiters
and size are passed to that function. '

.delimited - string - or - nil
l.ike :delimited-string cxcept that nil is returned instcad of the cmpty
string if the first character rcad is a delimiter.

thost Directs prompt-and-read to rcad a line and interpret the contents as a
network -host name. ‘The value returned is the host, looked up using
si:parse-host (page 576). An option is defined:

(:host :default default-name :chaos-only chaos-only)
If the line read is empty, the host named defautt-name is used. If chaos-
only is non-nil, only hosts on the Chaosnet ‘are permitied input.

:host-list Like :host but xcg‘ilds the line as a scquence of host names scparated by
commas, Fach host name is lookcd up as in :host and a list of the
resulting hosts is returned. -

:pathname-host
Likc :host but uses fs:get-pathname-host to look up the host object
“from its name (page 577). ‘Thus, you find hosts that can appear in
pathnames rather than hosts that arc on the network.

:pathname Directs prompt-and-read to rcad a linc and parsc it as a pathname, .
merging it with the defaults. If the linc is cmpty, the default pathname is
used. These options are defined:

(:pathname :defaults defaults-alist-or-pathname
:version default-version)
uses defaults-alist-or-pathname as the defaults argument to fs:merge-
pathname-defaults, and default-version as the version argument to it.

:pathname-or-nil
Is like :pathname, but if the user types just End it is interpreted as
meaning “no pathname” rather than “use the default”. Then nil is

returned.

:pathname -list
Like :pathname but regards the line as a sequence of filenames separated
by commas. FEach filename is parsed and dcfaulted and a list of the
resulting pathnames is returned.

fquery Directs prompt-and-read to query the user for a fixed sct of alternatives,
using fquery. type-ofparsing should always be a list, whose car is :fquery
and whose cdr is a list to be passed as the list of optlons (fquery’s first
argument).
Example:
(prompt-and-read ‘(: fquery
: ,format:y-or-p- options)
: "Eat it? ")
is equivalent to
(y-or-n-p "Eat it? ")

PS:<L.MAN>IOS. TEXT.247 : 8-JUN-84

Output FFunctions 456 Lisp Machine Manual

This keyword is most uscful as a way to get o fquery when going
through an interface defined to call prompt-and-read.

22.2 Output Functions

These functions all take an optional argument called stream. which is where to send the
output. I unsupplied srream defaults to the value of *standard-output®. If stream is nil, the
value of *standard-output*® (i.c. the default) is used. If it is t, the value of *terminal-io* is
used (i.c. the interactive terminal). This is all morc-or-less compatible with Maclisp, except that
nstead of the variable *standard-output* Maclisp has several variables and complicated rules.
IFor detailed documentation of streams, refer to section 22.3, page 459.

For print and the other expression output functions, sce scction 23.4, page 527.

write-char char &optional stream

tyo char &optional stream
Outputs char to stream (using :tyo). char may be an integer or a character object; in the
latter case, it is converted to an integer before the :tyo.

write-byte rmumber &optional stream
Outputs number to stream using :tyo. In strict Common Lisp, output to binary strcams
can be done only with write-byte and output to character strecams requires write-char.
In fact, the two functions are identical on the Lisp Machine.

write-string siring &optional stream &kcy (siartQ) end
Outputs string (or the specified portion of it) to stream.

write-11ne siring &optional stream &key (start0) end
Outputs string (or the specified portion) to stream, followed by a Return character.

fresh-1ine &optional stream
Outputs a Return character to stream unless either
1) nothing"has been output to stream yet, or
(2) the last thing output was a Return character, or ,
(3) stream does not remember what previous output there has been.

This uses the :fresh-line strcam operation. The value is t if a Return is output, nil if
nothing is output.

force-output &optional stream

Causes streanm’s buffered output, if any, to be transmitted immediately. This uses the
:force-output strcam operation.

PS:KL.LMAN>IOS.TEXT.247 8-JUN-84

Lisp Machine Manual 457 Output Functions

finish-output &optional siream :
Causes stream’s buflered output, if” any, to be transmitted immediately, and waits until
that is finished. 'This uses the finish strcam operation.

clear-output &optional stream
Discards any output buffered in stream. 'This uses the :clear-output stream operation.

terpri &optional stream _ 4
Outputs a Return character to stream. 1t returns t for Maclisp compatibility. It is wise

not to depend on the value terpri returns.

cli:terpri &optional swream
Outputs a Return character to stream. Returns nil to meet Common Lisp specifications.

Itis wisc not to depend on the value cli:terpri returns.

The format function (sce page 483) is very uscful for producing nicely formatted text. It can
'do anything any of the above functions can do, and it makes it casy to produce good looking
messages and such. format can gencrate a string or output to a stream.,

stream-copy-until-eof from-strcam to-stream &optional leader-size
stream-copy-until-eof inputs characters from from-strean and outputs them to fo-stream,
until it reaches the end of file on the from-stream. For example, if x is bound to a
stream for a file opened for input, then (stream-copy-until-eof x *terminal-io*) prints
the file on the console. '

If from-stream supports the :line-in operation and fo-stream supports the :line-out
operation, then stream-copy-until-eof uscs those operations instcad of :tyi and :tyo, for
greater cfficicncy. /leader-size is passed as the argument to the :line-in operation.

beep &optional beep-type (stream *terminal-io*)
This function is intended to attract the user’s attention by causing an audible beep, or
flashing the screen, or something similar. If the strcam supports the :beep operation,
then this function scnds it a :beep message, passing becp-type along as an argument.
Otherwise it just causes an audible beep on the terminal.

beep-type is a keyword which explains the significance of this beep. Users can redefine
beep to make different noises depending on the beep type. The defined beep types are:

zwei:converse-problem
Used for the beep that is done when Converse is unable to send a
message. :

zwei:converse-message-received
Used for the beeps done when a Converse message is received.

zwei:no-completion .
Used when you ask for completion in the cditor and the string does not

complete. -

tv:notify Used for the beep done when you get a notification that cannot be
printed on the selected window.

PS:<1LMAN>IOS.TEXT.247 | 8-JUN-84

Output Functions 458 | isp Machine Manual

fquery Used for the beep done by yes-or-no-p or by fquery with the :beep
option specified.

supdup:terminal-bell ,
Used for the beep requested by -the remote host being used through a
Supdup window. '

nil Used whenever no other beep type applics.
‘The :beep operation is described on page 467.

cursorpos &rest args
This function exists primarily for Maclisp compatibility. Usually it is preferable to send
the appropriate messages (sce the Window System manual).

cursorpos normally operates on the *standard-output® strcam: however, if the last
argument is a strcam or t (mecaning *terminal-io*) then cursorpos uses that stream and
ignores it when doing the operations described below. cursorpos only works on streams
that arc capable of these operations, such as windows. A stream is taken to be any
argument that is not a number and not a symbol, or that is a symbol other than nil with
a name more than onc character long.

(cursorpos) => (line . column), the current cursor position.

(cursorpos line column) moves the cursor to that position. It returns t if it succecds and
nil if it doesn’t.

(cursorpos op) performs a special operation coded by op, and rcturns t if it succeeds
and nil if it doesn’t. op is tested by string comparison, it is not a keyword symbol and
may be in any package.

f Moves one space to the right,

b Moves one space to the left.

d Moves one line down.

u Moves one line up.

t Homes up (moves to the top left corner). Note that t as the last argument to
cursorpos is interpreted as a stream, so a strcam must be specified if the t
operation is used.

Home down (moves to the bottom left corner).

Advances to a fresh line. Sce the :fresh-line strecam operation.
Clears the window.

Clear from the cursor to the end of the window.

Clear from the cursor to the end of the line.

Clear the character position at the cursor.

b then k.

. XX T 0O 0O N

PS:KI.MAN>IOS.TEXT.247 _ 8-JUN-84

Iisp Machine Manual _ 459 1/0 Streams

22.3 170 Streams

An 170 stream, or just stream, is a source and/or sink of characters or byvtes. A sct of
operations is available with cvery stream; operations include things like “output a character” and
“input a character”. The way to perform an operation on a strcam is the same for all streams,
although what happens inside the stream is very different depending on what kind of a stream it
is. So all a program has to know is how to deal with streams using the standard, generic
operations. A programmer creating a new kind of strcam only nceds to implement the
appropriate standard operations.

A stream is a message-receiving object. This means that it is something that you can apply to
arguments. ‘The first argument is a keyword symbol which is the name of the operation you wish
to perform. The rest of the arguments depend on ‘what operation you are doing. Message-passing
and generic operations are explained in the flavor chapter (chapter 21, page 401).

Some strecams can only do input, some can only do output, and some can do both. Some
operations are only supported by some streams. Also, there are some operations that the stream
may not support by itsclf, but which work anyway, albeit slowly, because the siream default
handler can handle them. All strcams support the operation :which-operations, which returns a
list of the names of all of the operations that arc supported “natively” by the stream. (:which-
operations itself is not in the list.)

All input streams support all the standard input operations, and all output streams support all
the standard output operations. All bidircctional streams support both.

streamp object
According to Common Lisp, this returns t if object is a stream. In the Lisp machine, a
stream is any object which can be called as a function with certain calling conventions. It
is theorctically impossible to test for this. However, streamp does return t for any of the
usual types of strecams, and nil for any Common Lisp datum which is not a stream.

22.3.1 Standard Streams

There are several variables whose values aré strcams used by many functions in the Lisp
system. These variables and their uses are listed here. By convention, variables that are expected
to hold a strcam capable of input have names ending with -input, and similarly for output.
Those expected to hold a bidirectional strcam have names ending with -io. The names with
asterisks are synonyms introduced for the sake of Common Lisp.

*standard-1input® ‘ Variable

- standard-1input Variable

In the normal Lisp top-level loop, input is rcad from *standard-input* (that is, whatever
strcam is the valuc of *standard-input*). Many input functions, mcludmg tyi and read,
take a strcam argument that dcfaults to *standard-input*.

PS:KL.MAN>IOS. TEXT.247 ' 8-JUN-84

170 Streams 460 Lisp Machine Manual

standard-output® Variable
standard-output -) Variable
In the normal Lisp top-level loop, output is sent to *standard-output* (that is, whatever
stream is the value of *standard-output*). Many output functions, including tyo and
print, take a strcam argument that defaults to *standard-output®.

*error-output® : Variable
error-output o Variable
The value of *error-output* is a stream on which noninteractive crror or warning
messages should be printed. Normally this is the samc as *standard-output*, but
standard-output might be bound to a file and *error-output® left going to the

terminal.
debug-io Variable
debug-io Variable

The value of *debug-io* is used for all input and output by the ecrror handler.
Normally this is a synonym for *terminal-io*. The valuc may be nil, which is regarded
as cquivalent to a synonym for *terminal-io*. This fcaturc is provided because users
often set *debug-io* by hand, and it is much casicr to sct it back to nil afterward than
to figure out the proper synonym strecam pointing to *terminal-io*.

query-io® - Variable

guery-io Variable
The value of *query-io* is a strcam that should be used when asking questions of the
user. The question should be output to this stream, and the answer rcad from it. The
rcason for this is that when the normal input to a program may be coming from a file,
questions such as “Do you really want to delete all of the files in your directory??” should
be sent dircctly to the user, and the answer should come from the user, not from the
data file. *query-io* is used by fquery and rclated functions; sce page 769.

terminal-io Variable

terminal-io Variable
The value of *terminal-io* is the strcam that the program should use to talk to the user’s
console. In an interactive program, it is the window from which the program is being
run; I/0 on this strcam reads from the keyboard and displays on the screen. However,
in a background process that has no window, *terminal-io* defaults to a strcam that
docs not cver cxpect to be used. If it is used, perhaps by an error printout, it turns into
a background window and requests the user’s attention.

*trace-output® Variable
trace-output : ' Variable
The valuc of *trace-output* is the stream on which the trace function prints its output.

standard-input, 'standard—output*, *error-output®, *debug-io®, *trace-output*, and
query-io are initially bound to synonym strcams that pass all operations on to thc strcam that
is the valuc of *terminal-io*. Thus any operations performed on those strcams go to the
keyboard and screen.

PS:<LLMAN>STREAM.TEXT.37 8-JUN-84

1 isp Machine Manual 401 170 Strcams

-Most user programs should not change the value of *terminal-io*. A program which wants
(for example) to divert output to a file should do so by binding the value of *standard-output*:
that way querics on *query-io*, dcbugging on *debug-io* and crror messages sent to *error-
output*® can stll get to the user by going through *terminal-io*, which is usually what is
desired. '

22.3.2 Standard Input Stream Opefalions

:tyi &optional eof Operation on streams
The stream inputs onc character and returns it. For cxample, if the next character to be
read in by the stream is a ‘C’, then the form
(send s :tyi) :
returns the value of #/C (that is, 103 octal). Note that the :tyi operation does not ccho
the character in any fashion; it just does the input. The tyi function (sce page 452) docs
cchoing when reading from the terminal.

The optional eof argument to the :tyi operation tells the strecam what to do if it gets to
the end of the file. If the argument is not provided or is nil, the stream returns nil at
the end of file. Otherwise it signals a sys:end-of-file crror. Note that this is no¢ the
samc as the cof-option argument to read, tyi, and related functions.

The :tyi opcration on a binary input stream returns a non-negative number, not
necessarily to be interpreted as a character. : '

For some streams (such as windows), not all the input data are numbers. Some are lists,
called blips. 'The :tyi operation returns only numbers, If the next available input is not a
number, it is discarded, and so on until a number is reached (or end of filc is reached).

:any-ty1 &optional eof Operation on streams
Like :tyi but returns any kind of datum. Non-numbers are not discarded as they would
be by :tyi. This distinction only makes a difference on streams which can provide input
which is not composed of numbers; currently, only windows can do that.

ttyipeek &optional eqf Operation on streams
Pecks at the next character or byte from the stream without discarding it. The next :tyi
or :tyipeek operation will get the same character. :

eof is the same as in the :tyi operation: if nil, end of file rcturns nil; otherwise, it
-signals a sys:end-of-file error. -

suntyt char ' Operation on streams _
Unreads the character or byte char; that is to say, puts it back into the input stream so
that the next :tyi operation will read it again. For example,
(send s :untyi 120)
(send s :tyi) ==> 120
This operation is uscd by read, and any stream that supports :tyi must support :untyi as
well, ' ‘

PS:KLLMAN>STREAM.TEXT.37 ' 8-JUN-84

170 Streams 462 1 isp Machine Manual

You are only allowed to :untyi onc character before doing a tyi, and the character you
:untyi must be the last character read from the stream, ‘That is, :untyi can only be used
o back up one character, not to stufl arbitrary data into the stream. You also can’t
:untyi after you have pecked ahcad with :tyipeek since that does one :untyi itsclf. Some
streams implement :untyi by saving thc character, while others implement it by backing
up the pointer to a buffer.

sstring-1in eofopiion string &optional (start 0) end Operation on streams
Reads characters from the stream and stores them into the array siring. Many streams
can implement this far more cfficiently that repeated ctyi's. strr and end, if supplicd,
delimit the portion of string o be stored into. If eofoption is non-nil then a sys:end-of-
file crror is signaled if end of file is rcached on the strcam before the string has been
filled. If cofoption is nil, any number of characters before end of file is acceptable, cven
no characters.

If string has an array-leader, the fill pointer is adjusted to swart plus the number of
characters stored into string.

‘I'wo values are returned: the index of the next position in sring to be filled, and a flag
that is non-nil if end of file was rcached before smng was filled. Most callers do not
necd to look at cither of these values.

string may be any kind of array, not nccessarily a-string; this is uscful when reading
from a binary input stream.

:1ine-1n &optional leader Operation on streams
The stream should input one line from the input source, and return it as a string with the
carriage rewurn character stripped off. Contrary to what you might assume from its name,
this operation is not much like the readline function.

Many streams have a string that is used as a buffer for lines. If this string itsclf were
returned, there would be problems caused if the caller of the strcam attempted to save
the string away somewhere, because the contents of the string would change when the
next line was read in. In order to solve this problem, the string must be copied. On the
other hand, some streams don't rcuse the string, and it would be wasteful to copy it on
every :line-in operation. This problem is solved by using the Jleader argument to :line-in.
If leader is nil (the default), the stream docs not bother to copy the string and the caller
should not rely on the contents of that string after the next operation on the stream. If
leader is t, the strcam does make a copy. If Jeader is a fixnum then the strcam makes a
copy with an array leader leader clements long. (This is used by the editor, which
represents lines of buffers as strings with additional information in - their array-leaders, to
climinate an extra copy operation.)

If the strcam reaches end of file while reading in characters, ‘it returns the characters it
has read in as a string and rcturns a sccond value of t. The caller of the stream should
therefore arrange to reccive the sccond value, and check it to see whether the string
returned was a whole line or just the trailing characters after the last carriage return in the
input source.

PS:KLLMAN>STREAM.TEXT.37 8-JUN-84

Lisp Machine Manual : : 463 170 Streams

This operation should be implemented by all input streams whose data are characters.

:string-1ine-1in cofoption string &optional (start 0) end Operation on streams
Reads characters, -storing them in string, until siring is full or a Return character is read.
If input stops duc (o a Return, the Return itself is not put in the buffer.

Thus. this operation is ncarly the same as :string-in, except that :string-in always keeps
going until the buffer is full or untl end of file.

start and end, if supplied. delimit thc portion of string to be stored into. I eofoption is
non-nil then a sys:end-of-file crror is signaled if end of file is rcached on the stream
before the string has been filled. If cofoption is nil, any number of characters before end
of file is acceptable, cven no characters.

If string has an array-leader, the fill pointer is adjusted to swrr plus the number of
characters stored into string.

string may be any kind of array, not nccessarily a string; this is uscful when reading
from a binary input stream.

Three values are returned: »

(1) The index in string at which input stopped. This is the first index not stored in.

) 't if input stopped due to end of file.

(3) tif the linc is incomplete; that is, if a Return character did not terminate it.

iread-until-eof Operation on streams
Discards all data from the stream. until it is at end of file, or does anything else w1th the
same result,

:close &optional ignore Operation on streams

Relcases resources associated with the stream, when it is not going to be used any more.
On some kinds of streams, this may do nothing. On Chaosnet streams, it closes the
Chaosnet conncction, and on file streams, it closes the input file on the file server.

The argument is accepted for compatibility with :close on output streams.

22.3.3 Standard Output Stream Operations

:tyo char ' Operation on streams
The stream outputs the character char. For example, if s is bound to a stream, then the
form :

(send s :tyo #/B)
outputs a B to the stream. For binary output strcams, the argument is a non-negative
number rather than specifically a character.

PS:<ILMAN>STREAM.TEXT.37 8-JUN-84

170 Streams 404 Lisp Machine Manual

:fresh-1ine Operation on streams
Tells the stream: that it should position itself at the beginning of a new line. If the stream
is alrcady at the beginning of a fresh line it should do nothing: otherwise it should
output a carriage return. If the stream cannot tell whether it is at the beginning of a line,
it should always output a carriage return.

:string-out (srring 0) &optional start end - Operation on streams
Outputs the characters of string successively o stream. 'This operation is provided for two
reasons: first, it saves the writing of a loop which is used very often, and sccond, many
streams can perform this operation much more efliciently than the equivalent sequence of
tyo operations.

If start and end arc not supplied. the whole string is output. Otherwise a substring is
output: siart is the index of the first character to be output (defaulting to 0), and end is
one greater than the index of the last character to be output (defaulting to the length of
the string). Callers need not pass these arguments, but all streams that handle :string-out
must check for them and interpret them appropriately.

:1ine-out string &optional {srart 0) end Operation on streams
Outputs the characters of string successively to stream, then outputs a Return character.
start and end optionally specify a substring, as with :string-out. If the stream doesn’t
support :line-out itself, the default handler implements it by means of :tyo.

This operation should be implemented by all output strecams whose data are characters.

:close &optional mode Operation on streams
Closes the stream to make the output final if this is necessary. The strcam becomes closed
and no further output operations should be performed on it. However, it is all right to
:close a closed strcam. On many file server hosts, a file being written is not accessible to
be rcad until the output strcam is closed.

This opcration does nothing on strcams for which it is not meaningful.

The mode argument is normally not supplied. If it is :abort, we arc abnormally exiting
from the use of this stream. If the stream is outputting to a file, and has not been closed
aircady, the strcam’s newly-created file is deleted; it will be as if it was never opened in
the first place. Any previously existing file with the same name remains undisturbed.

:e0f Operation on streams
Indicates the cnd of data on an output stream. This is different from :close because
some devices allow multiple data files to be transmitted without closing. :close implies
:eof when the stream is an output strcam and the close mode is not :abort.

This operation docs nothing on strcams for which it is not meaningful.

PS:KILMAN>STREAM.TEXT.37 8-JUN-84

Lisp Machine Manual . 465 170 Streams

22.3.4 Asking Streams What They Can Do

All streams are supposed to support certain operations which cnable a program using the
strecam 10 ask which operations arc available.

:which-operations : Operation on streams
Returns a list of operations handled natively by the strcam. Certain operations not in the
list may work anyway, but slowly, so it is just as well if any programs that work with or
without them choose not to use them. '

:which-operations itsclf nced not be in the list.

:operation-handled-p operation , 4 Operation on streams
Returns t if operation is handled natively by the strcam: if operation is a member of the
:which-operations list, or is :which-operations. ’

ssend-1f-handles operation &rest arguments Operation on streams
Performs the operation operation, with the specified arguments, only if the stream can
handle it. If operation is handled, this is the samc as sending an operation message
directly, but if operation is not handled, using :send-if-handles avoids any crror.

If operation is handled, :send-if-handles rcturns whatever values the exccution of the
operation returns. I operation is not handled, :send-if-handles returns nil.

:direction Operation on streams
Returns :input, :output, or :bidirectional for a bidirectional stream.

There are a few kinds of streams, which cannot do cither input or output, for which the
«direction operation returns nil. For example, open with the :direction keyword specified
as nil returns a stream-like object which cannot do input or output but can handle certain
file inquiry operations such as :truename and :creation-date.

:characters , Operation on streams
Returns t if the data input or output on the stream represent characters, or nil if they are
just numbers (as for a stream reading a non-text file).

:element-type Operation on streams
Returns a type specified describing in principle the data input or output on the stream.
Refer to the function stream-element-type, below, which works using this operation. -

PS:<L.MAN>STREAM.TEXT.37 ‘ 8-JUN-84

~N

170 Streams 466 Lisp Machine Manual

These functions for inquiring about streams are defined by Common Lisp.

input-stream-p stream
t if stream handles input operations (at least, if it handles :tyi).

output-stream-p stream
t il stream handles output operations (at least, if it handles :tyo).

stream-element-type sircam
Returns a type specifier which describes. conceptually, the kind of data input from or
output to stream. ‘The value is always a subtype of integer (for a binary strcam) or a
subtype of character (for a character stream). If it is a subtype of integer, a Common
Lisp program should use read-byte (page 450) or. write-byte (page 450) for 170. If it is
a subtype of character, read-char (page 450) or write-char (page 456) should be used.

The value returned is not intended to be rigidly accurate. It describes the typical or
characteristic sort of data transferred by the strcam. but the stream may on occasion deal
with data that do not fit the type: also, not all objects of the type may be possible as
input or even make sense as outpul. For cxample, windows describe their clement type
as character cven though they may offer blips, which arc lists, as input on occasion. In
addition, strecams which say they provide characters really return integers if the :tyi
operation is used rather than the standard Common Lisp function read-char.,

22.3.5 Operations for Interactive Streams

The operations :listen, :tyi-no-hang, :rubout-handler and :beep arc intended for intcractive
strcams, which communicate with the user. :listen and :tyi-no-hang are supported in a trivial
fashion by other strcams, for compatibility.

:Tisten Operation on streams
On an interactive device, the :listen operation returns non-nil if there are any input
characters immediately available, or nil if there is no immediately available input. On a
non-interactive device, the operation always returns non-nil except at end of file.

The main purpose of :listen is to test whether the user has hit a key, perhaps trying to
stop a program in progress.

:tyi-no-hang &optional eof Operation on streams
Just like :tyi except that it returns nil rather than waiting if it would be necessary to wait
in order to get the character. This lets the caller check efficiently for input being available
and get the input if there is any.

ityi-no-hang is different from :listen because it reads a character.

Streams for which the question of whether input is available is not meaningful treat this
operation just like :tyi. So do Chaosnet file streams. Although in fact reading a character
from a file strcam may involve a delay, these delays are supposed to be insignificant, so
we pretend they do not exist.

PS:KLMAN>STREAM.TEXT.37 8-JUN-84

I isp Machine Manual - 467 170 Streams

:any-tyi-no-hang &optional eof ‘ Operation on streams
Like :tyi-no-hang but does not filter and discard input which is not numbers. |t is
therefore possible to see blips in the input stream. ‘The distinction matters only for input
from windows.

:rubout-handler options function &rest args Operation on streams
~This is supported by interactive bidirectional strcams, such as windows on the terminal,
and is described in its own section below (see section 22.5, page 500).

:beep &optional fype Operation on streams
This is supported by interactive streams. It attracts the attention of the user by making an
audible beep and/or flashing the screen. beep-type is a keyword sclecting among several
different beeping noiscs; sce beep (page 457) for a list of them.

22.3.6 Cursor Positioning Stream Operations

:read-cursorpos &optional (units :pixel) Operation on streams
This operation is supported by all windows and somc other streams.

It returns two valucs, the current x and y coordinates of the cursor. It takes one optional
argument, which is a symbol indicating in what units x and y should be; the symbols
:pixel and :character arc understood. :pixel means that the coordinates arc measured in
display pixels (bits), while :character means that the coordinates arc measured in
characters horizontally and lines vertically.

This operation and :increment-cursorpos are used by the format ~T request (sce page
487), which is why ~T doesn’t work on all strcams. Any stream that supports this
operation should support :increment-cursorpos as well.

Some streams return a meaningful value. for the horizontal position but always return zero
for the vertical position. This is sufficient for ~T to work.

:increment-cursorpos Operation on streams
x-increment y-increment &optional (units :pixel)
Moves the stream’s cursor left or down according to the specified increments, as if by
outputting an appropriate number of space or return.characters. x and y are like the
values of :read-cursorpos and wunits is the same as the wnits argument to :read-
- CUrsorpos. ' :

Any strcam which supports this operation should support :read-cursorpos as well, -but it
nced not support :set-cursorpos.

Moving the cursor with :increment-cursorpos differs from moving it to the same place
with :set-cursorpos in that this operation is thought of as doing output and :set-
cursorpos is not. For example, moving a window’s cursor down with :increment-
cursorpos when it is near the bottom to begin with will wrap around, possibly doing a
MORE, :set-cursorpos, by comparison, cannot move the cursor “down” if it is at
the bottom of the window; it can move the cursor explicitly to the top of the window,
but then no **MORE** will happen.

PS:KLLMAN>STREAM.TEXT.37 8-JUN-84

170 Streams 468 1 isp Machine Manual

Some streams, such as those created by with-output-to-string, cannot implement
arbitrary cursor motion, but do implement this operation.

:set-cursorpos x y &optional (units :pixel) Operation on streams
This operation is supported by the same strcams that support :read-cursorpos. It scts
the position of the cursor. x and y arc like the values of :read-cursorpos and units is
the same as the wnifs argument to :read-cursorpos.

:clear-screen ‘ Operation on streains
Irases the screen arca on which this stream displays. Non-window strcams don’t support
this operation.

There are many other special-purposc stream operations for graphics. They arc not
documented here, but in the window-system documentation. No claim that the above operations
arc the most uscful subset should be implied.

22.3.7 Operations for Efficient Pretty-Printing

grindef runs much more cfficiently on strcams that implement the :untyo-mark and :untyo
opcrations.

:untyo-mark . Operation on streams
This is used by the grinder (scc page 528) if the output strcam supports it. It takes no
arguments. The strcam should return some object that indicates how far output has gotten
up to in the strcam. ‘ ’

:untyo mark Operation on streams
This is used by the grinder (seec page 528) in conjunction with :untyo-mark. It takes one
argument, which is something rcturned by the :untyo-mark operation of the stream. The
stream should back up output to the point at which the object was returned.

22.3.8 Random Access File Operations

The following operations are implemented only by streams to random-access devices,
principally files.

:read-pointer Operation on streams
Returns the current position within the file, in characters (bytes in fixnum mode). For
text files on ASCII file servers, this is the number of Lisp Machine characters, not ASCII
characters. The numbers are different because of character-set translation,

:set-pointer new-pointer Operation on streams
Sets the rcading position within the file to new-pointer (bytes in fixnum mode). For text
files on ASCII file servers, this docs not do anything rcasonable unless new-pointer is 0,
because of character-set translation. Some file systems support this operation for input
streams only.

PS:{L.MAN>STREAM.TEXT.37 _ 8-JUN-84

Lisp Machine Manual 409 170 Streams

:rewind Operation on streams
This operation is obsolete. It is the same as set-pointer with argument zcro.

22.3.9 Bulfered Stream Operations

:clear-input ‘ Operation on streams
Discards any buffered input the stream may have. It does nothing on streams for which it
is not meaningful.

:clear-output Operation on streams
- Discards any buffcred output the strecam may have. It does nothing on strcams for which
it is not meaningful.

:force-output Operation on streams
This is for output strcams to buffered asynchronous devices, such as the Chaosnet.
force-output causcs any buffered output to be sent to the device. It does not wait for it
to complete; use :finish for that. If a strcam supports :force-output, then :tyo, :string-
out, and :line-out may have no visible cffect until a :force-output is done.

This opcration does nothing on strecams for which it is not meaningful.

:finish Operation on streams
This is for output strcams to buffered asynchronous devices, such as the Chaosnet. :finish
does a :force-output, then waits until the currently pending 170 operation has been
completed.

This operation does nothing on streams for which it is not meaningful.

The following operations are implemented only by buffered input streams. They allow
increased cfficiency by making the stream’s internal buffer available to the user.

:read-input-buffer &optional eof Operation on streams
Returns three values: a buffer array, the index in that array of the next input byte, and
the index in that array just past the last available input byte. These valucs are similar to
the string, start, end arguments taken by many functions and stream opcrations. If the
end of the file has been reached and no input bytes are available, this opcration returns
nil or signals an error, based on the eof argument, just like the :tyi opcration. After
rcading as many bytes from the array as you care to, you must use the :advance-input-
buffer opcration.

:get-input-buffer &optional eof Operation on streams
This is an obsolete operation similar to :read-input-buffer. The only difference is that
the third value is the number of significant elements in the buffer-array, rather than a
final index. If found in programs, it should be replaced with :read-input-buffer.

PS:KILMAN>STREAM.TEXT.37 - 8-JUN-84

170 Streams 470 Lisp Machine Manual

radvance-input-buffer &optional new-pointer Operation on streams
It newspointer is non-nil, it is the index in the buffer array of the next byte to be read.
If new-pointer is nil, the entire buffer has been used up.

22.3.10 Obtaining Streams to Use

Windows are one important class of streams. Each window can be used as a strcam. Output
is displayed on the window and input comes from the keyboard. A window is created using
make-instance on a window flavor. Simple programs use windows implicitly through *terminal-
io* and the other standard strcam variablcs,

Also important arc file streams, which are produced. by the function open (sec page 582).
These read or write the contents of a file.

Chaosner streams are made from Chaosnet conncctions. Data output to the strcam gocs out
over the network; data coming in over the network is available as input from the strcam. File
strcams that deal with Chaosnet file scrvers are very similar to Chaosnct strecams, but Chaosnet
streams can be used for many purposes other than file access.

String streams rcad or write the contents of a string. They arc made by with-output-to-
string or with-input-from-string (scc page 473), or by make-string-input-stream or make-
string-output-stream, below.

Editor buffer streams read or write the contents of an cditor buffer.

The null stream may be passed to a program that asks for a stream as an argument. It
returns immediate end of file if used for input and throws away any output. The null stream is
the symbol si:null-stream. This is to say, you do not call that function to get a stream or use
the symbol’s value as the stream; the symbol itself is the object that is the stream.

The cold-load stream is able to do 1/0 to the keyboard and screen without using the window
system. It is what is used by the crror handler, if you type Terminal Call, to handle a
background crror that the window system cannot decal with. It is called the cold-load stream
because it is what is used during system bootstrapping, before the: window system has been
loaded.

si:null-stream operation &rest arguments
This function is the null stream. Like any strcam, it supports various opcrations.- Output
operations arc ignored and input operations report end of file immediately, with no data.
Usage cxample: '
(let ((+*standard-output* ’si:null-stream))
(function-whose-output-I-dont-want))

si:cold-Toad-stream Constant
The one and only cold-load strcam. Usage example:
(let ((*query-io* si:cold-load-stream))
(yes-or-no-p "Clear all window system locks? "))

PS:KL.MAN>STREAM.TEXT.37 8-JUN-84

I.isp Machine Manual 471 170 Streams

with-open-stream (variable expression) body... _ Macro
body is exccuted with yariable bound to the value of expression, which ought to be a
strecam. On cxit, whether normal or by throwing, a :close message with argument :abort
is sent to the stream.

This is a generalization of with-open-file, which is cquivalent to using with-open-
stream with a call to open as the expression.

with-open-stream-case (variuble cxpression) clauses... Macro
like with-open-stream as far as opcning and closing the stream are concerned, but
instead of a simple body, it has clauses like those of a condition-case that say what to
do if expression does or does not get an crror. Sce with-open-file-case, page 580.

make-synonym-stream symbol-or-locative

make-syn-stream synibol-orlocative
Creates and returns a synonmym stream (‘syn’ for short). Any operations sent to this strcam
are redirected to the strcam that is the value of the argument (if it is a symbol) or the
contents of it (if it is a locative).

A synonym stream is actually an uninterned symbol whose function defnition is forwarded
to the function cell of the argument or to the contents of the argument as appropriate. If
the argument is a symbol, the synonym strcam’s print-name is symbo/-syn-stream;
otherwise the name is just syn-stream. Once a synonym strcam is mad¢ for a symbol, it
is recorded, and the same one is handed out again if there is another request for it

- The two names for this function arc synonyms too.

make-concatenated-stream &rest sireams
Returns an input ‘strcam which will read its input from the first of streams until that
reaches its cof, then rcad input from the second of streams, and so on until the last of
streams has reached end of file.

make-two-way-stream input-stream output-siream
Returns a bidirectional strcam which passes input operations to input-stream and passes
output- operations to output-stream. 'This works by attempting to recognize all standard
input operations; anything not recognized is passed to output-stream.

make-echo-stream input-stream oulput-stream
Likc make-two-way-stream except that cach input charactcr read via input-stream is
output to output-stream before it is rcturned to the caller.

make-broadcast-stream &rest streams
Returns a stream that only works in the output direction. Any output sent to this stream
is forwarded to all of the streams given. The :which-operations is the intersection of the
:which-operations of all of the streams. The value(s) returned by a stream opcration are
the values returned by the last stream in streams.

PS:KILMAN>STREAM.TEXT.37 8-JUN-84

170 Streams 472 L isp Machine Manual

zwei:1nterval-stream inerval-or-fiom-bp &optional fo-bp in-order-p - hack-fonts
Returns a bidirectional stream that reads or writes all or part of an cditor buffer. Note
that editor bufler streams can also be obtained from open by using a pathname whose
host is ED, ED-BUFFER or ED-FILE (scc section 24.7.6, page 575).

The first three arguments specify the buffer or portion to be read or written. Fither the
first argument is an interval (a buffer is one kind of interval), and all the text of that
interval is read or written, or the first two arguments are two buffer pointers delimiting
the range to be read or written. ‘The third argument is used only in the latter casc; if
non-nil. it tells the function to assume that the second buffer pointer comes later in the
buffer than the first and not to take the time to verify the assumption.

The stream has only onc pointer inside it, used -for both input and output. As you do
input, the pointer advances through the text. When you do output, it is inscrted in the
buffer at the place where the pointer has reached. 'The pointer starts at the beginning of
the specified range.

hack-fonts tells what to do about fonts. Its possible valucs are

t The character ¢ is recognized as special when you output to the strecam;
scquences such as e2 arc interpreted as font-changes. They do not get
inserted into the buffer; instead, they change the font in which following
output will be inserted. On input, font change sequences are included to
indicate faithfully what was in the buffer. '

‘tyo You are expected to rcad and write 16-bit characters containing font
numbers.
nil All output is inserted in font zero and font information is discarded in the

input you receive. This is the best mode to use if you are reading or
otherwise parsing the contents of an editor buffer.

sys:with-help-stream (stream options...) body... Macro
Executes the body with the variable sfream bound to a suitable stream for printing a large
help message. 1f *standard-output* is a window, then stream is also a window: a
temporary window which fills the screen. Otherwise, stream is just the same as
standard-output.

The purpose of this is to spare the user the need to read a large help printout in a small
window, or have his data overwritten by it permanently. This is the mechanism used if
you type the Control-Help key while in the rubout handler.

options is a list of alternating keywords and values.

‘label The value (which is evaluated) is used as the label of the temporary
window, if onc is used.

:width The value, which is not cvaluated, is a symbol. While body is exccuted,
this symbol is bound to the width, in characters, available for the
message.

PS:KLLMAN>STREAM.TEX'T.37 8-JUN-84

Lisp Machine Manual 473 » 170 Streams

:height The value is a symbol, like the value after :width, and it is bound to the
height in fines of the arca available for the help message.

'superior ‘The value, which is cvaluated. specifies the original strecam to use in
deciding where to print the help message. ‘The default is *standard-
output*. :

2.3.11 String 170 Streams

The functions and special forms in this section allow you to create 170 streams that input
from or output to the contents of a string. ‘

make-string-input-stream string &optional (start0) end
Returns a strcam which can be used to read the contents of string (or the portion of it
from index start 10 index end) as input. End of file occurs on reading past position end
or the end of string.

make-string-output-stream &optional string
Returns -an output stream which will accumulate all output in a string. If string is non-nil,
output is added to it with string-nconc (page 216). Otherwise, a new string is created
and used to hold the output.

get-output-stream-string siring-output-stream
Returns the string of output accumulated so far by a strcam which was made by make-
string-output-stream. The accumulated output is cleared out, so it will not be obtained
again if get-output-stream-string is called another time on the same stream.

with-input-from-string (var swing &kcy start end index) body... Macro
The form
(with-input-from-string (var string)
body)

evaluates the forms in body with the variable var bound to a stream which reads
characters from the string which is the value of the form string. The value of the
construct is the value of the last form in its body.

If the start and end arguments are specified, they should be forms. They are evaluated at
run time to produce the indices starting and ending the portion of string to be read.

If the index argument is specified, it should be somecthing setf can store in. When body
is finished, the index in the string at which reading stopped is stored there. This is the
index of the first character not read. If the entire string was read, it is the length of the
string. The value of index is not updated until with-input-from-string is cxited, so you
can’t usc its value within the body to sce how far the reading has gotten. Example:
(with-input-from-string
(foo "This is a test." :start (+ 2 2) :end 8 :index bar)
(readline))

returns " is " and scts bar to cight.

PS:KILLMAN>STREAM.TEXT.37 . _ 8-JUN-84

170 Streams 474 Lisp Machine Manual

An older calling sequence which used positional rather than keyword arguments is still
aceepted:
(with-input-from-string (var siring index end)
body)

The functions read-from-string and cli:read-from-string arc convenient special cases of
what with-input-from-string can do. Sce page 533.

with-output-to-string (var [string [index]]) body... Macro
This special form provides a variety of ways to send output to a string through an 170
stream,

(with-output-to-string (var)
body) :
cvaluates the forms in body with var bound to a strcam which saves the characters output
to it in a string. The value of the special form is the string.

(with-output-to-string (var string)
body)
appends its output to the string which is the valuc of the form swring. (This is like the
string-nconc function; sce page 216.) The value returnced is the value of the last form in
the body, rather than the string. Multiple values are not returned. string must have a fill
pointer. 1If string is too small to contain all the output, adjust-array-size is used to

make it bigger.

(with-output-to-string (var string index)
body)

is similar to the above cxcept that index is a variable or setf-able reference which contains
the index of the next character to be stored into. It must be initialized before the with-
output-to-string and it is updated upon normal exit. The value of index is not updated
until with-output-to-string returns, so you can’t use its value within the body to sce
how far the writing has gotten. The presence of index means that string is not rcqunred
to have a fill-pointer; if there is one, it is updated on exit.

Another way of doing output to a string is to use the format facility (sce page 483).

22.3.12 Implementing Streams
There are two ways to implement a strcam: using defun or using flavors.

Using flavors is best when you can take advantage of the predefined strcam mixins, including
those which perform buffering, or when you wish to define several similar kinds of streams that
can inherit methods from each other.

defun (or defselect, which is a minor variation of the technique) may have an advantage if
you arc dividing opcrations into broad groups and handling them by passing them off to one or
morc other strcams. In this case, the automatic operation decoding provided by flavors may get
in the way. A number of strcams in the system are implemented using defun or defselect for
historical reasons. It isn’t yct clear whether there is any reason not to convert most of them to

PS:K<LLMAN>STREAM.TEX'I'37 8-JUN-84

Lisp Machine Manual 475 170 Streams

use flavors.

If you use defun. you can use the stream default handler to implement some of the standard
operations for you in a default manner. 1f you use flavors, there are predefined mixins to do this
for you.

A few streams are individual objects, one of a kind. For example, there is only onc null
stream. and no need for more, since two null streams would behave identically. But most streams
arc clements of a general class. For example, there can be many file streams for different files,
cven though all behave the same way. There can also be multiple streams reading from different
points in the same file.

If you implement a class of strcams with defun, then the actual strcams must be closures of
the function you define, made with closure.

If you usc flavors to implement the strcams, having a class of similar strcams comes naturally:
cach instance of the flavor is a strcam, and the instance variables distinguish one strcam of the
class from another.

22.3.13 Implementing Streams with Flavors

To definc a stream using flavors, define a flavor which incorporates the appropriate predefined
strecam flavor, and then redefine those operations which are peculiar to your own type of stream.

Flavors for defining unbuffered streams:

si:stream Flavor
This flavor provides default definitions for a few standard operations such as :direction
and :characters. Usually you do not have to mention this explicitly; instcad you use the
higher level flavors below, which are built on this one.

si:input-stream Flavor
This flavor provides default dcfinitions of all the mandatory input operations cxcept :tyi
and :untyi, in terms of those two. You can make a simple non-character input stream by
defining a flavor incorporating this onc and giving it methods for :tyi and :untyi.

si:output-stream Flavor
This flavor provides dcfault definitions of all the mandatory output operations except :tyo,
in terms of :tyo. All you nced to do to define a simple unbuffered non-character output
stream is to definc a flavor incorporating this one and give it a method for the :tyo
operation.

si: b1d1rect1ona1 stream Flavor
This is a combination of si: mput stream and si:output-stream. It dcfincs :direction to
return :bidirectional. To define a simple unbuffered non-character bidirectional stream,
build on this flavor and define :tyi, :untyi and :tyo.

PS:<L.MAN>STREAM.TEXT.37 8-JUN-84

170 Streams ‘ ‘ 476 ~lisp '\‘i<‘hinc Manual

The unbuffered streams implement operations such as :string-out and :string-in by repeated
usc of :tyo or :tyi.

IFor greater cfliciency. i the stream’s data is available in blocks, it is better (o define a
buffered stream. You start with the predefined buffered stream flavors. which define tyi or tyo
themselves and manage the buflers for you. You must provide other operations that the system
uses o obtain the next input buffer or o write or discard an output buffer.

Flavors for defining buflered streans:

si:buffered-input-stream Flavor
This flavor is the basis for a non-character buffered input stream. It defines :tyi as well as
all the other standard input operations, but you must define the two operations :next-
input-buffer and :discard-input-buffer. which the buffer management routines use.

:next-input-buffer Operation on sibuffered-input-stream
In a buffered input stream. this operation is used as a subroutine of the standard input
operations, such as :tyi, 10 get the next bufferful of input data. It should return three
values: an array containing the data, a starting index in the array, and an ecnding index.
For cxample, in a Chaosnet strcam, this operation would get the next packet of input
data and return pointers delimiting the actual data in the packet.

:discard-input-buffer bufferarray Operation on si:buffered-input-stream
In a buffered input stream, this operation is used as a subroutine of the standard input
operations such as :tyi. It says that the buffer management routines have used or thrown
away all the input in a buffer, and the buffer is no longer needed.

In a Chaosnet strcam, this operation would return the packet buffer to the pool of free
packets.

si:buffered-output-stream Flavor
This flavor is the basis for a non-character buffered output stream. It defines ityo as well
as all the other standard output operations, but you must define the operations :new-
output-buffer. :send-output-buffer and :discard-output-buffer, which the buffer
management routines use.

tnew-output-buffer Operation on si:buffered-output-stream
In a buffered output stream, this operation is used as a subroutine of the standard output
operations, such as :tyo, to get an cmpty buffer for storing morc output data. How the
buffer is obtained depends on the kind of stream, but in any casc this opcration should
return an array (the buffer). a starting index, and an ending index. The two indices
dclimit the part of the array that is to be used as a buffer.

For cxample, a Chaosnet stream would get a packet from the free pool and return indices
delimiting the part of the packet array which can hold data bytes.

PS:KILMAN>STREAM.TEXT.37 8-JUN-84

Lisp Machine Manual 477 170 Streams

:send-output-buffer ‘ Operation on si:buttered-output -stream
buffer-array ending-index
In a buffered output stream, this operation is used as a subroutine of the standard output
operations, such as :tyo, o send the data in a buffer that has been completely or partially
filled.

ending-index is the first index in the buffer that has not actually been stored. This may
“not be the same as the ending index that was returned by the :new-output-buffer
operation that was used to obtain this buffer; if a :force-output is being handled,
ending-index indicates how much of the buffer is currently full.

The method for this operation should process the buffer’s data and, if necessary, return
the buffer to a free pool.

:discard-output-buffer buffer-array Opceration on si:buffered -output-stream
In a buffered output strecam, this operation is used as a subroutine of the standard output
operations, such as :clear-output, to free an output buffer and say that the data in it
should be ignored.

It should simply return buffer-array to a free pool, if appropriate.

Some buffered output streams simply have onc buffer array which they usc over and over.
For such strecams. :new-output-buffer.can simply rcturn that particular array cach time; :send-
output-buffer and :discard-output-buffer do not have to do anything about rcturning the buffer
to a free pool. In fact, :discard-output-buffer can probably do nothing.

si:buffered-stream : Flavor
This is a combination of si:buffered-input-stream and si:buffered-output-stream, used
to make a buffered bidirectional strcam. The input and output buffering are completely
independent of cach other. You must define all five of the low level operations: :new-
output-buffer, :send-output-buffer and :discard-output-buffer for output, and :next-
input-buffer and :discard-input-buffer for input.)

The data in most streams are characters. Character strcams should support cither :line-in or
sline-out in addition to the other standard operations.

s1:yunbuffered-11ne-1nput—stream Flavor
This flavor is the basis for unbuffered character input streams. You nced only define :tyi

and :untyi.

si:1ine-output-stream-mixin ' Flavor
To make an unbuffered character: output stream, mix this flavor into the onc you define,
together with si:output-stream. In addition, you must define :tyo, as for unbuffered
non-character streams.

PS:<I.MAN>STREAM.TEXT.37 8-JUN-84

170 Streams 478 Lisp Machine Manual -

si:buffered-input-character-stream Ilavor
This is used just like sicbuffered-input-stream, but it also provides the :line-in operation
and makes :characters return t.

si:buffered-output-character-stream Flavor
This is used just like sibuffered-output-stream, but it also provides the :line-out
operation and makes :characters return t.

si:buffered-character-stream Flavor
This is used just like sibuffered-stream, but it also provides the :line-in and :line-out
operations and makes :characters rcturn t.

To make an unbuffered random-access stream, you need only define the :read-pointer and
:set-pointer operations as appropriate. Since you provide the :tyi or :tyo handler yoursclf, the
system cannot help you.

In a buffered random-access strcam, the random access operations must interact with the
buffer management. The system provides for this.

si:input-pointer-remembering-mixin Flavor
Incorporate this into a buffered input strcam to support random access. This flavor defines
the :read-pointer and :set-pointer opcrations. If you wish :set-pointer to work, you
must provide a definition for the :set-buffer-pointer operation. You need not do so if
you wish to support only :read-pointer.

:set-buffer-pointer newpoimer Operation on si:input-pointer-remembering-mixin
You must define this operation if you use si:input-pointer-remembering-mixin and want
the :set-pointer operation to work.

This operation should arrange for the next :next-input-buffer operation to provide a
bufferful of data that includes the specificd character or byte position somcwhere inside it.

The value returned should be the file pointer corresponding to the first character or byte
of that next bufferful.

si:output-pointer-remembering-mixin Flavor
Incorporate this into a buffered output strcam to support random access. This mixin
defines the :read-pointer and :set-pointer operations. If you wish :set-pointer to work,
you must provide definitions for the :set-buffer-pointer and :get-old-data operations.
You need not do so if you wish to support only :read-pointer.

:sek-buffer-pointer Operation on si:output-pointer-remembering -mixin
new-pointer '
This is the same as in si:input-pointer-remembering-mixin.

PSKL.MAN>STREAM.TEXT.37 8-JUN-84

I isp Machine Manual 479 170 Streams

:get-old-data Operation on si:output-pointer-remembering -mixin
buffer-array lower-output-limit
The buffer management routines perform this operation when you do a :set-pointer that
is outside the range of pointers that fit in the current output buffer. ‘they first send the
old buffer, then do :set-buffer-pointer as described above to say where in the file the
next output bufter should come, then do :new-output-buffer to get the new buffer.
Then the :get-old-data operation is performed.

It should fill current buffer (buffer-array) with the old contents of the file at the
corresponding addresses, so that when the buffer is cventually written, any bytes skipped
over by random access will retain their old values,

The instance variable si:stream-output-lower-limit is the starting index in the buffer of
the part that is supposed to be used for output. si:stream-output-limit is the ending
index. The instance variable si:output-pointer-base is the file pointer corresponding to
the starting index in the buffer.

si:file-stream-mixin Flavor
Incorporate this mixin together with siistream to make a file probe stream, which cannot
do input or output but rccords the answers to an enquiry about a file. You should
specify the init option :pathname when you instantiate the flavor,

You must provide definitions for the :plist and :truename opcrations; in terms of them,
this mixin defines the operations :get, :creation-date, and :info.

si:input-file-stream-mixin Flavor
Incorporate this mixin into input strcams that are used to read files. You should specify
the file's pathname with the :pathname init option when you instantiate the flavor.

In addition to the services and rcquirements of si:file-stream-mixin, this mixin takes care
of mentioning the file in the who-line. It also includes si:input-pointer-remembering-
mixin so that the :read-pointer operation, at lcast, will be available.

si:output-file-stream-mixin ' -Flavor
This is the analogue of si:input-file-stream-mixin for output streams.

22.3.14 Implementing Streams Without Flavors

You do not nced to use flavors to implement a stream. Any object that can be used as a
function, and deccodes its first argument appropriately as an opcration name, can serve as a
strcam. Although in practice using flavors is as casy as any other way, it is educational to see
how to define strcams “from scratch”.

We could begin to define a simple output stream, which accepts characters and conses them
onto a list, as follows:

PS:KL.MAN>STREAM.TEXT.37 | ' 8-JUN-84

170 Streams 480 1 isp Machine Manual

(defvar the-list nil)

(defun list-output-stream (op &optional argl &rest rest)
(ecase op
(:tyo ‘ ,
(setq the-Tist (cons argl the-list)))
(:which-operations '(:tyo))))

This is an output strcam, and so it supports the :tyo operation. All strcams must support
:which-operations.

The lambda-list for a stream defined with a defun must always have onc required parameter
(op). onc optional parameter (argl), and a rest parameter (resr).

This definition is not satisfactory. however. It handles :tyo properly, but it does not handle
:string-out, :direction, :send-if-handles, and other standard operations.

The function stream-default-handler cxists to sparc us the trouble of defining all those
operations from scratch in simple streams like this. By adding onc additional clause, we let the
default handler take care of all other operations, if it can.

(defun list-output-stream (op &optional argl &rest rest)
(selectq op .
(:tyo
(setq the-1ist (cons argl the-Tlist)))
(:which-operations ’(:tyo))
(otherwise
(stream-default-handler #'list-output-stream
op argl rest))))

If the operation is not onc that the stream understands (c.g. :string-out), it calls stream-
default-handler. Note how the rest argument is passed to it. This is why the argument list must
look the way it does. stream-default-handler can be thought of as a restricted analogue of
flavor inheritance. '

If we want to have only onc strcam of this sort, the symbol list-output-stream can be used
as the strecam. The data output to it will appear in the global value of the-list. One more step
is required, though:

(defprop list-output-stream t si:io-stream-p)
This tells certain functions including read to trcat the symbol list-output-stream as a strcam
rather than as an cnd of file option.

If we wish to be able to create any number of list output streams, each accumulating its own
list, we must use closures:

PS:KI.MAN>STREAM.TEXT.37 ' 8-JUN-84

I isp Machine Manual 481 170 Streams

(defvar the-stream nil :

"Inside a list output stream, holds the stream itself.")
(defvar the-list nil

"Inside a 1ist output stream,
holds the list of characters being accumulated.”)

(defun list-output-stream (op &optional argl &rest rest)
(selectq op
(:tyo
(push argl the-list)))
(:withdrawal (progl the-list (setq the-list nil)))
(:which-operations '(:tyo :withdrawal))
(otherwise '
(stream-default-handler the-stream
op argl rest))))

(defun make-list-output-stream ()
(let ((the-stream the-list))
(setq the-stream
(closure ’(the-stream the-list)
"list-output-stream))))

We have added a new operation :withdrawal that can be used to find out what data has been
accumulated by a strcam. This is necessary because we can no longer simply look at or set the
global value of the-list; that is not the same as the value closed into the stream.

In addition, we have a new variable the-stream which allows the function list-output-
stream to know which strecam it is serving at any time. This variable is passed to stream-
default-handler so that when it simulates :string-out by means of :tyo, it can do the :tyo's to
the same strcam that the :string-out was done to.

The same stream could be defined with defselect instead of defun. It actually makes only a
small difference. The defun for list-output-stream could be replaced with this code:

(defselect (list-output-stream Tist-output-d-h)
(:tyo (argl)
(push argl the-list))
(:withdrawal () ,
(progl the-list (setg the-list nil))))

(defun list-output-d-h (op &optional argl &rest rest)
(stream-default-handler the-stream op argl rest))

defselect takes care of decoding the operations, provides a definition for :which-operaiions,
and allows you to write a scparatc lambda list for cach operation.

By comparison, the same stream defined using flavors looks like this:

PS:<I.MAN>STREAM.TEXT.37 8-JUN-84

170 Streams ’ 482 I isp Machine Manual

(defflavor list-output-stream ((the-list nil))
(si:line-output-stream-mixin si:output-stream))

(defmethod (1ist-output-stream :tyo) (character)
(push character the-1list))

(defmethod (list-outut-stream :withdrawal) ()
(progl the-list (setq the-1list nil)))

(defun make-1list-output-stream ()
(make-instance 'list-output-stream))

Here is a simple input strecam, which generates successive characters of a list.

(defvar the-1list) ;Put your input list here
(defvar the-stream)
(defvar untyied-char nil)

(defun list-input-stream {(op &optional argl &rest rest)
(selectq op
(:tyi
(cond ({(not (null untyied-char))
(progl untyied-char (setq untyied-char nil)))
((null the-1list)
(and argl (error argl)))
(t (pop the-list))))
{:untyi
(setq untyied-char argl))
(:which-operations ’(:tyi :untyi))
(otherwise
(stream-default-handler the-stream
op argl rest))))

(defun make-list-input-stream (the-1list)
(let (the-stream untyied-char)
(setq the-stream
(closure '(the-list the-stream untyied-char)
'list-input-stream))))

The important things to note are that :untyi must be supported, and that the strcam must
check for having reached the end of the information and do the right thing with the argument to
the :tyi operation.

stream-default-handler stiream op argl rest
Trics to handle the op operation on sfream, given arguments of arg/ and the clements of
rest. The exact action taken for cach of the defined operations is explained with the
documentation on that operation, above.

PS:KLL.MAN>STREAM.TEXT.37 8-JUN-84

Lisp Machine Manual 4813 Forniatted Output

22.4 Formatted Oufput

There are two ways of doing general formatted output. One is the function format. The
other is the output subsysiem. format uses a control string written in a special format specifier
language to control the output format. format:output provides Lisp functions to do output in
particular formats. '

I‘or simple tasks in which only the most basic format specifiers are necded, format is casy (o
use and has the advantage of brevity. For more complicated tasks, the format specifier language
becomes obscure and hard o rcad. ‘Then format:output becomes advantageous because it works
with ordinary Lisp control constructs.

22.4.1 The Format Function

format destination control-string &rcst args
Produces formatted output. format outputs the characters of control-string, except that a
tilde (*~") introduces a directive. 'The character after the tilde, possibly preceded by prefix
parameters and modificrs, specifies what kind of formatting is desired. Most dircctives use
one or more clements of args to create their output; the typical directive puts the next
clement of args into the output, formatted in some special way.

The output is sent to destination. 1f destination is nil, a string is created which contains
the output; this string is rcturned as the value of the call to format. In all other cascs
format returns no interesting value (gencerally it returns nil). If destination is a strcam, the
output is sent to it. If destination is t, the output is sent to *standard-output*. If
destination is a string with an array-leader, such as would be acceptable to string-nconc
(sce page 216), the output is added to the end of that string.

A directive consists of a tilde, optional prefix parameters scparated by commas, optional colon
(‘) and atsign (‘@’) modificrs, and a single character indicating what kind of directive this is.
'The alphabetic case of the character is ignored. The prefix parameters are generally decimal
numbers. Examples of control strings:

"~S" ; This is an S directive with no parameters.
"~3,4:0s" ; Thisis an S directive with two parameters, 3 and 4,
: and both the colon and atsign flags.
"~ 48" ; The first prefix parameter is omitted and takes
; on its default value, while the second is 4.

format includes some extremely complicated and specialized features. It is not necessary to
understand all or even most of its features to usc format cfficiently. The beginner should skip
over anything in the following documentation that is not immediately useful or clear. The more
sophisticated featurcs are there for the convenience of programs with complicated formatting
requirements.

Somectimes a prefix parameter is used to specify a character, for instance the padding character
in a right- or left-justifying operation. In this case a single quote ("' ") followed by the desired
character may be used as a prefix parameter, so that you don’t have to know the decimal numeric

PS:KI.MAN>FD-FIO.TEXT.24 8-JUN-84

Formatted Output 484 Lisp Machine Manual

values of . characters in the character set. For example, you can use "~5,0d" instcad of
"~5,48d" to print a decimal number in five columns with leading zeros.

In place of a prefix parameter to a directive, you can put the letter V. which takes an
argument from args as a parameter to the directive. Normally this should be a number but it
docsn’t really have to be. This feature allows variable column-widths and the like. Also, you can
use the character # in place of a parameter; it represents the number of arguments remaining to
be processed. -

Here are some relatively simple examples to give you the general flavor of how format is
uscd.

(format nil "foo") => "foo"
(setq x 5) ,
(format nil "The answer is ~D." x) => "The answer is 5."
(format nil "The answer is ~3D." x) => "The answer is 5."
(setq y "elephant")
(format nil "Look at the ~A!" y) => "Look at the elephant!"
(format nil "The character ~:@C is strange." #\meta-beta)
=> "The character Meta-p (Greek-b) is strange."
(setq n 3)
(format nil "~D item~:P found." n) => "3 items found."
(format nil "~R dog~:[s are~; is~] here." n (= n 1))
=> "three dogs are here."
(format nil "~R dog~:*~[~1; is~:;s are~] here." n)
=> "three dogs are here."
(format nil "Here ~[~1;is~:;are~] ~:*~R pupp~:@P." n)
=> "Here are three puppies."

The dircctives will now be described. arg will be used to refer to the next argument from
args. : :

~A arg, any Lisp object, is printed without cscaping (as by princ). ~:A prints () if arg is
nil; this is useful when printing something that is always supposed to be a list. ~nA
inserts spaces on the right, if necessary, to make the column width at least n. The @
modificr causes the spaces to be inserted on the left rather than the right.
~mincol.colinc,minpad,padcharA is the full form of ~A, which allows claborate control
of the padding. The string is padded on the right with at least minpad copies of
padchar; padding characters are then inserted colinc characters at a time until the total
width is at Icast mincol. The defaults are O for mincol and minpad, 1 for colinc, and
space for padchar.

~8 This is just like ~A, but arg is printed with escaping (as by prin1 rather than princ).

~D arg, a number, is printed in base ten. Unlike print, ~D never puts a decimal point
after the number. ~nD uses a column width of n; spaces arc inserted on the left if
the number requires less than n columns for its digits and sign. If the number doesn't
fit in n columns, additional columns are used as nceded. ~n,mD uscs m as the pad
character instead of space. If arg is not a number, it is printed in ~A format and
decimal base. The @ modifier causes the number's sign to bc printed always; the
default is only to print it if the number is negative. The : modifier causes commas to

PS:KLMANMED-FIO.TEXT.24 8-JUN-84

[isp Machine Manual 485 Formatted Output

be printed between groups of three digits: (he third prefix parameter may be used o
change the character used as the comma. ‘Thus the most general form of ~D is
~mincol ,padchar,commacharD.

~0 This is just like ~D but prints in octal instcad of decimal.

~X This is just like ~D but prints in hex instead of decimal. Note that ~X used to have
a different meaning: print one or more spaces. Uses of ~X intended to have this
meaning should be replaced with ~@T.

~B This is just like ~D but pi'inls in binary instead of decimal.

~w,d,k,ovflpad F -
arg is printed in nonexponential floating point format, as in *10.5. (If the magnitude
of arg is very large or very small, it is printed in exponential notation.) The
parameters control the details of the formatting.

w is the total fiecld width desired. If omitted, this is not constrained.

d is the number of digits to print after the decimal point. If 4 is omitted, it is -
chosen to do a good job based on w (if specified) and the value of arg.

k is a scale factor. arg is multiplicd by (exp 10. k) before it is printed.

ovfl is a character to use for overflow. If arg is too big to print and fit the
constraints of ficld width, ectc., and ovfl is specificd then the whole field is filled
with ovfl. If ovfl is not specified, arg is printed using cxtra width as needed.

pad is a character to usc for padding on the left, when the ficld width is specified
and not that many characters are really needed.

If the @ modifier is used, a sign is p'rimed even if arg is positive,

Rational numbers are converted to floats and then printed. Anything eise is printed
with ~wD format.

~w,d, e, k,ovfl,pad,expt E
arg is printed in exponential notation, as in ‘.105e+2’. The parameters control the
details of the formatting.

w is the total field width desired. If omitted, this is not constrained.

dand k

control the number of mantissa digits and their arrangement around the decimal
point. d+1 digits arc printed. If k is positive, all of them arc significant
digits, and the decimal point is printed after the first & of them. If k is zera
or ncgative, the first |[k|+1 of the d+1 digits arc leading zeros, and the
decimal point follows the first zero. (This zero can be omitted if necessary to
fit the number in w characters.) So the number of significant figures is less than
d if k is ncgative,

The exponent printed always compensates for any powers of ten introduced
according to &, so 10.5 might be printed as 0.105e + 2 or as 1050.0e-2.

PS:KLLMAN>FD-FIO.TEXT.24 8-JUN-84

FFormatted Quiput 486 Lisp Machine Manual

If d is omitted, the system chooses enough significant figures o represent the
float accurately. If & is omitted, the default is one.

e is the number of digits to use for the exponent. If it is not specified, however
many digits arc needed are used.

ovfl is the overflow character. If the exponent doesn’t fit in ¢ digits or the entire
number does not fit in w characters, then if oyl is specified, the ficld of w
characters is filled with ovfl. Otherwise more characters arc used as needed.

pad is a character to use for padding on the left, when the field width is specified
and not that many characters arc really needed.

expt is a character to use to separate the mantissa from the exponent. The default is
e or s or f. whichever would be used in printing the number normally.

If the @ modifier is used, a sign is printed cven if arg is positive.

~w,d,e,.k,ovfl pad,expt G

Prints a floating point number arg in cither ~F or ~E format. Fixed format is used if
the absolute valuc of arg is less than (expt 10.), and cxponential format otherwise.
(If d is not specified, it defaults based on the value of arg.) If fixed format is used,
e+2 blanks arc printed at the end (where the exponent and its scparator and sign
would go, in exponential format). These count against the width w if that is specified.
Four blanks arc used if e is omitted. The diminished width available, d, ovfl and pad
arc used as specified. The scale factor used in fixed format is always zero, not k.

If exponential format needs to be used, all the paramcters arc passed to the ~E
dircctive to print thc number.

Rational numbers arc converted to floats and then printed. Anything else is printed
with ~wD format.

~$ ~rdig,ldig field padchar$ prints arg, a float, with cxactly rdig digits after the decimal
point. The default for rdig is 2, which is convenient for printing amounts of money.
At least /dig digits arc printed preceding the decimal point; leading zcros are printed if
there would be fewer than /dig. The default for /dig is 1. The number is right
justificd in a ficld field columns long, padded out with padchar. The colon modifier
means that the sign character is to be at the beginning of the field, beforc the
padding, rather than just to the left of the number. The atsign modifier says that the
sign character should always be output.

If arg is not a number, or is unrcasonably large, it is printed in ~field,,,padchar@A
format; i.c. it is princ’ed right-justified in the specificd field width.

~C (character arg) is put in the output. arg is treated as a keyboard character (sce page
206), thus it may contain cxtra control-bits. Thesc arc printed first by representing
them with abbreviated prefixes: ‘C-’ for Control, ‘M- for Meta, ‘H-' for Hyper, and
‘S-" for Super.

With the colon flag (~:C), the names of the control bits arc spelled out (c.g. ‘Control-~
Meta-F’) and non-printing characters are represented by their names (c.g. ‘Return’)
rather than being output as themsclves. The printing characters Space and Altmode are

PSIKI.MAN>FD-FIO.TEXT.24 8-JUN-84

[isp Machine Manual 487 FFormatted Output

~%

~<CR>

also represented as their names, but all others are printed directly.

With both colon and atsign (~:@C), the colon-only format is printed. and then if the
character requires the Top or Greek (Front) shift key(s) to type it, this fact is
mentioned (e.g. 'Y (Top-U)’). This is the format used for telling the user about a key
he is expected to type, for instance in prompt messages.

For all three of these formats, if the character is a mouse character, it is printed as

Mouse-, the name of the button, ‘-, and the number of clicks.

With just an atsign (~@C), the character is printed in such a way that the Lisp reader
can understand it. using ‘#\' or ‘#/, depending on the escaping character of
readtable (sce page 516). :

Outputs a carriage return. ~n% outputs n carriage returns. No argument is uscd.
Simply putting a carriage return in the control string would work, but ~% is usually
used because it makes the control string look nicer in the Lisp source program.

The :fresh-line operation is performed on the output strcam. Unless the stream knows
that it is already at the front of a line, this outputs a carriage return. ~n& docs a
‘fresh-line operation and then outputs 5-1 carriage returns,

Outputs a page scparator character (#\page). ~n| docs this n times. With a
modifier. if the output strecam supports the :clear-screen operation this directive clears
the screen, otherwise it outputs page scparator character(s) as if no : modifier were
present. | is vertical bar, not capital L.

Outputs a tilde. ~n~ outputs » tildes.

Tilde immediately followed by a carriage return ignores the carriage return and any
whitespace at the beginning of the next line. With a :, the whitespace is left in place.
With an @, the carriage return is left in place. This directive is typically used when a
format control string is too long to fit nicely into one line of the program.

arg is ignored. ~n* ignores the next n arguments. ~:* “ignores backwards™; that is,
it backs up in the list of arguments so that the argument last processed will be
processed again. ~n:* backs up n arguments. ~n@* is absolute; it moves to
argument n (n = 0 specifies the first argument).

When within a ~{ construct (sec below), the ignoring (in either direction) is relative to
the list of arguments being processed by the iteration.

If arg is not 1, a lower-case ‘s’ is printed. (‘P is for ‘plural’.) ~:P does the same
thing, after doing a ~:*; that is, it prints a lower-case s if the last argument was not
1. ~@P prints ‘y" if the argument is 1, or ‘ies’ if it is not. ~:@P does the same
thing, but backs up first,

Spaces over to a given column. ~n,mT outputs sufficient spaces to move the cursor to
column n. If the cursor is alrcady past column n, it outputs spaces to move it to
column n+mk, for the smallest integer value k possible. n and m default to 1.
Without the colon flag, n and m are in units of characters; with it, they are in units
of pixels. '

PS:<XLLMAN>ED-FIO. TEXT.24 8-JUN-84

Formatted Output 488 I isp Machine Manuat

Note: this operation works properly only on streams that support the :read-cursorpos
and :increment-cursorpos stream operations (see page 467). On other streams, any
~T operation simply outputs two spaces. When format is creating a string, ~T works
by assuming that the fiest character in the string is at the left margin.

~@T simply outputs a space. ~rel T simply outputs rel spaces. ~rel, period T
outputs rel spaces and then additional spaces until it reaches a column which is a
multiple of period. 1f the output stream does not support :read-cursorpos then it
simply outputs rel spaces.

~R ~R prints arg as a cardinal English number, c.g. four. ~:R prints arg as an ordinal
number. c.g. fourth. ~@R prints arg as a Roman numeral, c.g. V. ~:@R prints arg
as an old Roman numeral, c.g. Il

~nR prints arg in radix #. The flags and any remaining parameters are used as for
the ~D directive. Indeed. ~D is the same as ~10R. ‘The full form here is therefore
~ radix ,mincol ,padchar ,commacharR.

~? Uses up two arguments, and processes the first one as a format control string using the
sccond onc’s clements as arguments. Thus,
(format nil "~? ~D" "~0 ~0" '(4 20.) 9)
returns "4 24 8",

~@? processes the following argument as a format control string, using all the
remaining arguments. Any arguments it does not usc arc left to be processed by the
format directives following the ~@7? in the original control string.

(format nil "~@7 ~D" "~0 ~0" 4 20. 9)
likewisc returns "4 24 9".

~ssir~« Performs the formatting specified by sir, with indentation on any new lines. Each

time a Return is printed during the processing of sir, it is followed by indentation
sufficient to line up underncath the place where the cursor was at the beginning of str.
For example,

(format t "Foo: ~8T~a~A~e" siring)
prints string with cach line starting at column 8. If strmg is (string-append "This is"
#\return “"the string") then the output is

Foo: This is

the string

~(str~) Performs output with casc conversion. The formatting specified by sir is done, with all
the letters in the resulting output being converted to upper or lower casc according to
the modifiers given to the ~(command:

~(without modifiers
Converts all the letters to lower case.

~:(Converts the first letter of cach word to upper case and the rest to lower case.

~@(Converts the first letter of the first word to upper case, and all other letters to
lower case.

~:@(Converts all the letters to upper case.

PS:<1 .MANDED-FIO. TEXT.24 , 8-JUN-84

I isp Machine Manual 489 Formatted Output

~1(Converts the first letter of the first word o upper case and does not change
anything clse. If you arrange to generate all output in lower case except for
letters' that should be upper case regardless "of context. you can use this
directive when the output appears at the beginning of a sentence.
Example:
"~(FoO BaR~) ~:(Fo0 BaR~) ~@(Fo0 BaR~) ~:@(FoO BaR~)
~1(at the White Hart~)"
producces '
foo bar Foo Bar Foo bar FOO BAR
At the White Hart
o ~[srO~;strl~;...~;strn~]
This is a sct of alternative control strings. ‘The alternatives (called clauses) are
separated by ~; and the construct is terminated by ~]. For example,
"~[Siamese ~;Manx ~;Persian ~;Tortoise-Shell ~
~;Tiger ~:;Yu-Shiang ~Jkitty"
The argth alicrnative is sclected; 0 sclects the first. If a prefix paramcter is given (i.e.
~n[). then the paramecter is used instead of an argument (this is uscful only if the
parameter is ‘#°). If arg is out of range no alternative is sclected. After the sclected
alternative has been processed, the control string continues after the ~].

~[str0~;strl ~;... ~;strn ~:;default ~] has a default case. If the last ~; used to scparate
clauses is instcad ~:;, then the last clause is an “eclse™ clause, which is performed if no
other clause is sclected. For example,
- "~[Siamese ~;Manx ~;Persian ~;Tiger ~
~;Yu-Shiang ~:;Bad ~] kitty"

~[~1ag00,1ag01 ,...;s1r0~tagl0,tagll...;sirl...~] allows the clauses to have cxplicit tags.
The parameters to cach ~; arc numeric tags for the clause which follows it. That
clause is processed which has a tag matching the argument. If ~al,a2,bl,b2,..:; (note
the colon) is used, then the following clause is tagged not by single values but by
ranges of values a/ through a2 (inclusive), b/ through b2, etc. ~:; with no
parameters may be used at the end to denote a default clause. For example,
"~[~'+,’-,"%,"//;0perator ~'A,’Z,"a,'z:;letter ~
~'0,’9::digit ~:;other ~]"

~:false~;true~] sclects the false control string if arg is nil, and sclects the frue control
string otherwise.

~@[rrue~] tests the argument. If it is not nil, then the argument is not used up, but
is the next one to be processed, and the one clause is processed. If it is nil, then the
argument is uscd up, and the clause is not processed. For example,
(setqg *print-level* nil *print-length* 5)
(format nil
"~@[*PRINT-LEVEL#=~D~]~@[*PRINT-LENGTH*=~D~]"
prinlevel prinlength)
=> " *PRINT-LENGTH»=5"

PSKILL.MAN>FD-FIO. TEXT.24 8-JUN-84

Formatted Qutput 490 Lisp Machine Manual

- The combination of ~[and # is useful, for cxample, for dealing with English
conventions for printing lists:
(setq foo "Items:~#[none~; ~S~; ~S and ~
~S~i~@{~#[~1: and~] ~S~~,~}~].")
(format nil foo)
=> "Items: none."
(format nil foo 'foo)
=> "Items: F0O."
(format nil foo 'foo 'bar)
=> "Items: FOO and BAR."
(format nil foo 'foo 'bar ’baz)
=> "Items: F0O, BAR, and BAZ."
(format nil foo 'foo 'bar 'baz 'quux)
=> "Items: FOO., BAR, BAZ, and QUUX."

~; Separates clauses in ~[and ~< constructions. !t is undefined clsewhere.
~] Terminates a ~[. It is undefined clsewhere.

~{str~} This is an iteration construct. The argument should be a list, which is used as a set of
arguments as if for a recursive call to format. The string st is used repeatedly as the
control string. Each iteration can absorb as many clements of the list as it likes; if szr
uscs up two arguments by itself, then two clements of the list get used up cach time
around the loop. If before any iteration step the list is empty, then the iteration is
terminated. Also, if a prefix parameter n is given, then there can be at most »n
repetitions of processing of str. Here are some simple examples:
(format nil "Here it is:~{ ~S~}." ’"(a b c))
=> "Here it is: AB C."
(format nil "Pairs of things:~{ <~$,~S>~}." "(a 1 b 2 ¢ 3))
=> "Pairs of things: <A,1> <B,2> <(C,3>."

Using ~~ as well, to terminate s if no arguments remain, we can print a list with
commas between the clements:
(format nil "Elements: ~{~S~*, ~}." "(a b c))
=> "Elements: A, B, C."

~:{str~} is similar, but the argument should be a list of sublists. At ecach repetition
step onc sublist is used as the sct of arguments for processing sir; on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed. Example:
(format nil "Pairs of things:~:{ <~S,~S>~} "
"((a 1) (b 2) (c 3)))

=> "Pairs of things: <A,1> <B,2> <C,3>."

~@{str~} is similar to ~{str~}, but instcad of using one argument which is a list,
all the remaining arguments are used as the list of arguments for the iteration.
Example:

PS:KLLMAN>ED-FIO.TEXT.24 8-JUN-84

L isp Machine Manual 491 ‘ Formatted Output

(format nil "Pairs of things:~@{ <~§,~S>~}."
‘al'b 2 'c3) _
=> "Pairs of things: <A,1> <B,2> <(C,3>."

~:@{sir~} combines the features of ~:{srr~} and ~@{sir~}. All the remaining
arguments are used, and cach onc must be a list. On cach iteration the next argument
is used as a list of arguments to str. Example:
(format nil "Pairs of things:~:@{ <~§,~S>~}."
"(a 1) "(b 2) "(c 3))
=> "Pairs of things: <A,1> <B,2> <C,3>."

Terminating the repetition construct with ~:} instcad of ~} forces sir to be processed
at least once cven if the initial: list of arguments is null (however, it does not override
an explicit prefix parameter of zcro).

If strois empty, then an argument is used as sir. It must be a string, and precedes
any arguments processed by the iteration. As an ecxample, the following arc -
equivalent:

(apply #'format stream string args)

(format stream "~1{~:}" string args)
This uses string as a formatting string. The ~1{ says it must be processed at most
once, and the ~:} says it- must be processed at Ieast once. Therefore it is processed

‘exactly once, using args as the arguments.

As another example, the format function itsclf uscs format-error (a routine internal to
the format package) to signal error messages, which in turn uses ferror, which uses
format recursively. Now format-error takes a string and arguments, just like format,
but also prints some additional information: if the control string in ctl-string actually
is a string (it might be a list—sece below), then it prints the string and a little arrow
showing where in the processing of the control string the error occurred. The variable
cti-index points one character after the place of the error.
(defun format-error (string &rest args)
(if (stringp ctl-string)
(ferror nil "~1{~:}~U~VTi~%~30T/"~A/"~%"
string args (+ ctl-index 3) ctl-string)
(ferror nil "~1{~:}" string args)))
This first processes the given string and arguments using ~1{~:}, then tabs a variable
amount for printing the down-arrow, then prints the control string between double-
quotes. The cffect is something like this:
(format t "The item is a ~[Foo~;Bar~;Loser~]." ’quux)
>>ERROR: The argument to the FORMAT "~[" command
" must be a number
v
‘"The item is a ~[Foo~;Bar~;Loser~]."

¢ e

Terminates a ~{. It is undcfined elsewhere.

~mincol ,colinc ,minpad,padchar<text~> justifics text within a ficld at least mincol wide.
text may be divided up into scgments with ~;—the spacing is cvenly divided between

PS:KI.MAN>FD-FIO.TEXT.24 v 8-JUN-84

Formatted Output 492 Lisp Machine Minual

the text segments. With no modifiers, the leftmost text segment is left justificd in the
field. and the rightmost text segment right justified: if there is only one, as a special
case, it is right justified. The : modifier causes spacing to be introduced before the
first text segment; the @ modifier causes spacing to be added after the last. Minpad,
default 0. is the minimum number of padchar (default space) padding characters to be
output between cach segment. If the total width needed to satisfy these constraints is
greater than mincol, then mincol is adjusted upwards in coline increments. coline
defaults to 1. mincol defaults to 0. For example,

(format nil "~10<foo~;bar~>") => "foo bar"
(format nil "~10:<foo~;bar~>") => " foo bar"
(format nil "~10:@<foo~;bar~>") => " foo bar "
(format nil "~10<foobar~>") = " foobar"
(format nil "~10:<foobar~>") - = " foobar"
(format nil "~10@<foobar~>") => "foobar "
(format nil "~10:@<foobar~>") => " foobar "

(format nil "$~10,,. ' *<~3f~>" 2.5902) => "$rsxxx»2 59"

Note that texs may include format directives. The last cxample illustrates how the ~<
dircctive can be combined with the ~f directive to provide more advanced control over
the formatting of numbers.

Here are some cxamples of the use of ~~ within a ~< construct. ~~ is explained in
detail below, however the general idea” is that it climinates the segment in which it
appcars and all following segments if there are no more arguments.

(format nil "~15<~S~;~"~S~;~2~S~>" *fo0)

=> " FOO"
(format nil "~16<~S~;~"~S~;~~~S~>" *'fo0 ’bar)
=> "FOO BAR"

(format nil "~15<~S~;~A~S~;~A~S~>" 'foo 'bar 'baz)
=> "FOO BAR BAZ"

The idea is that if a segment contains a ~~, and format runs out of arguments, it just
stops there instead of getting an crror, and it as well as the rest of the scgments are
ignored. '

If the first clause of a ~< is terminated with ~:; instead of ~;, then it is used in a
special way. All of the clauscs are processed (subject to ~+, of course), but the first
onc is omitted in performing the spacing and padding. When the padded result has
been determined, then if it will fit on the current line of output, it is output, and the
text for the first clause is discarded. If, however, the padded text will not fit on the
current line, then the text segment for the first clause is output before the padded text.
The first clause ought to contain a carriage return (~%). The first clausc is always
processed, and so any arguments it refers to will be used; the decision is whether to
usc the resulting segment of text, not whether to process the first clause. If the ~:;
has a prefix parameter n, then the padded text must fit on the current line with n
character positions to sparc to avoid outputting the first clause’s text. For example, the
control string
R R O TR Tt S T it S

can be used to print a list of items scparated by commas, without breaking items over

PS:KL.MAN>ED-FIO.TEXT.24 8-JUN-84 .

I isp Machine Manual 493 Formatted Output

.

line boundaries, and beginning cach line with %5;°. The prefix parameter 1 in ~1;;
accounts for the width -of the comma which will follow the justified item if it is not
the last eclement in the list, or the period if it is. 1f ~:; has a sccond prefix
parameter, then it is used as the width of the line, thus overriding the natural line
width of the output stream. To make the preceding example use a line width of 50,
onc would write ‘

"y ~{~<~%y s ~1,60:0; ~S~>~n~) ~UY

If the sccond argument is not specified, then format sces whether the stream handles
the :size-in-characters message. If it docs. then format sends that message and uscs
the first returned value as the fine length in characters. If it doesn’t, format uses 72.
as the line length.

Rather than using this complicated syntax, one can often call the function
format:print-list (scc page 495).

~> Terminates a ~<. It is undefined clsewhere.

~n This is an escape construct. If there are no more arguments remaining to be processed,
then the immediately enclosing ~{ or ~< construct is terminated. If there is no such
enclosing construct, then the entire formatting operation is terminated. In the ~< case,
the formatting is performed, but no morc scgments arc processed before doing the
justification. 'The ~+ should appear only at the beginning of a ~< clause, because it
aborts the entire clause. ~~ may appear anywhere in a ~{ construct.

If a prefix paramcter is given, then termination occurs if the parameter is zero.
(Hence ~~ is the same as ~#~.) If two parameters are given, termination occurs if
they are equal. If three are given, termination occurs if the second is between the
other two in ascending order. Of course, this is useless if all the prefix parameters are
constants; at least one of them should be a # or a V parameter.

If ~~ is used within a ~:{ construct, then it merely terminates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next itcration step commences immediately. To terminate the entire itcration
process, use ~:i~, '

~Q An escape to arbitrary user-supplied code. arg is called as a function; its arguments

are the prefix parameters to ~Q, if any. args can be passed to the function by using
the V prefix parameter. The function may output to *standard-output* and may look
at the variables format:colon-flag and format:atsign-flag, which are t or nil to reflect
the : and @ modificrs on the ~Q. For example,

(format t "~VQ" foo bar)
is a fancy way to say

(funcall bar foo)
and discard the.value. Note the reversal of order; the V is processed before the Q.

~\ This begins a directive whosc namc is longer than one character. The name is
terminated by another \ character. The following dircctives have names longer than
onc character and make usc of the ~\ mechanism as part of their operation.

PS:<I.MAN>FD-FIO.TEXT.24 8-JUN-84

Formatted Output 494 Lisp Machine Manual

~\lozenged-string\
This is like ~A except when output is to a window, in which case the argument is
printed in a small font inside a lozenge.

~\lozenged-character\
This is like ~C cxcept when output is to a window, in which case the argument is
printed in a small font inside a lozenge if it has a character name, cven if it is a
formatting character or graphic character. '

~\date\ This expects an argument that is a universal time (sce page 776), and prints it as a
date and time using time:print-universal-date.
Example:
(format t "It is now ~\date\" (get-universal-time))
prints ' :
It is now Saturday the fourth of December, 1982; 4:00:32 am
~\time\ This expects an argument that is a universal time (scc page 776), and prints it in a
bricf format using time:print-universal-time.
Example:
(format t "It is now ~\time\" (get-universal-time))
prints
It is now 12/04/82 04:01:38

~\datime\
This prints the current time and date. Tt does not use an argument. It is cquivalent to
using the ~\time\ dircctive with (time:get-universal-time) as argument.

~\time-interval\
This prints a time interval measured in seconds using the function time:print-interval-
or-never.
Example: :
(format t "It took ~\time-interval\." 3601.)
prints
It took 1 hour 1 second.

You can define your own directives. How to do this is not documented here; read the code.
Names of user-defined directives longer than one character may be used if they are enclosed in
backslashes (e.g. ~4,3\GRAPH\).

(Note: format also allows control-string to be a list. If the list is a list of one element,
which is a string, the string is simply printed. This is for the use of the format:outimt ‘function
below. The old feature wherein a more complex interpretation of this list was possible is now
considcred obsolete; use format:output if you like using lists.)

A condition instance can also be used as the control-string. 'Then the :report operation is
used to print the condition instance; any other arguments are ignored. This way, you can pass a
condition instance directly to any function that normally expects a format string and arguments.

PSKI.MAN>FD-FIO. TEXT.24 : 8-JUN-84

Lisp Machine Manual 495 Formatted Output

format:print-1ist destination element-formar list &optional separator start-line
tilde-brace-options
This function provides a simpler interface for the specific purpose of printing comma-
separated lists with no list clement split across two lines: sce the description of the ~;
dircctive (page 492) to sce the more complex way to do this within format. destination
tells where to send the output: it can be t, nil, a string-nconc’able string, or a stream,
as with format. clement-formar is a format control-string that tells how to print cach
clement of fisr; it is used as the body of a ~{..~} construct. separator, which defaults
to ", " (comma, space) is a string which goes after cach clement except the last. format
control commands are not recommended in separator. start-line, which defaults to three
spaces, is a format control-string that is used as a prefix at the beginning of cach line of
output, cxcept the first. format control commands are allowed in separator, but they
should not swallow arguments from /ist. 1ilde-brace-options is a string inscrted before the
opening *{": it dcfaults to the null string, but allows you to insert colon and/or atsign.
The line-width of the stream is computed the same way that the ~:; command computes

it; it is not possible to override the natural line-width of the stream.

PSKLMAN>FD-FIO.TEXT.24 : 8-JUN-84

FFormatted Quiput 490 Lisp Machine Manual

22.4.2 The Output Subsystem

The formatting functions associated with the format:output subsystem allow you to do
formatted output using Lisp-style control structure. Instead of a directive in a format control
string, there is one formatting function for cach kind of formatted output.

The calling conventions of most of the formatting functions arc similar. The first argument is
usually the datum to be output. The second argument is usually the minimum number of
columms to use. The remaining arguments arc keyword arguments.

Most of the functions accept the keyword arguments padchar. minpad and tab-period. padchar
is a character to use for padding. minpad is a minimum number of padding characters to output
after the data. wb-period is the distance between allowable places to stop padding. To make the
meaning of tab-period clearer, if the value of 1ab-period is 5; if the minimum size of the field is
10, and if the value of minpad is 2, then a datum that takes 9 characters is padded out to 15
characters. "The requirement to use at least two characters of padding means it can't fit into 10
characters, and the tab-period of 5 means the next allowable stopping place is at 1045 characters.
The default values for minpad and 1ab-period, if they are not specified, are zero and one. The
default value for padchar is space.

The formatting functions always output to *standard-output* and do not require an
argument to specify the stream. The macro format:output allows you to specify the stream or a
string, just as format docs, and also makes it convenicnt to concatenate constant and variable
output.

format:output swream string-orform... Macro
Makes it convenient to intersperse arbitrary output operations with printing of constant
strings. *standard-output* is bound to siream, and cach string-or-form is processed in
succession from left to right. If it is a string, it is printed; otherwise it is a form, which
is evaluated for effect. Presumably the forms will send output to *standard -output®.

If stream is written as nil, then the output is put into a string which is returned by
format:output. If stream is written as t, then the output goes to the prevailing value of
standard-output. Otherwise siream is a form, which must cvaluate to a stream.

Here is an example:
(format:output t "FOO is " (prinl foo) " now." (terpri))

Because format:output is a macro, what matters about stream is not whether it evaluates
to t or nil, but whether it is actually written as t or nil.

format:outfmt suring-or-form... _ v Macro
Some system functions ask for a format control string and arguments, to be printed later.
If you wish to gencrate the output using the formatted output functions, you can use
format:outfmt, which produces a control argument that will eventually make format print
the desired output (this is a list whose onc clement is a string containing the output). A
call to format:outfmt can be used as the second argument to ferror, for example:

PS:KLLMANDED-FIO.TEXT.24 8-JUN-84

1isp Machine Manual 497 FFormatted Output

(ferror nil (format:outfmt "Foo is " (format:onum foo)
" which is too large"))

format:onum number &optional radix minwidth &key padchar minpad tab-period signed
commas
Qutputs number in base radix, -padding to at least minwidth. columns and obeying the
other padding options specified as described above.

rudix can be a number, or it can be :roman, :english, or :ordinal. The default radix is
10. (decimal).

If signed is non-nil, a + sign is printed if the number is positive. 1f commas is non-nil,
a comma is printed cvery third. digit in the customary way. These arguments are
meaningful only with numcric radices.

format:ofloat number &optional n-digits force-exponential-notation minwidth &Kkey padchar
' minpad tab-period
OQutputs number as a floating point number using n-digits digits. 1If force-exponential-
notation is non-nil, then an cxponent is always used. minwidth and the padding options
are interpreted as usual.

format:ostring swing &optional minwidth &key padchar 4minpad tab-period right-justify
Outputs string, padding to at least minwidth columns if minwidth is not nil, and obeying
the other padding options specified as described above.

Normally the data are left justified; any padding follows .thc data. If right-justify is non-
nil, the padding comes before the data. The amount of padding is not affected.

The argument need not really be a string. Any Lisp object is allowed, and it is output
with princ. . '

format:oprint object &optional minwidth &key padchar minpad tab-period right-justify
Prints object, any Lisp object, padding to at least minwidth columns if minwidth is not nil,
and obeying the padding options specified as described above.

Normally the data are left justified; any padding follows the data. If right-justify is non-
nil, the padding comes before the data. The amount of padding is not affected.

The printing of the object is done with prin1.

format:ochar character &optional style top-explain minwidth &key padchar minpad
tab-period
Outputs character in one of three styles, sclected by the style argument. minwidth and the
padding options control padding as usual. '

:read or nil The character is printed using #\ or #/ so that it could be read back
in,

reditor Output is in the style of ‘Meta-Rubout’. Non-printing characters, and the
two printing characters Spacc and Altmode, arc represented by their
names. Other printing characters are printed directly.

PS:KLLMAN>FD-FIO.TEXT.24 ' _ 8-JUN-84

Formatted Output 498 Lisp Machine Manual

brief Bricf' prefixes such as 'C-' and ‘M- arc used, rather than ‘Control-" or
‘Meta-". Also, character names are used only if there are meta Dbits
present. :

lozenged ‘The output is the same as that of (he :editor style, but If the character is

not a graphic character -or if it has meta bits, and the stream supports the
‘display-lozenged-string operation, that operation is used instead of
:string-out to print the text. On windows this operation puts the
character name inside a lozenge.

:sail o', 7, cete. are used to represent Control and Meta, and shorter names
for characters are also used when possible. See section 10.1.1, page 205.

top-explain is uscful with the :editor. :brief and :sail styles. 1t says that any character
that has to be typed using the Top or Greek keys should be followed by an cxplanation
of how to type it. For example: “» (Top-K)' or ‘a (Greek-a)".

format:tab mincol &key padchar minpad tab-period terpri unit
Outputs padding at lcast until column mincol. 1t is the only formatting function that
bases its actions on the actual cursor position rather than the width of what is being
output. The padding options padchar, minpad, and tab-period are obeyed. Thus, at least
the minpad number of padding characters are output even if that goes past mincol, and
once past mincol, padding can only stop at a multiple of tab-period characters past
mincol. :

In addition, if the terpri option is t, then if column mincol is passed, format:tab starts a
new line and indents it to mincol.

The unit option specifies the units of horizontal position. The default is to count in units
of characters. If unir is spccified as :pixel, then the computation (and the argument
mincol and the minpad and 1ab-period options) are in units of pixels.

format:pad (minwidth &key padchar minpad tab-period..) body... Macro

format:pad is used for printing several items in a fixed amount of horizontal space,
padding between them to use up any excess space. Each of the body forms prints one
item. The padding goes between items. The entire format:pad always uscs at least
minwidth columns; any columns that the items dont need arc distributed as padding
between the items. If that isn't cnough space, then more space is allocated in units
controlled by the tab-period option until there is enough space. If it's more than enough,
the cexcess is used as padding.

If the minpad option is specified, then at least that many pad characters must g0 between
cach pair of items.

Padding goes only between items. If you want to treat several actual picces of output as
one item, put a progn around them. If you want padding before the first item or after
the last, as well as between the items, include a dummy item nil at the beginning or the
end.

PSKLLLMANDED-FIO. TEXT.24 , 8-JUN-84

Lisp Machine Manual 499 Formatted Output

If there is only one item, it is right justificd. Onc item followed by nil is lcfi-justiﬁcd.
Once item preceded and followed by nil is centered. ‘Therefore, format:pad can be used
to provide the usual padding options for a function that docs not provide them itself.

format:plural mumber singular &optional plural
Outputs cither the singular or the plural form of a word depending on the value of
number. "The singular is used if and only if number is 1. singular specifies the singular
form of the word. string-pluralize is used to compute the plural, unless plural is
explicitly specified.

It is often uscful for number to be a value returned by format:onum, which returns its
argument. For éxample:

(format:plural (format:onum n-frobs) " frob")
prints "1 frob" or "2 frobs",

format:breakline /inel print-if-terpri print-always... Macro
Goes to the next line if there is not enough room for something to be output ‘on the
current line. The print-always forms print the text which is supposed to fit on the line.
linel is the column before which the text must end. If it doesn’t end before that column,
then format:breakline moves to the next line and exccutes the print-if-terpri form before
doing the print-always forms.

Constant strings are allowed as well as forms for- print-if-terpri and print-always. A
constant string is just printed.

To go to a new line unconditionally, simply call terpri.

Here is an example that prints the elements of a list, separated by commas, breaking lines
between elements when necessary.

(defun pcl (list linel)
(do ((1 1ist (cdr 1))) ((null 1))
(format:breakline Tinel " "
(princ (car 1))
{(and (cdr 1) (princ ", ")))))

PS:KLLMAN>FD-FIO.TEXT.24 8-JUN-84

Rubout Handling 500 1 isp Machine Manual

22.5 Rubout Handling

The rubout handler is a feature of all interactive streams, that is. streams that connect to
terminals. Its purpose is to allow the user to edit minor mistakes made during type-in. At the
same tme. it is not supposed o get in the way: input is to be scen by Lisp as soon as a
syntactically complete form has been typed. The definition of ‘“syntactically complete form®
depends on the function that is reading from the stream: for read, it is a Lisp cxpression.

Some interactive streams (editing Lisp listeners) have a rubout handler that allows input to
be cdited with the full power of the ZWE] editor. (ZWEI is the gencral ceditor implementation
on which Zmacs and ZMail are based.) Most windows have a rubout handler that apes ZWEI,
implementing about twenty common ZWEI commands. The cold load stream has a simple rubout
handler that allows just rubbing out of single characters, and a few simple commands like clearing
the screen and erasing the cntire input typed so far. All three kinds of rubout handler use the
same protocol, which is described in this section. We also say a little about the most common of
the three rubout handlers.

[Eventually some version of ZWEL will be used for all streams except the cold load stream)

The tricky thing about the rubout handler is the need for it to figure out when you are all
done. ‘The idea of a rubout handler is that you can type in characters, and they are saved up in
a buffer so that if you change your mind, you can rub them out and type different characters.
However, at some point, the rubout handler has to decide that the time has come to stop putting
characters into the buffer and to let the function parsing the input, such as read, return. This is
called activation. 'The right time to activate depends on the function calling the rubout handler,
and may be very complicated (if the function is read, figuring out when onc Lisp expression has
been typed requires knowledge of all the various printed representations, what all currently-defined
reader macros do, and so on). Rubout handlers should not have to know how to parse the
characters in the buffer to figure out what the caller is rcading and when to activate; only the
caller should have to know this. The rubout handler interface is organized so that the calling
function can do all the parsing, while the rubout handler does all the handling of editing
commands, and the two are kept completely scparate.

The basic way that the rubout handler works is as follows. When an input function that reads
characters from a strcam, such as read or readline (but not tyi), is invoked with a strcam which
has :rubout-handler in its :which-operations list, that function “enters” the rubout handler. It
then goes ahcad :tyi'ing characters from the stream. Because control is inside the rubout handler,
the stream echoes these characters so the user can see what he is typing. (Normally echoing is
considered to be a higher-level function outside of the province of strcams, but when the higher-
level function tells the sircam to enter the rubout handler it is also handing it the responsibility
for echoing.) The rubout handler is also saving all these characters in a buffer, for rcasons
disclosed in the following paragraph. When the parsing function decides it has enough input, it
returns and control “leaves” the rubout handler. This is the casy case.

If the user types a rubout, a throw is done out of all recursive levels of read, reader macros,
and so forth, back to the point where the rubout handler was entered. Also the rubout is echoed
by crasing from the screen the character which was rubbed out. Now the read is tried over
again, re-reading all the characters that have not been rubbed out, not cchoing them this time.
When the saved characters have been cxhausted, additional input is read from the user in the
usual fashion.

PS:KL.MAN>FD-FIO.TEXT.24 8-JUN-84

1 isp Machine Manual | 501 Rubout Handling

CThe effect of this is a complete separation of the functions of rubout handling and parsing,
while at the same time mingling the execution of these two functions in such a way that input is
always activated at just the right time. It does mean that the parsing function (in the usual case,
read and all macro-character definitions) must be prepared to be thrown through at any time and
should not have non-trivial side-cffects, since it may be called multiple times.

If an error occurs while inside the ruboui handler, the error. message is printed and then
additional characters are read. ‘When the user types a rubout, it rubs out the crror message as
well as the character that caused the error. “The user can then proceed to type the corrected
expression; the input will be reparsed from the beginning in the usual fashion.

The rubout handler based on the ZWEI editor interprets control characters in the usual ZWEI
way: as cditing commands, allowing you to edit your buffered input.

‘The common rubout handler also recognizes a subsct of the cditor commands, including
Rubout, Control-F and Meta-F and others. 'T'yping Help while in the rubout handler displays a
list of the commands. The kill and yank commands in the rubout handler use the same Kill ring
as the cditor, so you can kill an expression in the editor and yank it back into a rubout handler
with Control-Y, or kill an -cxpression in the rubout handler with Control-K or Clear-input and
yank it back in the cditor. ‘The rubout processor also keeps a ring buffer of most recent input
strings (a separate ring for cach stream), and the commands Control-C and Meta-C retrieve from
this ring just as Control-Y and Meta-Y do from the kill ring.

When not inside the rubout handler, and when typing at a program that uses control
characters for its own purposes, control characters are treated the same as ordinary characters.

Some programs such as the dcbugger allow the user to type either a control character or an
expression. In such programs, you are really not inside the rubout handler unless you have typed
the beginning of an expression. When the input buffer is empty, a control character is treated as
a command for the program (such as, Control-C to continue in the debugger); when there is
text in the rubout handler buffer, the same character is trcated as a rubout handler command.
Another consequence of this is that the message you get by typing Help varies, being cither the
rubout handler’'s documentation or the debugger’s documentation. '

To write a parsing function that reads with rubout handling, use with-input-editing.

with-input-editing (stream options) body... Macro
Invokes the rubout handler on stream, if streamn supports it, and then exccutes body.
body is executed in any case, within the rubout handler if possible. rubout-handler is
non-nil while in body if rubout handling is in use.

options are used as the rubout handler options. If already within an invocation of the
rubout handler, options arc appended to the front of the options alrcady in effect. This
happens if a function which reads input using with-input-editing, such as read or
readline, is called from the body of another with-input-editing. The :norecursive
option can be used to cause the outer set of options to be completely ignored even when
not overridden by new ones,

PSKL.MANDIOS.TEXT.247 v 8-JUN-84

Rubout Handling 502 Lisp Machine Manual

body’s values are returned by with-input-editing. body ought o read input from stream
and rewrn a Lisp object that represents the input. It should have no nontrivial side
cflects aside from reading input from stream structure, as it may be aborted at any time it
reads input and may be cxecuted over and over.

If the :full-rubout option is specified, and the user types some input and rubs it all out,
the with-input-editing form returns immediately. See :full-rubout, below.

If @ preemptive command is input by the user. with-input-editing returns immediately
with the values being as specified below under the :command and :preemptable options.
body is aborted from its call to the :tyi operation, and the input read so far remains in
the rubout handler editing buffer o be read later.

rubout-handler Variable
If control is inside the rubout handler in this process. the value is the stream on which

rubout handling is being done. Otherwise, the value is nil.

:rubout-handler oprions function &rcst args Operation on streams
Invokes the rubout handler on the streain, with options as the options, and parses by
applying function to args. with-input-editing uses this operation.

:read-bp Operation on streams
‘This opcration may be used only from within the code for parsing input from this stream
inside the rubout handler. It returns the index within the rubout handler buffer which
parsing has reached.

:force-rescan Operation on streams
This operation may be used only from within the code for parsing input from this strcam
inside the rubout handler. It causcs parsing to start again immediatcly from the beginning
of the buffer.

:rescanning-p . Operation on streams
This operation may be used only from within the code for parsing input from this stream
inside the rubout handler. It returns t if parsing is now being done on input already in
the buffer, nil if parsing has used up all the buffered input and the next character parsed
will come from the keyboard.

Each option in the list of rubout handler options consists of a list whose first element is a
keyword and whose remaining clements are the arguments of that keyword. Note that this is not
the same format as the arguments to a typical function that takes keyword arguments; rather this
is an alist of options. The standard options are: ‘

(:activation fi1 args...)
Activate if certain characters are typed in. When the user types an
activation character, the rubout handler moves the cditing pointer
immediately to the end of the buffer and inserts the activation character;
This immediately causes the parsing function to begin rescanning the
input.

PS:KILMAN>IOS.TEXT.247 8-JUN-84

Lisp Machine Manual 503 Rubout Handling

it is used 1o test characters for being activators. 1t is called with an input
character as the first arg (possibly a fixnum. possibly a character object)
and args as additional args. 1f fu returns non-nil, the character is an
activation. fh is not called for blips.

After the parsing function has read the entire contents of the buffer, it
sees the activation character as a blip (:activation char numeric-arg) where
char is the character that activated and numeric-arg is the numceric arg that
was pending for the next rubout handler command. Normally the parsing
function will return at this point. ‘Then the activation character does not
ccho. But if the parsing function continues to read input, the activation
character echoes and is inserted in the buffer.

(:do-not-echo chars...)
Poor man's activation characters. Like :activation cxcept that the
characters that should activate are listed explicitly, and the character itsclf
is returned to the parsing function rather than a blip. '

(:full-rubout val)

If the user rubs out all the characters he typed, then control is returned
from the rubout handler immediately. Two values are returned; the first
is. nil and the sccond is val. (If the user doesn’t rub out all the
characters. then the rubout handler propagates multiple values back from
the function that it calls, as usual) In the absence of this option, the
rubout handler would simply wait for more characters to be typed in and
would ignore any additional rubouts.

This is how the debugger knows to remove Eval: from the screen if you
type the beginning of a form and rub it all out.

(:pass-through charl char2...) ‘
The characters charl, char2, etc. arc not to be treated as special by the
rubout handler. They are read as input by the parsing function. If the
parsing function docs not return, they can be rubbed out. This works
only for characters with no modifier bits.

(:preemptable value)

Makes all blips read as input by the rubout handler act as precmptive
commands. If this option is specified, the rubout handler rcturns
immediately when it rcads a blip. It returns two values: the blip that was
read, and value. The parsing function is not allowed to finish parsing up
to a delimiter: instead, any buffered input remains in the buffer for the
next time input is done. In the mcan time. the preemptive command
character can be processed by the command loop.

While this applies to all blipé, the blips which it is probably intended for
arc mouse blips.

(:command f args...) ‘
Makes certain characters preemptive commands. A precmptive command
returns instantly to the caller of the :rubout-handier operation, regardless

PS:KI.MAN>IOS. TEXT.247 ' 8-JUN-84

Rubout Handling 504 Lisp Machine Manual

of the input in the buffer. It returns two values: a list (command char
numeric-arg) and the keyword :command. ‘The parsing function is not
allowed to finish parsing up to a delimiter; instcad, any buffered input
remains in the buffer for the next time input is done. In the mean time,
the preemptive command character can be processed by the command
loop. '

The test for whether a character should be a preemptive command is done
using fir and args just as in :activation. :

(:editing-command (char doc)...)

‘ Defines editing commands to be cxecuted by the parsing function itself.
This is how gsend implements the Control-Meta-Y command. Each char
is such a command, and doc says what it does. (doc is printed out by the
rubout handler’s Help command.) If any of these characters is read by the
rubout handler, it is returned immediately to the parsing function
regardless of where the editing pointer is in the buffer. (Normal inserted
text is not returned immediately when read unless the editing pointer is at
the end of the buffer.)

The parsing function should not regard these characters as part of the
input. There arc two reasonable things that the parsing function can do
when it receives one of the cditing command characters: print some
output, or force some input.

If it prints output, it should invoke the :refresh-rubout-handler
operation afterward beforc the next :tyi. This causes the rubout handler to
redisplay so that the input being cdited appears after the output that was
done.

If the parsing function forces input, the input is read by the rubout
handler. This can be used to modify the buffered input. gsend’s
Control-Meta-Y command works by forcing the yanked text as input.
There is no way to act directly on the buffered input because different
implementations of the rubout handler store it in different ways.

(:prompt function)

(:reprompt function)
When it is time for the user to be prompted, function is called with two
arguments. ‘The first is a strcam it may print on; the sccond is the
character which caused the neced for prompting, e.g. # \clear-input or
\clear-screen, or nil if the rubout handler was just entered.

The difference between :prompt and :reprompt is that the latter docs not
call the prompt function when the rubout handler is first entered, but
only when the input is redisplayed (e.g. after a screen clear). If both
options arc specificd then :reprompt overrides :prompt except when the
rubout handler is first cntered.

PS:KILMAN>IOS.TEXT.247 8-JUN-84

1isp Machine Manual S05 Rubout Handling

Sunction may also be a string. ‘Then it is simply printed.

If the rubout handler is cxited with an empty buffer duc to the :full-
rubout option, whatever prompt was printed is crased.

(initial-input string) : '
Pretends that the user typed string. When the rubout handler is entered,
string is typed out. ‘The user can input morc characters or rub out
characters from it.

(:initial-input-index index)
Positions the cditing pointer initially index characters into the initial input
string. Used only in company with with :initial-input.

(:no-input-save t)
Don't save this batch of input in the input history when it is done. For
cxample, yes-or-no-p specifies this option. -

(:narecursive t)
If this invocation of the rubout handler is within another one, the options
specified in the previous call should be completely ignored during this one.
Normally, individual' options specified this time override the previous
scttings for the same options, but any of the previous options not
individually. overridden are still in effect.

Rubout handlers handle the condition sys:parse-error if it is signaled by the parsing
function. The handling consists of printing the crror message, waiting for the user to rub out,
crasing the crror message, and parsing the input again. All crrors signaled by a parsing function
that signify that the user’s input was syntactically invalid should have this condition name. For
cxample, the errors read signals have condition name sys:parse-error since it is is a consequence
of sys:read-error.

sys:parse-error (error) Condition
The condition name for syntax errors in input being parsed.

The compiler handles sys:parse-error by proceeding with procced-type :no-action. All
signalers of sys:parse-error should offer this proceed type, and respond to its use by continuing
to parse, ignoring the invalid input.

sys:parse-ferror format-string &rest args
Signals a sys:parse-error crror, using formai-string and args to print the crror message.
The proceed-type :no-action is provided, and if a handler usecs it, this function returns

nil.

PS:<1.MAN>IOS. TEXT.247 | 8-JUN-84

	448_IOsystem
	449_IOsystem
	450_IOsystem
	451_IOsystem
	452_IOsystem
	453_IOsystem
	454_IOsystem
	455_IOsystem
	456_IOsystem
	457_IOsystem
	458_IOsystem
	459_IOsystem
	460_IOsystem
	461_IOsystem
	462_IOsystem
	463_IOsystem
	464_IOsystem
	465_IOsystem
	466_IOsystem
	467_IOsystem
	468_IOsystem
	469_IOsystem
	470_IOsystem
	471_IOsystem
	472_IOsystem
	473_IOsystem
	474_IOsystem
	475_IOsystem
	476_IOsystem
	477_IOsystem
	478_IOsystem
	479_IOsystem
	480_IOsystem
	481_IOsystem
	482_IOsystem
	483_IOsystem
	484_IOsystem
	485_IOsystem
	486_IOsystem
	487_IOsystem
	488_IOsystem
	489_IOsystem
	490_IOsystem
	491_IOsystem
	492_IOsystem
	493_IOsystem
	494_IOsystem
	495_IOsystem
	496_IOsystem
	497_IOsystem
	498_IOsystem
	499_IOsystem
	500_IOsystem
	501_IOsystem
	502_IOsystem
	503_IOsystem
	504_IOsystem
	505_IOsystem

