Lisp Machine Manual 545 Naming of Files

24. Naming of Files

A Lisp Machine gencrally has access to many file systems. While it may have its own file
system on its own disks, ‘usually a community of Lisp Machine users want to have a shared file
system accessible by any of the Lisp Machines over a network. These shared file systems can be
implemented by any computer that is capable of providing file system service. A file server
computer may be a special-purpose computer that does nothing but service file system requests
from computers on a network, or it may be a time-sharing system.

Programs nced to use names to designate files within these file systems. ‘The main difficulty in
dealing with names of files is that different file systems have different naming formats for files.
For example, in the I'S file system, a typical name looks like:

DSK: GEORGE; FOO QFASL
with DSK being a device name, GEORGE being a directory name, FOO being the first file name
and QFASL being the second file name. However, in TOPS-20, a similar file name is expressed
as:

PS:<GEORGE>F00.QFASL
It would be unrcasonable for cach program that deals with file names to be expected to know
about cach different file name format that cxists, or new formats that could get added in the
future. However, existing programs should retain their ‘abilities to manipulate the names.

‘The functions and flavors described in this chapter exist to solve this problem. They provide
an intcrface through which a program can deal with names of files and manipulate them without
depending on anything about their syntax. This lets a program deal with multiple remote file
servers simultancously, using a uniform set of conventions.

24.1 Pathnames

All file systems dealt with by the Lisp Machine are mapped into a common model, in which
files are named by something called a pathname. A pathname always has six components, each
with a standard meaning. Thesc components are the common interface that allows programs to
work the same way with different file systems; the mapping of the pathname components into the
concepts peculiar to cach file system is taken carc of by thc pathname software. Pathname
components are described in the following scction, and the mappings between components and
user syntax is described for cach file system later in this chapter.

pathnamep object
t if object is a pathname.

A pathname is an instance of a flavor (sce chapter 21, page 401); exactly which flavor
depends on what the host of the pathname is, but pathname is always onc of its component
flavors. If p is a pathname, then (typep p 'pathname) rcturns t. One of the messages handled
by host objects is the :pathname-flavor operation, which returns the name of the flavor to use
for pathnames on that host. And one of the differences between host flavors is how they handle

this operation.

PS:KL.MAN>PATHNM.TEXT.99 8-JUN-84

Pathnames 546 Lisp Machine Manual

‘There are functions for manipulating pathnames, and there are also messages that can be sent
to them. ‘These are described later in this chapter.

Two important operations of the pathname system are parsing and merging. Parsing is the
conversion of a string—which might be something typed in by the user when asked to supply the
name. of a file—into a pathname object. This involves finding out what host the pathname is for,
then using the file name syntax conventions of that host to parse the string into the standard
pathname components. Merging is the operation that takes a pathname with missing components
and supplics values for those components from a set of defaults.

‘The function string. applied to a pathname, converts it into a string that is in the file name
syntax of its hosts file system, except that the name of the host followed by a colon is inserted at
the front. ‘This is the inverse of parsing. princ of a pathname also docs this, then prints the
contents of the string. Flavor operations such as :string-for-dired cxist which convert all or part
of a pathname to a string in other fashions that arc designed for specific applications. print of a
pathname prints the pathname using the #c syntax so it can be rcad back in to produce an
cquivalent pathname (or the same pathname, if read in the same session).

Since cach kind of file server can have its own character string representation of names of its
files, there has to be a different parser for cach of these representations, capable of cxamining
such a character string and figuring out what cach component is. ‘The parsers all work differently.
How can the parsing operation know which parser to use? The first thing that the parser does is
to figure out which host this filename belongs to. A filename character string may specify a host
explicitly by having the name of the host, followed by a colon, at cither the beginning or the
end of the string. For example, the following strings all specify hosts explicitly:

AI: COMMON; GEE WHIZ ; This specifics host Al
COMMON; GEE WHIZ AI: ; So docs this.
ATI: ARC: USERS1; FOO BAR : So does this.
ARC: USERS1; FOO BAR AI: ; So does this.
EE:PS:<COMMON>GEE .WHIZ.b ; This specifies host EE.
PS.: <COMMON>GEE .WHIZ.5 EE: ; So docs this.

If the string does not specify a host explicitly, the parser chooses a host by default and uses the
syntax for that host. The optional arguments passed to the parsing function (fs:parse-pathname)
tell it which host to assume. Note: the parser is not confused by strings starting with DSK: or
PS: because it knows that ncither of those is a valid host name. But if the default host has a
device whose name happens to match the name of some host, you can prevent the device name
from being misinterpreted as a host name by writing an extra colon at the beginning. of the string:
For cxample. :EE:XRMS>FOQ.BAR refers to the device EE on the default host (assumed to use
TOPS-20 syntax) rather than to the host named EE.

Pathnames arc kept unigue, like symbols, so that there is only onc object with a given set of
components. This is useful because a pathname object has a property list (see section 5.10, page
113) on which you can store propertics describing the file or family of files that the pathname
represents. The uniqueness implies that cach time the same components are typed in, the
program gets the same pathname object and finds there the propertics it ought to find,

Note that a pathname is not necessarily the name of a specific file. Rather, it is a way to get
to a file; a pathname nced not correspond to any file that actually cxists, and more than one
pathname can refer to the same file. For example, the pathname with :newest as its version

PS:KL.MAN>PATHNM.TEXT.99 _ 8-JUN-84

Lisp Machine Manual 547 Yathname Components

refers to the same file as a pathname which has the appropriate number as the version, In
systems with links. multiple file names, logical devices, ctc., two pathnames that look quite
different may really turn out to address the same file. To get from a pathname to a file requircs
doing a file system operation such as open.

When you want to store propertics describing an individual file, use the pathname you get by
sending :truename to a stream rather than the pathname you open. ‘This avoids problems with
different pathnames that refer to the same file.

To get a unique pathname object representing a family of files, send the message :generic-
pathname to a pathname for any file in the family (sce section 24.5, page 561).

24.2 Pathname Components

These are the components of a pathname. They are clarified by an example below.

host An object that represents the file system machine on which the file resides. A
host object is an instance of a flavor one of whose components is sibasic-host.
The precise flavor varies depending on the type of file system and how the files
arc to be accessed.

device Corresponds to the “device™ or “file structure™ concept in many host file systems.

directory The name of a group of related files belonging to a single user or project.
Corresponds to the “directory™ concept in many host file systems.

name The name of a group of files that can be thought of as conceptually the “same”
file. Many host file systems have a concept of “name™ which maps directly into
this component.

type Corresponds to the “filetype” or “extension” concept in many host file systems.
‘This says what kind of file this is; such as, a Lisp source file, a QFASL file, etc.

version Corresponds to the “version number” concept in many host file systems. This is a
number that increments every time the file is modified. Some host systems do not
support version numbers.

As an cxample, consider a Lisp program named CONCH. If it belongs to GEORGE, who
uscs the FISH machine, the host would be the host-object for the machine FISH, the device
would probably be the default and the directory would be GEORGE. On this directory would be
a number of files rclated to the CONCH program. The source code for this program would live
in a sct of files with name CONCH, type LISP, and versions 1, 2, 3, ctc. The compiled form
- of the program would live in files named CONCH with type QFASL; cach would have the same
version number as the source file that it came from. If the program had a documentation file, it
would have type INFO,

Not all of the components of a pathname nced to be specified. If a component of a
pathname is missing, its value is nil. Before a file server can do anything interesting with a file,
such as opcning the file, all the missing components of a pathname must be filled in from
defaults. But pathnames with missing components are often handed around inside the machine,
since almost all pathnames typed by users do not specify all the components explicitly. The host

PS:<L.MAN>PATHNM.TEXT.99 8-JUN-84

Pathname Compaonents 548 Lisp Machine Manual

is not allowed to be missing from any pathname: since the behavior of a pathname is host-
dependent o some extent. it has to know what its host is. All pathnames have host attributes,
cven if the string being parsed does not specify one explicitly.

A component of a pathname can also be the special symbol :unspecific. :unspecific means,
explicitly, “this component has been specified as missing”, whereas nil means that the component
was not specified and should default. In merging, :unspecific counts as a specified component
and is not replaced by a default. unspecific does nor mean “unspecified™ it is unfortunate that
those two words are similar.

:unspecific is used in generic pathnames, which refer not to a file but to a whole family of
files. "The version, and usually the type. of a generic pathname are :unspecific. Another way
:unspecific is used has to do with mapping of pathnames into file systems such as I'TS that do
not have all six components. A component that is really “not there™ is :unspecific in the
pathname. When a pathname is converted to a string, nil and :unspecific both cause the
component not to appear in the string.

A component of a pathname can also be the special symbol :wild. This is uscful only when
the pathname is being used with a directory primitive such as fs:directory-list (scc page 598),
where it means that this pathname component matches anything. The printed representation of a
pathname usually designates :wild with an asterisk; however, this is host-dependent.

‘What values arc allowed for components of a pathname depends, in general, on the
pathname’s host. However, in order for pathnames to be usable in a system-independent way
certain global conventions arc adhered to. These conventions are stronger for the type and version
than for the other components, since the type and version are actually understood by many
programs, while the other components are usually just treated as somcthing supplied by the user
that only necds to be remembered.

In general, programs can interpret the components of a pathname independent of the file
system; and a certain minimum sct of possible values of each component are supported on all file
systems. The same pathname component value may have very different representations when the
pathname is made into a string, depending on the file system. This does not affect programs that
operate on the components. The user, when asked to type a pathname, always uses the system-
dependent string representation. This is convenient for the user who moves between using the
Lisp Machine on files stored on another host and making direct use of that host. However, when
the mapping between string form and components is complicated, the components may not be
obvious from what you type.

The type is always a string, or onc of the special symbols nil, :unspecific, and :wild.
Certain hosts imposc a limit on the size of string allowed, often very small. Many programs that
dcal with files have an idca of what type they want to use. For example, Lisp sourcc programs
arc usually "LISP", compiled Lisp programs are "QFASL", etc. However, these file type
conventions arc host-specific, for the important reason that some hosts do not allow a string five
characters long to be used as the type. Therefore, programs should use a canonical type rather
than an actual string to specify their conventional default file types. Canonical types are described
below.

PS:KILLMAN>PATHNM.TEXT.99 _ 8-JUN-84

I isp Machine Manual 549 ‘ - Pathname Components

- For the version, it is always legitimate to use a positive fixnum, or certain special symbols.
nil, :unspecific, and :wild have been explained above. The other standardly allowed symbols are
:newest and :oldest. :newest refers to the largest version number that exists when reading a file,
or that number plus one when writing a new file. :oldest refers to the smallest version number
that cxists. Some file systems may define other special version symbols, such as :installed for
example, or may allow negative numbers. Some do not support versions at all. Then a pathname
may slill contain any of the standard version components, but it does not matter what the value
is.

The device, directory, and name are more system-dependent. These can be strings (with host-
dependent rules on allowed characters and length) or they can be structured. A structured
component is a list of strings. This is used for file system features such as hierarchical dircctories.
The system is arranged so that programs do not need to know about structured components unless
they do host-dependent “operations. Giving a string as a pathname component to a host that
wants a structured value converts the string to the appropriate form. Giving a structured
~component o a host that does not understand them converts it to a string by taking the first.
clement and ignoring the rest. :

Some host file systems have features that do not fit into this pathname model. For instance,
dircctorics might be accessible as files, there might be complicated structure in the directories or
names, or there might be relative directories, such as ‘<’ in Multics. These features appear in the
parsing of strings into pathnames, which is onc reason why the strings arc written in host-
dependent syntax. Pathnames for hosts with these features are also likely to handle additional
messages besides the common ones documented in this chapter, for the benefit of host-dependent
programs that want to access those features. However, once your program depends on any such
features, it will work only for certain file servers and not others; in general, it is a good idea to
make your program work just as well no matter what file server is being used.

24.2.1 Raw Components and Interchange Components

On some host file systems it is conventional to use lower-case letters in file names, while in
others upper casc is customary, or possibly required. When pathname components are moved
from pathnames of one file system to pathnames of another file system, it is useful to convert the
casc if necessary so that you get the right case convention for the latter file system as a default.
This is especially useful when copying files from one file system to another.

The Lisp Machine system defines two representations for cach of several pathname
components (the device, dircctory, name and type). There is the raw form, which is what
actually appears in the filename on the host file system, and there is the interchange form, which
may differ in alphabetic case from the raw form. The raw form is what is stored inside the
pathname object itself, but programs ncarly always operatc on the interchange form. The :name,
‘type, ctc., operations return the interchange form, and the :new-name, ctc., operations expect
the interchange form. Additional opcrations :raw-name, etc., arc provided for working with the
raw components, but these are rarely needed. '

The interchange form is defined so that it is always customarily in upper case. If upper case
is customary on the host file system, then the interchange form of a component is the same as
the raw form. If lower case is customary on the host file system, as on Unix, then the

PS:<LLMANDPATHNM.TEXT.99 8-JUN-84

Pathname Components 550 Lisp Machine Manual

interchange form has case inverted. More precisely, an all-upper-case component is changed to
all-lower-case, an all-lower-case component is changed o all-upper-case, and a mixed-case
component is not changed. (This is @ onc-to-one mapping). Thus, a Unix pathname with a name
component of "foo" has an interchange-format name of "FOQO", and vice versa.

For host file systems which record case when files are created but ignore case when comparing
filenamies, the interchange form is always upper case,

The host component is not really a name, and case is always ignored in host names, so there
is no need for two forms of host component. The version component does not need them either,
because it is never a string.

24.2.2 Pathname Component Operations

:host Operation on pathname
:device Operation on pathname
:directory Operation on pathname
rname Operation on pathname
type Operation on pathname
:version Operation on pathname

These return the components of the pathname, in interchange form. The returned values
can be strings, spccial symbols, or lists of strings in the case of structured components.
The type is always a string or a symbol. The version is always a number or a symbol.

:raw-device Operation on pathname
:raw-directory Operation on pathname
:raw-name Operation on pathname
:raw-type Operation on pathname

These return the components of the pathname, in raw form.

:new-device dev Operation on pathname
:new-directory dir Operation on pathname
:new-name name Operation on pathname
:new-type /ype Operation on pathname
:new-version version Operation on pathname

These return a new pathname that is the same as the pathname they are sent to except
that the value of one of the components has been changed. The specified component
value is interpreted as being in interchange form, which means its case may be converted.
The :new-device, :new-directory and :new-name opcrations accept a string (or a
special symbol) or a list that is a structured name. If the host does not define structured
components, and you specify a list, its first element is used.

:new-raw-device dev Operation on pathname
:new-raw-directory dir Operation on pathname
:new-raw-name name Operation on pathname
:new-raw-type fype Operation on pathname

These rcturn a new pathname that is the same as the pathname they arc sent to cxcept
that the value of one of the components has been changed. The specified component

PS:KL.MAN>PATHNM.TEXT.99 8-JUN-84

| isp Machine Manual 551 Pathname Compaonents

value is interpreted as raw,

:new-suggested-name nanie Operation on pathname
:new-suggested-directory dir Operation on pathname
These differ- from the :new-name and :new-directory operations in that the new
pathname constructed has a name or dircctory based on the suggestion, but not necessarily
identical to it. It tries, in a system-dependent manner, to adapt the suggested name or
directory to the usual customs of the file system in usc.

For example, on a TOPS-20 system, these operations would convert name or dir to upper
case. because while lower-case letters may appear in TOPS-20 pathnames, it is not
customary to gencrate such pathnames by default,

:new-pathname &rest oprions Operation on pathname
This returns a new pathname that is the same as the pathname it is sent to cxcept that
the values of some of the components have been changed. options is a list of alternating
keywords and values. The keywords all specify values of pathname components; they are
:host, :device, :directory, :name, :type, and :version. Alternatively, thc keywords
:raw-device, ‘raw-directory, :raw-name and :raw-type may be used to specify a
component in raw form,

Two additional keywords, :canonical-type and :original-type, allow the type ficld to be
specified as a canonical type. Sce the following section for a description of canonical
types. Also, the value specified for the keyword :type may be a canonical type symbol.

If an invalid component is specified, it is replaced by some valid component so that a
valid pathname can be returned. You can tell whether a component is valid by specifying
it in :new-pathname and secing whether that component of the resulting pathname
matches what you specified.

The operations :new-name, ctc., arc equivalent to :new-pathname specifying only one
component to be changed; in fact, that is how those operations arc implemented.

24.2.3 Canonical Types

Canonical types are a way of specifying a pathname type component using host-dependent
conventions without making the program itself explicitly host dependent. For example, the
function compile-file normally provides a default type of "LISP", but on VMS systems the
default must be "LSP" instcad, and on Unix systems it is "I". What compile-file actually does
is to use a canonical type, the keyword :lisp, as the default. This keyword is given a definition
as a canonical type, which specifics what it maps into on various file systems.

A single canonical type may have more than one mapping on a particular file system. For
example, on TOPS-20 systems the canonical type :LISP maps into cither "LISP" or "LSP". One
of the possibilitics is marked as “preferred™; in this case, it is "LISP". The effect of this is that
cither FOO.LISP or FOO.LSP. would be acceptable as having canonical type :lisp, but merging
yiclds "LISP" as the typc when defaulting from :lisp.

PS:KI.MAN>PATHNM.TEXT.99 8-JUN-84

Pathname Components 552 Lisp Machine Manual

Note that the canonical type of a pathname is not a distinct component. It is another way of
describing or specifying the type component. '

A canonical type must be defined before it is used.

fs:define-canonical-type : Macro
symbol standard-mapping system-dependent-mappings...
Defines symbol as a canonical type. stundard-mapping is the actual type component that it
maps into (a string), with exceptions as specified by system-dependent-mappings. Fach
clement of system-dependent-mappings (that is, cach additional argument) is a list of the
form
(system-1ype preferred-mapping other-mappings. . .)

systeni-type is one of the system-type keywords the :system-type operation on a host
object can return, such as :unix, :tops20, and :lispm (scc page 577). The argument
describes how to map this canonical type on that type of file system. preferred-nap (a
string) is the preferred mapping of the canonical type, and other-mappings arc additional
strings that arc accepted as matching the canonical type.

system-1ype may also be a list of system types. Then the argument applies to all of those
types of file systems.

All of the mapping strings are in interchange form.

For example, the canonical type :lisp is defined as follows:
(fs:define-canonical-type :1lisp "LISP"
(:unix "L" "LISP")
(:vms "LSP")
((:tops20 :tenex) "LISP" "LSP"))

Other canonical types defined by the system.include :gfasl, :text, :press, :qwabl, :babyl,
:mail, :xmail, :init, :patch-directory, :midas, :paix, :unfasl, :widths, :output, mac,
tasm, doc, mss, tex, pl1 and clu. The standard mapping for cach is the symbol’s
pname.

To match a pathname against a canonical type, use the :canonical-type operation.

:canonical-type Operation on pathname
Returns two values which describe whether and how this pathname’s type component
matches any canonical type. '

If the type component is one of the possible mappings of some canonical type, the first
value is that canonical type (the symbol). The sccond value is nil if the type component
is the preferred mapping of the canonical type; otherwise it is the actual type component,
in interchange form. The sccond value is called the original type of the pathname.

If the type component docs not match a canonical type, the first value is the type
component in interchange form (a string), and the second value is nil.

PS:KILMAN>PATHNM.TEXT.99 | " 8-JUN-84

Lisp Machine Manual 553 Pathnamme Components

This operation is uscful in matching a pathname against a canonical type; the first valuc
is €q to the canonical type if' the pathname matches it. ‘The operation is also useful for
transferring a type field from one file system to another while preserving canonical type:
this is described below.

A new pathname may also be constructed by specifying a canonical type.

:new-canonical-type : Operation on pathname
canonical-type &optional original-ype
Returns a pathname different from this one in having a type component that matches
canonical-type.

If original-type is a possible mapping for canonical-type on this pathname's host, then it is
used as the type component. Otherwise, the preferred mapping for canonical-type is used.
If original-type is not specified. it defaults to this pathname’s type component. If it is
specified as nil, the preferred mapping of the canonical type is always used. If canonical-
ype is a string rather than an actual canonical type, it is used directly as the type
component, and the original-type does not matter.

The :new-pathname operation accepts the keywords :canonical-type and :original-type.
The :new-canonical-type operation is cquivalent to :new-pathname with those
keywords.

.

Suppose you wish to copy the file named old-pathname to a directory named larget-directory-
pathname, possibly on another host, while preserving the name, version and canonical type. That
is, if the original file has a name acceptable for a QFASL file, the new file should also. Here is
how to compute the ncw pathname:

(multiple-value-bind (canonical original)
(send old-pathname :canonical-type)

(send target-directory-pathname :new-pathname
:name (send old-pathname :name)
:version (send old-pathname :version)
:canonical-type canonical
:original-type original))

Supposc that old-pathname is OZ:X(FOO>A.LISP.5, wherc OZ is a TOPS-20, and the target
directory is on a VMS host. Then canonical is :lisp and original is "LISP". Since "LISP" is
not an acceptable mapping for :lisp on a VMS system, the resulting pathname has as its type
component the preferred mapping for :lisp on VMS, namely, "LSP".

But if the target host is a Unix host, the new file's type is "LISP", since that is an
acceptable (though not preferred) mapping for :lisp on Unix hosts. If you would rather that the
preferred mapping always be used for the new file's type, omit the :original-type argument to
the :new-pathname opcration. This would result in a type component of "L" in interchange
form, or "I" in raw form, in the new file’s pathname.

The function compile-file actually does something cleverer than using the canonical type as a
default. Doing that, and opening the resulting -pathname, would look. only for the preferred
mapping of the canonical type. compile-file actually trics to open each possible mapping, trying

PS:KILMAN>PATHNM.TEXT.99 8-JUN-84

Defaults and Merging 554 Lisp Machine Manual

the preferred mapping first. Here is how it does so:

:open-canonical-default-type ' Operation on pathname
canonical-tvpe &rest oplions

If this pathname’s type component is non-nil, the pathname is simply opened, passing the
options to the :open operation. I the type component is nil, cach mapping of canonical-
fype is tried as a type component, in the order the mappings appear in the canonical type
definition. If an open succeeds. a stream is returned. The possibilities continue to be
tricd as long as fs:file-not-found crrors happen; other crrors are not handled. 1If all the
possibilities fail, a fs:file-not-found crror is signaled for the caller, with a pathname that
contains the preferred mapping as its type component.

24.3 Defaults and Merging

When the user is asked to type in a pathname. it is of course unrcasonable to require the
user o type a complete pathname, containing all components. Instcad there are defaults, so that
components not specified by the user can be supplied automatically by the system. Each program
that deals with pathnames typically has its own sct of defaults.

The system defines an object called a defaulis alist. Functions are provided to create one, get
the default pathname out of onc, merge a pathname with one, and storc a pathname back into
one. A dcfaults alist can remember more than onc default pathname if defaults are being kept
separately for cach host; this is controlled by the variable fs:*defaults-are-per-host*. The main
primitive for using defaults is the function fs:merge-pathname-defaults (scc page 558).

In placc of a defaults alist, you may use just a pathname. Defaulting one pathname from
another is uscful for cases such as a program that has an input file and an output file, and asks
the user for the name of both, letting the unsupplicd components of onc name default from the
other. Unspecified components of the output pathname come from the input pathname, except
that the type should default not to the type of the input but to the appropriate default type for
output from this program. '

~ The implementation of a defaults alist is an association list of host names and default
pathnames. The host name nil is special and holds the defaults for all hosts, when defaults are
not per-host.

The merging opcration takes as input a pathname, a dcfaults alist (or another pathname), a
default type, and a default version, and rcturns a pathname. Basically, the missing components
in the pathname are filled in from the defaults alist. However, if a name is specified but the type
or version is not, then the type or version is treated specially.

Here are the merging rules in full detail.

If no host is specified, the host is taken from the defaults. If the pathname cxplicitly specifies
a host and does not supply a device, then the the default file device for that host is used.

If the pathname specifies a device named DSK, that is replaced with the working device for
the pathname's host, and the dircctory defaults to the working directory for the host if it is not
specified. Sce fs:set-host-working-directory, below.

PS:{L.MAN>PATHNM.TEXT.99 8-JUN-84

isp Machine Manual 555 Detaults and Merging

- Next, if the pathname does not specify a host, device, directory, or name, that component
comes from the defaults. :

If the value of fs:*always-merge-type-and-version* is non-nil, thc type and version are
merged just like the other components.

If fs:*always-merge-type-and-version* is nil, as it normally is, the merging rules for the
type and version are more complicated and depend on whether the pathname specifies a name. If
the pathname doesn't specify a name, then the type and version, if not provided. come from the
defaults. just like the other components, However, if the pathname does specify a name, then
the type and version come from the defauli-type and defauli-version arguments to merge-
pathname-defaults. [f those arguments were omitted, the value of fs:*name-specified -default-
type* (initially, :lisp) is used as the default type, and :newest is used as the default version.

The reason for this is that the type and version “belong to” some other filename, and are
thought to be unlikely 10 have anything to do with the new filename you arc typing in.

fs:set-host-working-directory host pathname
Scts the working device and working directory for host to those specified in pathname.
host should be a host object or the name of a host. pathname may be a string or a
pathname. The working device: and working directory are used for defaulting pathnames
in which the device is specified as DSK. .

The cditor command Meta-X Set Working Directory provides a convenient interface to
this function.

The following special variables are parts of the pathname interface that arc relevant to
defaults.

fs:*defaults-are-per-host* Variable
This is a user customization option intended to be sct by a user's LISPM INIT file (see
scction 35.8, page 800). The default value is nil, which mecans that each program’s set of
defaults contains only one default pathname. If you type in just a host name and a colon,
the other components of the name default from the previous host, with appropriate
translation to the new host's pathnamc syntax. If fs:*defaults-are-per-host* is sct to t,
cach program’s sct of defaults maintains a scparate default pathname for each host. If you
type in just a host name and a colon, the last file that was referenced on that host is

uscd.

‘fs:*always-merge-type-and-version* Variable
If this variable is non-nil, then the type and version are defaulted only from the
pathname defaults just like the other components. '

fs:*name-specified-default-type* ~ Variable
If fs:*always-merge-type-and-version* is nil, then when a name is specified but not a
type, the type defaults from an argument to the merging function. If that argument is
not specified, this variable’s value is used. It may be a string or a canonical type
keyword. The value is initially :lisp.

PSKILMAN>PATHNM.TEXT.99 . | 8-JUN-84

Defaults and Merging 556 Lisp Machine Manual

*default-pathname-defaults® Variable
This is the default defaults alist: if the pathname primitives that need a set of defaults are
not given one, they use this one. Most programs, however, should have “their own
defaults rather than using these.

cli:*default-pathname-defaults® ' Variable
The Common Lisp version of the default pathname defaults, The value of this variable is
a pathname rather than an alist. This variable is magically (with a forwarding pointer)
identified with a cell in the defaults-alist which the system really uses, so that setting this
variable modifies the contents of the alist.

fs:last-file-opened Variable
This is the pathname of the last file that was opened. Occasionally this is useful as a
default. Since some programs deal with files without notifying the user, you must not
expect the user to know what the value of this symbol is. Using this symbol as a default
may cause unfortunate surprises if you don't announce it firstt and so such use is
discouraged. :

These functions arc used to manipulate defaults alists dircctly.

fs:make-pathname-defaults
Creates a defaults alist initially containing no dcfaults. If you ask this empty sct of
defaults for its default pathname before amything has been stored into it you get the file
FOO on the user's home directory on the host he logged in to.

fs:copy-pathname-defaults defaults
Crecates a defaults alist, initially a copy of defaults.

fs:default-pathname &optional defaults host default-type default-version
This is the primitive function for getting a default pathname out of a defaults alist.
Specifying the optional arguments host, default-type, and default-version to be non-nil
forces those fields of the returned pathname to contain those values.

If fs:*defaults-are-per-host* is nil (its default valuc), this gets the one relevant default
from the alist. If it is t, this gets the default for host if one is specified, otherwise for
the host most recently used.

If defaults is not specified, the default defaults are used.

This function also has an additional optional argument internal-p, which is obsolete.

fs:default-host defaults
Returns the default host object specified by the defaults-alist defaults. This is the host

uscd by pathname defaulting with the given defaults if no host is specified.

PS:KLLMAN>PATHINM.TEXT.99 8-JUN-84

Lisp Machine Manual ' 557 Pathname 'unctions

fs:set-default-pathname parimame &optional defauls
This is the primitive function for updating a set of defaults. It stores pathname into
defaults. If defauldts is not specified, the default defaults are used.

24.4 Pathname Functions
*This function obtains a pathname from an object if that is possible.

pathname object
Converts object 10 a pathname and returns that, if possible. If object is a string or
symbol, it is parsed. If object is a plausible stream, it is asked for its pathname with the
:pathname operation. If object is a pathname, it is simply returned. Any other kind of -
object causes an error.

‘These functions are what programs usc to paisc and default file names that have been typed in or
otherwise supplicd by the user.

parse-namestring rhing &optional host defaults &key (startQ) end Junk-allowed
Is the Common Lisp function for parsing file names. It is cquivalent to fs:parse-
pathname cxcept in that it takes some keyword arguments where the other function takes
all positional arguments.

fs:parse-pathname shing &optional host defaults (start0) end junk-allowed
This turns thing, which can be a pathname, a string, a symbol, or a Maclisp-style name
list, into a pathname. Most functions that arc advertised to take a pathname argument
call fs:parse-pathname on it so that they can accept anything that can be turned into a
pathname. If thing is itself a pathname, it is returned unchanged.

If thing is a string, start and end are interpreted as indices specifying a substring to parse.
They are just like the sccond. and third arguments to substring. The rest of thing is
ignored. start and end are ignored if thing is not a string.

If junk-allowed is non-nil, parsing stops without error if the syntax is invalid, and this

function returns nil. The sccond value is then the index of the invalid character. If

parsing is successful, the second value is the index of the place at which parsing was

supposcd to stop (end, or the end of thing). If junk-allowed is nil, invalid syntax signals
* an error.

This function does nor do defaulting, cven though it has an argument named defaults; it
only docs parsing. The host and defaults arguments are-there because in order to parse a
string into a pathname, it is nccessary to know what host it is for so that it can be parsed
with the file name syntax peculiar to that host. If shing does not contain a manifest host
name, then if host is non-nil, it is the host name to use, as a string. If thing is a string,
a manifest host name may be at the beginning or the end, and consists of thec name of a
host followed by a colon. If host is nil then the host name is obtained from the default
pathname in defaults. 1f defaults is not supplied, the default defaults (*default-
pathname-defaults*) are used.

PS:KLLMAN>PATHNM.TEXT.99 8-JUN-84

Pathnamie Functions 558 1 1sp Machine Manual

Note that if fost is specified, and rhing contains a host name, an crror is signaled if they
arc not the same host. '

fs:pathname-parse-error . (fs:pathname-error error) Condition
‘This condition is signaled when fs:parse-pathname finds a syntax crror in the string it is
given. :

fs:parse-pathname scts up a nonfocal proceed type :new-pathname for this condition.
The proceed type expects one argument, a pathname, which is returned from fs:parse-
pathname.

fs:merge-pathname-defaults purhname &optional defaults defauli-type default-version
Fills in unspecified components of pathname from the defaults and returns a new
pathname. This is the function that most programs should call to process a file name
supplicd by the user. pathname can be a pathname, a string, a symbol, or a Maclisp
- namelist. The returned value is always a pathname. ‘The merging rules are documented
on page 554.

if defaults is a pathname, rather than a defaults alist, then the defaults are taken from its
components. This is how you merge two pathnames. (In Maclisp that operation is called
mergef.)

defaults defaults to the valuc of *default-pathname-defaults* if unsupplied. default-type
defaults to the value of fs:*name-specified-default-type*. default-version defaults to
:newest.

merge-pathnames pathname &optional defaults (default-version :newest)
Is the Common Lisp function for pathname defaulting. 1t does only some of the things
that fs:merge-pathname-defaults docs. It merges defaults from defaults (which defaults
to the value of *default-pathname-defaults*) into pathname to get a new pathname,
which is returned. pathname can be a string (or symbol); then it is parsed and the result
is dcfaulted. default-version is used as the version when pathname has a name but no
version.

fs:merge-and-set-pathname-defaults pathname &optional defaults default-type
default-version

This is the same as fs:merge-pathname-defaults cxcept that after it is done the defaults-
list defaults is modificd so that the merged pathname is the new default. This is handy
for programs that have sticky defaults, which mecans that the default for ecach command is
the last filename used. (If defaults is a pathname rather than a defaults alist, then no
storing back is done.) The optional arguments default the same way as in fs:merge-
pathname-defaults.

PS:KLLMAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual 559 _ ' Pathname FFunctions

‘These functions convert a pathname into a namestring for all or some of the pathname’s
components,

namestring pathmame -
Returns a string containing the printed form of pathname, as you vmuld type it in. This
uses the :string-for-printing operation.

file-namestring patimame .
Returns a string showing just the name, type and version of pathname. ‘This uses the

:string-for-dired operation.

directory-namestring pathname
Returns a string showing just the device and dircctory of pathnamie. This uses the

:string-for-directory operation.

enough-namestring pathname &optional defaults
Returns a string showing just the components of pathname which would not be obtained
by decfaulting from defaults. 'This is the shortest string that would suffice to specify
pathname, given those defaults. It is made by using the :string-for-printing operation on
a modificd pathname.

This function yiclds a pathname given its components.

make-pathname &kcy (defaulist) host device raw-device directory raw-directory name
raw-name lype raw-lype version canonical-type original-type
Returns a pathname whose components are as specified.

If defaults is a pathname or a defaults-alist, any components not cxplicitly specified default
from it. If defaults is t (which is the default), then unspecified components default to nil,
except for the host (since every pathname must have a specific host), which defaults based
on *default-pathname-defaults*.

These functions give the components of a pathname.

pathname-host pathname
Returns the host component of pathname.

pathname-device parhname
pathname-directory pathname
pathname-name pathname
pathname-type pathname
pathname-version pathname

Likewise, for the other components

PS:<L.MAN>PATHNM.TEXT.99 8-JUN-84

Pathname Functions 560 Lisp Machine Manual

These functions return useful information.

fs:user-homedir &optional host reset-p (useruser-id) force-p

user-homedir-pathname &optional host reset-p (useruser-id) force-p
Returns the pathname of the user s home directory on fost. ‘These default to the logged
in user and the host logged in to. “Home directory is a somewhat system-dependent
concept, but from the point of view of the Lisp Machine it is the directory where the
user keeps personal files such as init files and mail.

This function returns a pathname without any name, type, or version component (those
components are all nil).

If reser-p is specified non-nil, the machine the user is logged in to is changed to be host.
The synonym user-homedir-pathname is from Common Lisp.

init-file-pathname program-name &optional host
Returns the pathname of the logged-in user’s init file for the program program-name, on
the host, which defaults to the host the user logged in to. Programs that load init files
containing user customizations call this function to find where to look for the file, so that
they need not know the separate init file name conventions of cach host opcrating system.
The program-name "LISPM" is used by the login function.

These functions arc uscful for poking around.

fs:describe-pathname pathname
If pathname is a pathname object, this describes it, showing you its properties (if any)
and information about files with that name that have been loaded into the machine. If
pathname is a string, this describes all interned pathnames that match that string, ignoring
components not specified in the string. One thing this is uscful for is finding the directory
of a filc whose name you remember. Giving describe (sce page 791) a pathname object
invokes this function.

fs:pathname-plist pathname
Parses and defaults pathname, then returns the list of propertics of that pathname.

fs:*pathname-hash-table* Variable

This is the hash table in which pathname objects are interned. You can find all
pathnames ever constructed by applying the function maphash to this hash table.

PS:KILMAN>PATHNM.TEXT.99 8-JUN-84

I isp Machine Manual 561 Generie Pathnames

24.5 Generic Pathnames

A generic pathname stands for a whole family of files. The property list of a generic
pathname is used to remember information about the family, some of which (such as the package)
comes from the -*- linc (see section 25.5, page 594) of a source file in the family. Several types
of files with that name, in that dircctory, belong together. ‘They are different members of the
same family: for example. they may be source code and compiled code. However, there may be
several other ypes of files that-form a logically distinct group cven though they have this same
name; TEXT and PRESS for cxample. The exact mapping is done on a per host basis since it
can sometimes be affected by host naming conventions.

The generic pathname of pathname p usually has the same host. device, directory, and name
as p docs. However, it has a version of :unspecific. The type of the gencric pathname is
obtained by scnding a :generic-base-type fype-of-p message to the host of p. ‘The default
response to this message is to return the associated type from fs:*generic-base-type-alist* if
there is one, clse npe-of-p. Both the argument and the value are cither strings, in interchange
form, or canonical type symbols.

However, the ITS file system presents special problems. One cannot distinguish multiple
generic base types in this same way since the type component does not cxist as such; it is derived
from the second filename, which unfortunately is also sometimes used as a version number. Thus,
on ITS, the type of a generic pathname is always :unspecific if there is any association for the
type of the pathname on fs:*generic-base-type-alist*.

Since generic pathnames are primarily useful for storing propertics, it is important that they
be as standardized and conceptualized as possible. For this reason, gencric pathnames are defined
o be backtranslated, i.e. the generic pathname of a pathname that is (or could be) the result of a
logical host translation has the host and dircctory of the logical pathname. For cxample, the
generic pathname of OZ:KL.WINDOWY;STREAM LISP would be SYS:WINDOW:STREAM U U if
OZ is the system host.

All version numbers of a particular pathname share the same identical generic pathname. If
the values of particular propertics have changed between versions, it is possible for confusion to
result. One way to deal with this problem is to have the property be a list associating version
number with the actual desired property. Then it is relatively easy to determine which versions
have which values for the property in question and sclect onec appropriately. But in the
applications for which generic pathnames are typically uscd, this is not necessary.

The :generic-pathname opcration on a pathname returns its corrcspondiﬁg generic pathname.
Sce page 563. The :source-pathname operation on a pathname rcturns the actual or probable
pathname of the corresponding source file (with :newest as the version). Sce page 563.

fs:*generic-base-type-alist® Variable
This is an association list of the file types and the type of the generic pathname used for
the group of which that file type is a part. Constructing a genceric pathname replaces the
file type with the association from this list, if there is one (except that ITS hosts always
replace with :unspecific). File types not in this list are really part of the name in some
sense. The initial list is

PS:<ILMAN>PATHNM.TEXT.99 ' 8-JUN-84

Generic Pathnames 562 Lisp Machine Manual

((:text . :text) ("DOC" . :text)

(:press . :text) ("XGP" . :text)

(:1isp . :unspecific) (:qfasl . :unspecific)
(nil . :unspecific))

The association of :lisp and :unspecific is unfortunately made nccessary by the problems
of IS mentioned previously. This way makes the generic pathnames of logically mapped
LISP files identical no matter whether the logical host is mapped to an I'T'S host or not.

The first entry in the list with a particular ¢dr is the entry for the type that source files
have. Note how the first clement whose cdr is unspecific is the onc for :isp. This is
how the :source-pathname operation knows what to do, by default.

Some users may need 1o add to this list.

The system records certain properties on generic pathnames automatically.

:warnings

.definitions

:systems

This property is used to record compilation and other warnings for the file.

This property records all the functions and other things defined in the file. The
value has one clement for cach package into which the file has been loaded; the
clement’s car is the package itself and the cdr is a list of definitions made.

Each decfinition is a cons whose car is the symbol or function spec defined and
whose cdr is the type of definition (usually onc of the symbols defun, defvar,
defflavor and defstruct).

This property’s valuc is a list of the names of all the systems (defined with
defsystem, see page 660) of which this is a source file.

file-id -package-alist

This property rccords what version of the file was most recently loaded. In case
the file has been loaded into more than one package, as is somctimes necessary,
the loaded version is remembered for cach package scparately. This is how
make-system tells whether a file needs to be reloaded. The value is a list with
an clement for cach package that the file has been loaded into; the clements look
like
(package file-information)

package is the package object itsclf; file-information is the value returned by the
:inffo operation on a file strcam, and is usually a cons whose car is the trucname
(a pathname) and whose cdr is the file creation date (a universal time number).

- Some additional properties arc put on the generic pathname by reading the attribute list of
the file (sec page 597). It is not completely clear that this is the right place to store these
properties, so it may change in the future. Any property name can appear in the attributes list
and get onto the generic pathnamc; the standard oncs are described in scction 25.5, page 594.

PSKLLMAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual 563 . Pathname Opcrulimis

24.6 Pathname Operations

This section documents the operations -a user may send to a pathname object. Pathnames
handle some additional operations that arc only intended to be sent by the file system itself, and
thercfore are not documented here. Someone who wants to add a new host to the system would
need to understand those internal operations.

The operations on pathnames that actually operate on files arc documented in scction 25.4,
page 592. Certain pathname flavors, for specific kinds of hosts, allow additional special purpose
operations. ‘These are documented in section 24.7, page 568 in the scction on the specific host

type.

:generic-pathname Operation on pathname
Returns the generic pathname for the ﬁmn]y of files of which this pathname is a member.
See section 24.5, page 561 for documentation on generic pathnames.

:source-pathname Operation on pathname
Returns the pathname for the source file in the family of files to which this pathname
belongs. The returned pathname has :newest as its version. If the file has been loaded
in some fashion into the Lisp environment, then the pathname type is that which the user
actually used. Otherwise, the conventional file type for source files is determined from the
generic pathname. :

:primary-device Operation on pathname
Returns the default device name for the pathname’s host. This is used in generating the
initial default pathname for a host.

Operations dealing with wildcards.

The character * in a namestring is a wildcard. It mcans that the pathname is a really a
pattern which specifics a sct of possible filenames rather than a single filename. The matches any
sequence of characters within a single component of the name. Thus, the component FOO*
would match FOO, FOOBAR, FOOT, or any other component starting with FOO.

Any component of a pathname can contain wildcards except the host; wild hosts are not
allowed because a known host is required in order to know what flavor the pathrame should be.
If a pathname component is written in the namestring as just *, the actual component of the
pathname instance is the keyword :wild. Components which contain wildcards but are not simply
a single wildcard are represented in ways subject to change.

Pathnamcs whose components contain w1ldcards are called wild pathnames. Wild pathnames
useful in functions such as delete-file for requesting the deletion of many files at once. Less
obviously but more fundamentally, wild pathnames are required for most use of the function
fs:directory-list; an entirc dircctory’s contents are obtained by specifying a pathname whosc
name, type and version components arc :wild.

PS:<ILMAN>PATHNM.TEXT.99 8-JUN-84

Pathname Operations 504 1 isp Machine Manual

:wild-p. Operation on pathname
Returns non-nil if this pathname contains any sort of wildcards. If the value is not nil, it
is a keyword, onc of device, :directory, :name, :type and :version, and it identifics the
first” component which is wild.

:device-wild-p - Operation on pathname
t if’ this pathname’s device contains any sort of wildcards.

:directory-wild-p Operation on pathname
:name-wild-p Operation on pathname
:type-wild-p Operation on pathname
:version-wild-p Operation on pathname

Similar, for the other components that can be wild. (The host cannot ever be wild.)

:pathname-match Operation on pathname
candidate-pathname &optional (match-host-p 1)
Returns t if candidate-pathname matches the pathname on which the operation is
invoked (called, in this context, the partern pathname). If the pattern pathname contains
no wildcards, the pathnames match only if they are identical. This operation is intended
in cascs where wildcards are expected.

Wildcard matching is donc individually by component; the operation returns t only if
cach component matches. Within cach component, an occurrencs of * in pattern
pathname’s component can match any sequence of characters in candidate-pathname’s
component. Other characters, except for host-specific wildcards, must match exactly. :wild
as a component of the pattern pathname matches any component that candidate-pathname

may have.

Note that if a component of the pattern pathname is nil, candidate-pathname’s component
must be nil also to match it. Most user programs that read pathnames and usc them as
patterns default unspecified components to :wild first.

Examples:

PS:KILMAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual 565 Pathname Operations

(defvar pattern)
(defun test (str)
(send pattern
:pathname-match
(parse-namestring str)))

(setq pattern
(parse-namestring "OZ:*:<F*0>* .TEXT.*"))

(test "OZ:<FOO>A.TEXT") => t

(test "OZ:<FO>HAHA.TEXT.3") => t
(test "OZ:<FPPO>HAHA.TEXT.%") => t
(test "OZ:<FOX>LOSE.TEXT") => nil

(setq pattern
(parse-namestring "OZ:*:<*>A . TEXT*.5"))

(test "OZ:<FOO>A.TEXT.5") => t
(test "OZ:<FOO>A.TEXTTTT.5") => t
(test "OZ:<FOO>A.TEXT") => nil

If match-host-p is nil, then the host components of the two pathnames are not tested.
The result then depends only on the other components.

:translate-wild-pathname Operation on pathname
targer-patiern starting-data &optional reversible
Returns a pathname corresponding to starting-data under the mapping defined by the wild
pathnames source-pattern, which is the pathname this operation is invoked on, and targer-
pattern, the argument. It is cxpected that starting-data would match the source pattern
under the :pathname-match operation.

itranslate-wild-pathname is used by functions such as copy-file which use one wild
pathname to specify a set of files and a sccond wild pathname to specify a corresponding
filename for ecach file in the sct. The first wild pathname would be used as the source-
‘pattern and the sccond, specifying the name to copy each file to, would be passed as the
target-pattern pathname, '

Each component of the result is computed individually from the corresponding
components of starting-data and the pattern pathnames, using the following rules;

1) If target-pattern’s component is ;wild, then the result component is taken from
starting-data.

2) Otherwise, each non-wild character in farger-pattern’s component is taken literally into
the result. Each wild character in target-pattern’s component is paired with a wild
character in source-pattern’s component, -and thereby with the portion of starting-
data’s component which that matched. This portion of starting-data appears in the
result in place of the wild target character. :

PS:KLLMAN>PATHNM.TEXT.99 8-JUN-84

Pathname Operations 566 Lisp Machine Manual .

Example: : '
(setq source (fs:parse-pathname "OZ:PS:<FO0>A*Bx. . +"))
(setq target (fs:parse-pathname "0Z:SS:<*>xL0OSE#*.*B.#*"))

(send source :transtate-wild-pathname target
(fs:parse-pathname "0Z:PS:<FOO>ALIBI.LISP.3"))
=> the pathnume 02 : SS: <FOO>LILOSEI.LISPB.3 '

It is casiest to understand the mapping as being done in interchange case: the interchange
components of the arguments arc used and the results specify the interchange components
of the value.

‘The type component is slightly special; if the rtarger-pattern type is :wild, the canonical
type of swrting-data is taken and then interpreted according to the mappings of the target
host. Example:

(setq source (fs:parse-pathname "OZ:PS:<FOO0>A#*.*.*"))

(setq target (fs:parse-pathname "U://usr//foo//b*.+"))

(send source :translate-wild-pathname target
(fs:parse-pathname "OZ:PS:<FO0>ALL.LISP"))
=> the pathnameU: /usr/foo/b11.1

If reversible is non-nil, rule 1 is not used; rule 2 controls all mapping. This mode is used
by logical pathname translation. 1t makes a difference when the target pattern component
is :wild and the source pattern component contains wildcards but is not simply :wild. For
cxample, with source and target pattern components BIG* and *, and starting data
BIGGER, the result is ordinarily BIGGER by rule 1, but with teversible translation the
result is GER. ' ' :

Operations to get a path name string out of a pathname object:

:string-for-printing Operation on pathname
Returns a string that is the printed representation of the path name. This is the same as
what you get if you princ the pathname or take string of it.

:string-for-wholine length Operation on pathname
Returns a string like the :string-for-printing, but designed to fit in length characters.
length is a suggestion; the actual returncd string may be shorter or longer than that.
However, the who-line updater truncates the value to that length if it is longer.

:string-for-editor ' Operation on pathname

Returns a string that is the pathname with its components rearranged so that the name is
first. The editor uscs this form to name its buffers.

PS:KILMAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual - 567 Pathname Opcrations

:string-for-dired Operation on pathname
Returns a string to be used by the directory editor. ‘The string contains only the name,
type, and version, '

:string-for-directory ' Operation on pathname
“Returns a string that contains only the device and dircctory of the pathname. It identifies
one directory among: all directories on the host.

:string-for-host Operation on pathname
Returns a string that is the pathname the way the host file system likes to sec it

‘Operations to move around through a hicrarchy of dircctories:

:pathname-as-directory Operation on pathname
Assuming that the file described by the pathname is a directory, return another pathname
specifying that as a directory. Thus, if sent to a pathname OZ:{RMS>FOO.GIRECTORY, |
it would return the pathname OZ:XKXRMS.FOO>. ‘The name, type and version of the .
returned pathname arc :unspecific.

:directory-pathname-as-file Operation on pathname
This is the inverse of the preceding operation. It returns a pathname specifying as a file
the directory of the original pathname. The name, type and version of the original
pathname are ignored.

The special symbol :root can be used as the dircctory component of a pathname on file
systems that have a root dircctory.

Operations to manipulate the property list of a pathname:

:get property-name &optional default-value Operation on pathname
:getl list-of-property-names Operation on pathname
:putprop value property-name Operation on pathname
sremprop properiy-name : Operation on pathname
plist Operation on pathname

These manipulate the pathnamc’s property list, and are used if you call the property list
functions of the same names (sece page 114) giving the pathname as the first argument.
Plcase rcad the paragraph on page 546 explaining the care you must take in using
property lists of pathnames.

PS:<ILMAN>PATHNM.TEXT.99 8-JUN-84

Host Iile Systems Supported 568 Lisp Machine Manual

24.7 Host File Systems Supported

‘This section lists the host file systems supported, gives an cxample of the pathname syntax for
cach system, and discusses any special idiosyncracies. More host types may be added in the
future.

24.7.1 ITS.

An I'TS pathname looks like "host: device: dir; name type-or-version”. 'T'he primary device
is DSK: but other devices such as ML:, ARC:, DVR:, or PTR: may be used.

I'TS does not exactly fit the virtual file system model, in that a file name has two components
(IFN1 and FN2) rather than three (name. type, and version). Conscquently to map any virtual
pathname into an IS filename, it is nccessary to decide whether the FN2 is the type or the
version. ‘The rule is that usually the type goes in the FN2 and the version is ignored; however,
certain types (LISP and TEXT) arc ignored and instcad the version goes in the FN2. Also if the
type is :unspecific the FN2 is the version.

Given an ITS filename, it is converted into a pathname by making the FN2 the version if it
is ', >, or a number. Otherwise the FN2 becomes the type. ITS pathnames allow the special
version symbols ;oldest and :newest, which correspond to <’ and > respectively.

In every ITS pathname cither the version or the type is :unspecific or nil; sometimes both
are. When you create a new ITS pathname, if you specify only the version or only the type, the
one not specified becomes :unspecific. If both are specified, the version is :unspecific unless the
type is a normally-ignored type (such as LISP) in which casc the version is :newest and the type
is :unspecific so that numeric FN2's are found.

Each component of an ITS pathname is mapped to upper case and truncated to six characters.

Special characters (space, colon, and semicolon) in a component of an ITS pathname can be
quoted by prefixing them with right horseshoe (5) or cquivalence sign (=). Right horscshoe is the
same character code in the Lisp Machine character sct as control-Q in the ITS character set.

An ITS pathname can have a structured name, which is a list of two strings, the FN1 and
the FN2. In this case there is neither a type nor a version.

An ITS pathname with an FN2 but no FN1 (i.e. a typc and/or version but no name) is
represented with the placcholder FN1 ‘e, because I'T'S pathname syntax provides no way to write
an FN2 without an FN1 before it.

The ITS init file naming convention is "homedir; user program".

fs:*its-uninteresting-types* Variable
~ The ITS file system does not have scparate file types.and version numbers; both
components arc stored in the “FN2". 'This variable is a list of the file types that are “not
important™; files with these types use the FN2 for a version number. Files with other

types use the FN2 for the type and do not have a version number. The initial list is

PS:KLLMAN>PATHNM.TEXT.99 v 8-JUN-84

Lisp Machine Manual 569 Host File Systems Supported

("LISP" "TEXT" nil.:unspecific)
Some users may need (o add o dhis list.

:fnl Operation on its-pathname

:fn2 Operation on its -pathname
These two operations return a ‘string that is the FF Nl or FN2 host-dependent component
of the pathname. :

:type-and-version Operation on pathname
:new-type-and-version uew-fype new-version Operation on pathname
These two operations provide a way of pretending that I'1'S pathnames can have both a
type and a version. They usc the first three characters of the IFN2 (o store a type and the
last three to store a version number.

On an ITS-pathname, :type-and-version returns the type and version thus cxtracted (not
the same as the type and version of the pathname). :new-type-and-version returns a
new pathname constructed from the specified new type and new version.

On any other type of pathname, these operations simply return or sct both the type
component and the version component.

24.7.2 TOPS-20 (Twenex), Tenex, and VMS.

A pathname on TOPS-20 (better known as Twenex) looks like
host: device: <directory>name. type . version
The primary device is PS..

TOPS-20 pathnames are mapped to upper case. Special characters (including lower-case
letters) are quoted with the circle-cross (®) character, which has the same character code in the
Lisp Machine character set as Control-V, the standard Twenex quoting character, in the ASCII
character set.

If you specify a period after the name, but nothing after that, then the type is :unspecific,
which translates into an cmpty extension on the TOPS-20 system. If you omit the period, you
have allowed the typc to be defaulted.

TOPS-20 pathnames allow the special version symbols :oldest and :newest. In the string
form of a pathname, thesc arc cxpressed as ‘.-2°, and as an omitted version.

The directory component of a TOPS-20 ' pathname may be structured. The directory
<FOO.BAR> is represented as the list ("FOO" "BAR").

The characters * and % arc wildcards that match any sequence of characters and any single
character (within one pathname component), respectively. To specify a filename that actually
contains a * or % character, quote the character with . When a component is specified with just
a single *, the symbol :wild appears in the pathname object.

PS:<LLMAN>PATHNM.TEXT.99 ' _ 8-JUN-84

Host File Systems Supported 570 Lisp Machine Manual

The 'FOPS-20 init file naming convention is "<userdprogram INIT",

When there is an attempt to display a TOPS-20 file name in the who-line and there isn't
cnough room to show the entire name, the name is truncated and followed by a center-dot
character to indicate that there is more (o the name than can be displayed.

Tenex pathnames are almost the same as TOPS-20 pathnames. cxcept that the. version is
preceeded by a semi-colon instead of a period, the default device is DSK mstead of PS, and the
quoting requircments are slightly different.

VMS pathnames are basically like TOPS-20 pathnames, with a few complexities. "The primary
device is USRDS.

First of all, only alphanumeric characters are allowed in filenames (though $ and underscore
can appear in device namcs).

Sccondly, a version number is preceded by *;" rather than by “.

Thirdly, filc types (called “extensions™ in VMS terminology) are limited to three characters.
Each of the system’s canonical types has a special mapping for VMS pathnames, which is three
characters long:

:lisp » LSP :text » TXT :qfasl » QFS :midas » MID
:press =+ PRS :widths -+ WID :patch-directory =+ PDR
:qwabl -» QWB :babyl » BAB :mail -» MAI :xmail » XML
:init » INI :unfasl - UNF :output =+ 0OUT

24.7.3 Unix and Multics Pathnames

A Unix pathname is a scquence of directory or file names scparated by slashes. The last
name is the filename; preceding oncs are dircctory names (but directories are files anyway). There
arc no devices or versions. Alphabetic case is significant in Unix pathnames, no case conversion
is normally done, and lower casc is the default. Therefore, components of solid upper or lower
case arc inverted in case when going between interchange form and raw form. (What the user
types in a pathname string is the raw form.)

Unix allows you to specify a pathname relative to your default directory by using just a
filename, or starting with the first subdirectory name: you can specify it starting from the root
directory by starting with a slash. In addition, you can start with *..’ as a directory name one or
more times, to refer upward in the hicrarchy from the default directory.

Unix pathnames on the Lisp Machine provide all these features too, but the canonicalization
to a simple descending list of directory names starting from the root is donc on the Lisp Machine
itself when you merge the specified pathname with the defaults.

If a pathname string starts with a slash, the pathname object that results from parsing it is
called “absolute”. Otherwise the pathname object is called “relative”.

PS:KL.MAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual 571 Host File Systems Supported

- Inan absolute pathname object, the directory component is cither a symbol (nil, :unspecific
or :root). a string, or a list of stings. A single string is used when there is only one level of
dircctory in the pathname.

A relative pathname has a directory that is a list of the symbol relative followed by some
strings. . When the pathname is merged with defaults, the strings in the list are appended to the
strings in the default directory. ‘The result of merging is always an absolute pathname.

In a relative pathname’s string form, the string “." can be used as a directory name. It is
translated to the symbol wup when the string is parsed. ‘That symbol is processed when the
relative pathname is merged with the defaults.

Restrictions on the length of Unix pathnames. require abbreviations for the standard Zctalisp
pathname types, just as for VMS. On Unix the preferred mappings of all canonical types are one
or two characters long. We give here the mappings in raw form; they are actually specified in
interchange form.

:lisp » 1 ttext - tx :qfasl » gf :midas - md
:press = pr :widths ~» wd :patch-directory » pd
:qwabl - qw :babyl - bb :mail > ma :xmail =+ xm
dinit = in :unfasl -» uf :output - ot

The Multics file system is much like the Unix one: there are absolute and relative pathnames,
absolute ones start with a dircctory delimiter, and there are no devices or versions. Alphabetic
case is significant.

There arc differences in details. Directory names are terminated, and absolute pathnames
begun, with the character >, The containing dircctory is referred to by the character ‘C, which
is complete in itself. It does not require a delimiter. Thus, <KFOO>BAR refers to subdirectory
FOO, file BAR in the superdirectory of the superdirectory of the default directory.

The limits on filename sizes are very large, so the system canonical types all use their
‘standard mappings. Since the mappings are specificd as upper case, and then interpreted as being
in interchange form, the actual file names on Multics contain lower case.

24.7.4 Lisp Machine File Systems

There are two file systems that er in the MIT Lisp Machine system. They have different
pathname syntax. Both can be accessed either remotely like any other file server, or locally.

The Local-File system uses host name LM for the machine you are on. A Local-File system
on another machine can be accessed using the name of that machine as a host name, provided
that machine is known as a file server.

The remainder of the pathname for the Local-File system looks like “directory;
name.type # version". There is no restriction on the length of names; letters are converted to
upper casc. Subdircctorics are allowed and are specified by putting periods between the directory
components, as in RMS.SUBDIR;.

PSKL.MANDPATHNM.TEXT.99 8-JUN-84

Host File Systems Supported 572 Lisp Machine Manual

The TOPS-20 pathname syntax is also accepted. In addition, if the flag fs:*Imfs-use-
twenex-syntax* is non-nil, Local-File pathnames print out using 1TOPS-20 syntax. Note that
since the printed representation of a pathname is cached, changing this flag’'s valuc docs not
change the printing of pathnames with existing representations.

The 1 ocal-File system on the fileccomputer at MIT has the host name FS.

The IMEILE system is primarily for use as a file server, unless you have 512k of memory.
AL MIT it runs on the filecomputer and is accessed remotely with host name FC.

The remainder of an LMEILE pathname looks like “directory; name type # version ™.
However. the directory and name can be composed of any number of subnames, scparated by
backslashes. ‘This is how subdirectories are specified. FOO;BAR\X refers to the same file as
FOO\BAR:X. but the two ways of specifying the file have different consequences in defaulting,
getting directory listings, ctc.

Case is significant in LMFILE pathnames; however, when you open a file, the LMFILE
system ignores the case when it matches your pathname against the existing files. As a result, the
case you use matters when you create or rename a file, and appears in directory listings, but it is
ignored when you refer to an existing file. and you cannot have two files whose names differ only
in casc. When components arc accessed in interchange form, they arc always converted to upper
case.

24.7.5 Logical Pathnames

There is another kind of pathname that doesn’t correspond to any particular file server. It is
called a logical pathname, and its host is called a logical host. Every logical pathname can be
translated into a corresponding physical pathname because each logical host records a
corresponding actual (“physical”) host and rules for translating the other components of the
pathname.

The reason for having logical pathnames is to make it easy to keep bodies of software on
more than onc file system. An important cxample is the body of softwarc that constitutes the
Lisp Machine system. Every site has a copy of all of the sources of the programs that are loaded
into the initial Lisp environment. Some sites may store the sources on an ITS file system, while
others may store them on a TOPS-20. However, system software (including make-system) wishes
to be able to find a particular file independent of the name of the host a particular sitc stores it
on, or cven the kind of host it is. This is donc by means of the logical host SYS:; all pathnames
for system files are actually logical pathnames with host SYS. At cach site, SYS is defined as a
logical host, but translations arc different at cach site. For cxample, at MIT the sourcc files are
stored on the TOPS-20 system named OZ, so MIT's site file says that SYS should translate to the
host OZ.

Fach logical host, such as SYS, has a list of translations, each of which says how to map
certain pathnames for that host into pathnames for the corresponding physical host. To translate a
logical pathname, the system tests cach of the logical host's translations, in scquence, to sce if it
is applicable. (If none is applicable, an crror is signaled.) A translation consists of a pair of
pathnames or namestrings, typically containing wildcards. Unspecificd components in them dcfault

PS:KL.MAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual 573 Host File Systems Supported

o wild. The from-pathname of the translation is used to match against the pathname to be
translated; if it matches. the corresponding fo-pathname is used to construct the translation, filling
in its wild ficlds from the pathname being translated as in the :translate-wild -pathname
operation (page 565).

Most commonly the translations -contain pathnames that have only dircctories specified,
everything else wild. Then the other components are unchanged by translation.

If the files accessed through the Togical host are moved. the translations can be changed so
that the samc logical pathnames refer o the same files on their new physical host via physical
pathnames changed to fit the restrictions and the conventions of the new physical host.

Each translation is specified as a list of two strings. ‘The strings arc parsed into pathnames
and any unspecified components are defaulted to :wild. ‘The first string of the pair is the source
pattern; it is parsed with logical pathname syntax. 'The sccond string s the target pattern, and it
is parsed with the pathname syntax for the specified physical host.

IFor example, suppose that logical host FOO maps to physical host BAR, a Tops-20, and has

the following list of translations: '

(("BACK;" "PS:<F00.BACK>")

("FRONT;* QFASL" "SS:<F00.QFASL>*.QFASL")

("FRONT;" "PS:<FO0.FRONT>"))
Then all pathnames with host FOO and directory BACK translate to host BAR, device PS and
directory <FOO.BACK> with name, type and version unchanged. All pathnames with host FOO,
dircctory FRONT and type QFASL translate to host BAR, device SS, directory <FOO.QFASLY
and type QFASL, with name and version unchanged. All other pathnames with host FOO and
directory FRONT map to host BAR, device PS and dircctory <FOO.FRONT>, with name, type
and version unchanged. Note that the first translation whose pattern matches a given pathname is
the onc that is used.

Another site might define FOO's to map to a Unix host QUUX, with the following translation
list: :
(("BACK;" "//nd//foo//back//")
("FRONT;" "//nd//foo//front//"))
This site apparently does not sce a need to store the QFASL files in a separate dircctory. Note
that the slashes arc duplicated to quote them for Lisp; the actual namestrings contain single
slashes as is usual with Unix.

If the last translation’s source pattern is entirely wild, it applics to any. pathname not so far
handled. Example: _
(("BACK;" "//nd//foo//back//")
("" “//nd//fool//x/ /"))

Physical pathnames can also be back-translated into the corresponding logical pathname. This
is the inverse transformation of ordinary translation. It is necessary to specify which logical host
to back translate for, as it may be that the same physical pathname could be the translation of
different logical pathnames on different hosts. Use the ‘back-translated-pathname operation,
below. :

PS:KILMAN>PATHNM.TEXT.99 8-JUN-84

Host File Systems Supported 574 I isp Machine Manual

fs:add-logical-pathname-host /logical-host physical-host translations
fs:saet-logical-pathname-host logical-host &key physical-host translations
Both create a new logical host named logical-host. Its corresponding physical host (that is,
the host to which it should forward most operations) is physical-host. logical-host and
physical-host should both be strings. translations should be a list of translation
specifications, as described above. The two functions differ only in that one accepts
positional arguments and the other accepts keyword arguments. Example:
(add-logical-pathname-host "MUSIC" "MUSIC-10-A"
"(("MELODY:" "SS:<MELODY>")
("DOC;" "PS:<MUSIC-DOCUMENTATION>")))

This creates a new logical host called MUSIC. An attempt to open the file
MUSIC:DOC;:MANUAL TEXT 2 will be re-directed to the file MUSIC-10-A:PS:<MUSIC-
DOCUMENTATION>MANUAL.TEXT.2 (assuming that the host MUSIC-10-A is a 'TOPS-20
system).

fs:make-logical-pathname-host name
Requests that the definition of logical host name be loaded from a standard place in the
file system: namely, the file SYS: SITE; name TRANSLATIONS. 'This file is loaded
immediately with load. in the fs package. It should contain code to create the logical
host; normally, a call to fs:set-logical-pathname-host or fs:add-logical-pathname-
host, above.

The same file is automatically reloaded, if it has been changed, at appropriate times: by
load-patches, and whencver site information is updated.

:translated-pathname Operation on fs:logical -pathname
Converts a logical pathname to a physical pathname. It returns the translated pathname of
this instance, a pathname whose host component is the physical host that corresponds to
this instance’s logical host.

If this operation is applied to a physical pathname, it simply rcturns that pathname
unchanged.

:back-translated-pathname parhname Operation on fs:logical -pathname
Converts a physical pathname to a logical pathname. parhname should be a pathname
whose host is the physical host corresponding to this instance’s logical host. This rcturns a
pathname whose host is the logical host and whose translation is pathname. 1f pathname
is not the translation. of any logical pathname on this instance’s host, nil is returned.

Here is an cxample of how this would be used in conncction with trucnames. Given a
strecam that was obtained by opening a logical pathname,

(send stream :pathname)
returns the logical pathname that was opened.

(send stream :truename)
returns the truc name of the file that is open, which of course is a pathname on the
physical host. To get this in the form of a logical pathname, onc would do

PS:KILMAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual 575 Host File Systems Supported

(send (send stream :pathname)
:back-translated-pathname
(send stream :truename))

If this operation is applied to a physical pathname, it simply returns its argument. Thus
the above cxample works no matter what kind of pathname was opened to create the
stream, :

fs:unknown-logical-pathname-translation (fs:pathname-error error) Condition
This is signaled when a logical pathname has no translation. The condition instance
supports the :logical-pathname operation, which returns the pathname that was
untranslatable.

The proceed type :define-directory is supported. It expects a single argument, a
pathname or a string to be parsed into onc. ‘This defines the target pattern for a
translation whose source pattern is the directory from the untranslatable pathname (and all
clse wild). Such a translation is added to the logical host, making it possible to translate
the pathname.

A logical pathname looks like "host: directory; name type version". 'There is no way to
specify a device: parsing a logical pathname always returns a pathname whose device component
is :unspecific. This is because devices don't have any meaning in logical pathnames.

The cquivalence-sign character (z) can be used for quoting special characters such as spaces
and scmicolons. 'The double-arrow character (‘¢’) can be used as a place-holder for components
that arc nil, and the up-horseshoe (‘U°) indicates :unspecific (generic pathnames typically have
‘unspecific as the type and the version). All letters are mapped to upper case unless quoted.
The :newest, :oldest, and :wild values for versions arc written as ', <, and ‘** respectively.

There isn’t any init file naming convention for logical hosts; you can't log into them. The
sstring-for-host, :string-for-wholine, :string-for-dired, and :string-for-editor messages are all
" passed on to the translated pathname, but the :string-for-printing is handled by the fs:logical-
pathname flavor itsclf and shows the logical name.

24.7.6 Editor Buffer Pathnames

The hosts ED, ED-BUFFER and ED-FILE are used in pathnames which refer to buffers in
the editor. If you open such a pathname, you get a strcam that reads or writes the contents of
an cditor buffer. The three host names differ only in the syntax of the pathname, and in how it
is interpreted. ‘

The host ED is followed by an abbreviation that should complete to the name of an existing
editor buffer. For example, the pathname ED:FOO could refer to the buffer FOO.LISP PS:<KME>

0zZ..

The host ED-BUFFER is followed by an exact buffer name. If there is no buffer with that
name, onc is created. This is most uscful for creating a buffer.

PS:KLLMAN>PATHNM.TEXT.99 8-JUN-84

Hosts 576 Lisp Machine Manual

The host ED-FILE is followed by an arbitrary pathname, including a host name. An ED-
FILE pathname refers to a buffer visiting that file. 1f necessary, the file is read into the cditor,
For example. ED-FILE: OZ: PS:XME>FOOQ.LISP would refer to the same buffer as ED: FOO.
The current default defaults are used in processing the pathname that follows ED-FILE, when the
pathname is parsed.

24.8 llosts:

Fach host known to the Lisp Machine is represented by a flavor instance known as a host
object. ‘T'he host object records such things as the name(s) of the host. its operating system type,
and its network address(es). Host objects print like # cFS:TOPS20-CHAOS-HOST "MIT-OZ">,
so they can be read back in.

Not all hosts support file access. Those that do support it appecar on the list fs:*pathname-
host-list* and can be the host component of pathnames. A host object is also used as an
argument when you make a Chaosnet connection for any purpose.

The hosts that you can use for making network conncctions appear in the value of sithost-
alist. Most of the hosts you can usc for pathnames arc among these; but some, such as logical
hosts, are not.

24.8.1 Parsing Hostnames

si:parse-host namesiring &optional no-error-p (unknown-ok t)
Returns a host object that recognizes the specified name. If the name is not recognized,
it is an error, unless no-error-p is non-nil; in that case, nil is rcturned.

If unknown-ok is non-nil (the dcfault), a host table server on the local network is
contacted, to sce if perhaps it can find the name there. If it can’t, an error is signalled
or nil is returned, according to no-error-p. ‘The host instance crcated in this manner
contains all the kinds of information that a host defined from the host table file has.

If a string of the form CHAOS|nnn is used, a host object is created and given nnn
(interpreted as octal) as its Chaosnct address. This can be done regardless of the

unknown-ok argument.

The first argument is allowed to be a host object instcad of a string. In this case, that
argument is simply returned. :

sys:unknown-host-name Condition
(sys:local-network-error sys:network-error error)
This condition is signaled by si:parse-host when the host is not recognized, if that is an

crTor,

The :name operation on the condition instance returns the string given to si:parse-host.

PS:KILMAN>PATHNM.TEXT.99 8-JUN-84

Lisp Machine Manual 577 . Hosts

si:get-host-from-address address nerwork
Returns a host object given an address and. the name of the network which that address is

for. Usually the symbol :chaos is used as the network name.
nil is returned if there is no known host with that address.

fs:get-pathname-host name &optional no-error-p
Returns a host object that can be used in pathnames. If the namce is not recognized, it is
an crror, unless no-crror-p is non-nil; in that case, nil is returned.

The first argument is allowed to be a host object instead of a string. In this case, that
argument is simply returned.

si:parse-host and fs:get-pathname-host differ in the sct of hosts searched.

fs:unknown-pathname-host (fsipathname-error error) . Condition
‘This condition is signaled by fs:get-pathname-host when the host is not recognized, if

that is an crror.

The name operation on the condition instance returns the string given to fs:get-
pathname-host.

fs:*pathname-host-1ist®* . _ Variable
This is a list of all the host objects that support file access.

si:host-alist : Variable
This variable is a list of onc clement for each known network host. The clement looks
like this: '

(full-name host-object (nickname nickname2 . .. full-name)
system-lype machine-type site .
network list-of-addresses network2 list-of addresses2 . . .)
The full-name is the host’s official name. The :name operation on the host object returns

this.

The host-object is a flavor instance that represents this host. It may be nil if none has
been created yet; si:parse-host creates them when they are referred to.

The nicknames are alternate names that si:parse-host should recognize for this host, but
which are not its official name.

The system-fype is a symbol that tells what software the host runs. This is used to decide
what flavor of host object to construct. Symbols now used include :lispm, :its, :tops~-20,
itenex, :vms, :unix, :multics, :minits, :waits, :chaos-gateway, :dos, :rsx, ‘magicsix,
‘msdos, and others. Not all of these are specifically understood in any way by the Lisp
Machine. If none of these applies to a host you wish to add, usc a new symbol.

The machine-type is a symbol that describes the hardware of the host. Symbols in use
include :lispm, :pdp10, :pdp11, wvax, :nu, :pe3230, and :ibmpc. (nil) has also been
observed to appear here. Note that these machine types attempt to have wide meanings,
- lumping together various brands, models, etc.

PS:KLLMAN>PATHNM.TEXT.99 8-JUN-84

Hosts ' 578 Lisp Machine Manual

The sire does not describe anything about the host. Instead it serves to say what the Lisp
Machine’s site name was when the host was defined. This is so that. when a Lisp
Machine system is moved to a different institution that has a disjoint set of hosts, all the
old site’s hosts can be deleted from the host alist by site reinitialization,

The networks and lists of addresses describe how to reach the host. Usually there is only
onc network and only one address in the list. ‘The gencrality is so that hosts with
multiple addresses on multiple networks can be recorded. Networks include :chaos and
:arpa. ‘The address is meaningful only o code for a specific network.

24.8.2 Host Object Operations

:name ‘ Operation on host objects
Returns the full, official name of the host.

:name-as-file-computer Operation on host objects
Returns the name to print in pathnames on this host (assuming it supports files). This is
likely to be a short nickname of the host.

:short-name : Operation on host objects
Returns the shortest known nickname for this host.

:pathname-host-namep siring Operation on host objects
Returns t if siring is recognized as a name for this host for purposes of pathname parsing.
The local host will recognise LM as a pathname host name.

:system-type Operation on host objects
Returns the opcrating system type symbol for this host. Sce page 810.

:network-type Operation on host objects
Returns the symbol for onc network that this host is connected to, or nil if it is not
connected to any. :chaos is preferred if it is onc of the possible values.

:network-typep network Operation on host objects
Returns t if the host is connected to the specified network. :

:network-addresses Operation on host objects
Returns an alternating list of network names and lists of addresses, such as
(:chaos (3104) :arpa (106357002))
You can therefore find out all networks a host is known to be on, and its addresses on
any nctwork.

:sample-pathname Operation on host objects
Returns a pathname for this host, whose device, directory, name, type and version
components arc all nil. Sample pathnames arc often uscful becausc many file-system-
dependent pathname operations depend only on the pathname’s host.

PS:KLLMAN>PATHNM.TEXT.99 8-JUN-84

Asp Mackine Manual . 579 Hosts

:open-streams Operation on host objects

Returns a list of all the open file streams for files on this host.

:close-all-files Operation on host objects

Closes all file streams open for files on this host.

:generic-base-type npe-component Operation on host objects

Returns the type component for a generic pathname assuming it is being made from a
pathname whose type component is the one specified.

PS:KL.MAN>PATHNM.TEXT.99 8-JUN-84

	545_FileNames
	546_FileNames
	547_FileNames
	548_FileNames
	549_FileNames
	550_FileNames
	551_FileNames
	552_FileNames
	553_FileNames
	554_FileNames
	555_FileNames
	556_FileNames
	557_FileNames
	558_FileNames
	559_FileNames
	560_FileNames
	561_FileNames
	562_FileNames
	563_FileNames
	564_FileNames
	565_FileNames
	566_FileNames
	567_FileNames
	568_FileNames
	569_FileNames
	570_FileNames
	571_FileNames
	572_FileNames
	573_FileNames
	574_FileNames
	575_FileNames
	576_FileNames
	577_FileNames
	578_FileNames
	579_FileNames

