Expression Input and Output 506 Lisp Machine Manual .

23. Expression Input and Output

People cannot deal directly with Lisp objects, because the objects live inside the machine. In
order to let us get at and talk about Lisp objects, Lisp provides a representation of objects in the
form of printed text; this is called the printed representation. ‘'his is what you have been sceing
in the examples throughout this manual. Functions such as print, prin1, and princ take a Lisp
object and send the characters of its printed representation to a stream. ‘These functions (and the
internal functions they call) are known as the printer. 'The read function takes characters from a
stream, interprets them as a printed representation of a Lisp object, builds a corresponding object,
and returns it It and related functions are known as the reader. (Strcams are explained in
section 22.3, page 459.)

For the rest of the chapter, the phrase ‘printed representation” is abbreviated as ‘p.r.’

23.1 What the Printer Produces

The printed representation of an object depends on its type. In this section, we consider each
type of object and explain how it is printed. There are several variables which you can set before
calling the printer to control how certain kinds of objects print. They are mentioned where
relevant in this scction and summarized in the following section, but one of them is so important
it must be described now. This is the escaping feature, controlled by the value of *print-
escape®. .

Escaping mcans printing cxtra syntactical delimiters and escape characters when necessary to
avoid ambiguity. Without escaping, a symbol is printed by printing the contents of its name;
therefore, the symbol whose name consists of the three characters 1, . and 5 prints just like the
floating point number 1.5, Escaping causes the symbol to print as |1.5] to differentiate the two. |
is a kind of escape character; sce page 516 for more information on escape characters and what
they mean syntactically.

Escaping also involves printing package prefixes for symbols, printing double-quotes or suitable
delimiters around the contents of strings, pathnames, host names, editor buffers, condition
objects, and many other things. For example, without escaping, the pathname SYS: SYS;
QCP1 LISP prints as exactly those characters. The string with thosec contents prints
indistinguishably. With cscaping, the pathname prints as

#cFS:LOGICAL-PATHNAME "SYS: SYS; QCP1 LISP">
and the string prints as "SYS: SYS; QCP1 LISP".

The non-escaped version is nicer looking in general, but if you give it to read it won’t do
the right thing. The escaped version is carcfully sct up so that read will be able to read it in.
Printing with cscaping is useful in writing cxpressions into files. Printing without escaping is
uscful when constructing messages for the user. However, when the purpose of a message printed
for the user is to mention an object, the object should be printed with escaping:

PSKLLMAN>RDPRT.TEXT.29 8-JUN-84

I isp Machine Manual 507 What the Printer Produces

Your output is in the file SYS: SYS; QCP1 QFASL.
Vs

Expected pathname properties missing from

#CcFS:LOGICAL-PATHNAME "SYS: SYS; QCP1 LISP">,

The printed representation of an object also may depend on whether Common Lisp syntax is
in use. Common Lisp syntax and traditional Zetalisp syntax arc incompatible in some aspects of
their specifications. In order to- print objects so that they can be read back in, the printer nceds
1o know which syntax rules the reader will use. 'This decision is based on the current rcadtable:
the value of *readtable* at the time printing is done.

Now we describe how cach. type of object is stundardly printed.

Intcgers:

For an integer (a fixnum or a bignum): the printed representation consists of
* a possible radix prefix
* a minus sign, if the number is ncgative
* the representation of the number’s absolute value
* a possible radix suffix.

The radix used for printing the number’s absolute value is found as the value of *print-
base*. This should be either a positive fixnum or a symbol with an si:princ-function property.
In the former case, the number is simply printed in that radix. In the latter case, the property is
called as a function with two arguments, minus the absolute value of the number, and the stream

to print on. The property is responsible for all printing. If the value of *print-base* is
unsuitable, an error is signaled.

A radix prefix or suffix is used if cither *nopoint is nil and the radix used is ten, or if
*nopoint is non-nil and *print-radix* is non-nil. For radix ten, a period is used as the suffix.
For any other radix, a prefix of the form #radixr is used. A radix prefix or suffix is useful to
make sure that read parses thc number using the same radix used to print it, or for reminding
the user how to interpret the number,

Ratios:

The printed representation of a ratio consists of
* a possible radix prefix
* a minus sign, if the number is negative
* the numerator
* a ratio delimiter

* the denominator

PS:<1.MAN>RDPRT.TEXT.29 8-JUN-84

What the Printer Produces 508 Lisp Machine Manual

If Common Lisp syntax is in use. the ratio delimiter is a slash (/). It traditional syntax is in
use, backslash (\) is used. The numerator and denominator are printed according to *print-
base*.

The condition for printing a radix prefix is the same as for intcgers, but a prefix #10r is
used to indicate radix ten, rather than a period suffix.

Floating Point Numbers:

* a minus sign. if the number is negative
* one or more decimal digits

* a decimal point

* onc or more decimal digits

* an cxponent, if the number is small enough or large cnough to require one. The exponent,
if present, consists of '

* a dclimiter, the letter e, s or f
* a minus sign, if the exponent is negative

one to three decimal digits

The number of digits printed is just enough to represent all the significant mantissa bits the
number has. Feeding the p.r. of a float back to the reader is always supposed to produce an
cqual float. Floats arc always printed in decimal; they are not affected by escaping or by *print-
base*, and there are never any radix prefixes or suffixes.

The Lisp Machine supports two floating point number formats. At any time, onec of them is
the default; this is controlled by the value of *read-default-float-format*. When a floating
point number whose format is nos currently the default is printed, it must be printed- with an
cxponent so that the exponent delimiter can specify the format. The exponent is introduced in
this case by f or s to specify the format. To the reader, f specifies single-float format and s
specifics short-float format.

A floating point number of the default format is printed with no exponent if this looks nice; -
namely, if this does not require too many extra zeros to be printed before or after the decimal
point. Otherwise, an cxponent is printed and is delimited with e. To the reader, e means ‘use
the default format’.

Normally the default float format is single-float. Therefore, the printer may print full size
floats without exponents or with e exponents, but short floats are always printed with cxponents
introduced by s so as to tell the rcader to make a short float.

PS:KL.MAN>RDPRT.TEXT.29 8-JUN-84

1isp Machine Manual 509 What the Printer Produces

Complex Numbers:

The traditional printed representation of a complex number consists of
* the real part
* a plus sign, if the imaginary part is positive
* the imaginary part

* the letter i, printed in fower case

If the imaginary part is negative, the + is omitted since the initial - of the imaginary part
serves to separate it from the real part. '

In Common Lisp syntax, a complex number is printed as #C(realpart imagpart); for
cxample, #C(5 3). Common Lisp inexplicably does not allow the more natural 5+ 3i syntax.

‘I'he real and imaginary parts arc printed individually according to the specifications above.

Symbols:

If escaping is off, the p.r. is simply the successive characters of the print-name of the symbol.
If escaping is on, two changes must be made. First, the symbol might require a package prefix
in order that read work correctly, assuming that the package into which read will read the
symbol is the onc in which it is being printed. Sce the chapter on packages (chapter 27, page
636) for an cxplanation of the package name prefix. If the symbol is one which would have
another symbol substituted for it if printed normally and rcad back, such as the symbol member
printed using Common Lisp syntax which would be replaced with cli:member if rcad in thus, it
is printed with a package prefix (c.g., global:member) to make it rcad in properly. Sce page 519
for more information on this. '

If the symbol is uninterned, #: is printed instcad of a package prefix, provided *print-
 gensym* is non-nil.

Secondly, if the p.r. would not read in as a symbol at all (that is, if the print-name looks like
a number, or contains special characters), then escape characters are added so as to suppress the
other rcading. Two kinds of escape characters may be used: single-character escapes and multiple
escapes. A single-character escape can be used in front of a character to overrule its special
syntactic meaning. Multiple escapes arc used in pairs, and all the characters between the pair
have their special syntactic meanings suppressed except single-character escapes. 1f the symbol
name contains cscape characters, they are escaped with single-character escapes. If the symbol
name contains anything elsc problematical, a pair of multiple escape characters arc printed around
it.

The single-character and multiple escape characters are determined by the current readtable.
Standardly the multiple cscape character is vertical bar ([), in both traditional and Common Lisp
syntax. The single-character escape character is slash (/) in traditional syntax and backslash (\) in
Common Lisp syntax.

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

What the Printer Produces 510 Lisp Machine Manual

FOO i typical symbol. name composed of upper case letters

A/|B ssymbol with a vertical bar in its name

[Symbol with Tower case and spaces in its name |

|One containing slash (//) and vertical bar (/]) also]

Except when multiple escape characters are printed. any upper case letters in the symbol’s
name may be printed as lower case. according to the value of the variable *print-case*. lhis is
true whether ‘escaping is enabled or not. See the next section for details,

Conses:

The pr. for conses tends w favor Zistss. It starts with an open-parenthesis. ‘Then the car of
the cons is printed and the cdr of the cons is examined. If it is nil. a close-parenthesis is printed.
If it is anything clse but a cons, space dot space followed by that object is printed. If it is a
cons, we print a space and start all over (from the point afier we printed the open-parenthesis)
using this new cons. Thus, a list is printed as an open-parenthesis, the p.r.’s of its clements
scparated by spaces, and a close-parenthesis. This is how the printer produces representations
such as (a b (foo bar) c) in preference o synonymous forms such as (a. (b. ((foo . (bar.

nil)) . (c . nil))).

The following additional feature is provided for the p.r. of conses: as a list is printed, print
maintins the length of the list so far and the depth of recursion of printing lists. If the length
exceeds the value of the variable *print-length*, print terminates the printed representation of
the list with an cllipsis (three periods) and a close-parenthesis. If the depth of recursion exceeds
the value of the variable *print-level*, then the character # is printed instcad of the list. These
two features allow a kind of abbreviated printing that is more concise and suppresses detail. Of
course, neither the cllipsis nor the # can be interpreted by read, since the relevant information is
lost. In Common Lisp rcad syntax, cither one causes read to signal an error.

If *print-pretty* is non-nil, conses are given to the grinder to print.

If *print-circle* is non-nil, a check is made for cars or cdrs that are circular or shared
structure, and any object (cxcept for an interned symbol) already mentioned is replaced by a #n#
label reference. Sec page 524 for more information on them.

(let ((*print-circle* t))
(prinl (circular-list 3 4)))
prints .
#1= (3 4 . #1#)

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 511 What the Printer Produces

Character Objects:

When cscaping is off. a character object is printed by printing the character itself, with no
delimiters.

In Common Lisp syntax, a character object is printed with escaping as #font\character-or
name. font is the character’s font number, in decimal, or is omitted if zero. character-or-name
begins with prefixes for any modifier bits (control, meta, ctc.) present in the character, cach
followed by a hyphen. ‘Fhen comes a representation of the character sans font and modifier bits.
If this reduced character is a graphic character, it represents itself. Otherwise, it certainly has a
standard name; the name is used. If a graphic characters has special syntactic propertics (such as
whitespace, paretheses. and macro characters) and modifier bit prefixes have been printed then a
single-character escape character is printed before it

In traditional syntax, the p.r. is the similar except that the \ is replaced by #/.

Strings:

If escaping is off, the p.r. is simply the successive characters of the string. 1f escaping is on,
double-quote characters (") arc printed surrounding the contents, and any single-character cscape
characters or double-quotes inside the contents are preceded by single-character escapes. If the
string contains a Return character followed by an open parenthesis, a single-character cscape is
printed before the open parenthesis. Examples:

"Foo"
"/"Foo/", he said."

Named Structures:

If the named structure type symbol has a named-structure-invoke property, the property is
called as a function with four arguments: the symbol :print-self, the named structure itself, the
stream to print on, and the current depth of list structure (see below). It is this function’s
responsibility to output a suitable printed representation to the stream. This allows a user to
define his own p.r. for his named structures; more information can be found in the named
structure scction (see page 390). Typically the printed representation used starts with either #< if
it is not supposed to be readable or #c (sec page 527) if it is supposcd to be readable.

If the named structure symbol does not have a named-structure-invoke property, the
printed-representation depends on whether escaping is in use. If it is, #s syntax is used:
#s (named-structure-symbol
component value
component value

o))

Named structure component values are checked for circular or shared structure if *print-circle* is
non-nil.

If escaping is off, the p.r. is like that used for miscellancous data-types: #<, the named
structure symbol, the numerical address of the structure, and .

PS:KL.MANDR DPRT.TEXT.29 8-JUN-84

What the Printer Produces 512 Lisp Machine Manual

Other Arrays:

~If *print-array* is non-nil, the array is printed in a way which shows the clements of the
array. Bit vectors use #* syntax, other vectors use #(...) syntax, and arrays of rank other than
onc usc #na(...) syntax. The printed representation does not indicate the array type (that is,
what clements it is allowed to contain). 1f the printed representation is read in, a general array
(array type art-q) is always crcated. Scc -page 523 for morc information on these syntaxes.
Examples:

(vector 1 2 5) => #(1 2 5)

(make-array ‘(2 4) :initial-element t) => #2a((t t t t) (t t t t))

Vector and array groupings count like list groupings in maintaining the depth value that is
compared with *print-level* for cutting off things that get to deep. More than *print-length*
clements in a given vector or array grouping level are cut off with an cllipsis just like a list that is
so long.

Array clements are checked for circular or shared structure if *print-circle* is non-nil.

If *print-array* is nil, the p.r. starts with #<. Then the art- symbol for the array type is
printed. Next the dimensions of the array arc printed, scparated by hyphens. This is followed by
a space, the machinc address of the array, and a >, as in #<ART-COMPLEX-FLOAT-3-6
34030451>.

Instances and Entities:

If the object says it can handle the :print-self message, that message is sent with three
arguments: the stream to print to, the current depth of list structure (see below), and whether
escaping is cnabled. The object should print a suitable p.r. on the stream. See chapter 21, page
401 for documentation on instances. Most such objects print like “any other data type” bclow,
cxcept with additional information such as a name. Some objects print only their name when
cscaping is not in cffect (when princ'ed). Some objects, including pathnames, use a printed
representation that begins with #c, ends with o, and contains sufficient information for the reader
to reconstruct an cquivalent object. See page 527. If the object cannot handle :print-self, it is
printed like “any other data type”.

Any Other Data Type:

The printed representation starts with #< and ends with >. This sort of printed representation
cannot be rcad back in. The #< is followed by the dtp- symbol for this datatype, a space, and
the octal machine address of the object. The object's name, if one can be determined, often
appears before the address. If this style of printed representation is being used for a named
structure or instance, other interesting information may appear as well. Finally a greater-than sign
(>) is printed in octal. Examples:

#'equal => #<DTP-U-ENTRY EQUAL 410>
-~ (value-cell-Tlocation nil) => #<DTP-LOCATIVE 1>

Including the machine address in the p.r. makes it possible to tell two objects of this kind
apart without cxplicitly calling eq on them. This can be very uscful during dcbugging. It is
important to know that if garbage collection is turncd on, objects will occasionally be moved, and

PS:KILMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 513 What the Printer Produces

therefore their octal machine addresses will be changed. F is best to shut off garbage collection
temporarily when depending on thesé nuinnbers.

Printed representations that start with *#< can never be read back. ‘This can be a problem if,
for example, you are printing a structure into a file with the intent of reading it in later. ‘The
following featurce allows you to make sure that what you are printing may indeed be read with the
reader, :

si:print-readably Variable
When si:print-readably is bound to t. the printer signals an crror if there is an attempt
to print an object that cannot be interpreted by read. When the printer sends a :print-
self or a :print message, it assumes that this error checking is done for it. ‘Thus it is
possible for these messages nor to signal an-error, if they see fit,

si:printing-random-object (object stream . keywords) &body body Macro
The vast majority of objects that define :print-self messages have much in common. This
macro is provided for convenience so that users do not have to write out that repetitious
code. It is also the preferred interface -to si:print-readably. With no keywords,
si:printing-random-object checks the value of si:print-readably and signals an error if it
is not nil. It then prints a number sign and a less-than sign, evaluates the forms in body,
then prints a space, the octal machine address of the object and a greater-than sign. A
typical use of this macro might look like:
(si:printing-random-object (ship stream :typep)

(tyo #\space stream)

(prinl (ship-name ship) stream))
This might print # <ship "ralph" 23655126).

The following keywords may be used to modify the behaviour of si:printing-random-object:

‘no-pointer This suppresses printing of the octal address of the object.

‘type This prints the result of (type-of object) after the less-than sign. In the example
above, this option could have been used instcad of the first two forms in the
" body.
sys:print-not-readable (error) Condition
This condition is signaled by si:print-readably when the object cannot be printed
readably.

The condition instance supports the operation :object, which returns the object that was
being printed.

If you want to control the printed representation of some object, usually the right way to do
it is to make the object an array that is a named structure (scc page 390), or an instance of a
flavor (sce chapter 21, page 401). However, occasionally it is desirable to get control over all
printing of objects, in order to change, in some way, how they are printed. If you need to do
this, the best way to proceed is to customize the behavior of si:print-object (sec page 543),
which is the main internal function of the printer. All of the printing functions, such as print
and princ, as well as format, go through this function. The way to customize it is by using the
“advice™ facility (sce section 30.10, page 742).

PS:KL.LMAN>RDPRT.TEXT.29 : 8-JUN-84 ™

Options that Control Printing 514 Lisp Machine Manual

23.2 Options that Control Printing

Several special variables are defined by the system for the user to sct or bind before calling
print or other printing functions. ‘Their values, as set up by the user. control how various kinds
of objects are printed.

print-escape ' Variable
Liscaping is done if this variable is non-nil. Sce the previous section for a description of
the many effects of escaping. Most of the output functions bind this variable to t or to
nil, so you rarcly usce the variable itself.

print-base Variable

base _ Variable
The radix to usc for printing integers and ratios. ‘The value must be cither an integer
from 2 to 36 or a symbol with a valid si:princ-function property, such as roman or
:english.

The default valuc of *print-base* is ten. In input from files, the Base attribute (see
section 25.5. page 594) controls the valuc of *print-base* (and of *read-base*).

The synonym base is from Maclisp.

print-radix Variable
' If non-nil, integers and ratios are output with a prefix or suffix indicating the radix used
to print them. For integers and radix ten. a period is printed as a suffix. Otherwise, a
prefix such as #x or #3r is printed. The default value of *print-radix® is nil.

*nopoint Variable
If the valuc of *nopoint is nil, a trailing decimal point is printed when a fixnum is
printed out in basc 10. This allows thc numbers to be read back in correctly even if
read-base is not 10 at the time of rcading. The default value of *nopoint is t
*nopoint has no cflect if *print-radix* is non-nil.

*nopoint cxists for Maclisp compatibility. But to get truly compatible behavior, you must
set *nopoint to nil (and, by default, base and ibase to cight).

print-circle Variable
If non-nil, the printer recognizes circular and shared structurc and prints it using #n=
labels so that it has a finite printed representation (which can be read back in). The
default is nil, since t makes printing slower. Sce page 524 for information on the #n=
construct.

print-pretty Variable
If non-nil, the printer actually calls grind-top-level so that it prints extra whitcspace for
the sake of formatting. The default is nil.

PS:<KL.MAN>RDPRT.TEXT.29 8-JUN-84

[isp Machine Manual 515 Options that Control Printing

print-gensym® ' Variable
If non-pil. uninterned symbols are printed with the prefix #: to mark them as such (but
only when *print-escape* is non-nil). ‘I'he prefix causes the reader to construct a similar
uninterned symbol when the expression is read. If nil. no prefix is used for uninterned
symbols. The default is t. ‘

print-array ' Variable
~If non-nil, non-string arrays arc printed using the #(...), #* or #na(...) syntax so that you
can see their contents (and so that they can be read back in). If nil, such arrays are
printed using #<..> syntax and do not show their contents. ‘The default is nil. The
printing of strings is not affected by this variable.

*print-case® : Variable
Controls the case used for printing upper-case letters in the names of symbols. Its value
should be :upcase, :downcase or :capitalize. 'These mean, respectively, to print those
letters as upper case, to print them as lower case, or to capitalize cach word (sce string-
capitalize, page 213). Any lower case letters in the symbol name are printed as lower
case and escaped suitably; this flag does not affect them. Note that the case used for
printing the upper case letters has no effect on reading the symbols back in, since they
arc casc-converted by read. Any upper case letters that happen to be escaped are always
printed in upper case.

(dolist (*print-case» '(:upcase :downcase :capitalize))
(prinl-then-space 'foo)
(prinl-then-space '|Foo]))
prints FOO |Foo| foo |Foo| Foo |Foo] .

print-level® Variable
prinlevel , Variable
print-level can be set to the maximum number of ncsted lists that can be printed
before the printer gives up and just prints-a # instcad of a list clement. If it is nil,
which it is initially, any number of nested lists can be printed. Otherwise, the value of
print-level must be a fixnum. Example:
(let ((*print-levels 2))
(prinl *(a (b (c (d e))))))
prints (a (b #)).

The synonym prinlevel is from Maclisp.

print-length ‘ _ Variable
prinlength Variable
print-length can bc sct to the maximum number of eclements of a list that can be
printed before the printer gives up and prints an ellipsis (three periods). If it is nil,
which it is initially, any length list may be printed. Example:
‘(let ((*print-lengths 3))
(prinl *((a b cd) #e f g h) (i jk 1) (mn op))))
prints (abc..) #efg.)(jk.)..)

PS:KILMAN>RDPRT.TEXT.29 8-JUN-84

What The Reader Aceepts 510 : Lisp Machine Manual

‘The synonyin prinlength is from Maclisp.

23.3 What The Reader Accepts

The purpose of the reader is to accept characters, interpret them as the p.r. of a Lisp object,
and create and return such an object. The reader cannot accept .everything that the printer
produces: for example, the p.r.’s of compiled code objects, closures. stack groups, ctc., cannot be
rcad in. However, it has many features that are not scen in the printer at all. such as more
flexibility, comments. and convenient abbreviations for frequently-used unwieldy constructs.

This section shows what kind of p.r’s the reader understands, and cxplains the readtable,
reader macros, and various features provided by read.

The syntax specified for Common Lisp is incompatible with the traditional Zetalisp syntax.
Therefore, the Lisp Machine supports both traditional and Common Lisp syntax, but read must
be told in advance which one to use. This is controlled by the choice of readwable (see section
23.6. page 535). When reading input from a file, the Lisp system chooses the syntax according to
the file’s attribute list: Common Lisp syntax is uscd if the Common Lisp attribute is present (see
section 25.5, page 594).

The main difference between traditional and Common Lisp syntax is that traditionally the
single-character escape is slash (/), whercas in Common Lisp syntax it is backslash (\). Thus, the
division function which in traditional syntax is written // is written just / in Common Lisp
syntax. The other differences are obscure and arc mentioned below where they occur.

In general, the reader operates by recognizing tokens in the input stream. Tokens can be self-
delimiting or can be scparated by delimiters such as whitespace. A token is the p.r. of an atomic
object such as a symbol or number, or a special character such as a parenthesis. The reader reads
onc or more tokens until the complete p.r. of an object has been scen, then constructs and
returns that object.

Escape characters can be used to suppress the special syntactic significance of any character,
including :, Space, (or ". There are two kinds of escape character: the single-character escape
(/ in traditional syntax, \ in Common Lisp syntax) suppresses the significance of the immediately
following character; multiple escapes (vertical bar, |) arc used in pairs, and suppress the special
significance of all the characters except escapes between the pair. Escaping a character causes it to
be treated as a token constituent and causcs the token containing it to be read as a symbol. For
cxample, (12 5 x) represents a list of three clements, two of which are integers, but (/12 5/ x)
or (|15| |5 X|) represents a list of two elements, both symbols. Escaping also prevents conversion
of letters to upper case, so that |x| is the symbol whose print name contains a lower-case x.

The circle-cross (@) character an octal escape character which may be uscful for including
weird characters in the input. The next three characters are recad and interpreted as an octal
number, and the character whose code is that number replaces the circle-cross and the digits in
the input strcam. This character is always treated as a token constituent and forces the token to
be read as a symbol. e is allowed in both traditional and Common Lisp syntax, but it is not
valid Common Lisp. '

PS:KKLLMANDRDPRT.TEXT.29 : 8-JUN-84

L isp Machine Manual 517 What The Reader Aceepts

Integers:

‘The reader understands the p.r’s of integers in a way more general than is employed by the
printer. Here is a complete description of the format for integers.

Let a simple integer be a string of digits, optionally preceded by a plus sigh or a minus sign,
and optionally followed by a trailing decimal point. A simple integer is interpreted by read as an
integer. 1f the trailing decimal point is present, the digits are interpreted in decimal radix:
otherwise, they are considered as a number whose radix is the value of the variable *read-base*.

read-base Variable

ibase Variable
The value of ibase or *read-base* is an integer between 2 and 36 that is the radix in
which integers and ratios are read. ‘The initial value of is ten. For input from files or
cditor buffers, the Base attribute specifies the value to be used (see section 25.5, page
594). if it is not given, the ambient value is used.

The synonym ibase is from Maclisp.

If the input radix is greater than ten, letters starting with a are used as additional “digits”
with values ten and above. For example, in radix 16, the letters a through f are digits with
values ten through 15. Alphabetic casc is not significant. ‘These additional digits can be used
wherever a simple integer is expected and are parsed using the current input radix. For cxample,
if *read-base* is 16 then ff is rccognized as an integer (255 decimal). So is 10e5, which is a
float when *read-base* is ten.

Traditional syntax also permits a simple integer, followed by an underscore (_) or a circumflex
(~), followed by another simple integer. The two simple integers arc interpreted in the usual
way; the character in between indicates an operation that is then performed on the two integers.
The underscore indicates a binary “left shift”; that is, the integer to its left is doubled the
number of times indicated by the integer to its right. The circumflex multiplies the integer to its
left by *read-base* thc number of times indicated by the integer to its right. (The second
simple integer is not allowed to have a leading minus sign.) Examples: 3_2 means 12 and 645~3
means 645000,

Here are some examples of valid representations of intcgers to be given to read:

4
23456,

-546

+45~46 ;means 45000000

2_11 ;4096
72361356126536125376512375126535123712635
-123456789.

105_1000 ;{(ash 105 1000) has this value.
105_1000.

PS:KLMAN>RDPRT.TEXT.29 8-JUN-84

What The Reader Aceepts 518 Lisp Machine Manual

Floating Point Numbers:

IMoats can be written with or without exponent. The syntax for a float without cxponent is an
optional plus or minus sign. optionally some digits, a decimal point. and one or more digits. A
float with exponent consists of a simple integer or a float without exponent, followed by an
exponent delimiter (a letter) and a simple integer (the exponent itself) which is the power of ten
by which the number is to be scaled. The exponent may not have a trailing decimal point. Both
the mantissa and the exponent are always interpreted in base ten, regardless of the value of
read-base”.

Only certain letters are allowed for delimiting the exponent: e, s, f, d and 1. The case of
the lTetter is not significant. s specifics that the number should be a short float: f, that it should
be a full-size float. d or | are equivalent to f: Common Lisp defines them to mcan ‘double float’
or ‘long float’, but the Lisp Machine does not support anything longer than a full-size float, so it
regards d and | as synonymous with f. e tclls the reader to use the current default format,
whatever it may be, as specified by the value of *read-default-float-format*. ‘

*read-default-float-format® Variable
The value is the type for read to produce by default for floats whose precise type is not
specified by the syntax. 'The value should be cither globak:small-float or global:single-
float, these being the only distinct floating formats that the Lisp Machine has. The
default is single-float, to make full-size floats.

Here are some examples of printed-representations that always read as full-size floats:

6.03f23 1F-9 1.3 3d6

Here are some examples of printed-representations that always read as short floats:
0s0- 1.5s9 -4253 1.s6 :

These read as floats or as a short floats according to *read-default-float-format*:
0.0 1.5 14.0 0.01
.707 -.3 +3.14159 6.03e23
1E-9 1.e3

Rationals:

The syntax for a rational is an integer, a ratio delimiter, and another integer. The integers
may not include the ~ and _ scaling characters or decimal points, and only the first one may
have a sign. The ratio delimiter is backslash (\) in traditional syntax, slash (/) in Common Lisp
syntax. Here are examples: A

1\2 -100000000000000\3 80\10 traditional
172 -100000000000000/3 80710 Common Lisp
Recall that rationals include the integers; 80\10 as input to the rcader is equivalent to 8.

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 519 What The Reader Aceepts

Complex Numbers:

The traditional syntax for a complex number is a number (for the real part), a sign (+ or -),
an unsigned number (for the imaginary. part), and the letter i. ‘The real and imaginary parts can
be any type of number, but they are converted to be of the same type (both floating of the same
format, or both rational). Tor example:

1-3\4i
1.2s0+3.45s8i

‘The Common Lisp syntax for a complex number is #c(real imag). where real is the real
part and imag is the imaginary part. ‘This construction is allowed in traditional syntax too.
#c(1 -3/4)
#c(1.2s0 3.45s8)

Symbols:

A string of letters, numbers, and characters without special syntactic meaning is recognized by
the reader as a symbol, provided it cannot be interpreted as a number. Alphabetic case is
ignored in symbols; lower-case letters are translated to upper-case unless escaped. When the
reader sces the pr. of a symbol, it inrerns it on a package (sce chapter 27, page 636, for an
explanation of interning and the package system). Symbols may start with digits; you could even
have onc named -345t; read accepts this as a symbol without complaint. If you want to put
strange characters (such as lower-casc letters, parentheses, or rcader macro characters) inside the
name of a symbol, they must be escaped. If the symbol's name would look like a number, at
least one character in the name must be cscaped, but it matters not which one.

Examples of symbols:

foo

bar/(baz/) ; traditional
bar\(baz\) ; Common Lisp
34w23

|Frob Sale| and Firob |S|ale]| areequivalent

la/|b] ; traditional
|a\|b] ; Common Lisp

In Common Lisp syntax, a symbol composed only of two or more periods is not allowed
unless escaping is used.

The reader can be directed to perform substitutions on the symbols it reads. Symbol
substitutions are used to implement the incompatible Common Lisp dcfinitions of various system
functions. Rcading of Common Lisp code is done with substitutions that replace subst with
cli:subst, member with climember, and so on. This is why, when a-Common Lisp program
uses the function member, it gets the standard Common Lisp member function rather than the
traditional one. 'This is why we say that climember is “thc Common Lisp version of member”.
While cli:member can be referred to from any program in just that way, it exists primarily to be
referred to from a Common Lisp program which says simply member.

PS:KL.MAN>RDPRT.TEXT.29 8-JUN-84

What The Reader Aceepts 520 Lisp Machine Manual

Symbol substitutions do not apply to symbols written with package prefixes, “so one can use a
package prefix to force a reference to a symbol that is normally substituted for, such as using
global:member in a Common Lisp program.

Strings:

Strings arc written with double-quote characters (") before and after the string contents. ‘To
include a double-quote character or single-character escape character in the contents. write an
extra single-character escape character in front of it
Examples of strings:

"This is a typical string."

"That is a /"cons cell/"." 1: traditional

"That is a \"cons cell\"." > Common Lisp
"Strings are often used for 1//0." 1 traditional
"Strings are often used for 1/0." ;2 Common Lisp
"Here comes one backslash: \\" ;» Common Lisp

Conses:

When read sces an open-parenthesis, it knows that the p.r. of a cons is coming, and calls
itself recursively to get the clements of the cons or the list that follows. The following are valid
p.r.’s of conses:

(foo . bar)

(foo "bar" 33)

(foo . ("bar” . (33 . nil)))

(foo bar . quux)
The first is a cons, whose car and cdr arc both symbols. The sccond is a list, and the third is
cquivalent to the second (although print would never produce it). The fourth is a dotted list; the
cdr of the last cons cell (the sccond one) is not nil, but quux.

The reader always allocates new cons cells to represent parentheses. They are never shared
with other structure, not cven part of the same read. For example,
(let ((x (read)))
(eq (car x) (cdr x)))
((ab) . (ab)) : ;; data for read
=> nil .
because cach time (a b) is read, a new list is constructed. This contrasts with the case for
symbols, as very often read returns symbols that it found interned in the package rather than
creating new symbols itsclf. Symbols arc the only thing that work this way. '

The dot that separates the two clements of a dotted-pair p.r. for a cons is only recognized if
it is surrounded by delimiters (typically spaces). Thus dot may be freely used within print-names
of symbols and within numbers. This is not compatible with Maclisp; in Maclisp (a.b) reads as a
cons of symbols a and b, whereas in Zetalisp it reads as a list of a symbol a.b.

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 521 What The Reader Aceepts

Comments:

A comment begins with a semicolon (;) and continues to the end of the line. Comments are
ignored completely by the reader. If the semicolon is escaped or inside a string. it is not
recognized as starting a comment; it is part of a symbol or part of the string.

;: This is a comment.
"This is a string; but no comment."

Another way to write a comment is to start it with #] and end it with |#. This is useful for
commenting out multiple-line scgments of code. The two delimiters nest. so that #] #| |# |#
is a single comment. This prevents surprising results if you use this construct to comment out
code which already contains such a comment.

(cond ((atom x) y)
#
((foo x)
(do-it y))
| #
(t (hack y)))

Abbreviations;

The single-quote character (') is an abbreviation for a list starting with the symbol quote.
The following pairs of p.r.’s produce equal lists:
'a and (quote a)
"(x (y)) and (quote (x (y)))

The backquote character (*) and comma are used in a syntax that abbreviates calls to the list
and vector construction functions. For example,
‘(a ,b c) .
reads as a list whose meaning as a Lisp form is equivalent to
(1ist 'a b 'c)
See section 18.2.2, page 325 for full details about backquote.

23.3.1 Sharp-sign Constructs

Sharp-sign (#) is used to introduce syntax cxtensions. It is the beginning of a two-character
scquence whose meaning depends on the second character. Sharp-sign is only recognized with a
special meaning if it occurs at the beginning of a token. If encountered while a token is in
progress, it is a symbol constituent. For cxample, #xff is a sharp-sign construct that interprets
ff as a hexidecimal number, but 1#xff is just a symbol.

If the sharp-sign is followed by decimal digits, the digits form a parameter. The first non-
digit dctermincs which sharp-sign construct is actually in use, and the decimal integer parsed from
the digits is passed to it. For cxample, #r means “rcad in specified radix”; it must actually be
used with a radix notated in decimal between the # and the r, as in #8r.

PS:KILMAN>RDPRT.TEXT.29 8-JUN-84

What The Reader Aceepts 522 Lisp Machine Manual

It is possible for a sharp-sign construct to have different meanings in Common Lisp and

traditional syntax. ‘The only constructs which differ are #\ and #/.

‘The function set-dispatch-macro-character (scc page 541) can be used to define additional

sharp sign abbreviations.

#/

Here are the currently-defined sharp sign constructs:

#/7 is uscd in traditional syntax only to represent the number that is the character code
for a character. You can follow the #/ with the character itself, or with the character’s
name. ‘The name is preferable for nonprinting characters, and it is the only way to
represent characters which have control bits since they cannot go in files. Here are
cxamples of #/:

#/a #0141

#/A #0101

#/(#050

#/c-a the character code for Control-A
#/c-/a the character code for Control-a
#/c-sh-a the character code for Control-a
#/c-/A the character code for Control-A
#rc-/(the character code for Control-(
#/return the character code for Return

#/h-m-system the character code for Hyper-Meta-System

To represent a printing character, write #/x where x is the character. For cxample, #/a
is cquivalent to #0141 but clearer in its intent. To avoid ambiguity, the character
following x should not be a letter; good style would require this anyway.

As in strings, upper and lower-case letters arc distinguished after #/. Any character
works after #/, cven those that arc normally special to read, such as parenthescs. Thus,
#/A is cquivalent to #0101, and #/(is cquivalent to # 050. Note that the slash causes
this construct to be parsed correctly by the editors Emacs and Zmacs. Even non-printing
characters may be used, but for them it is preferable to use the character’s name.

To refer to a character by name, writc #/ followed by the name. For example, #/return
reads as the numecric code for the characier Return. The defined character names are
documented below (sec scction 10.1.6, page 211). In general, the names that are written
on the keyboard keys are accepted. In addition, all the nonalphanumeric characters have
names. The abbreviations cr for return and sp for space are accepted, since these
characters arc used so frequently. The page separator character is called page, although
form and clear-screen arc also accepted since the keyboard has onc of thosc legends on
the page key. The rules for reading name arc the same as thosc for symbols; thus letters
arc converted to upper case unless cscaped, and the name must be terminated by a
delimiter such as a space, a carriage return, or a parcnthesis.

When the system types out the name of a spccial character, it uses the same table that
#/ uscs; therefore, any character name typed out is acceptable as input.

PS:KLLMAN>RDPRT.TEXT.29) 8-JUN-84

Lisp Machine Manual

#\

#=/

#(

#a

What The Reader Aceepts

L9,]
3"}
)

#/ can also be used to read in the names of characters that have modifier bits (Control,
Meta, Super and Hyper). ‘The syntax looks like #/control -meta-b to get a *B' character
with the control and meta bits set, You can use any of the prefix bit names control,
meta. hyper. and super. They may be in any order, and casc is not significant. Prefix
bit names can be abbreviated as the single letters ¢. m. h and s. and control may be
spelled ctrl as it is on the keyboard. The last hyphen may be followed by a single
character or by any of the special character names normally recognized by #/. A single

«character is treated the same way the reader normally treats characters in symbols; if you

want 1o use a lower-case character or a special character such as a parenthesis. you must
precede it by a slash character. Examples: #/Hyper-Super-A, #/meta-hyper-roman-i,
#/CTRL-META- /(.

An obsolete method of specifying control bits in a character is to insert the characters a,
B. €. @ and A between the # and the /. Those stand for control, meta, control-meta.
super and hyper, respectively. This syntax should be converted to the new #\control-
meta-x syntax described below.

greek (or front), top. and shift (or sh) arc also allowed as prefixes of names. Thus,
#/top-g is cquivalent to #/t or #/uparrow. #/top-g should be used if you are
specifying the keyboard commands of a program and the mnemonic significance belongs to
the “G’ rather than to the actual character code.

In traditional syntax, #\ is a synonym for #/. In the past, #/ had to be used before a
single character and #\ had to be used in all other cases. Now either one is allowed in

cither case.

In Common Lisp syntax, #\ produces a character object rather than a fixnum representing
a character.

##/x is the traditional syntax way to produce a character object. It is used just like #/.
Thus, Common Lisp #\ is cquivalent to traditional syntax #=/,

#~x is exactly like #/control-x if the input is being read by Zetalisp; it generates
Control-x. In Maclisp x is converted to upper case and then exclusive-or'ed with 100
(octal). Thus #~x always gencrates the character returned by tyi if the user holds down
the control key and types x. (In Maclisp #/control-x scts the bit set by the Control key
when the TTY is open in fixnum mode.)

#'foo is an abbreviation for (function foo). foo is the pr. of any object. This
abbreviation can be remembered by analogy with the ' macro-character, since the function
and quote special forms arc somewhat analogous.

#(elements...) constructs a vector (rank-one array) of type art-q with clements
elements. The length of the vector is the number of clements written. Thus, #(a 5
"Foo") reads as a vector containing a symbol, an integer and a string. If a decimal
integer appears after the #, it specifies the length of the vector. The last clement written
is replicated to fill the remaining elements.

#na contents significs an array of rank n, containing contents. contents is passed to
make-array as the initial-contents argument. It is a list of lists of lists... or vector of
vectors... as deep as n. The dimensions of the array are specified by the lengths of the
lists or vectors. The rank is specified cxplicitly so that the rcader can distinguish whether

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

What The Reader Accepts 524 Fisp Machine Manual

a list or vector in- the contents is a sequence of array clements or a single array clement.
The array type is always art-q.
I-xamples:
#2a ((x y) (a b) ((uu 3) "W"))
produces a 3 by 2 array. (uu 3) is one of the elements.
#2a ("foo" "bar") '
producces a 2 by 3 array whose clements are character objects. Recall that a string is a
kind of vector. : '
#0a 5
produces a rank-0 array whose sole clement is 5.

E #xhbb . . . signifies a bit vector; bbb... are the bits (characters 1 or 0). A vector of type
art-1b is created and filled with the specified bits, the first bit specified going in array
clement 0. "The length is however many bits you specify. Alternatively, specify the length
with a decimal number between the # and the *. The last 1 or 0 specified is duplicated
to fill the additional bits. Thus, #8*0101 is the same as #*x01011111,

#s #s (1ype slot value slot value slot value ...) constructs a structurc of type fype. Any
structure type defined with defstruct can be used as ype provided it has a standard
constructor taking slot values as keyword arguments. (Standard constructors can be
functions or macros; cither kind works for #s.) The slot names and values appearing in
the read syntax are passed to the constructor so that they initialize the structure.
Example:

(defstruct {foo :named)
bar
lose)
#s (foo :bar 5 :lose haha)
producces a foo whose bar component is 5 and whose lose component is haha.

Arc uscd to represent circular structure or shared structure. #n= preceding an object
“labels™ that object with the label n, a decimal integer. This has no effect on the way
the object labeled is read, but it makes the label available for use in a #n# construct
within that object (to create circular structurc) or later on (to create shared structure).
#n# counts as an object in itself, and recads as the object labeled by n.

For cxample, #1=(a . #1#) is a way of notating a circular list such as would be
produced by (circular-list 'a). The list is labeled with label 1, and then its cdr is given
as a rcference to label 1. (#1=#:foo0 #1#) is an cxample of shared structure. An
uninterned symbol named foo is used as the first clement of the list, and labeled. The
second clement of the list is the very same uninterned symbol, by virtue of a reference to
the label.

Printing outputs #n= and #n# to represent circular or shared structurc when *print-circle
is non-nil.

#, Evaluate a form at load time. #, foo cvaluates foo (the p.r. of a Lisp form) at rcad time,
except that during file-to-file compilation it is arranged that foo will be evaluated when the
QFASL file is loaded. This is a way, for example, to include in your code complex list-
structure constants that cannot be written with quote. Note that the reader does not put
quote around the result of the evaluation. You must do this yourself if you want it,

PSKL.MAN>RDPRT.TEXT.29 8-JUN-84

Iisp Machine Manual 525 What The Reader Accepts

#0

#b
#x

#r

#c

typically by using the * macro-character. An example of a case where you do not want
quote around it is when this-obgect 15 an clement of a constant list,

#. Joo evaluates foo (the pr. of a lisp form) at read time, regardless of who is doing the
reading.
#'0s a construct for repeating an expression with some subexpressions varying, It is an
abbreviation for writing several similar expressions or for the use of mapc. Each
subexpression that is to- be varied is written as a comma followed by a list of the things
to substitute. The expression is expanded at read time into a progn containing the
individual versions. .

#'(send stream ',(:clear-input :clear-output))
cxpands into

(progn (send stream :clear-input)

(send stream :clear-output))

Multiple repetitions can be done in parallel by using commas in several subexpressions:
#'(rename-file ,("foo" "bar") ,("ofoo" "obar"))
cxpands into
(progn (rename-file "foo" "ofoo")
(rename-file "bar" "obar"))

If you want to do multiple independent repetitions, you ‘must use nested #' constructs.
Individual commas inside the inner #° apply to that #'; they vary at maximum specd.
To specify a subexpression that varies in the outer #', usc two commas.
(print (+ (5 7) ,,(11. 13.)))
expands into
(progn (progn (print (* 5 11.)) (print (* 7 11.)))
(progn (print (= 5 13.)) (print (= 7 13.)))

#0 number rcads number in octal regardless of the setting of *read-base*. Actually, any
expression can be prefixed by #o; it is read with *read-base* bound to 8.

Like #o but reads in binary.

Like #x but reads in radix 16 (hexadecimal). The letters a through f are used as the
digits beyond 9.

#radixr number reads number in radix radix regardless of the setting of *read-base*. As
with #o, any expression can be prefixed by #radixr: it is read with *read-base* bound
to radix. radix must be a valid decimal integer between 2 and 36.

For cxample, #3r102 is another way of writing 11. and #11r32 is another way of
writing 35. Bascs larger than ten use the letters starting with a as the additional digits.

#c(real imag) constructs a complex number with real part real and imaginary part. It is
equivalent to real + imagi, ecxcept that #c is allowed in Common Lisp syntax and the
other is not. ,

This abbreviation provides a read-time conditionalization facility. 1t is used as #+fearure

Jorm. 1f feature is a symbol, then this is read as Jorm if feature is present in the list
features (sce page 803). Otherwise, the construct is regarded as whitespace.

PS:KLMAN>RDPRT.TEXT.29 8-JUN-84

What The Reader Aceepts 526 Lisp Machine Manual

Alternately, feature may be a boolean expression composed of and, or. and not operators
and symbols representing items that may appear on *features*. ‘Thus. #+(or lispm
amber) causes the following object to be seen if cither of the features lispm or amber is
present.

For cxample, #+lispm form makes form count if being read by Zetalisp, and is thus
cquivalent to #q form. Similarly, #+maclisp form is cquivalent to #m form. #+(or lispm
nil) form makes form count on cither Zetalisp or in NIL.

Here is a list of features with standard meanings:

lispm This feature is present on any lisp machine (no matter what version of
hardware or softwarc).

maclisp This feature is present in Maclisp.

nil This feature is present in NII. (New Implementation of Lisp).

mit This featurc is present in the MIT Lisp machine system, which is what

this manual is about,

symbolics ‘T'his feature is present in the Symbolics version of the Lisp machine
system. May you be spared the dishonor of using it.

#+. and the other rcad-time conditionalization constructs that follow, discard the following
expression by reading it with *read-suppress® bound to t if the specified condition is
false.

#- #-feature form is cquivalent to #+(not feature) form.

#q #q foo reads as foo if the input is being read by Zetalisp, ‘otherwise it reads as nothing
(whitespace). This is considered obsolete; use #+lispm instead.

#m #m foo teads as foo if the input is being read into Maclisp, otherwise it reads as nothing
(whitespace). This is considered obsolete; use #+maclisp instead.

#n #n foo reads as foo if the input is being read into NIL or compiled to run in NIL,
otherwise it reads as nothing (white space). This is considered obsolete; use #+nil instead.

#¢ #¢ introduces an expression in infix notation. ¢ should be used to terminate it. The text
in between describes a Lisp object such as a symbol, number or list but using a
nonstandard, infix-oriented syntax. For cxample,

#ox:y+car(al[i,jl)¢
is equivalent to
(setq x (+ y (car (aref al i j))))

It is not strictly true that the Lisp object produced in this way has to be an expression.
Since the conversion is done at read time, you can use a list expressed this way for any
purpose. But the infix syntax is designed to be uscd for expressions.

For full details, refer to the file SYS: 101; INFIX LISP.

#< This is not legal rcader syntax. It is used in the p.r. of objects that cannot be read back
in. Attempting to rcad a #< signals an crror.

PS:<L.MAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 527 Expression Output Functions

#c

#|

This is used in the pr. of miscellancous objects (usually named structures or instances)
that can be read back in. #c should be followed by a typename and any other data
nceded to construct an object, terminated with a o. For example, a pathname might
print as ‘
#CFS:ITS-PATHNAME "AI: RMS: TEST 5">

The typename is a keyword that read uscs (o figure out how to read in the rest of the
printed representation and construct the object. It is read in in package user (but it can
contain a package prefix). The resulting symbol should cither have a si:read-instance
property or be the name of a flavor (hat handles the :read-instance opcration.

In the first case, ‘the property is applied as a function to the typename symbol itself and
the input stream. In the sccond. the handler for that operation is applied to the
operation name (as always). the typename symbol, and the input strcam (three arguments,
but the first is implicit and not mentioned in the defmethod). self will be nil and
instance variables should not be referred to. si:print-readably-mixin is a useful
implementation the :read-instance operation for general purposes; sce page 446.

In cither case, the handler function should read the remaining data from the stream, and
construct and return the datum it describes. It should return with the > character waiting
to be read from the input stream (untyi it if neccessary). read signals an error after it is
returned to if a o character is not next.

The typename can be any symbol with an appropriate property or flavor, not necessarily

related to the type of object that is created; but for clarity, it is good if it is the same as

the type-of of the object printed. Since the type symbol is passed to the handler, one
flavor's handler can be inherited by many other flavors and can examine the type symbol
read in to decide what flavor to construct.

#| is used to comment out entire picces of code. Such a comment begins with #| and
ends with |#. The text in between should be one or more properly balanced p.r.’s of
Lisp objects, possibly including nested #|...|# comments. This text is skipped over by
the reader, and does not contribute to the value returned by read.

23.4 Expression Output Functions

These functions all take an optional argument called stream, which is where to send the

output. If unsupplicd stream defaults to the value of *standard-output*. If stream is nil, the
value of *standard-output* (i.c. the default) is used. If it is t, the value of *terminal-io* is
used (i.c. the interactive terminal). This is all more-or-less compatible with Maclisp, except that
instcad of the variable *standard-output* Maclisp has several variables and complicated rules.
For detailed documentation of streams, refer to section 22.3, page 459.

prinl object &optional stream

Outputs the printed representation of object to stream, with escaping (sece page 506).
object is returned.

PS:KLLMAN>RDPRT.TEXT.29 | 8-JUN-84

Expression Output Functions 528 1isp Machine Manual

prini-

print

princ

write

234.1

then-space objecr &optional stream
Like print ‘except that output is iotfowed by a space.

object &optional stream
like print cxcept that output is plcwdcd by a carriage return and Iolluwad by a space.

object is returned.

object &optional stream
like prin1 cxcept that the output is not escaped. object is returned.

object &key stream escape radix base circle pretty level length case gensym array
Prints object on stream. having bound all the printing flags according to the keyword
arguments if specified. For example. the keyword argument array specifies how to bind
print-array; if array is omitied. the ambient value of *print-array* is used. 'This
function is sometimes cleaner than binding a printing control variable explicitly. The value
is object.

Pretty-Printing Output Functions

pprint object &optional stream

pprint is like print cxcept that *print-pretty* is bound to t so that the grinder is used.
pprint returns zero values, just as the form (values) does.

grindef function-spec... Macro

Prints the definitions of one or more functions, with indentation to make the code
rcadable. Certain other “pretty-printing” transformations are performed: The quote
special form is represented with the ’ character. Displacing macros are printed as the
original code rather than the result of macro expansion. The code resulting from the
backquote (*) reader macro is represented in terms of °.

The subforms to grindef are the function specs whose definitions ar¢ to be printed; the
usual way grindef is used is with a form like (grindef foo) to print the definition of foo.
When onc of these subforms is a symbol, if the symbol has a value its value is prettily
printed also. Definitions arc printed as defun special forms, and valucs are printed as
setq special forms.

If a function is compiled, grindef says so and tries to find its previous interpreted
definition by looking on an associated property list (scc uncompile (page 301). This
works only if the function's interpreted definition was once in force; if the definition of
the function was simply loaded from a QFASL file, grindef cannot not find the
interpreted definition.

With no subforms, grindef assumes the same arguments as when it was last called.

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 529 Expression Output Functions

grind-top-level obj &optional widih (stream *standard-output*) (uniyo-p nit)

(displaced 'si:displaced) (terpri-pt) notifi-fun loc
Pretty-prints obj on steam. putting up to width characters per line. "This is the primitive
interface 10 the pretty-printer. Note that it does not support variable-width fonts. If the
width argument is supplicd, it is how many characters wide the output is to be. I width
is unsupplicd or nil, grind-top-level trics to figure out the natural width of the stream,
by sending a :size-in-characters message to the stream and using the first returned
value. If the stream doesn’t handle that message, a width of 95. characters is used
instcad.

The remaining optional arguments activate various strange features and usually should not
be supplied. ‘These options are for internal use by the system and are documented here
for only completeness. If uniyo-p is t. the :untyo and :untyo-mark operations are be
used on stream, speeding up the algorithm somewhat. displaced controls the checking for
displacing macros; it is the symbol which flags a place that has been displaced, or nil to
disable the feature. If rerpri-p is nil,” grind-top-level does not advance to a fresh line.
before printing. ’

If notify-fun is non-nil, it should be a function that to be called with three arguments for
cach “token™ in the pretty-printed output. Tokens are atoms, open and close parentheses,
and reader macro characters such as ’. The arguments given to notify-fun are the token,
its “location™ (see next paragraph), and t if it is an atom or nil if it is a character.

loc is the “location™ (typically a cons) whose car is obj. As the grinder recursively
descends through the structure being printed, it keeps track of the location where each

- thing came from, for the benefit of the motify-fun. This makes it possible for a program
to corrclatc the printed output with the list structure. The “location” of a close
parenthesis is t, becausc closc parentheses have no associated location.

23.4.2 Non-Stream Printing Functions

write-to-string object &key escape radix base circle pretty level length case gensym
array ‘
prinl-to-string object
princ-to-string object _
Like write, prin1 and princ, respectively, but put the output in a string and return the

string (sce page 528).
Sce also the with-output-to-string special form (page 474).

‘ The following obsolete functions are for Maclisp compatibility only. The ecxamples use
traditional syntax.

exploden object

Returns a list of characters (represented as fixnums) that arc the characters that would be
typed out by (princ object) (i.c. the unescaped printed representation of object).

PS:<I.LMAN>RDPRT.TEXT.29 8-JUN-84

Lxpression Input Functions 530 ' Lisp Machine Manual

Example:
(exploden ‘(+ /12 3)) => #0(50 53 40 61 62 40 63 51)

explodec oubject
Returns a list of characters represented by symbols, interned in the current package,
whose names are the characters that would be typed out by (princ object) (ic. the
unescaped printed representation of object).
Example: ' :
(explodec '(+ /12 3)) => ([(| + | | 11p 121 | 1 131 D)
(Note that there are escaped spaces in the above list.)

explode object
like explodec but uscs the escaped printed representation,
Ixample:
(explode "(+ /12 3)) => ([(| + | | /7 111 121 | 1 131 DD
(Note that there arc escaped spaces in the above list)

flatsize object
Returns the number of characters in the cscaped printed representation of object.

flatc object
Returns the number of characters in the unescaped printed representation of object.

23.5 Expression Input Functions

Most expression input functions read characters from an input strcam. This argument is called
stream. 1f unsupplicd it defaults to the value of *standard-input®.

All of these functions echo their input and permit editing if used on an interactive stream
(one which supports the :rubout-handler operation; sce below.)

The functions accept an argument cofoption or two arguments eof-error and eof-value to tell
them what to do if end of file is encountered instead of an object's p.r. The functions that take
two eoft arguments arc the Common Lisp ones.

In functions that accept the eofoption argument, if no argument is supplied, an crror is
signaled at cof. If the argument is supplied. end of file causes the function to return that
argurnent. Note that an eofoption of nil means to return nil if the end of the file is reached; it
is not equivalent to supplying no eof-option.

In functions that accept two arguments eof-error and eof-value, cnd of file is an error if eof
error is non-nil or if it is unsupplied. If eoferror is nil, then the function returns eof-value at end

of file.

An error is always signaled if end of file is cncountered in the middle of an object; for
example, if a file does not contain enough right parentheses to balance the left parentheses in it
Mere whitespace docs not count as starting an object. If a file contains a symbol or a number
immediately followed by end-of-file, it can be read normally without crror; if an attempt is made
to read further, end of file is encountered immediately and the eof- argument(s) obcyed.

PS:<ILMAN>RDPRT.TEXT.29 . 8-JUN-84

Lisp Machine Manual 531 Expression Input Functions

These end-of-file conventions are not completely compatible with Maclisp. Maclisp’s deviations
from this are generally considered to be bugs rather than features.

For Maclisp compatibility, nil as the stream argument also means to use the value of
standard-input, and t as the stream argument means to use the value of *terminal-io*. ‘This
is only advertised o work in functions that. Maclisp has, and should not be written in ncw
programs. Instcad of the variable *standard -input* Maclisp has several variables and complicated
rules. For detailed documentation of streams, refer to section 22.3, page 459.

The functions below that take siream and cofoption arguments can also be called with the
stream and cof-option in the other order. This functionality is only for compatibility with old
Maclisp programs, and should never be used in new programs. ‘The functions attempt to figure
out which way they were called by sccing whether cach argument is a plausible stream.
Unfortunately, there is an ambiguity with symbols: a symbol might be a stream and it might be
an cof-option. If there are two arguments, onc being a symbol and the other being something
that is a valid strecam, or only onc argument, which is a symbol, then these functions interpret
the symbol as an cof-option instcad of as a strcam. To force them to interpret a symbol as a
stream, give the symbol an si:io-stream-p property whose value is t.

read &optional stream eof-option rubout-handler-options
Reads the printed representation of a Lisp object from stream, builds a corresponding
Lisp object. and returns the object. rubout-handler-options are used as options for the
rubout handler, if stream supports one; see section 225, page 500 for more information
on this. ‘

cli:read &optional stream (eof-errorpt) eof-value recursive-p
The Common Lisp version of read differs only in how its arguments are passed.

recursive-p should be non-nil when calling from the reader or from the defining function
~of a recad-macro character; that is, when reading a subexpression as part of the task of
reading a larger expression. This has two effects: the subexpression is allowed to share
#n# labels with the containing cxpression, and whitespace which terminates the
subexpression (if it is a symbol or number) is not discarded.

read-or-end &optional stream eofoption rubout-handler-options
Likc read, but on an intecractive stream if the input is just the character End it returns
the two values nil and :end.

read-preserve-delimiters Variable
Certain printed representations given to. read, notably those of symbols and numbers,
requirc a delimiting character after them., (Lists do not, because the matching close-
parenthesis serves to mark the cnd of the list) Normally read throws away the delimiting
character if it is whitespace, but preserves it (using the :untyi strcam opcration) if the
character is syntactically meaningful, since it may be the start of the next expression.

If read-preserve-delimiters is bound to t around a call to read, the delimiting character
is never thrown away, even if it is whitespace. - This may be useful for certain reader
macros or special syntaxes.

PS:KLLMAN>RDPRT.TEXT.29 ' 8-JUN-84

Expression Input Functions 532 Fisp Machine Manual

read-preserving-whitespace &optional strean (coferrompt) cof-value recursive-p
like cliread but binds read-preserve-delimiters to t. 'This is the Common Lisp way of
requesting the read - preserve-delimiters feature.

read-delimited-1ist char &optional stream recursive-p

Reads expressions from stream until the character char is scen at top level - when an
expression is expected: then returns i list of the objects read. char may be a fixnum or a
charicter object. For cxample, if char is #/7]. and the text o be read from stream is a
(b ¢)] .. then the objects a and (b ¢) are read, the] is seen as a terminator and
discarded. and the value returned is (a (b €)). recursive-p is as for cliread. End of file
within this function is always an error since it is always “within an object”™—the object
whose textual representation is terminated by char.

Note that use of this function does not cause char to terminate tokens. Usually you want
that to happen, but it is purely under the control of the readtable. So you must modify
the readtable to make this so. The usual way is to define char as a macro character
whose defining function just signals an error. ‘The defining function is not called when
char is encountered in the expected context by read-delimited-list: if char is encountered
anywhere clse, it is an unbalanced bracket and an error is appropriate.

read-for-top-level &optional siream eof-option
This is a slightly different version of read. It differs from read only in that it ignores
close-parentheses scen at top level, and it returns the symbol si:eof if the stream rcaches
end-of-file if you have not supplied an eof-option (instcad of signalling an crror as read
would). This version of read is used in the system’s “read-cval-print” loops.

read-check-indentation &optional stream cof-option
‘I'his is likc read. but validates the input based on indentation. It assumes that the input
data is formatted to follow the usual convention for source files, that an open-parenthesis
in column zero indicates a top-level list (with certain specific cxceptions). An open-
parenthesis in column zero encountered in the middle of a list is more likely to result
from close-parentheses missing before it than from a mistake in indentation.

If read-check-indentation finds an open-parenthesis following a return character in the

middle of a list, it invents cnough close-parentheses to close off all pending lists, and

returns. The offending open-parcnthesis is :untyi'd so it can begin the next list, as it
~ probably should. End of file in the middic of a list is handled likewise.

read-check-indentation notifics the caller of the incorrect formatting by signaling the
condition sys:missing-closeparen. This is how the compiler is able to record a warning
about the missing parcntheses. If a condition handler procceds, read goes ahcad and
invents close-parentheses.

There are a few special forms that are customarily used around function definitions—for
cxample, eval-when, local-declare, and comment. Since it is desirable to begin the
function definitions in column zero anyway, read-check-indentation allows a list to
begin in column zero within one of these special forms. A non-nil si:may-surround-
defun property identifics the symbols for which this is allowed.

PS:<I.MAN>RDPRT.TEXT.29 8-JUN-84

Fisp Machine Manual 5313 Expression Input Functions

read-check-indentation Variable
‘This variable is non-nil during a read in which indentation is being checked.

23.5.1 Non-Stream Parsing Functions

The following functions do expression input but get the characters from a string or a list
instead of a stream.

read-from-string swing &optional eofoption (start0) end
The characters of sring are given successively to the reader, and the Lisp object built by
the reader is returned. Macro characters and so on all take cffect. If siring has a fill-
pointer it controls how much can be read. -

eof-option is what to return if the end of the string is reached, as in read. swarr is the
index in the string of the first character to be read. end is the index at which to stop
reading; that point is treated as end of file.

read-from-string returns two valucs; ‘the first is the object read and the sccond is the
index of the first character in the string not read. If the entirc string was rcad, this is the
length of the string.

Example: .
(read-from-string "(a b ¢)") => (a b c) and 7

cli:read-from-string swring &optional (eof-errorpt) eof-value &key (start0) end
preserve-whilespace
The Common Lisp version of read-from-string uses a different calling convention. The
arguments mean the same thing but are arranged differently. There are three arguments
with no counterparts: eof-errorp and eof-value, which are simply passed on to cliread,
and preserve-whitespace, which if non-nil means that the reading is done with read-
preserve-delimiters bound to t.

Sce also the with-input-from-string special form (page 473).

parse-integer string &key (start0) end (radix10.) junk-allowed
Parscs the contents of string (or the portion from start to end) as a numeral for an integer
using the specified radix, and returns the integer. Radices larger than ten are allowed,
and they use letters as digits ‘beyond 9. Leading whitespace is always allowed and
ignored. A Icading sign is also allowed and considered part of the number.

When junk-allowed is nil, the entire specified portion of string must consist of an integer
and Icading and trailing whitespace. Otherwise, an error happens.

If junk-allowed is non-nil, parsing just stops when a non-digit is encountered. The
number parsed so far is returned as the first value, and the index in siring at which
parsing stopped is returned as the second value. This number equals end (or the length of
string) if there is nothing but a number. If non-digits are found without finding a
number first, the first value is nil. Examples:

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

Lxpression Input Functions 54 Lisp Machine Manual

(parse-integer " 1A " :radix 16.) => 26.
(parse-integer " 15X " :end 3) => 15.
(parse-integer " -15X " :junk-allowed t) => -15. 3
(parse-integer " 156X ") => error!

readlist charlist
This function is provided mainly for Maclisp compatibility. char-list is a list of characters.
The “characters may be represented by anything. that the function character accepts:
character objects. fixnums, strings, or symbols. The characters are given successively to
the reader, and the Lisp object built by the reader is returned. Macro characters and so
on all take effect.

If there are more characters in char-fist beyond those needed to define an object, the
extra characters are ignored. If there are not cnough characters, some kind of sys:read-
end-of-file crror is signaled.

23.5.2 Input Error Conditions

sys:read-error (sys:parse-error error) Condition
This condition name classifies all errors detected by the rcader per se. Since sys:parse-
error is implicd, all sysiread-error crrors must provide the proceed. type :no-action so
that automatic proceed is possible if the error happens during compilation. See page 505.

Since this condition name implics sys:parse-error and error, those two are not
mentioned as implications below when sys:read-error is.

sys:read-end-of-file {sys:rread-error sys:end-of-file) Condition
Whenever the rcader signals an crror for end of file, the condition object possesses this
condition name.

Since sys:end-of-file is implicd, the :stream opcration on the condition instance returns
the stream on which end of file was reached.

sys:read-1ist-end-of-file _ Condition
(sys:read-end-of-file sys:read-error sys:end-of-file)
This condition is signaled when read detects end of file in the middle of a list.

In addition to the :stream operation provided bccause sys:end-of-file is one of the
procced types, the condition instance supports the :list operation, which returns the list
rcad so far.

Proceed type :no-action is provided. If it is used, the reader invents a close-parenthesis
to close off the list: Within read-check-indentation, the rcader signals the error only
once, no matter how many levels of list are unterminated.

PS:KI.LMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 535 ‘The Readtable

sys:read-string-end-of-file Condition
(sysiread-end-of-file sys:read-error sys:end-of-file)
This is signaled when read detects end of file in the middle of a string delimited by
double-quotes.

The :string operation on the condition instance returns the string read so far.

Proceed type :no-action terminates the string and returns. If the string is within other
constructs that arc unterminated. another end of file crror is ‘will be signaled later.

sys:read-symbol-end-of-file Condition
(sys:read-end-of-file sys:read-error sys:end-of-file)
This is signaled when read detects end of file within a multiple escape construct.

The :string operation on the condition instance returns the print name read so far.

Praceed type :no-action terminates the symbol and returns. If the symbol is within other
constructs that arc unterminated, another end of file error is will be signaled later.

sys:missing-closeparen (condition) Condition
This condition, which is not an crror, is signaled when read-check-indentation finds an

open-parenthesis in column zero within a list.

Proceed type :no-action is provided. On procceding, the reader invents cnough close-
parentheses to close off all the lists that are pending.

23.6 The Readtable

The syntax used by the rcader is controlled by a data structure called the readiable. (Some
aspects of printing are also controlled by the readtable.) There can be many rcadtables, but the
one that is used is the onc which is the value of *readtable*. A particular syntax can be
sclected for use by setting or binding *readtable* to a rcadtable which specifies that syntax
before reading or printing. In particular, this is how Common Lisp or traditional syntax is
sclected. The rcadtable also controls the symbol substitutions which implement the distinction
between the traditional and Common Lisp versions of functions such as subst, memberand

defstruct.

The functions in this scction allow you to modify the syntax of individual characters in a
rcadtable in limited ways. You can also copy a rcadtablc then you can modify one copy and
leave the other unchanged.

A rcadtables may have onc or more names. Named readtables are recorded in a central data
basc so that you can find a rcadtable by name. When you copy a rcadtable, the new one is
anonymous and is not recorded in the data base.

PS:KKILMAN>RDPRT.TEXT.29 8-JUN-84

The Readiable 536 1isp Machine Manual

readtable ' Variable

srgadtable* Variable ,
The value of readtable or *readtable* is the current readtable. ‘This starts out as the
initial standard readtable. You can bind this variable to change temporarily the readtable
being used.

The two names are synonymous.

si:standard-readtable Constant
‘Ihis is copied into *readtable* cvery time the machine is booted. Therefore, it is
normally the same as *readtable* unless you make *readtable* be some other readtable.
If you alter the contents of *readtable* without sctting or binding it to some other
readtable, this rcadtable is changed.

si:initial-readtable Constant
The value of sicinitial-readtable is a rcad-only copy of the default current readtable. Its
purpose is to preserve a copy of the standard read syntax in casc you modify the contents
of *readtable* and regret it later. You could usc sitinitial-readtable as the from-
readtable argument to copy-readtable or set-syntax-from-char to restore all or part of
the standard syntax.

si:common-1isp-readtable Constant
A rcadtable which initially is st up to define Common Lisp read syntax. Reading of
Common Lisp programs is donc using this rcadtable.

si:initial-common-1isp-readtable Constant
A read-only copy of si:common-lisp-readtable, whose purposc is to preserve a copy of
the standard Common Lisp syntax in casc you modify si:common-lisp-readtable (such
as, by reading a Common Lisp program which modifics the current rcadtable).

si:rdtb1-names readrable
Returns the list of names of readtable. You may setf this to add or remove names.

si:find-readtable-named name
Returns the readtable named name, or nil if none is recorded.

readtablep object
t if object is a rcadtable.

The user can program the reader by changing the rcadtable in any of three ways. The syntax
of a character can be sct to onc of several predefined possibilitics. A character can be made into
a macro character, whose interpretation is controlled by a uscr-supplied function which is called
when the character is read. The user can crcate a completely new rcadtable, using the readtable
~compiler (8YS: 10; RTC LISP) to define new kinds of syntax and to assign syntax classes to

characters. Usc of the readtable compiler is not documented here.

PS:<[.MAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual ‘ 537 The Readtable

copy-readtable &optional fiom-readtable 1o-readtable
Srom-readiable, which defaults o the current readtable, is copied. I from-readiable is nil,
the standard Common Lisp syntax is copied. If 1o-readiable is unsupplied or nil, a fresh
copy is made. Otherwise to-readtable is clobbered with the copied syntax.

Usc copy-readtable to get a private readtable before using the following functions to
change the syntax of characters in it. ‘The value-of *readtable* at the start of a lisp
Muchine session is the initial standard readtable, which usually should not be modified.

set-syntax-from-char ro-char from-char &optional to-readtable from-readiable
Copies the syntax of from-char in from-readtable 1o character fo-char in to-readtable. to-
readtable defaults to the current readtable and fiom-readtable defaults to si:initial-
standard-readtable (standard traditional syntax).

cli:set-syntax-from-char to-char from-char &optional to-readtable from-readtable
Is a Common Lisp function which copies the syntax of from-char in from-readtable to
character to-char in 1o-readiable. to-readtable defaults 1o the current readtable and Sfrom-
readtable defaults to si:initial-common-lisp-readtable (standard Common Lisp syntax).

‘Common Lisp has a peculiar idea of what it means to copy the syntax of a character.
‘The only aspect of syntax that the readtable supposedly specifics is the choice among

* token constituent: digits, letters, random things like @, !, $, and also colon!

* whitespace: spaccs, Tab, Return.

» singlc escape character: / traditionally, \ in Common Lisp.

* multiple cscape character: vertical-bar.

* macro character: standardly ()",.*;

* nonterminating macro character: # is the only such character standardly defined.

The differences among macro characters are determined entirely by the functions that they
invoke. The differences among token constituents (including the difference between A and
colon) arc fixed! You can make A be a macro charactcr, or whitespace, or a quote
character, but if you make it a token constituent then it always bchaves the way it
normally does. You can make colon be a macro character, or whitespace, etc., but if it
is a token constituent it always delimits package names. If you make open-parenthesis
into a token constituent, there is only one kind of token constituent it can be (it forces
the token to be a symbol, like $ or @ or %).

This is not how Lisp Machine readtables really work, but since cli:set-syntax-from-char
is provided just for Common Lisp, the behavior specificd by Common Lisp is laboriously
provided. So, if from-char is some kind of token constituent, this function makes to-char
into a token constituent of the kind that fo-char is supposed to be—not the kind of token
constituent that from-char is.

By contrast, the non-Common-Lisp set-syntax-from-char would make fo-char have
exactly the same syntactic propertics that from-char has.

PS:KLLMAN>RDPRT.TEXT.29 ' 8-JUN-84

The Readtable

538 I isp Machine Manual

set-character-translation from-chur to-chur &optional readtable
Changes readtable so that frem-char will be translated to fo-char upon read-in, when
readtable is the current readiable. This is normally used only for translating lower case
letters to upper case. Character translation is inhibited by escape characters and within
strings. readrable defaults 1o the current readtable.

The following syntax-setting functions are more or less obsolete.

set-syntax-from-description char description &optional readtable
Sets the syntax of char in readtable o be that described by the symbol description.
readtable defaults 1o the current readtable,

Fach readtable has its own set of descriptions which it defines. 'The following descriptions
are defined in the standard readtable:

si:alphabetic

si:break

si:whitespace

si:single

si:escape
si:multiple-escape

si:macro

An ordinary character such as ‘A’

A token separator such as ‘(. (Obviously left parenthesis has other
propertics besides being a break.

A token scparator that can be ignored, such as *’.

A sclf-delimiting single-character symbol. The initial readtable
does not contain any of these.

The character quoter. In the initial readtable this is */’.
The symbol print-name quoter. In the initial rcadtable this is ‘|

A macro character. Don’t use this; use set-macro-character
(page 540).

si:non-terminating-macro

A macro character recognized only at the start of a token. In the
initial rcadtable, '# is such a character. (It is also a dispatching
macro, but that is another matter.) The correct way to make a
character be a macro is with set-macro-character.

si:character-code-escape

si:digitscale

si:bitscale

si:slash
si:circlecross

The octal escape for special characters. In the initial readtable this
is ‘®’.

a character for shifting an integer by digits. In the initial
readtable this is ‘~’.

A character for shifting an intcger by bits. In the initial readtable
this is °_" (underscore).

Obsolete synonyms for si:escape and si:character-code-escape.

Unfortunately it is no longer possible to provide si:doublequote as double-quote is now
an ordinary macro character.

PS:<L.MAN>RDPRT.TEXT.29

8-JUN-84

1 isp Machine Manual 539 Read-Macro Characters

These symbols may be moved to the keyword package at some point,

setsyntax character arg? arg3
This cxists only for Maclisp compatibility. ‘The above functions are preferred in new
programs. ‘The syntax of character is altered in the current readtable, according to arg2
and arg3. character can be a fixnum. a symbol, or a string, i.c. anything acceptable to
the character function. arg? is usually a keyword; it can be in any package since this is
a Maclisp compatibility function. The following valucs are allowed for arg2:

:macro The character becomes a macro character. argd is the name of a function
to be invoked when this character is rcad. The function takes no
arguments, may tyi or read from *standard-input* (i.c. may call tyi or
read without specifying a strcam), and returns an object which is taken as
the result of the read. '

:splicing Like :macro but the object returned by the macro function is a list that is
nconced into the list being read. If the character is recad anywhere except
inside a list (at top level or after a dotted-pair dot), then it may return (),
which means it is ignored, or (obj), which mcans that obj is read.

:single The character becomes a sclf-delimiting single-character symbol. If arg3 is
a fixnum, the character is translated to that character.

nil The syntax of the character is not changed, but if arg3 is a fixnum, the
character is tramslated to that character.

a symbol The syntax of the character is changed to be the same as that of the
character arg? in the standard initial rcadtable. arg2 is converted to a
character by taking the first character of its print name. Also if arg3 is a
fixnum, the character is translated to that character.

23.7 Read-Macro Characters

A read-macro character (or just macro character) is a character whose syntax is defined by a
function which the reader calls whenever that character is seen (unless it is ecscaped). This
function can optionally read additional characters and is then responsible for rcturning the object
which they represent.

The standard meanings of the characters open-parenthesis, semicolon, single-quote, double-
quote, #, backquote (') and comma arc implemented by making them macro characters.

For cxample, open-parenthesis is implemented as a macro character whose defining function
reads expressions until a closc-parcnthesis is found. throws away the close-parenthesis, and returns
a list of the expressions read. (It actually must be more complicated than this in order to deal
properly with dotted lists and with indentation checking.) Semicolon is implemented as a macro
character whose. defining function swallows characters until a Return and then returns no values.

Closc-parenthesis and closc-horseshoe (o) are also macro characters so that they will terminate
symbols. Their defining functions signal crrors if actually called; but when these dclimiters are
encountered in their legitimate contexts they are recognized and handled specially before the
defining function is called.

PSKLLMAN>RDPRT.TEXT.29 | 8-JUN-84

Read-Macro Characters 540 | isp Machine Manual

The user can also define mucro characters.

When a macro’s defining function is called, it reccives two arguments: the input stream. and
the macro character being handled. The function may read characters from the stream, and
should return zero or more values, which are the objects that the macro construct “reads as”.
Zero values causes the miacro construct to be ignored (the semicolon macro character does this),
and one value causes the macro construct o read as a single object: (most macro characters do
this). More than one value is allowed only within a list,

Macro characters may be terminating or non-terminating. A non-terminating macro character
is only recognized as a macro character when it appears at the beginning of a token. If it appears
when a token is already in progress. it is treated as a symhnl constituent. Of the standard macro
characters, all but # arc terminating.

One kind of macro character is the disparch macro character. This kind of character is
handled by reading one more character, converting it to upper case, and looking it up in a table.
Thus, the dispatch macro character is the start of a two-character scquence, with which is
associated a defining function. # is the only standardly defined dispatch macro character.

When a dispatch macro character is used, it may be followed by a decimal integer which
serves as a parameter. 'The character for the dispaich is actually the first non-digit seen.

The defining function for a dispatch macro two-character sequence is almost like that of an
ordinary macro character. However, it receives one more argument. ‘This is the paramcter, the
decimal integer that followed the dispatch macro character, or nil if no parameter was written.
Also, the sccond argument is the subdispatch character, the sccond character of the scquence.
The dispatch macro character itself is not available.

set-macro-character char function &optional non-terminating-p in-readtable
Sets the syntax of character char in readtable in-readtable to be that of a macro character
which is handled by function. When that character is read by read, fiunction is called.

char is made a non-terminating macro character if non-terminating-p is non-nil, a
terminating one otherwise.

get-macro-character char in-readtable
Returns two values that describe the macro character status of char in in-readiable. 1f
char is not a macro character, both values are nil. Otherwise, the first value is the
Junction and the sccond value is the non-terminating-p for this character.

Those two values, passed to set-macro-character, are usually sufficicnt to recreate
exactly the syntax char has now; however, since onc of the arguments that the function
receives is the macro character that invoked it, it may not bchave the same if installed on
a different character. or in a different readtable. In particular, the definition of a dispatch
macro character is a standard function that looks the macro character up in the readtable.
Thus, the definition only records that the macro character is a dispatch macro character;
it does not say what subcharacters are allowed or what they mean.

PS:KLLMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 541 Read-Macro Characters

make-dispatch-macro-character clur &optional non-terminating-p in-readtable
Makes char be o dispatch macro character in in-readable. “This means that when char is
scen read will read one more character to decide what to do. # is an example of a
dispatch - macro character. non-terminating-p -means the same thing as in set-macro-
character.

set-dispatch-macro-character char subchar function &optional in-readiable
Sets the syntax of the two-character ‘sequence char subchar, assuming that char is alrcady
a dispatch macro character. fiunction becomes the defining function for this sequence.

Il subchar is lower case, it is converted to upper case. Case is never significant for the
chatacter that follows a dispatch macro character. ‘The decimal digits may not be defined
as subchars since they are always used for infix numeric arguments as in #5r.

get-dispatch-macro-character char subchar &optional in-readtable
Returns the function for subchar following dispatch macro character char in readtable in-
readtable. "I'he value is nil if subchar is not defined for following char.

These subroutines are for use by the defining functions of macro characters. Ordinary read
should not be used for reading subexpressions, and the ordinary :tyi operation or functions read-
char or tyi should not be used for single-character input. The functions below should be used
instead.

si:read-recursive &optional stream
Equivalent to (clizread stream t nil t). Sce page 531. This is the recommended way for a
macro character’s defining function to read a subexpression.

st:xr-xrtyi stream ignore-whitespace no-chars-special no-multiple-escapes
Reads the next input character from stream, for a macro character’s defining function. If
ignore-whitespace is non-nil, any whitespace characters seen are discarded and the first
non-whitespace character is returned.

The first value is the character as translated; the third value is the original character,
before translation. The second value is a syntax code which is of no interest to users
except to be passed to si:xr-xruntyi if this character must be unread.

Normally, this function processes all the escape characters, and performs translations (such
as from lower casc letters to upper case letters) on characters not escaped. Font specifiers
(cpsilons followed by digits or *) are ignored if the file is formatted using them.

If no-multiple-escapes is non-nil, multiple escapes (vertical bar characters) are not
processed; they are returned to the caller. This mode is used for reading the contents of
strings. If no-chars-special is non-nil, no ecscape characters arc processed. All characters
are simply returned to the caller (except that font specifiers are still discarded if
appropriate). ‘ ‘

PS:KLLMAN>RDPRT.TEXT.29 ' 8-JUN-84

Read-Macro Characters : 542 Lisp Machine Manual

si:xr-xeuntyi stream char num
Unrcads char, for a macro character’s defining function. char should be the third value
returned by the Tast call to si:zxr-xrtyi, and mum should be the sccond value.

*read-suppress® Variable
If this variable is non-nil, all the standard read functions and macro characters do their
best to avoid any crrors, and any side cffects except for removing characters from the
input stream. For cxample. symbols are not interned to avoid cither errors (for
nonexistent packages) or side effects (adding new symbols to packages). In fact, nil is
used in place of any symbol that is writien.

User macro characters should also notice this variable when appropriate.

The purpose of the variable is to allow cxpressions to be skipped and discarded. 'The
read-time conditional constructs #+ and #- bind it to t to skip the following cxpression if
it is not wanted.

The following functions for defining macro characters are more or Iess obsolete.

set-syntax-macro-char char function &optional readiable
Changes readtable so that char is a macro character. When char is rcad, function is
called. readtable defaults to the current readtable.

Junction is called with two arguments, list-so-far and the input strcam. When a list is
being read, lis-so-far is that list (nil if this is the first clement). At the top level of read,
list-so-far is the symbol :toplevel. After a dotted-pair dot, list-so-far is the symbol :after-
dot. function may rcad any number of characters from the input strecam and process them
however it likes.

function should return three values, called thing, type, and splice-p. thing is the object
read. If splice-p is nil, thing is the result. If splice-p is non-nil, then when reading a list
thing replaces the list being read—often it will be lisi-so-far with something clse nconc’ed
onto the end. At top-level and after a dot, if splice-p is non-nil the thing is ignored and
the macro-character does not contribute anything to the result of read. #ype is a historical
artifact and is not really used; nil is a safe value. Most macro character functions return
just one value and let the other two default to nil.

Note that the convention for values returned by funcrion is different from that used for
functions specificd in set-macro-character, above. set-syntax-macro-char works by
encapsulating finction in a closure to convert the values to the sort that set-macro-
character wants and then passing the closure to set-macro-character.

function should not have any side-effects other than on the stream and list-so-far. Because
of the way the rubout-handler works, function can be called several times during the
rcading of a single expression in which the macro character only appears once.

char is given the same syntax that single-quote, backquote, and comma have in the initial
readtable (it is called :macro syntax).

PS:<LLMAN>RDPRT.TEXT.29 8-JUN-84

Lisp Machine Manual 543 The tread and :print Stream Operations

set-syntax-#-macro-char char function &optional readrable
Causes finction to be called when #char is read. reudtable defaults to the current
readtable. ‘The function’s arguments and rewurn values arc the same as for normal macro
characters, documented above. When function is called, the special variable si:xr-sharp-
argument contains nil or a number that is the number or special bits between the # and
char. ‘

setsyntax-sharp-macro character type function &optional readtable

This exists only for Muaclisp compatibility, set-dispatch-macro-character should be
used instead. I funcrion is nil, #character is turned off, otherwise it becomes a macro
that calls function. type can be :macro. :peek-macro, :splicing. or :peek-splicing. The
splicing part controls whether function returns a single object or a list of objects.
Specifying peck causes character o remain in the input stream when function is called;
this is uscful if character is something like a left parenthesis. function gets one argument,
which is nil or the number between the # and the character.

23.8 The :read and :print Stream Operations

A stream can specially handle the reading and printing of objects by handling the :read and
:print strcam operations. Note that these operations are optional and most strcams do not support
them.

If the read function is given a strcam that has :read in its which-operations, then instead of
rcading in the normal way it sends the :read message to the stream with once argument, read’s
eof-option if it had onc or a magic internal marker if it didn't. Whatever the stream returns is
what read returns. If the strcam wants to implement the :read operation by internally calling
read, it must usc a different stream that does not have :read in its which-operations.

If a stream has :print in its which-operations, it may intercept all object printing operations,
including those duc to the print, prin1, and princ functions, those duc to format, and those
used internally, for instance in printing the clements of a list. The strcam receives the :print
message with three arguments: the object being printed, the depth (for comparison against the
print-level variable), and escape-p (which is the valuc of *print-escape*). If the strecam
returns nil, then normal printing takes place as usual. If the strcam returns non-nil, then print
docs nothing; the strcam is assumed to have output an appropriate printed representation for the
object. The two following functions are uscful in this conncction; however, they are in the
.system-internals package and may be changed without much notice.

si:print-object object depth stream &optional which-operations
Outputs the printed-representation of object to stream, as modified by depth and the
values of the *print-... variables.

This is the internal guts of the Lisp printer. When a stream’s :print handler calls this
function, it should supply the list (:string-out) for which-operations, to prevent itsclf from
being called recursively. Or it can supply nil if it docs not want to reccive :string-out
messages.

PS:KKLLLMAN>RDPRT.TEXT.29 8-JUN-84

‘The rread and :print Stream Operations 544 1isp Machine Manual

If you want to customize the behavior of all printing of Lisp objects, advising (see section
30.10, page 742) this function is the way to do it. See section 23.1, page 513.

sti:print-Tist list depth stream which-operations
This is the part of the Lisp printer that prints lists. A stream’s :print handler can call this
function, passing along its own arguments and its own which-operations, to arrange for a
list to be printed the normal way and the stream’s :print hook to get a chance at cach of
the list's clements.

PS:KL.MAN>RDPRT.TEXT.29 8-JUN-84

	506_exprIO
	507_exprIO
	508_exprIO
	509_exprIO
	510_exprIO
	511_exprIO
	512_exprIO
	513_exprIO
	514_exprIO
	515_exprIO
	516_exprIO
	517_exprIO
	518_exprIO
	519_exprIO
	520_exprIO
	521_exprIO
	522_exprIO
	523_exprIO
	524_exprIO
	525_exprIO
	526_exprIO
	527_exprIO
	528_exprIO
	529_exprIO
	530_exprIO
	531_exprIO
	532_exprIO
	533_exprIO
	534_exprIO
	535_exprIO
	536_exprIO
	537_exprIO
	538_exprIO
	539_exprIO
	540_exprIO
	541_exprIO
	542_exprIO
	543_exprIO
	544_exprIO

