Packages 6306 Lisp Machine Manual

27. Packages

A Lisp program is a collection of function definitions. ‘The functions are known by their
names, and so cach must have its own name to identify it. Clearly a programmer must not use
the same name for two different functions,

‘The Lisp Machine consists of a huge Lisp cenvironment, in which many programs must
coexist. - All of the operating system, the compiler, the editor, and a wide variety of programs are
provided in the initial environment. FFurthermore, every program that you use during a session
must be loaded into the same environment. Fach of these programs is composed of a group of
functions; apparently cach function must have its own distinct name to avoid conflicts. For
example, if the compiler had a function named pull, and you loaded a program which had its
own function named pull, the compiler’s pull would be redefined. probably breaking the compiler.

It would not really be possible to prevent these conflicts, since the programs arc written by
many different people who could never get together to hash out who gets the privilege of using a
specific name such as pull. :

Now, if we are to cnable two programs to coexist in the Lisp world. cach with its own
function pull, then cach program must have its own symbol named pull, because there can't be
two function definitions on the same symbol. 'This means that scparatc name spaces—mappings
between names and symbols—must be provided for the two programs. The package system is
designed to do just that. ’

Under the package system, the author of a program or a group of closely related programs
identifics them together as a package. 'The package system associates a distinct name space with
cach package.

Here is an cxample: supposc there arc two programs named chaos and arpa, for handling
the Chaosnet and Arpanct respectively. The author of ecach program wants to have a function
called get-packet, which reads in a packet from the nctwork (or something). Also, cach wants
to have a function called allocate-pbuf, which allocates the packet buffer. Each “get” routine
first allocates a packet buffer, and then reads bits into the buffer; therefore, each version of get-
packet should call the respective version of allocate-pbuf.

Without the package system, the two programs could not coexist in the same Lisp
cnvironment. But the package feature can be used to provide a separate name space for each
program. What is required is to definc a package named chaos to contain the Chaosnet program,
and another package arpa to hold the Arpanet program. When the Chaosnet program is read
into the machine, its symbols would be entered in the chaos package's name space. So when the
Chaosnet program’s get-packet referred to allocate-pbuf, the allocate-pbuf in the chaos name
space would be found, which would be the allocate-pbuf of the Chaosnet program—the right
onc. Similarly, the Arpanct program’s get-packet would be rcad in using the arpa package and
would refer to the Arpanct program'’s allocate-pbuf.

In order to have multiple name spaces, the function intern, which scarches for a name, must
allow the name space to be specified. intern accepts an optional second argument which is the
package to scarch.

PS:<L.MANYPACKD.TEXT.106 | 8-JUN-84

[isp Machine Manual 037 The Current Package

C10s obvious that every file has o be loaded into the right package to serve its purpose. |t
may not be so obvious that cvery file must be compiled in the right package, but it's just as true.
Luckily, this usually happens automatically.

The system can get the package of a source file from its -#*- line. Ior instance, you can put
at the front of your file a line such as -
-*- Mode:Lisp: Package:System-Internals -=*-
The compiler puts the package: name into the QEFASIL. file for use when it is loaded. If a file
doesn’t have such a package specification in it, the system loads it into the current package and
tells you what it did.

27.1 The Current Package

At any time, onc package is the current package. By default, symbol lookup happens in the
current package.

package Variable
*package® ' ' v Variable
The value of the this variable is the current package. intern scarches this package if it is
not given a second argument. Many other functions for operating on packages also use
this as the default.

Setting or binding the variable changes the current package. May the Goddess help you if
you sct it to somcthing that isn’t a package!

The two names are synonymous.

Each process or stack group can have its own sctting for the current package by binding
package with let. The actual current package at any time is the valuc bound by the process
which is running. The bindings of another process are irrclevant until the process runs.

pkg-bind pkg body.. - Macro
pkg may be a package or a package name. The forms of the body are evaluated

scquentially with the variable *package* bound to the package named by pkg.
Example:
(pkg-bind "ZWEI"
(read-from-string function-name))

When a file is loaded, *package* is bound to the correct package for the file (the one
named in the file's -*- lin¢). The Chaosnct program file has Package: Chaos; in thc -+- line,
and therefore its symbols arc looked up in the chaos package. A QFASL file has an cncoded
representation of the -+»- linc of the source file; it looks different, but it serves the same

purpose.

The current package is also relevant when you type Lisp cxpressions on the keyboard; it
controls the rcading of the symbols that you type. Initially it is the package user. You can select
a different package using pkg-goto, -or cven by setging *package*. If you are working with the
Chaosnet program, it might be uscful to type (pkg-goto 'chaos) so that your symbols arc found
in the chaos package by defautt. The Lisp listen loop binds *package* so that pkg-goto in

PS:<KI.MAN>PACKD.TEXT.106 8-JUN-84

Package Prefixes ' 038 Fisp Machine Manual

one Lisp listener does not affect others, or any other processes whatever.

pkg-goto package &optional globally »
Sets *package* 10 packuge. if package is suitable. (Autoexporting packages used by
other packages are not suitable because it you could cause great troubles by interning new
symbols in them). package may be specified as a package object or the name of one, If
globally is non-nil, then this function also calls pkg-goto-globally (see below)

The Zmacs editor records the correct package for cach buffer; it is determined from the file's
-*= line. This package is used whenever expressions are read from the builer. So if you edit the
definition of the Chaosnet get-packet and recompile it, the new definition is read in the chaos
package. ‘The current buffer’s package is also used for all expressions or symbols typed by the
user. ‘Thus. if you type Meta-. allocate-pbuf while looking at the Chaosnet program, you get
the definition of the allocate-pbuf fuuction in the chaos package.

The variable *package* also has a global binding. which is in cffect in any process or stack
group which does not rebind the variable. New processes that do bind *package* generally use
the global binding to initialize their own bindings, doing (let ((*package* *package*)) ...).
Therefore, it can be useful to set the global binding. But you cannot do this with setq or pkg-
goto from a Lisp listener, or in a file, because that will set the local binding of *package*
instead. Therefore you must use setq-globally (page 35) or pkg-goto-globally.

pkg-goto-globally package
Sets the global binding of *package* o0 package. An crror is signaled if package is not
suitable. Bindings of package other than the the global one are not changed, including
the current binding if it is not the global one.

The name of the current package is always displayed in the middle of the who line, with a
colon following it. This describes the process which the who line in general is describing;
normally, the process of the selected window. No matter how the current package is changed,
the who line will eventually show it (at onec-second intervals). Thus, while a file is being loaded,
the who linc displays that file's package; in the cditor, the who line displays the package of the
sclected buffer.

27.2 Package Préﬁxes

The scparation of name spaces is not an uncrossable gulf. Consider a program for accessing
files, using the Chaosnet. It may be uscful to put it in a distinct package file-access, not
chaos, so that the programs are protected from accidental name conflicts. But the file program
cannot cxist without referring to the functions of the Chaosnet program.

~ The colon character (") has a special mcaning to the Lisp reader. When the reader sees a
colon preceded by the name of a package, it reads the next Lisp object with *package* bound
to that package. Thus, to refer to the symbol connect in package chaos, we write
chaos:connect. Some symbols documented in this manual require package prefixes to refer to
them; they are always written with an appropriate prefix.

PS:KILMAN>PACKD.TEXT.106 , : ~ 8-JUN-84

I isp Machine Manual 039 Home Packages of Symbols

Similarly, if the chaos program wanted (o refer (o the arpa program’s allocate - pbuf
function (for some reason). it could usc arpa:allocate-pbuf.

Package prefixes arc printed on output also. If you would need a package prefix to refer to a
symbol on input, then the symbol is printed with a suitable package prefix if it supposed to be
printed readably (prin1, as opposed to princ). Just as the current package affects how a symbol
is read. it also affects how the symbol is printed. A symbol available in the current package is
never printed with a package prefix.

The printing of package prefixes makes it possible to print list structure containing symbols
from many packages and read the text o produce an cqual list with the same symbols in
it—provided the current package when the text is read is the same one that was current when the
text was printed. ‘

The package name in a package prefix is read just like a symbol name. This means that
escape characters can be used to include special characters in the package name, Thus,
foo/:bar:test refers to the symbol test in the package whose name is “IFOO:BAR™, and so docs
[FOO:BARJ:test. Also, letters are converted to upper case unless they are escaped. For this
rcason, the actual name of a package is normally all upper case, but you can use cither case
when you write a package prefix.

In Common Lisp programs, simple colon prefixes are supposed to be used only for referring
to external symbols (sce page 642). To-refer to other symbols, onc is supposed to use two colons,
as in chaos::lose-it-later. The Lisp machine tradition is to allow reference to any symbol with a
single colon. Since this is upward compatible with what is allowed in Common L.isp, single-colon
references are always allowed. However, double-colon prefixes are printed for internal symbols
when Common Lisp syntax is in use, so that data printed on a Lisp Machine can be read by
other Common Lisp implementations.

27.3 Home Packages of Symbols

Each symbol remembers one package which it belongs to: normally, the first one it was ever
interned in. This package is available as (symbol-package symbol).

With make-symbol (sce page 133) it is possible to crecatc a symbol that has never been
interned in any package. It is called an uninterned symbol, and it remains one as long as nobody
interns it. The package cell of an uninterned symbol contains nil. Uninterned symbols print with

~#: as a prefix, as in #:foo. This syntax can bc used as input to create an uninternced symbol
with a specific name; but a new symbol is created cach time you type it, since the mechanism
which normally makes symbols unique is interning in a package. Thus, (eq #:oo #:foo)
returns nil.

symbol-package symbol

Returns the contents of symbol’s package cell, which is the package which owns symbol,
or nil if symbol is uninterned.

PS:<I.MAN>PACKD.TEXT.106 8-JUN-84

Keywords 640 Lisp Machine Manual

package-cell-location symbol
Returns a locative pointer to symbol’s package cell. It is preferable to write
(locf (symbol-package symbol))
rather than calling this function explicitly.

Printing of package prefixes is based on the contents of the symbol's package cell. If the cell
contains the chaos package, then chaos: is printed as the prefix when a prefix is necessary. As a
result of obscure actions involving interning and uninterning in multiple packages. the symbol may
not actually be present in chaos any more. ‘Then the printed prefix is inaccurate. 'This cannot be
helped. If the symbol is not where it claims to be, there is no casy way to find wherever it
might be.

27.4 Keywords

Distinct name spaces are uscful for symbols which have function definitions or values, to
cnable them o be used independently by different programs.

Another way to usc a symbol is to check for it with eq. Then there is no possibility of name
conflict. For example, the function open, part of the file system, checks for the symbol :error in
its input using eq. A user function might do the same thing. ‘Then the symbol :error is
meaningful in two contexts, but these mecanings do not affect cach other. The fact that a user
program contains the code (eq sym :error) docs not interferc with the function of system .code
which contains a similar expression.

There is no nced to scparate name spaces for symbols used in this way. In fact, it would be
a disadvantage.- If both the Chaosnet program and the Arpanct program wish to recognize a
keyword named “address”, for similar purposes (naturally), it is very useful for programs that can
call cither one if it is the same keyword for cither program. But which should it be?
chaos:address? arpa:address?

To avoid this uncertainty, onc package called keyword has been sct aside for the keywords of
all programs. The Chaosnet and Arpanet programs would both look for keyword:address,
normally written as just :address.

Symbols in keyword arc the normal choice for names of keyword arguments; if you use
&key to process them, code is automatically generated to look for for symbols in keyword. They
arc also the normal choice for flavor operation names, and for any set of named options
meaningful in a specific context.

keyword and the symbols belonging to it are treated differently from other packages in a
couple of ways designed to make them more convenient for this usage.

* Symbols belonging to keyword are constants; they always cvaluate to themsclves. (This is
brought about by storing the symbol in its own valuc cell when the symbol is placed in the
package). So you can writc just :error rather than :error. The nature of the application of
keywords is such that thcy would always be quoted if they were not constant.

* A colon by itsclf is a sufficient package prefix for keyword. This is because keywords are the
most frequent application of package prefixes.

PS:KKLLMAN>PACKD.TEX'T. 106 8-JUN-84

Eisp Machine Manual- 041 Inheritance between Name Spaces

keywordp object
t il object is a symbol which belongs to the keyword package.

There are certain cases when a keyword should nor be used for a symbol to be checked for
with eq. Usually this is when the symbol 1) does not need to be known outside of a single
program, and 2) is to be placed in shared data bases such as property lists of symbols which may
sometimes be in global or keyword. For cxample, if the Chaosnet program were (o record the
existence of a host named CAR by placing an :address property on the symbol :car. or the
symbol car (notice that chaos:car is car), it would risk conflicts with other programs that might
wish to usc the :address property of symbols in general. 1t is better to call the property
chaos:address. ,

27.5 Inheritance between Name Spaces

In the simplest (but not the default) case, a package is independent of all other packages.
This is not the default because it is not usually uscful. Consider the standard Lisp function and
variables names, such as car: how can the Chaosneét program, using the chaos package, access
them? One way would be to install all of them in the chaos package, and cvery other package.
But it is better to have one table of the standard Lisp symbols and refer to it where necessary.
This is called inheritance. The single package global is the only one which actually contains the
standard Lisp symbols; other packages such as chaos contain dircections to “search global too”.

Fach package has a hash tablec of the symbols. The symbols in this table arc said to be
present (more explicitly, present directly) in the package, or interned in it. In addition, ecach
package has a list of other packages to inherit from. By default, this list contains the package
global and no others; but packages can be added and removed at any time with the functions
use-package and unuse-package. We say that a package uses the packages it inherits from.
Both the symbols present directly in the package and the symbols it inherits are said to be
available in the package.

Here’s how this works in the above cxample. When the Chaosnet program is rcad into the
Lisp world, the current package would be the chaos package. Thus all of the symbols in the
Chaosnet program would be interned in the chaos package. If there is a reference to a standard
Lisp symbol such as append, nothing is found in the chaos package’s own table; no symbol of
that name is present directly in chaos. 'Therefore the packages used by chaos are searched,
including global. Since global contains a symbol named append, that symbol is found. If,
however, there is a reference to a symbol that is not standard, such as get-packet, the first time
it is used it is not found in cither chaos or global. So intern makes a ncw symbol named get-
packet, and installs it in the chaos package. When get-packet is referred to later in the
Chaosnct program, intern finds get-packet immediately in the chaos package. global does not
need to be scarched,

When the Arpanct program is read in, the current package is arpa instcad of chaos. When
the Arpanct program refers to append, it gets the global one; that is, it shares the same one
that the Chaosnet program got. However, if it refers to get-packet, it does nor get the same
onc the Chaosnct program got, becausc the chaos package is presumably not used by arpa. The
get-packet in chaos not bcing available, no symbol is found, so a new onec is crcated and
placed in the arpa package. Further references in the Arpanct program find that get-packet.

PS:<1.MAN>PACKD.TEXT.106 , 8-JUN-84

Inheritance between Name Spaces 042 Lisp Machine Manual

This is the desired result: the packages share the standard Lisp symbols only.

Inheritance between other packages can also be useful, but it must be restricted: inheriting
only some of the symbols of the used package. If the file access program refers frequently (o the
advertised symbols of the Chaosnet program—the connection states, such as open-state, functions
such as connect, listen and open-stream, and others—it might be convenient to be able to
refer 1o these symbols from the file-access package without need for package prefixes.

One way to do this is to place the appropriate symbols of the chaos package into the file-
access package as well. Then they can be accessed by the file access program just like its own
symbols. Such sharing of symbols between packages never happens from the ordinary operation
of packages, but it can be requested explicitly using import.

import symbols &optional (package *package*)
Is the standard Common Lisp way to insert a specific symbol or symbols into a package.
symbols is a symbol or a list of symbols. Fach of the specified symbols becomes present
dircctly in package.

If a symbol with the same name is alrcady present (directly or by inheritance) in package,
an crror is signaled. On proceeding, you can say whether to leave the old symbol there
or replace it with the onc specified in import.

But importing may not be the best solution. -All callers of the Chaosnct program probably
want to refer to the same set of symbols: the symbols described in the documentation of the
Chaosnet program. It is simplest if the Chaosnet program, rather than cach caller, says which
symbols they are.

Restricted inheritance allows the chaos package to specify which of its symbols should be
inheritable. Then file-access can use package chaos and the desired symbols are available in it.

The inheritable symbols of a package such as chaos in this example are called external; the
other symbols arc internal. Symbols arc internal by default. The function export is how symbols
are made external. Only the external symbols of a package are inherited by other packages which
usc it. This is truc of global as well; Only cxternal symbols in global are inherited. Since
global exists only for inheritance, every symbol in it is external; in fact, any symbol placed in
global is automatically made cxternal. global is said to be auroexporting. A few other packages
with special uses, such as keyword and fonts, are autocxporting. Ordinary packages such as
chaos. which programs are loaded in, should not be.

If a request is made to find a name in a package, first the symbols present directly in that
package arc scarched. If the name is not found that way, then all the packages in the uscd-list
are scarched; but only external symbols are accepted. Internal symbols found in the used
packages are ignored. If a new symbol nceds to be created and put into the name space, it is
placed directly in the specified package. New symbols are never put into the inherited packages.

The used packages of a package arc not in any particular order. It does not make any
difference which onc is scarched first, because they are nor allowed to have any conflicts among
them. If you attempt to set up an inheritance situation where a conflict would cxist, you get an
error immediately. You can then specify explicitly how to resolve the conflict. See section 27.7,

PSKILLMANSPACKD.TEXT.106 8-JUN-84

Lisp Machine Manual 643 Inheritance between Name Spaces

page 647.

The packages used by the packages used arc nor scarched. If package file-access uscs
package chaos and file mypackage uses package file-access, this does not cause mypackage to
inherit anything from chaos. ‘This is desirable: the Chaosnet functions for whose sake file-
access uses chaos arc not needed in the programs in mypackage simply to cnable them to
communicate with file-access. If it is desirable for mypackage to inherit from chaos. that can
be requested explicitly.

These functions are used o set up and control package inheritance.

use-package packages &optional (in-package *package*)
Makes in-package inherit symbols from packages, which should be cither a single package
or name for a package, or a list of packages and/or names for packages.

This can cause a name conflict, if any of packages has a symbol whose name matches a
symbol in in-package. In this case, an crror is signaled, and you must resolve the conflict
or abort,

unuse-package packages &optional (in-package *package®*)
Makes in-package ccase to inherit symbols from packages.

package-use-11ist package
Returns the list of packages used by package.

package-used-by-1ist package
Returns the list of packages which use package.

~ You can add or remove inheritance paths at any time, no matter what elsc you have done
with the package,. :

These functions arc used to make symbols external or internal in a package. By default, they
opcratc on the current package.

export symbols &optional (package *package*)
Makes symbols external in package. symbols should be a symbol or string or a list of
symbols and/or strings. The specified symbols or strings are interned in package, and the
symbols found are marked external in package.

If one of the specified symbols is found by inheritance from a used package, it is made
directly present in package and then marked cxternal there. (We know it was already
external in the package it was inherited from.)

Note that if a symbol is present directly in several packages, it can be marked external or
internal in cach package independently. Thus, it is the symbol's presence in a particular
package which is cxternal or not, rather than the symbol itself. export makes symbols
external in whichever package you specify; if the same symbols are present directly in any
other package, their status as-external or internal in the other package is not affected.

PS:<ILMAN>PACKD.TEXT.106 8-JUN-84

Packages and Interning 044 Lisp Machine Manual

unexport svmbols &optional (puckage *package*)
Makes symbols not be external in package. An error occurs if any of the symbols fails to
be directly present in package.

package-external-symbols package
Returns a list of all the external symbols of package.

globalize name-or-symbol &optional. (into-puckage "GLOBAL")

Sometimes it will be discovered that a symbol which ought to be in global is not there, and
the file defining it has already been loaded. thus mistakenly creating a symbol with that name in
some other package. Creating a symbol in global would not fix the problem, since pointers to
the misbegotten symbol already cexist. Even worse, similarly named symbols may have been
created mistakenly in other packages by code attempting to refer to the global symbol, and those
symbols also are alrcady pointed to. globalize is designed for usc in correcting such a situation.

globalize symbol-orswring &optional (package "GLOBAL")

If name-or-symbol is a name (a string), interns the name in info-package and then
forwards together all symbols with the same name in all the packages that usc into-
package as wcll as in into-package itsclf. ‘These symbols are forwarded together so that
they become cffectively one symbol as far as the value, function definition and propertics
are concerned. The value of the composite is taken from whichever of the symbols had a
value; a procecdable crror is signaled if multiple, distinct values were found. The
function definition is treated similarly, and so is cach ‘property that any of the symbols
has.

If name-or-symbol is a symbol, globalize interns that symbol in into-package and then
forwards the other symbols to that one.

The symbol which ultimately is present in into-package is also exported.

27.6 Packages and Interning

The most important service of the package system is to look up a name in a package and
return the symbol which has that name in the package's name space. This is done by the
function intern, and is called interning. When you type a symbol as input, read converts your
characters to the actual symbol by calling intern.

The function intern allows you to specify a package as the sccond argument. It can be
specified by giving cither the package object itself or a string or symbol that is a name for the
package. intern rcturns threc values, The first is the interned symbol. The second is a keyword
that says how the symbol was found., The third is the package in which the symbol was actually
found. 'This can be cither the specified package or one of its used packages.

When you don’t specify the sccond argument to intern, the current package, which is the
value of the symbol *package*, is used. This happens, in particular, when you call read and
read calls intern. To spccify the package for such functions to use, bind the symbol *package*
temporarily to the desired package with pkg-bind.

PS:KILMAN>PACKD.TEXT.106 ‘ | 8-JUN-84

Fisp Machine Manual 045 Packages and Interning

CThere are actually four forms of the intern function: regular intern. intern-soft, intern-
local, and intern-local-soft. -soft means that the symbol should not be added to the package if
there isn’t alrcady one; in that case, all three values are nil. -local turns off inheritance: it
means that the used packages should not be scarched. Thus, intern-local can be used to cause
shadowing. intern-local-soft is right when you want complete control over what packages to
scarch and when o add symbols. All four forms of intern return the same three values, except
that the soft forms return nil nil nil when the symbol isn't found.

intern swing-or-symbol &optional (pkg *package*)
The simplest case of intern is where swring-or-symbol is a string. (It makes a Dbig
difference which onc you usc.) intern searches pkg and its used packages sequentially,
looking for a symbol whose print-name is cqual to string-or-symbol. If one is found, it is
returned. Otherwise, a new symbol with string-or-symbol as print name is created, placed
in package pkg, and returned.

The first value of intern is always the symbol found or created. ‘The sccond value tells
whether an existing symbol was found, and how. It is onc of these four values:

sinternal A symbol was found present directly in pkg, and it was internal in pkg.
:external A symbol was found present directly in pkg, and it was external in pkg.
:inherited A symbol was found by inheritance from a package used by pkg. You

can deduce that the symbol is external in that package.

nil A new symbol was created

The third value returned by intern says which package the symbol found or created is
present dircctly in. This is different from pkg if and only if if thc sccond value is
sinherited.

If string-or-symbol is a symbol, the scarch goes on just the same, using the print-name of
string-or-spmbol as the string to scarch for. But if no existing symbol is found, string-or
symbol itself is placed directly into pkg, just as import would do. No new symbol is
created; string-or-symbol itself is the “new” symbol. This is done even if string-or-symbol
is alrcady present in another package. You can creatc arbitrary arrangements of sharing of
symbols between packages this way.

Note: intern is sensitive to case; that is, it will consider two character strings different
cven if the only difference is one of upper-case versus lower-case. The reason that
symbols get converted to upper-case when you type them in is that the reader converts
the case of characters in symbols; the characters are converted to upper-case before intern
is ever called. So if you call intern with a lower-casec "foo" and then with an upper-case
"FOQ", you won’t get the same symbol.

intern-local string-or-symbol &optional (pkg *package*)
Like intern but ignores inheritance. If a symbol whose name matches string-or-symbol is
present directly in pkg, it is returned; otherwise string-or-symbol (if it is a symbol) or a
new symbol (if string-or-symbol is a string) is placed dircctly in pkg.

PS:KLLMAN>PACKD.TEXT.106 : 8-JUN-84

Packages and Interning 640 Lisp Machine Manual

intern-local returns second and third values with the same mceaning as those of intern.
However, the second value can never be cinherited, and the third value is always pkg.

The function import is implemented by passing the symbol to be imported to intern-
local.

intern-soft siring &optional (pkg *package*)

find-symbol siring &optional (phg *package®*)
Like intern but never creates a symbol or modifics pkg. If no existing symbol is found,
nil is returned for all three values. [t makes no important difference if you pass a symbol
instcad of a string.

intern-soft returns second and third values with the same meaning as those of intern.
However, if the second vatue is nil, it does not mecan that a symbol was created, only
that nonc was found. In this case, the third value is nil rather than a package.

find-symbol is the Common Lisp name for this function. The two names are
Synonymous.

intern-local-soft siring &optional (pkg *package*)
like intern-soft but without inheritance. If a matching symbol is found dircctly present
in pkg. it is rcturned; otherwise, the value is nil.

intern-local-soft returns second and third values with the same mcaning as those of
intern. However, if the sccond value is nil, it does not mecan that a symbol was created,
only that nonc was found. Also, it can never be :inherited. ‘the third value is rather
uscless as it is cither pkg, or nil if the sccond value is nil. ‘

remob symbol &optional (package (symbol-package symbol))

un'l ntern symbol &optional (package *package*)
Both remove symbol from package. symbol itself is unaffected, but intern will no longer
find it in package. symbol is not removed from any other package, even packages used
by package, if it should be present in them. If symbol was present in package (and
therefore, was removed) then the value is t; otherwise, the value is nil.

In remob, package defaults to the contents of the symbol's package cell, the package it
belongs to. In unintern, package defaults to the current package. unintern is the
Common Lisp version and remob is the traditional version.

If package is the package that symbol bclongs to, then symbol is marked as uninterned:
nil is stored in its package cell.

If a shadowing symbol is removed, a previously-hidden name conflict between distinct
symbols with the same¢ name in two used packages can suddenly be exposed, like a
discovered check in chess. If this happens, an error is signaled.

PS:KKILMAN>PACKD.TEXT.106 8-JUN-84

I isp Machine Manual 047 Shadowing and Name Conflicts

27.7 Shadowing and Name Conflicts

In a package that uscs global, it may be desirable to avoid inheriting a fow standard Lisp
symbols. Perhaps the user has defined a function copy-list. knowing that this symbol was not in
global. and then a system function copy-list was created as part of supporting Common 1isp.
Rather than changing the name in his program, he can shadow copy-list in the program’s
package. Shadowing a symbol in a package means putting a symbol in that package which hides
any symbols with the same name which could otherwise have been inherited there. “The symbol is
explicitly marked as a shadowing symbol so that the name conflict does not result in an crror.

Shadowing of symbols and shadowing of bindings arc quite distinct. The same word is used
for them because they are both examples of the general abstract concept of shadowing, which is
mcaningful whenever there is inheritance. ‘

Shadowing can be done in the definition of a package (sce page 652) or by calling the
function shadow. (shadow "COPY-LIST") crcates a new symbol named copy-list in the current.
package, regardless of any symbols with that name alrcady available through inheritance. Once -
the new symbol is present directly in the package and marked as a shadowing symbol, the
potentially inherited symbols are irrclevant.

shadow names &optional (package *package*)
Makes surc that shadowing symbols with the specified names exist in package. names is
cither a string or symbol or a list of such. If symbols are used, only their names matter;
they arc cquivalent to strings. Each name specified is handled independently as follows:

If there is a symbol of that namec present directly in package, it is marked as a
shadowing symbol, to avoid any complaints about name conflicts.

Otherwise, a new symbol of that name is created and interned in package, and marked as
a shadowing symbol.

Shadowing must be done before programs are loaded into the package, since if the programs
are loaded without shadowing first they will contain pointers to the undesired inherited symbol.
Mecrely shadowing the symbol at this point does not alter those pointers; only reloading the
program and rcbuilding its data structures from scratch can do that.

If it is necessary to refer to a shadowed symbol, it can be done using a package prefix, as in
global:copy-list.

Shadowing is not only for symbols inherited from global; it can be used to reject inheritance
of any symbol. Shadowing is the primary means of rcsolving name conflicts in which there
multiple symbols with the same name arc available, duc to inheritance, in one package.

Name conflicts are not permitted to exist unless a resolution for the conflict has been stated in
advance by specifying explicitly which symbol is actually to be seen in package. If no resolution
has been specified, any command which would create a name conflict signals an error instead.

For example, a name conflict can be created by use-package if it adds a new used package
with its own symbol foo to a package which alrcady has or inherits a different symbol with the
samc namc foo. export can causc a name conflict if the symbol becoming external is now

PS:K<ILMAN>PACKD.TEX'T.106 _ | 8-JUN-84

Styles of Using Packages 048 Fisp Machine Manual

supposed to be inherited by another package which alrcady has a conflicting symbol. - On either
occasion, il shadowing has not alrcady been performed to control the outcome, an error is
signaled and the uscage or exportation does not occur.

The conflict is resolved—in advance, always—by placing the preferred choice of symbol in the
package dircctly, and marking it as a shadowing symbol. ‘This can be done with the function
shadowing-import. (Actually, you can proceed from the error and specify a resolution, but this
works by shadowing and retrying. Fram the point of view of the retried operation, the resolution
has been done in advance.) '

shadowing-import symbols &optional (puckage *package”)
Interns the specified symbols in package and marks them as shadowing symbols. symbols
must be a list of symbols or a single symbol; strings are not allowed.

Fach symbol specified is placed directly into package, after first removing any symbol
with the same name already interned in package. This is rather drastic, so it is best to
use shadowing-import right after creating a package, when it is still empty.

shadowing-import is primarily uscful for choosing one of several conflicting external
symbols present in packages to be used. :

Once a package has a shadowing symbol named foo in it, any other potentially conflicting
external symbols with name foo can come and go-.in the inherited packages with no ecffect. It is
therefore possible to perform the use-package of another package containing another foo, or to
cxport the foo in one of the used packages, without getting an error.

In fact, shadow also marks the symbol it crcates as a shadowing symbol. If it did not do so,
it would be creating a name conflict and would always get an error.

package-shadowing-symbols package
Returns the list of shadowing symbols of package. Each of these is a symbol present
directly in package. When a symbol is present directly in more than one package, it can
be a shadowing symbol in onc and not in another.

27.8 Styles of Using Packages

The unsophisticated user need never be aware of the cxistence of packages when writing his
programs. His files arc loaded into package user by default, and keyboard input is also read in
user by default. Since all the functions that unsophisticated users are likely to need are provided
in the global package, which user inherits from, they are all available without special effort. In
this manual, functions that arc not in the global package -arc documented with colons in their
names, and they arc all external, so typing the name the way it is documented docs work in both
traditional and Common Lisp syntax.

However, if you arc writing a generally uscful tool, you should put it in some package other
than user, so that its internal functions will not conflict with names other users usc. If your
program contains more than a few files, it probably should have its own package just on the
chance that someone els¢ will use it someday along with other programs. :

PS:<ILMAN>PACKD.TEXT.106 8-JUN-84

L isp Machine Manual 0649 Package Naming

CAE your program s large, you can use multiple packages o help keep its modules
independent. Use one package for cach module, and export from it those of the module’s
symbols which are reasonable for other modules to refer to. Fach package can use the packages
of other modules that it refers to frequently.

27.9 Package Naming

A package has one name, also called the primary name for extra clarity, and can have in
addition any number of nicknames. Al of these names are defined elobally, and all must be
unique. An attempt to define a package with a name or nickname that is alrcady in use is an
crror.

Either the name of a package or one of its nicknames counts as a name Jor the package. All
of the functions described below that accept a package as an argument also accept a name for a
package (cither as a string, or as a symbol whose print-name is the name). Arguments that are
lists of packages may also contain names among the clements.

When the package object is printed, its primary name is used. The name is also used by
default when printing package prefixes of symbols. However, when you create the package you
can specify that onc of the nicknames should be used instead for this purpose. The name to be
used for this is called the prefix name.

Casc is significant in package name lookup. Usually package names should be all upper case.
read converts package prefixes to upper case except for quoted characters, just as it does to
symbol names, so the package prefix will match the package name no matter what case you type
it in, as long as the actual name is upper case: TV:FOO and tvifoo refer to the same symbol.
tvl:foo is different from them, and normally erroncous since there is no package initially whose
name is ‘tv’ in lower case.

In the functions find-package and pkg-find-package, and others which accept package
names in place of packages, if you specify the name as a string you must give it in the correct
case: '

’ (find-package "TV") => the tv package

(find-package "tv") => nil
You can alternatively specify the name as a symbol; then the symbol’s pname is uscd. Since
read converts the symbol’s name to upper case, you can type the symbol in cither upper or lower
case:

(find-package ’'TV) => the tv package

(find-package ’'tv) => thetv package
since both use the symbol whose pname is "TV".

Relevant functions:

package-name package
Returns the name of package (as a string).

PS:KILMAN>PACKD.TEXT.106 , 8-JUN-84

Package Naming 050 I isp Machine Manual

package-nicknames puckage
Returns the list of nicknames (strings) of package. "This does not include the name itself.

package-prefix-print-name package
Returns the name to be used for printing package prefixes that refer to package.

rename-package package new-name &optional new-nicknames
Makes new-name be the name for package, and makes new-nicknames (a list of strings,
possibly nil) be its nicknames. An error is signaled if the new name or any of the new
nicknames is alrcady in usc for some other package. '

find-package name &optional wse-local-names-package
Returns the package which name is a name for, or nil if there is none. If wse-local-
names-package is non-nil, the local nicknames of that package are checked first. Otherwise
only actual names and nicknames are accepted. use-focal-names-package should be
supplicd only when interpreting package prefixes.

If name is a package, it is simply returned.

If a list is supplicd as name, it is interpreted as a specification of a package name and
how to create it. The list should look like

(name super-or-use size)
or

(name options)
If name names a package, it is returned. Otherwise a package is created by passing name
and the oprions 10 make-package.

pkg-find-package name &optional create-p use-local-names-package
Invokes find-package on name and returns the package that finds, if any. Otherwise, a
package may be crcated, depending on create-p and possibly on how the user answers.
These values of create-p arc meaningful:

nil An error is signaled if an existing package is not found.

t A package is created, and rcturned.

find nil is returned. :

:ask The user is asked whether to create a package. If he answers Yes, a

package is created and returned. If he answers No, nil |1s returned.

If a package is created, it is done by calling make-package withl name as the only
argument.

This function is not quite for historical compatibility only, since certain values of create-p
provide uscful features.

PS:KI.LMAN>PACKD.TEXT.106 : _ 8-JUN-84

[isp Machine Manual 051 Package Naming
| £ £

sys:package-not-found (error) Condition
is signaled by pkg-find -package with sccond argument :error, nil or omitted, when the
package does not exist,

The condition instance supports the operations :name and relative-to: these return
whatever was passed as the first and third arguments 1o pkg-find-package (the package
name, and the package whose local nicknames should be scarched).

The proceed types that may be available include

retry says o scarch again for the specified name in case it has become defined:
if it is still undefined, the error occurs again.

:create-package
says to scarch again for the specified name. and create a package with that
name (and default characteristics) if nonc exists yet.

‘new-name is accompanied by a name (a string) as an argument. ‘That name is used
instead, ignoring any local nicknames. 1f that name too is not found,
another crror occurs.

:no-action (available on crrors from within read) says to continue with the entire
read as well as is possible without having a valid package.

27.9.1 Local Nicknames for Packages

Suppose you wish to test new versions of the Chaosnet and file access programs. You could
create new packages test-chaos and test-file-access, and use them for loading the new versions
of the programs. Then the old, installed versions would not be affected; you could still use them
to cdit and save the files of the new versions. But one problem must be solved: when the new
file access program says "chaos:connect” it must get test-chaos:connect rather than the actual
chaos:connect.

This is accomplished by making "CHAOS" a local nickname for "TEST-CHAOS" in the
context of the package test-file-access. This means that the when a chaos: prefix is
encountered while reading in package test-file-access, it refers to test-chaos rather than
chaos.

Local nicknames arc allowed to conflict with global names and nicknames; in fact, they are
rarcly uscful unless they conflict. The local nickname takes precedence over the global name.

It is necessary to have a way to override local nicknames. If you (pkg-goto 'test-file-
access), you may wish to call a function in chaos (to makc usc of the old, working Chaosnet
program). 'This can be donc using #: as the package prefix instcad of just ;. #: inhibits the
usc of local nicknames when it is processed. [t always refers to the package which is globally the
owner of the name that is specified.

#: prefixes are printed whenever the package name printed is also a local nickname in the
current package; that is, whenever an ordinary colon prefix would be misunderstood when read
back ‘

PS:K1.MA NSPAC KD.TEXT.106 8-JUN-84

Defining Packages

052 isp Machine Manual

These are the functions which manage local nicknames.

pkg-add-relative-name in-pkg nume forpkg
Defines name as a local nickname in in-pkg for forpkg. in-pkg and for-pkg may be
packages, symbols or sirings.

pkg-delete-relative-name in-pkg name
Lliminates nane as a local nickname in in-pkg.

Looking up local nicknames is done with find-package. by providing a non-nil use-local-
names-package argument.

27.10 Deflining Packages

Before any package can be referred to or made current, it must be defined. This is done
with the special form defpackage, which 1clls the package system all sorts of things. including
the name of the package, what packages it should use, its cstimated size, and somc of the
symbols which belong in it. 'The defpackage form is rccognized by Zmacs as a definition of the

package name.

defpackage name &key .. Macro
Defines a package named name. The alternating keywords and values are passed,

unevaluated,

to make-package to specify the rest of the information about how to

construct the package.

If a package named name alrcady cxists, it is modified insofar as this is possible to
correspond to the new definition.

Here are the possible options and their meanings

nicknames

Size

use

prefix-name

invisible

A list of nicknamcs for the new package. The nicknames should be
specificd as strings.

A number; the new package is initially made large cnough to hold at least
this many symbols before a rchash is needed.

A list of packages or names for packages which the new package should
inherit from, or a single name or package. It defaults to just the global
package.

Specifies the name to use for printing package prefixes that refer to this
package. It must be cqual to cither the package name or one of the
nicknames. The default is to use the name.

If non-nil, means that this package should not be put on the list *all-
packages*. As a result, find-package will not find this package, not by
its name and not by any of its nicknamcs. You can make normal use of
the package in all other respects (passing it as the second argument to
intern, passing it to use-package to make other packages inherit from it
or it from others, and so on).

PS:KL.MAN>PACKD.TEX'T.106 8-JUN-84

I isp Machine Manual

export
miport
shadow

053 Defining Packages

shadowing-import -

import-from

super

relative-names

I any of these arguments is non-nil, it is passed to the function of the

same name, 10" operate on the package. ‘Thus, if shadow is ("FOO"
"BAR"), then

(shadow this-package * ("FO0" "BAR"))
is donc.

You could accomplish as much by calling export. import, shadow or
shadowing-import yoursclf, but it is clearer to specify all such things in
one central place, the defpackage.

I non-nil, is a list containing a package (or package name) followed by
names of symbols to import from that package. Specifying import-from as
(chaos "CONNECT" "LISTEN") is ncarly the same as specifying import "
as (chaos:connect chaos:listen), the difference being that with import-
Srom the symbols connect and listen arc not looked up in the chaos
package until it is time to import them.

If non-nil, should be a package or name to be the superpackage of the
new package. This means that the new package should inherit from that
package, and also from all the packages that packagc inherits from. In
addition, the superpackage is marked as autoexporting. Supcrpackages are
obsolete and arc implemented for compatibility only.

An alist specifying the local nicknames to have in this package for other
packages. Each clement looks like (localname package), where package is
a package or a name for one, and localname is the desired local
nickname.

relative-names-for-me

An alist specifying local nicknames by which this package can be referred
to from other packages. Each element looks like (package localname),
where package is a package name and localname is the name to refer to
this package by from package.

For cxample, the system package eh could have been defined this way:
(defpackage "EH" :size 1200 ‘

:use ("GLOBAL" "SYS") :nicknames ("DBG" "DEBUGGER")

:shadow ("ARG"))
It has room initially for at least 1200. symbols, mcknamcs dbg and debugger, uscs system as
well as global, and contains a symbol named arg which is not the same as the arg in global.
You may note that the function eh:arg is documented in this manual (see page 734), as is the
function arg (sce page 238). .

The packages of our inheritance example (page 642) might have been defined by

PS:KLLMAN>PACKD.TEXT.106 8-JUN-84

Defining Packages 654 I isp Machine Manual

(defpackage 'chaos :size 1000 :use "(sys global)
:export ("CONNECT" "OPEN-STREAM" "LISTEN"
"OPEN-STATE" "RFC-RECEIVED-STATE" ...))

(defpackage 'file-access :size 1500
:use '(chaos global)
:export ("OPEN-FILE" "CLOSE-FILE" "DELETE-FILE" .,.)
import (chaos:connect chaos:open-state))

(defpackage 'mypackage :size 400
:use ‘(file-access global))

It is usually best to put the package definition in a separate file, which should be loaded into
the user package. (It cannot be loaded into the package it is defining, and no other package has
any reason to be preferred.) Often the files to be loaded into the package belong to onc or a few
systems; then it is often convenient to put the system definitions in the same file (see chapter 28,
page 660).

A package can also be defined by the package attribute in a file's -*- linc. Normally this
specifies which (existing) package to load, compile or cdit the file in. But if the attribute value is
a list, as in

-*x-Package: (foo :size 300 :use (global system)); ...-=*-
then loading. compiling or cditing the file automatically creates package foo, if nccessary with the
specified options (just like defpackage options). No defpackage is needed. It is wise to use this
feature only when the package is used for just a single file. For programs containing multiple
files, it is.good to make a system for them, and then convenient to put a defpackage near the
defsystem.

make-package name &kcy nicknames size use prefix-name invisible export shadow import
shadowing-import import-from super relative-names relative-names-for-me
Creates and returns new package with name name.

The meanings of the keyword arguments arc described under defpackage (page 652).

pkg-create-package name &optional (super *package*) (size # 0 200)
Creates a new package named name of size size with superpackage super. This function is
obsolete.

ki11-package name-orpackage
Kills the package specified or named. It is removed from the list which is scarched when
package names arc looked up.

package-declare Macro
package-declare is an older way of defining a package, obsolete but still used.
(package-declare name superpackage size nil
_ option-1 option-2 ...)
creates a package named name with initial size size.

PS:KL.MAN>PACKD.TEXT.106 ‘ 8-JUN-84‘

Lisp Machine Manual 055 Operating on All the Symbols in a Package

super specifies the superpackage 1o use for this package. Superpackages were an old way
of specifying inheritance: it was transitive, all symbols were inherited. and only one
inheritance path could exist. If super is global, nothing special needs o be done;
otherwise, the old superpackage facility is simulated using the super argument 0 make-
package.

body is now allowed to contain only these types of elements:

(shadow names)
asses the names to the function SHADOW.

(intern names) Converts cach name o a string and interns it in the package.

(refname refiame packagename)
- Makes refiame a local nickname in this package for the package named
packagename.

(myrefname packagename refiame)
Makes refiame a local nickname in the package named packagename for
this package. If packagename is "GLOBAL", makes refiame a global
nickname for this package.

(external names)
Docs nothing. This controlled an old feature that no longer exists.

27.11 Operating on All the Symbols in a Package

To find and operate on cvery symbol present or available in a package, you can choose
between iteration macros that resemble dolist and mapping functionals that resemble mapcar.

Note that all constructs that include inherited symbols in the iteration can process a symbol
more than once. This is because a symbol can be dircctly present in more than onc package. If
it is dircctly present in the specified package and in onec or more of the used packages, the
symbol is processed once cach time it is encountered. It is also possible for the itcration to
include a symbol that is not actually available in the specified package. If that package shadows
symbols present in the packages it uses, the shadowed symbols are processed anyway. If this is a
problem, you can explicitly use intern-soft to see if the symbol handed to you is really available
in the package. This test is not done by default because it is slow and rarcly needed.

do-symbols (var package result-form) body... Macro
Exccutes body once for cach symbol findable in package cither dircctly or through
inheritance. On cach itcration, the variable var is bound to the next such symbol. Finally
the result-form is exccuted and its values are returned.

do-local-symbols (var package result-form) body... , Macro
Exccutes body once for cach symbol present directly in package. Inherited symbols are
not considered. On cach iteration, the variable var is bound to the next such symbol.
Finally the result-form is executed and its values are returned.

PS:KLLMAN>PACKD.TEXT.106 8-JUN-84

Packages as Lisp Objects - 056 I isp Machine Manual

do-external-symbols (var package resuli-form) body... : Macro
Executes hody once for each external symbol findable in package eithen directly or through
inheritance. On cach iteration. the variable var is bound to the next such symbol. Finally
the resuli-form is executed and its values are returned.

do-local-external-symbols (var package result-form) body... Macro
Exccutes body once for cach external symbol present directly in package. Inherited
symbols arc not considered. On cach iteration, the variable var is bound to the next such
symbol. Finally the result-forn is exccuted and its values are returned.

do-all-symbols (var result-form) body... Macro
xccutes bodr once for cach symbol present in any package. On cach iteration, the
variable var is bound to the next such symbol. Finally the resuli-formi is executed and its
values are returned. 1

Since a symbol can be directly present in more than one package, 11 is possible for the
same symbol to be processed more than once.

mapatoms funcrion &optional (package *package®) (inherited-pt)
function should be a function of onc argument. mapatoms applics funclzon to all of the
symbols in package. If inherited-p is non-nil, then the function is apphcd to all symbols
available in package, including inherited symbols.

mapatoms-all function &optional (package"GLOBAL")
Sunction should be a function of onc argument. mapatoms-all apphq:s Sunction to all of
the symbols in package and all other packages which use package. ;

It is used by such functions as apropos and who-calls (sce page 791) .
Example: '
(mapatoms-all
#'(lambda (x)
(and (alphalessp 'z x)
(print x))))

27.12 Packages as Lisp Objects

A package is a conceptual name space; it is also a Lisp object which serves to record the
contents of that name space, and is passed to functions such as intern to identify a name space.

packagep object
t if object is a package.

all-packages® Variable
The valuc is a list of all packages, except for invisible ones (see the linvisble argument to

make-package, page 654).

PS:KL.MAN>PACKD.TEXT.106 8-JUN-84

I isp Machine Manual 057 Common Lisp and Packages

list-all-packages _
A Common Lisp function which returns *all-packages®.

pkg-global-package Constant
pkg-system-package Constant
pkg-keyword-package ‘ Constant

Respectively, the packages named global, system and keyword.

describe-package puckage
Prints cverything there is to know about package. except for all the symbols interned in
it. package can be specified as a package or as the name of one.

To see all the symbols interned in a package, do
(mapatoms ’'print package)

27.13 Common Lisp and Packages

Common Lisp docs not have defpackage or -#*- lines in files. One is supposcd to use the
function in-package to specify which package a file is loaded in.

in-package name &kcy nicknames use
Creates a package named name, with specified nicknames and used packages, or modifics
an cxisting package named name to have those nicknames and used packages.

Then *package* is sct to this package.

~ Writing a call to in-package at the beginning of the file causes *package®* to be sct to that
package for the rest of the file. :

If you wish to use this technique for the sakc of portability, it is best to have a -*- line
with a package attribute also. While in-package does work for loading and compilation of the
file, Zmacs does not respond to it.

In Common Lisp, the first argument to intern or find-symbol is required to be a symbol.

27.14 Initialization of the Package System

This section describes how the package system is initialized when generating a new software
release of the Lisp Machinc system; nonc of this should affect users.

The cold load. which contains the irreduceable minimum of the Lisp system needed for
loading the rest, contains the code for packages, but no packages. Before it begins to read from
the keyboard, it creates all the standard packages based on information in si:initial-packages,
applying make-package to cach clement of it. At first all of the packages arc empty. The
symbols which belong in the packages global and system are recorded on lists which are made
from the files SYS: SYS2; GLOBAL LISP and SYS: SYS2; SYSTEM LISP. Symbols referred
to in the cold load which belong in packages other than si have strings (package names) in their
package slots; scanning through the arca which contains all the symbols, the package initializer

PS:KILMAN>PACKD.TEXT.106 : 8-JUN-84

fnitial Packages . 058 Ii isp Machine Manual

puts cach such symbol into the package it specifies, and all the rest into si unless they are already
in global or system. ' ’

27.15 Initial Packages

The initially present packages include:
global ~ Contains advertised global functions.
user The default current package for the user's type-in.

sys or system Contains internal global symbols used by various system programs. Many system
packages use system. !

si or system-internals .
Contains subroutines of many advertised system functions. Mz}ny files of the lisp

system are loaded in si.
compiler Contains the compiler. compiler uses sys.

fs or file-system _
Contains the code that deals with pathnames and accessing files; fs uses sys.

eh or dbg Contains the crror handler and the debugger. Uses sys.

cc or cadr Contains the program that is used for debugging another machi?nc. Uscs sys.
chaos Contains the Chaosnet controller. Uses sys.

tv Contains the window system. Uscs sys.

zwei Contains the cditor.

format Contains the function format and its associated subfunctions.

cli (Common Lisp Incompatible) contains symbols such as cli:;member which the

same pname as symbols in global but incompatible dcﬁnitions.§
‘There are quite a few others, but it would be pointless to list them all.

Packages that are used for special sorts of data:

fonts Contains the names of all fonts.

format Contains the keywords for format, as well as the code.

keyword Contains all keyword symbols, symbols always written with a plain colon as a
prefix. These symbols are peculiar in that they are automatic%lly given themselves
as values. ; .

Here is a picture depicting the initial package inheritance structure

PS:<I.MAN>PACKD.TEXT.106 8-JUN-84

Lisp Machine Manual 059 Inttial Packages

~global keyword

_ I
e DT \ fonts
I I l | |
user zwei system format (etc) cli
A
f e s \

system-internals eh chaos cadr fs compiler

PS:KLLMAN>PACKD.TEXT.106 8-JUN-84

	636_Packages
	637_Packages
	638_Packages
	639_Packages
	640_Packages
	641_Packages
	642_Packages
	643_Packages
	644_Packages
	645_Packages
	646_Packages
	647_Packages
	648_Packages
	649_Packages
	650_Packages
	651_Packages
	652_Packages
	653_Packages
	654_Packages
	655_Packages
	656_Packages
	657_Packages
	658_Packages
	659_Packages

