Maintaining I arge Systems 6060 1 isp Machine Manual

28. Maintaining Large Systems

When a program gets large. it is often desirable to split it up into sevedal files. One reason-
for this is to help keep the parts of the program organized, to make things casicr to find. s
also useful to have the program broken into small picces that are more convenient to edit and
compile. 1t is particularly important o avoid the need to recompile all of ufl;u‘gc program cvery
time any picce of it changes; if the program is broken up into many ﬁlcs; only the files that

have changes in them nced 10 be recompiled. |

The apparent drawback to splitting up a program is that morc commands are nceded to

manipulate it. To load the program, you now have to load scveral files separ,
loading one file. 'To compile it. you have to figure out which files need co
which have been cdited since they were last compiled. and- then you have to ¢

itely, instead of just

nmpilation, by secing

ympile thosc files,

What's even more complicated is that files can have interdependencies. Ypu might have a file
! I {

called DEFS that contains some macro definitions (or flavor or structure defini
in other files might use those macros. This means that in order to compile
files, you must first load the file DEFS into the Lisp cnvironment so that
defined and can be expanded at compile time. You have to remember this w
any of those files. Furthermore, if DEFS has changed, other files of the prog
recompiled because the macros may have changed and neced to be re-expanded.

This chapter describes the sysrem facility, which takes care of all these
way it works is that you dcfine a sct of files to be a system, using the defs
described below. This system definition says which files make up the system,
on the presence of others, and so on. You put this system definition into its
then all you have to do is load that file and the Lisp environment will knov
and what files are in it. You can then use the make-system function (sce {
all the files of the system, rccompile all the files that need compiling, and so o

The system facility is very general and extensible. This chapter explains
how to extend it. This chapter also cxplains the patch facility, which lets you

ions), and functions
any of those other
the macros will be
henever you compile
ram may neced to be

things for you. The

ystem special form,
which ones depend
own little file, and

v about your system
page 666) to load in

n.

how to use it and
conveniently update

a large program with incremental changes.

.28.1 Defining a System

defsystem name (keyword args..)...

| Macro

Decfines a system named name. The options sclected by the keywoxjds are cxplained in

detail later. In general, they fall into two catcgorics: propertics
transformations. A transformation is an opcration such as compiling

jof the system and

q’r loading that takes

one or more files and docs something to them. The simplest system is a set of files and a

transformation to be performed on them,

Here arc a few examples.

PS:X.LMAN>MAKSYS.TEXT.38

8-JUN-84

Iisp Machine Manual ‘ 001 ' : Defining o System

(defsystem mysys
(:compile-load ("0Z:<GEORGE>PROG1.LISP" "0Z:<GEORGE2>PROG2.LISP")))

(defsystem zmail
(:name "ZMail")
:pathname-default "SYS: ZMAIL;")
:package zwei)
:module defs "DEFS")
:module mult "MULT" :package tv)
:module main ("TOP" "COMNDS" "MAIL" "USER" "WINDOW"
"FILTER" mult "COMETH"))
(:compile-load defs)
(:compile-Toad main (:fasload defs)))

(defsystem bar
(:module reader-macros "BAR:BAR;RDMAC")
:module other-macros "BAR:BAR:MACROS")
:module main-program "BAR:BAR;MAIN")
:compile-load reader-macros)
:compile-load other-macros (:fasload reader-macros))
:compile-load main-program (:fasload reader-macros
other-macros)))

The first example defines a new system called mysys, which consists of two files, stored on a
Tops-20 host names OZ, both of which are to be compiled and loaded. The second cxample is
somewhat more complicated. What all the options mean is described below, but the primary
difference is that there is a file DEFS which must be loaded before the rest of the files (main)
can be compiled. Also, the files arc stored on logical host SYS and directory ZMAIL.

The last cxample has two- levels of dependency. reader-macros must be compiled and
loaded before other-macros can be compiled. Both reader-macros and other-macros must
then be loaded before main-program can be compiled. All the source files are stored on host
BAR, presumably a logical host defined specifically for this system. It is desirable to use a logical
host for the files of a system if there is a chance that people at more than one site will be using
it; the logical host allows the identical defsystem to be valid at all sites. See section 24.7.5, page
572 for more on logical hosts and logical pathnames.

Note that The defsystem options other than transformations are:

:name Specifies a “pretty” version of the name for the system, for use in printing.

:short-name
Specified an abbreviated name used in constructing disk label comments and in patch file

names for some file systems.

:component-systems
Specifies the names of other systems used to make up this system. Performing an
operation on a system with component systems is cquivalent to performing the same
operation on all the individual systems. The format is (:component-systems names...).

PS:<I.MAN>MAKSYS.TEXT.38 8-JUN-84

Detining a System 062

:package
Specifies the package in which transformations are performed. A pa
overrides one in the -*- line of the file in question.

:pathname -default
Gives a local default within the definition of the system for strings
pathnames. T'ypically this specifies the directory, when all the files of
same dircctory.

:warnings- pathname-default v
Gives a default for the file to use to store compiler warnings in, wh
used with the :batch option.

:patchable
Makes the system be a patchable system (scc ‘section 28.8, page
argument specifies the directory to put patch files in. ‘The default
default of the system.

sinitial -status
Specifies what the status of the system should be when make-system|

isp Machine Manual

kage specified here

to be parsed into
1 system arc on the

cn make-system is

672). An optional
is the :pathname- -

is used to create a

new major version. The default is :experimental. Sce scction 28.8.5, fPagc 679 for further

details.

:not-in-disk-label
Make a patchable system not appear in the disk label comment. 1]
never be specified for a user system. It is used by patchable systems
Lisp system, to avoid cluttering up the label.

default-binary-file-type
Specifies the file type to use for compiled Lisp files. The value you
string. If you do not specify this, the standard file type :gfasl is used.

:module
Allows assigning a name to a sct of files within the system. This nam
instcad of repeating the filenames. The format is (:module name file:
usually a list of filenames (strings). In general, it is a module-specifice
any of the following:

astring
This is a file name.

a symbol

his should probably

internal to the main
|

specify should be a

1¢ can then be used
s options...). files is
qtion, which can be

This is a module name. Tt stands for all of the files which are in that module of

1
this system. |
an external module component
This is a list of the form (system-name module-names...), toi
~another system. It stands for all of the files which arc in all of

. |
a list of module components |

A module component is any of the above, or the following:

a list of file names

specify modules in
those modules.

This is used in the case where the names of the input and output files of a

transformation arc not related according to the standard nam

PS:<1.MAN>MAKSYS.TEXT.38

ng conventions, for

8-JUN-84

Iisp Machine Manual 0063 ' Transformations

example when a QIFASL. file has a different name or resides on a different
directory than the source file. The file names in the list are used from Ieft 1o
right, thus the first name is the source file. LEach file name after the first in the
list is defaulted from the previous one in the list.

To avoid syntactic ambiguity, this is allowed as a module component but not as a
madule specification, :

‘The currently defined options for the :module clause are

package Overrides any package specified for the whole system for transformations
performed on just this module.

In the second defsystem cxample above, there are three modules. Fach of the first two
has only one file, and the third one (main) is made up both of files and another module.
To take examples of the other possibilities,

(:module prog (("SYS: GEORGE; PROG" "SYS: GEORG2; PROG")))

(:module foo (defs (zmail defs)))
The prog module consists of onc file, but it lives in two directorics, GEORGE and
GEORG2. If this were a Lisp program, that would mean that the file SYS: GEORGE;
PROG LISP would be compiled into SYS: GEORG2; PROG QFASL. The foo module
consists of two other modules the defs module in the same system, and the defs module
in the zmail system. It is not generally useful to compile files that belong to other
systems; thus this foo module would not normally be the subject of a transformation.
However, dependencies (defined below) use modules and need to be able to refer to
(depend on) modules of other systems.

si:set-system-source-file system-name filename
_This function specifies which file contains the defsystem for the system system-name.
Jilename can be a pathname object or a string.

Sometimes it is uscful to say where the definition of a system can be found without
taking time to load that file. If make-system, or require (page 672), is cver used on
that system, the file whose name has been specified will be loaded automatically.

28.2 Transformations

Transformations are of two types, simple and complex. A simple transformation is a single
operation on a file, such as compiling it or loading it. A complex transformation takes the output
from one transformation and performs another transformation on it, such as loading the results of
compilation.

The gencral format of a simple transformation is (name input dependencies condition). input is
usually a module specification or another transformation whose output is used. ‘The transformation
name is to be performed on all the files in the module, or all the output files of the other
transformation.

PS:K<I.MAN>MAKSYS.TEXT.38 8-JUN-84

Transformations 0064 isp Machine Manual

dependencies and condition are optional.

dependencies s a transformation specification, cither a list (fransformation-name maodule-
names...) or a list of such lists. A module-name is cither a symbol that is the name of a module
in the current system, or a list (system-name module-names...). A dependency declares that all of
the indicated transformations must be performed on the indicated modules before the current
ransformation itself can take place. Thus in the zmail example above, the defs module must
have the :fasload tansformation performed on it before the :compile transformation can be
performed on main.

The dependency has to be a tranformation that is cxplicitly specified as a transformation in
the system definition. not just an action that might be performed by anything. ‘Fhat is. if you
have a dependency (fasload foo). it means that (fasload foo) is a tranformation of your system
and you depend on that tranformation; it docs not simply mean that you depend on foo’s being
joaded. Furthermore, it doesn't work if (fasload foo) is an implicit picce of another
tranformation, For example, the following works:

(defsystem foo
(:module foo "FOO")
(:module bar "BAR")
(:compile-load (foo bar)))

but this doesn’t work:

(defsystem foo
(:module foo "FOO")
(:module bar "BAR")
(:module blort "BLORT")
(:compile-load (foo bar))
(:compile-load blort (:fasload foo)))

because foo’s :fasload is not mentioned cxplicitly (i.e. at top level) but is only implicit in the
(:compile-load (foo bar)). Onc must instcad write:
(defsystem foo

(:module foo "FOO")
:module bar "BAR")
:module blort "BLORT")
:compile-load foo)
:compile-load bar)
:compile-load blort (:fasload foo0)))

—— o~~~

condition is a predicate which specifies when the transformation should take place. Generally’
it defaults according to the type of the transformation. Conditions are discussed further on page
671.

The defined simple transformations are:

:fasload Calls the fasload function to load the indicated files, which must be QFASL files
whose pathnames have canonical type :qfasl (sce scction 24.2.3, page 551). The
condition defaults to si:file-newer-than-installed-p, which is t if a newer version
of the file exists on the file computer than was read into the current environment.

PS:KI.MAN>MAKSYS.TEXT.38 8-JUN-84

I isp Machine Manual 065 Transtormations

readfile Calls the readfile function to read in the indicated files. whose names must have
canonical type lisp. Use this for files that are not to be compiled. condition
defaults 1o si:file-newer-than-installed-p.

:compile Calls the compile-file function to compile the indicated files, whose names must
have canonical type :lisp. condition defaults 1o si:file~-newer-than-file-p, which
returns t it (the source file has been written more recently than the binary file.

A special simple transformation is

«do-components ,
(:do-components dependencies) inside a system with component systems causes
the dependencies to be done before anything in the component systems. ‘This is
uscful when you have a module of macro files used by all of the component
systems.

The defined complex transformations are

:compile-load (:compile-load input compile-dependencies load-dependencies compile-condition load-
condition) is the same as (:fasload (:compile inpur compile-dependencies compile-
condition) load-dependencies load-condition). 'This is the most commonly-used
transformation. Everything after input is optional.

:compile-load-init
Sce page 671.

As was cxplained above, cach filename in an input specification can in fact be a list of strings
when the source file of a program differs from the binary file in more than just the file type. In
fact, every filename is treated as if it were an infinite list of filenames with the last filecname, or
in- the case of a single string the only filename, repeated forever at the end. FEach simple
transformation takes some number of input filename arguments and some number of output
filename arguments. As transformations are performed, these arguments arc taken from the front
- of the filename list. The input arguments are actually removed and the output arguments left as
input arguments to the next higher transformation. To make this clearer, consider the prog
module above having the :compile-load transformation performed on it. This means that prog is
given as the input to the :compile transformation and the output from this transformation is given
as the input to the :fasload transformation. The :compile transformation takes one input filename
argument, the name of a Lisp source file, and onc output filename argument, the name of the
QFASL file. The :fasload transformation takes one input filename argument, the name of a
QFASL file, and no output filename arguments. So, for the first and only file in the prog
module, the filename argument list looks like ("SYS: GEORGE; PROG" "SYS: GEORG2;
PROG" "SYS: GEORG2; PROG" ..). The :compile transformation is given arguments of
"SYS: GEORGE; PROG" and "SYS: GEORG2; PROG" and the filename argument list which
it outputs as the input to the :fasload transformation is ("SYS: GEORG2; PROG" "SYS:
GEORG2; PROG" ..). The :fasload transformation then is given its one argument of "SYS:
GEORG2; PROG".

Note that dependencics are not transitive or inherited, For example, if module a depends on
macros defined in module b, and thercfore needs b to be loaded in order to compile, and b has
a similar dependency on ¢, ¢ need not be loaded for compilation of a. ‘Transformations with
these dependencics would be written

PS:KILMAN>MAKSYS.TEXT.38 ' 8-JUN-84

Making a System 666 1isp Machine Manual

(:compile-load a (:fasload b))

(:compile-load b (:fasload c))
To say that compilation of a depends on both b and ¢, you would instcad write

(:compile-load a (:fasload b c))

(:compile-load b (:fasload c}))
If in addition a depended on ¢ (but not b) during loading (perhaps a contains defvars whose
initial values depend on functions or special variables defined in ¢) you would write the
transformations

{:compile-load a (:fasload b c) (:fasload c))

(:compile-load b (:fasload c}))

28.3 Making a System

make-system name &rest keywords
The make-system function does the actual work of compiling and loading. In the
cxample above. if PROG1 and PROG2 have both been compiled recently, then
(make-system 'mysys) '
loads them as necessary. If cither onc might also need to be compiled, then
(make-system 'mysys :compile)
docs that first as neccssary.

The very first thing make-system docs is check whether the file which contains the
defsystem for the specified system has changed since it was loaded. If so, it offers to
load the latest version, so that the remainder of the make-system can be done using the
latest system definition. (This only happens if the filetype of that file is LISP.) After
loading this file or not, make-system gocs on to process the files that compose the
system. :

If the system name is not recognized, make-system attempts to load the file SYS: SITE;
system-name SYSTEM, in the hope that that contains a system definition or a call to
si:set-system-source-file.

make-system lists what transformations it is going to perform on what files, then asks
the user for confirmation. If the user types S when confirmation is requested, then
make-system asks about cach file individually so that the user can decide sclectively
which transformativns should be performed; then collective reconfirmation is requested.
This is like what happens if the :selective keyword is specified. If the user types Y, the
transformations arc performed. Before cach transformation a message is printed listing the
transformation being performed, the file it is being done to, and the package. This
behavior can be altered by keywords. ‘

If the system being made is patchable, and if loading has not been inhibited, then the
system's patches are loaded afterward. Loading of patches is silent if the make-system is,
and requires confirmation if the make-system does.

These are the keywords recognized by the make-system function and what they do.

:noconfirm Assumes a yes answer for all questions that would otherwise be asked of the user.

PS:K<I.LMAN>MAKSYS.TEXT.38 8-JUN-84

Fisp Machine Manual 0067 Making a System

:selective Asks the user whether or not to perform cach transformation that appears to be
needed for cach file.

:silent Avoids printing out cach transformation as it is performed.

rreload Bypasses the specified conditions for performing a transformation, Thus files are

compiled even if they haven't changed and loaded even if they aren’t newer than
the instatled version,

:noload Does not load “any files except those required by dependencies. For use in
conjunction with the :compile option.

:compile Compiles files also if need be. The default is to load but not compile,

:recompile This is cquivalent to a combination of :compile and :reload: it specifics
compilation of all files, even those whose sources have not changed since last
compiled.

‘no-increment-patch ,
When given along with the :compile option. disables the automatic incrementing
of the major system version that would otherwise take place. Sce scction 28.8,
page 672.

sincrement-patch ‘
Increments a patchable system’s major version without doing any compilations.
Sce section 28.8, page 672.

‘no-reload-system-declaration
Turns off the check for whether the file containing the defsystem has been
changed. Then the file is loaded only if it has never been loaded before,

:batch Allows a large compilation to be done unattended. It acts like :noconfirm with
‘ regard to questions, turns off more-processing and fdefine-warnings (see inhibit-
fdefine-warnings, page 240), and saves the compiler warnings in an cditor buffer

and a file (it asks you for the name). »

:defaulted-batch _
This is like :batch except that it uses the default for the pathname to store

warnings in and does not ask the user to type a pathname,

:print-only Just prints out what transformations would be performed; does not actually do
any compiling or loading.

:noep Is ignored. This is useful mainly for programs that call make-system, so that
such programs can include forms like
(make-system 'mysys (if compile-p :compile :noop))

PS:K<I.MAN>MAKSYS.TEXT.38 8-JUN-84

Adding New Keywords to make-system 0068 Lisp Machine Manual

28.4 Adding New Keywords to make-system

make -system keywords are defined as functions on the si:make-system-keyword property of
the keyword. ‘The functions are called with no arguments. Some of the relevant variables they
can use are

si:*system-being-made* Variable
The internal data structure that represents the system being made.

si:*make-system-forms-to-be-evaled-before* : Variable
A list of forms that are evaluated before the transformations arc performed.

si:*make-system-forms-to-be-evaled-after® Variable
A list of forms that are cvaluated after the tmnsfommtmns have been performed.
Transformations can push entrics here too.

si:*make-system-forms-to-be-evaled-finally* Variable
A list of forms that are evaluated by an unwind-protect when the body of make-system
is exited, whether it is completed or not. Closing the batch warnings file is donc here.
Unlike the si:*make-system-forms-to-be-evaled-after* forms, these forms are
cvaluated outside of the “compiler warnings context”.

si:*query-type®* . Variable
y-ty .
Controls how questions are asked. Its normal value is :normal. :noconfirm mecans ask no
questions and :selective means asks a question for each individual file transformation.

si:*silent-p* ' Variable .
If t, no messages arc printed out. ’

si:*batch-mode-p* Variable
If t, :batch was specified.

si:*redo-all® _ Variable
If t, all transformations are performed, regardless of the condition functions.

si:*top-level-transformations® Variable
A list of the types of transformations that should be performed, such as (:fasload
:readfile). The contents of this list arc controlled by the keywords given to make-
system. This list then controls which transformations are actually performed.

si:*file-transformation-function® Variable
The actual function that gets called with the]xst of transformations that nced to be
performed. The default is si:do-file-transformations.

si:define-make-system-special-variable variable value [defvar-p)] Macro
Causcs variable 10 be bound to value during the body of the call to make-system. This
allows you to dcfinc new variables similar to thosc listed above. value is evaluated on
entry to make-system. 1If defvar-p is specified as (or defaulted to) t, variable is defined
with defvar. It is not given an initial value. If defvar-p is spcc1ﬁcd as nil, variable
belongs to some other program and is not defvar’ed here.

PS:<ILMAN>MAKSYS. TEXT.38 8-JUN-84

Iisp Machine Manual 06069 Adding New Options for defsystem

‘The following simple example adds a new keyword to make-system called :just -warn, which
means that fdefine warnings (see page 239) regarding functions being overwritten should be
printed out, but the user should not be queried.

(si:define-make-system-special-variable
inhibit-fdefine-warnings inhibit-fdefine-warnings nil)

(defun (:just-warn si:make-system-keyword) ()
: (setq inhibit-fdefine-warnings :just-warn))
(Sce the description of the inhibit-fdefine-warnings variable, on page 240.)

make-system kcywords can do something directly when called, or they can have their effect
by pushing a form to be cvaluated onto si:*make-system-forms-to-be-evaled-after* or onc of
the other two similar lists. In general, the only useful thing to do is to set some special variable
defined by si:define-make-system-special-variable. In addition to the ones mentioned above,
uscr-defined transformations may have their behavior controlled by new special variables, which
can be set by new keywords. If you want to get at the list of transformations to be performed,
for example, the right way is to sct si:*file-transformation-function* to a new function, which
then can call si:do-file-transformations with a possibly modificd list. ‘That is how the :print-
only keyword works.

28.5 Adding New Options for defsystem

Options to defsystem arc defined as macros on the si:defsystem-macro property of the
~option keyword. Such a macro can expand into an existing option or transformation, or it can
have side cffects and return nil. There are several variables they can usc; the only one of general
interest is

si:*system-being-defined* Variable
The internal data structure that represents the system that is currently being constructed.

si:define-defsystem-special-variable variable value Macro
Causes value to be cvaluated and variable to be bound to the result during the expansion
of the defsystem special form. This allows you to definc new variables similar to the one
listed above. '

si:define-simple-transformation Macro
This is the most convenient way to define a new simple transformation. The form is
(si:define-simple-transformation name function
default-condition input-file-types outpur-file-types
pretiy-names compile-like load-like)
For example,
(si:define—simple—transformation :compile si:qc-file-1
si:file-newer-than-file-p (:1isp) (:qfasl))
input-file-types and output-file-types are how a transformation specifies how many input
filenames and output filenames it should reccive as arguments, in this case one of each.
They also, obviously, specify the default file type for these pathnames. The si:qc-file-1
function is mostly like compile-file, except for its interface to packages. It takes input-
file and output-file arguments.

PS:KILMAN>MAKSYS.TEXT.38 8-JUN-84

Mare Esoteric 'Transformations 670 Lisp Machine Manual

pretiy-names, compile-like, and foad-like are optional.

prety-names specifies how messages printed for the user should print the name of the
transformation. It can be a list of the imperative ("Compile™), the present participle
("Compiling™), and the past participle (“compiled™). Note that the past participle is not
capitalized, because when used it does-not come at the beginning of a sentence. prergy-
names can be just a string, which is taken to be the imperative, and the system will
conjugate the participles itself. W presy-names is omitted or nil it defaults to the name of
the transformation.,

compile-fike and load-like say when the transformation should be performed. Compile-like
transformations are performed when the :compile keyword is given to make-system.
Load-like transformations arc performed unless the :noload keyword is given to make-
system. By default compile-like is t but loud-like is nil.

Complex transformations are defined as normal macro expansions, for example,
(defmacro (:compile-load si:defsystem-macro)
(input &optional com-dep load-dep
com-cond load-cond)
‘(:fasload (:compile ,input .com-dep ,com-cond)
,load-dep ,load-cond))

28.6 More Esoteric Transformations

It is sometimes uscful to specify a transformation upon which something clsc can depend, but
which is performed not by default, but rather only when requested because of that dependency.
The transformation nevertheless occupies a specific place in the hierarchy. The :skip defsystem
macro allows specifying a transformation of this type. Ior example, suppose there is a special
compiler for the read table which is not ordinarily loaded into the system. The compiled version
should still be kept up to date, and it nceds to be loaded if cver the rcad table necds to be
recompiled.

(defsystem reader
:pathname-default "SYS: I10;")
:package system-internals)
:module defs "RDDEFS")
:module reader "READ")
:module read-table-compiler "RTC")
:module read-table "RDTBL")
:compile-load defs)
:compile-load reader (:fasload defs))
:skip :fasload (:compile read-table-compiler))

(:rtc-compile-load read-table (:fasload read-table-compiler)))

Assume that there is a complex transformation :rtc-compile-load, which is like :compile-load
except that is is built on a transformation called something like :rtc-compile, which uscs the read
table compiler rather than the Lisp compiler. In the above system, then, if the :rtc-compile
transformation is to be performed, the :fasload transformation must bc done on read-table-
compiler first, that is the rcad table compiler must be loaded if the read table is to be
recompiled. 1f you say (make-system ’reader :compile), then the :compile transformation is

PN e~ p— o~

PS:KILMAN>MAKSYS. TEXT.38 8-JUN-84

Lisp Machine Manual 671 Comnion 1 isp Modules

done on the read-table-compiler module despite the :skip. compiling the read table compiler if
need be. I you say (make-system 'reader), the reader and the read table are loaded, but the
:skip keeps this from happening to the read table compiler.

So far nothing has been said about what can be given as a condition for a transformation
except for the default functions, which check for conditions such as a source file being newer
than the binary. In general, any function that takes the same arguments as the transformation
function (e.g. compile-file) and returns t if the transformation needs to be performed, can be in
this place as a symbol, including for example a closure. To take an cxample, suppose there is a
file that contains compile-flavor-methods for a system and that should thercfore be recompiled
if any of the flavor method definitions change. In this case. the condition function for compiling
that file should return t if cither the source of that file itself or any of the files that define the
flavors have changed. 'This is what the :compile-load-init complex transformation is for. It is
defined like this:

(defmacro (:compile-load-init si:defsystem-macro)
(input add-dep &optional com-dep load-dep
&aux function)
(setq function (let-closed ((*additional-dependent-modules#
add-dep))
‘compile-load-init-condition))
‘(:fasload (:compile ,input ,com-dep ,function) ,load-dep))

(defun compile-load-init-condition (source-file qfas1-file)
(or (si:file-newer-than-file-p source-file gfasl-file)
(Tocal-declare ((special *additional-dependent-modules*))
(si:other-files-newer-than-file-p
*additional-dependent-moduless
qfasi-file))))

The condition function generated when this macro is used returns t either if si:file-newer-
than-file-p would with those arguments, or if any of the other files in add-dep, which
presumably is a module specification, are newer than the QFASL file. Thus the file (or module)
to which the :compile-load-init transformation applics will be compiled if it or any of the source
files it depends on has been changed, and will be loaded under the normal conditions. In most
(but not all cases), com-dep is a :fasload transformation of the same files as add-dep specifies,
so that all the files this one depends on will be loaded before compiling it.

28.7 Common Lisp Modules

In Common Lisp, a module is a name given to a group of files of code. Modules are not
like systems because nothing records what the “contents” of any particular module may be.
Instcad, onc of the files which defines the module contains a provide form which says, when that
file is loaded, “Module foo is now present.” Other files may say, using require, “l want to use
module foo.”

Normally the require form also spccifics the files to load if foo has not been provide’d
already. 'This is where the -information of which files are in a module is stored. If the require
does not have file names in it, the module name foo is used in an implementation-dependent

PS:<LLMAN>MAKSYS.TEXT.38 8-JUN-84

The Pateh Facility 672 Lisp Machine Manual

manner to find files to load. The Lisp Machine does this by using it as a system name in make-
system.

provide module-name ‘
Adds module-name 10 the list *modules* of modules alrcady loaded. module-name should
be a string: casc is significant.

require module-name &rest files
If module module-name is not already loaded (on *modules*), files are loaded in order to
make the module available. modide-name should be a string; case is significant. 'The
clements of files should be pathnames or namestrings. I files is nil, (make-system
module-name noconfirm) is done. Note, however, that case is not significant in the
argument 10 make-system.

modules Variable
A list of names (strings) of all modules provide'd so far.

28.8 The Patch Facility

The patch facility allows a system maintainer to manage new releases of a large system and
issuc patches to correct bugs. It is designed to be used to maintain both the Lisp Machine system
itsclf and applications systems that arc large cnough to be loaded up and saved on a disk
partition.

When a system of programs is very large, it needs to be maintained. Often problems are
found and neced to be fixed, or other little changes need to be made. However, it takes a long
time to load up all of the files that make up such a system, and so rather than having every user
load up all the files every time he wants to use the system, usually the files just get loaded once
into a Lisp world, which is then saved away on a disk partition. Users then use this disk
partition, copics of which may appear on many machines. The problem is that since the users
don’t load up the system every time they want to usc it, they don’t get all the latest changes.

The purposc of the patch system is to solve this problem. A patch file is a little file that,
when you load it, updates the old version of the system into the new version of the system.
Most often, patch files just contain new function definitions; old functions are redefined te do
their new thing. When you want to use a system, you first use the Lisp environment saved on
the disk, and then you load all the latest patches. Patch files are very small, so loading them
doesn’t take much time. You can even load the saved cnvironment, load up the latest patches,
and then save it away, to save future users the trouble of cven loading the patches. (Of course,
new patches may be made later, and then these will have to be loaded if you want to get the
very latest version.)

For every system, there is a scrics of patches that have been made to that system. To get the
latest version of the systcm, you load cach patch file in the serics, in order. Sooner or later, the
maintainer of a system wants to stop building more and more patches, and recompile everything,
starting afresh. A complete recompilation is also nccessary when a system is changed in a far-
reaching way. that can’t be done with a small patch; for cxample, if you completely reorganize a
program, or change a lot of names or conventions, you might nced to completely récompile it to

PS:KI.LMAN>MAKSYS.TEXT.38 8-JUN-84

Lisp Machine Manual 673 The Patch Facility

make it work again. - After a complete recompilation has been done, the old patch files are no
longer suitable w use: loading them in might cven break things. |

The way all this is kept track of is by labelling cach version of a system with a two-part
number. “The two parts are called the major version mumber and the minor version number. The
minor version number is increased cvery time a new patch is made; the patch is identified by the
major and minor version number together, ‘The major version number is increased when the
program is completely recompiled. and at that time the minor version number is reset to zero. A
complete system version is identified by the major version number, followed by a dot, followed
by the minor version number. Thus, patch 93.9 is for major version 93 and minor version 9: it
is followed by patch 93.10.

To clarify this, here is a typical scenario. A new system is created: its initial version number
is 1.0. Then a patch file is created; the version of the program that results from loading the first
patch file into version 1.0 is called 1.1. Then another patch file might be created, and loading
that patch file into system 1.1 creates version 1.2, Then the entire system i$ recompiled, creating
version 2.0 from scratch. Now the two patch files are irrelevant, because they fix old software;
the changes that they reflect are integrated into system 2.0.

Note that the second patch file should only be loaded into system 1.1 in order to create
system 1.2 you shouldn’t load it into 1.0 or any other system besides 1.1, It is important that
all the patch files be loaded in the proper order, for two reasons. First, it is very useful that any
system numbered 1.1 be cxactly the same software as any other system numbered 1.1, so that if
somebody reports a bug in version 1.1, it is clear just which software is being complained about.
Sccondly, one patch might patch another patch; loading them in some other order might have
the wrong cffect.

The patch facility keeps track of all the patch files that exist, remembering which version cach
onc creates. There is a separate numbered scquence of patch files for cach major version of each
system. All of them are stored in the file system, and the patch facility keeps track of where they
all are. In addition to the patch files themselves, there are patch directory files that contain the
patch facility’s data base by which it keeps track of what minor versions exist for a major version,
and what-the last major version of a system is. These files and how to make them are described
below. :

In order to use the patch facility, you must define your system with defsystem (sce chapter
28, page 660) and declare it as patchable with the ‘patchable option. When you load your
system (with make-system, sec page. 666). it is added to the list of all systems present in the
world. The patch facility keeps track of which version of cach patchable system is present and
where the data about that system reside in the file system. This information can be used to
update the Lisp world automatically to the latest versions of all the systems it contains. Once a
system is present, you can ask for the latest patches to be loaded, ask which patches are already
loaded, and add new patches.

You can also load in patches or whole new systems and then save the entire Lisp cnvironment
away in a disk partition. This is explained on scction 35.11, page 804.

PS:<ILMAN>PATCH.TEXT.54 8-JUN-84

1he Patch Facility 674 ‘Lisp Machine Maal

When a Lisp Machine is booted, it prints out a line of information for cach patchable system
present in the booted Lisp world, saying which major and minor versions arc loaded. 'This is
done by print-herald (scc page 674).

print-system-modifications &rest sysieni-names
With no arguments, this lists all the systems present in this world and, for cach system,
all the patches that have been loaded into this world. $or cach patch it shows the major
version number (which is always the same since a world can only contain one major
version). the minor version number, and an explanation of what the patch does, as typed
in by the person who made the patch.

If print-system-modifications is called with arguments, only the modifications to the
systems named are listed.

print-herald &optional format-dest
Prints the names and loaded version numbers of all patchable systems loaded, and the
microcode. Also printed are the number of the band you booted, the amount of physical
and virtual memory you have, the host name of the machine, and its associated machine
name. Example: :
MIT System, band 7 of CADR-1.
640K physical memory, 16127K virtual memory.

System 98.43
CADR 3.6
ZMail 53.10
MIT-Specific 22.0
Microcode 309

MIT Lisp Machine One, with associated machine 0Z.
Jformat-dest defaults to t; if it is nil the answer is returncd as a string rather than printed
out. format-dest can also be a strecam to print on.

si:get-system-version &optional system
Returns two values, the major and minor version numbers of the version of system
currently loaded into the machine, or nil if that system is not present. system defaults to
"System". ’

si:system-version-info &optional (brief-p nil)
Returns a string giving information about which systems and what versions of the systems
are loaded into the machine, and what microcode version is running. A typical string for
it to produce is:
"System 98.48, CADR 3.6, MIT-Specific 22.0, microcode 309"
If bricf-p is t, it uses short names, suppresses the microcode version, any systems which
should not appear in the disk label comment, the name System, and the commas:
"98.48"

PS:<L.LMAN>PATCH.TEXT.54 8-JUN-84

Fisp Machine Manual 675 The Patch Facility

28.8.1 Defining a System

In order o use the patch facility, you must declare your system as patchable by giving the
:patchable option to defsystem (sce chapter 28, page 660). The major version of your system in
the file system is incremented whenever make-system is used to compile it. Thus a mnajor
version is associated with a set of QFASI. files. ‘The major version of your system that is
remembered as having been loaded into the Lisp environment is set to the major version in the
file system whenever make-system is used (o load your system and the major version in the file
system is greater than what you had loaded before.

After Joading your system, you can save it with the disk-save function (sce page 807). disk-

~ save asks you for any additional information you want printed as part of the grecting when the

machine is booted. This is in addition to the names and versions of all the systems present in

this world. If the system version does not fit in the partition comment field allocated in the disk
label, -disk-save asks you to type in an abbreviated form.

28.8.2 Loading Patches

load-patches &rest options

This function is used to bring the current world up to the latest minor version of
whichever major version it is, for all systems present, or for certain specified systems. If
there are any patches available, load-patches offers to read them in. With no
arguments, load-patches updates all the systems present in this world. If you do not
specify the systems to operate on, load-patches also reloads the site files if they have
changed (scction 35.12, page 810), and rcloads the files defining logical host translations if
they have changed (page 574).

options is a list of keywords. Somec keywords arc followed by an argument. The
following options are accepted:

:systems list Iist is a list of names of systems to be brought up to date. If this option
is not specified, all patchable systems loaded are processed.

:unreleased Loads unreleased patches with no special querying. These patches should
be loaded for experimental use if you wish the benefit of the latest bug
fixes, but should not be loaded if you plan to save a band.

site Loads the latest site files if they have been changed since last loaded.
This is the -default if you do not specify explicitly which systems to
process.

:nosite Prevents loading of site files. This is the default when you specify the

systems to process.

‘hosts Reloads the files defining logical host. translations if they have been
changed since last loaded. This is the default if you do not spccnfy
explicitly which systems to process.

:nohosts Prevents loading of logical host translation files. This is the default when
you spccify the systems to process.

PS:KLLLMAN>PATCH.TEXT.54 ' 8-JUN-84

The Patch Facility 676 , 1isp Machine Manual

:verbose Prints an explanation of what is being done. ‘This is the default.

:selective For cach patch, says what it is and then ask the user whether or not to
load “it. ‘This is the default. If the user answers P (for ‘Procced’),
sclective mode is turned off for any remaining patches to the current
system.

:noselective Turns ofl’ :selective.

:silent Turns off both :selective and :verbose. In :silent modc all nccessary
patches arc loaded without printing anything and without querying the
user.

:force-unfinished
Loads patches that have not been finished yet, if they have been
compiled.

load-patches rcturns t if any patches were loaded.

When you load a patchable system with make-system, load-patches is called automatically
on that systcm.

si:patch-loaded-p major-version minor-version &optional (system-name "SYSTEM")
Returns t if the changes in patch majorversion.ninor-version of system system-name are
loaded. If major-version is the major version of that system which is currently loaded,
then the changes in that patch arc loaded if the current minor version is greater than or
cqual to minor-version. If the currently loaded major version is greater than major-version
then it is assumed that the newer system version contains all the improvements patched
into earlier versions, so the value is t. :

28.8.3 Making Patches

There are two ecditor commands that arc uscd to create patch files. During a typical
maintenance session on a system you will make several edits to its source files. The patch system
can be used to copy thesc edits into a patch file so that they can be automatically incorporated
into the system to crcate a ncw minor version. Edits in a patch file can be modified function
definitions, new functions, modified defvar’s and defconst’s, or arbitrary forms to be evaluated,
even including load’s of new files.

The first step in making a patch is to start it. At this stage you must specify which patchable
system you arc making a patch for. Then you add onc or more picces of code from other source
files to the patch. Finally you finish the patch. This is when you fill in the description of what
the patch docs; this description is what load-patches prints when it offers to load the patch. If
you have any doubts about whether the patch will load and work properly, you finish it
unreleased; then you can load it to test it but no bands can be saved containing the patch until
you cxplicitly rclease it later.

It is important that any change you patch should go in a patch for the patchable system to
which the changed source file belongs. This makes sure that nobody loads the change into a Lisp
world which does not contain the file you were changing—something that might cause trouble.

PS:KLLMAN>PATCH.TEXT.54 8-JUN-84

[isp Machine Manual 077 The Pateh Facility

Also, it ensures that you never patch changes to the same picce of code in two different patchable
- systems” patches, This would lead to disaster because there is no constraint on the order in which
patches to two different systems are loaded.

Starting a patch can be done with Meta-X Start Patch. It reads the name of the system to
patch with the minibuffer. Meta-X Add Patch can also start a patch, so an explicit Meta-X
Start Patch is nceded only infrequently.

Meta-X Add Patch adds the region (if there is one) or the current “defun” to the patch file
currently being constructed. If you change a function, you should recompile it. test it, then once
it works use Add Patch to put it in the patch file. If no patch is being constructed, one is
started for you: you must type in the name of the system to patch.

A convenient way to add all your changes to a pawch file is w use Meta-X Add Patch
Changed Sections or Meta-X Add Patch Buffer Changed Sections. 'These commands ask you,
for cach changed function (or cach changed function in the current buffer), whether to add it to
the patch being constructed. If you use these commands more than once, a function which has
been added to the patch and has not been changed since is considered “unchanged”.

The patch file being constructed is in an ordinary cditor buffer. If you mistakenly Add Patch
something that doesn’t work, you can select the buffer containing the patch file and delete it
Then later you can Add Patch the corrected version.

While you are making your patch file, the minor version number that has been allocated for
you is reserved so that nobody else can use it. This way if two people are patching a system at
the same time, they do not both get the same minor version number.

After testing and patching all of your changes, use Meta-X Finish Patch to install the patch
file so that other users can load it. This compiles the patch file if you have not done so yourself
(patches are always compiled). It also asks you for a comment describing the reason for the
pawch; load-patches and print-system-modifications print these comments. If the patch is
complex or it has a good chance of causing new problems, you should not use Meta-X Finish
Patch; instcad, you should make an unrelcased patch.

A finished patch can be released or unreleased. 1If a patch is unrcleased, it can be loaded in
the usual manner if the user says ‘yes’ to a special query, but once it has been loaded the user
will be strongly discouraged from saving a band. Therefore, you still have a chance to cdit the
patch file and recompile it if there is something wrong with it. You can be sure that the old
broken patch will not remain permanently in saved bands.

To finish a patch without releasing it, usc the command Meta-X Finish Patch Unreleased.
Then the paich can be tested by loading it. After a sufficient period for testing, you can release
the patch with Meta-X Release Patch. If you discover a bug in the patch after this point, it is
not sufficient to correct it in this patch file; you must put the fix in a new patch to correct any
bands alrcady saved with the broken version of this patch.

It is a good principle not to add aﬁy new features or fix any additional bugs in a patch once
that patch is released: change it only to correct problems with that patch. New fixes to other
bugs should go in ncw patches.

PS:KILMAN>PATCH.TEXT.54 ’ ‘ 8-JUN-84

The Pateh Facility 078 Lisp Machine Manual

You can only be constructing one patch at any time. Meta-X Add Patch automatically adds
to the patch you arc constructing. Bul you can start constructing a different paich without
finishing the first. If you use the command Meta-X Start Patch while constructing a patch, you
arc given the option of starting a new patch. The old patch ccases to be the one you are
constructing but the patch file remains in its editor buffer. Later, or in another session, you can
go back to constructing the first patch with the command Meta-X Resume Patch. 'This
commands asks for both a patchable system name and the patch version to resume constructing.
You can simply save the editor buffer of a patch file and resume constructing that patch in a later
session. You can even resume constructing a finished patch; though it rarcly makes sense to do
this unless the patch is unreleased.

If you start to make a patch and change your mind, use the command Meta-X Cancel
Patch. 'This deletes the record that says that this patch is being worked on. It also tells the
cditor that you are no longer constructing any patch. You can undo a finished (but unreleased)
patch by using Resume Patch and then Cancel Patch. If a patch is rcleased, you cannot
remove it from saved bands, so it is not rcasonable to cancel it at that stage.

28.8.4 Private Patches

A private patch is a filc of changes which is not installed to be loaded automatically in
sequence by all users, It is loaded only by explicit request (using the function load). A private
patch is not associated with any particular patchable system, and has no version number.

To make a private patch, use the editor command Meta-X Start Private Patch. Instcad of a
patchable system name, you must specify a filename to use for the patch file; since the patch is
not to be installed, there is no standard naming convention for it to follow. Add text to the
patch using Meta-X Add Patch and finish it using Meta-X Finish Patch. There is no concept
of rclease for private patches so there is no point in using Meta-X Finish Patch Unreleased.
There is also no data base rccording all private patches, so Meta-X Start Private Patch will
resume an cxisting patch, or cven a finished patch. In fact, finishing a private patch is merely a
way to write a comment into it and compile it.

Once the private patch file is made, you can load it like any other file.

The private patch facility is just an casy way to copy code from various files into one new file
with Patch-File: T in its attribute list- (to prevent warnings about redefining functions dcfined in
other files) and compile that file.

PS:KKILMAN>PATCH.TEXT.54 8-JUN-84

I isp Machine Manual 679 : The Patch Facility

28.8.5 System Status

The patch system has the concept -of the starus of a major version of a system. A status
keyword is recorded in the Lisp world for cach patchable system that is loaded. ‘there is also a
current status for cach major version of cach system. recorded in the patch directory file for that
major version. Loading patches updates the status in the Lisp world to match the current status
stored in the patch directory. The status in the patch directory is changed with si:set-system-
status. '

The status is displayed when the system version is displayed, in places such as the system
greeting message (print-herald) and the disk partition comment.

The status is onc of the following keywords:

:experimental The system has been built but has not yet been fully debugged and released to
users. This is the default status when a new major version is crcated, unless it is
overridden with the :initial-status option to defsystem.

rreleased The system is released for general use. This status produces no extra text in the
system grecting and the disk partition comment.

:obsolete The system is no longer supported.

:broken This is like :experimental, but is used when the system was thought incorrectly to

have been debugged, and hence was :released for a while.

sinconsistent Unreleased patches to this system have been loaded. If any patchable system is in
this status, disk-save demands cxtra confirmation, and the resulting saved band is
identified as “Bad™ in its disk partition comment.

si:set-system-status system status &optional major-version
Changes the current status of a system, as recorded in the patch directory file. system is
the name of the system. major-version is the number of the major version to be changed;
if unsupplied it defaults to the version currently loaded into the lisp world. status should
be one of the keywords above.

Do not set the current system status to :inconsistent. A status of :inconsistent is set up
in the Lisp world when an unrclcased patch is loaded, and once set that way it never
changes in that Lisp world. The status recorded in the system's patch directory file should
describe the situation where all currently released patches are loaded. It should never be
sinconsistent. '

PS:KLMAN>PATCH.TEXT.54 ' ' 8-JUN-84

The Patch Facitity 080 ‘ 1 isp Machine Manual

28.8.6 Patch Files

The patch system maintains several different types of files in the directopy associated with your
system. ‘This directory is specified to defsystem via cither the :patchable option or the
:pathname-default option. These files are maintained automatically, but they are described here
so that you can know what they are and when they are obsolete and can be deleted.

If the :patchable option to defsystem had no argument, then the patch data files are stored
on the host, device and directory specified as the system’s pathname default. 'The names and
types of the filenames arc all standard and do not include the name of the system in any way.

[f the :patchable option to defsystem is given an argument, this argument is a file
namestring specifying the host, device and dircctory o use for storing the patch data files. In
addition. the system’s short name is used in constructing the names of the files. This allows you
to store the patch data files for several systems in the same directory.

There arc three kinds of files that record patch information:

* the system patch directory

This file records the current major version number, so that when the system is recompiled a
new number can be allocated.

On Tops-20, this file has, by default, a nainc like OZ:PS:KMYDIR>PATCH.DIRECTORY,
where the host, device, and directory (OZ:PS:KMYDIRD>) come from the system’s :pathname-
" default as cxplained above. :

If :patchable is given an argument, this file for system FOO has a namc like
0OZ:PSKPATDIR>FOQ.PATCH-DIRECTORY, where the host, device and directory come from
:patchable’s argument.

* the patch dircctory of a major version

There is a file of this kind for each major version of the system. It records the patches that
have been made for that major version: the minor version, author, description and rclease
status of cach one.

The data in this file are in thc form of a printed representation of a Lisp list with two
clements. The first is the system status of this major version (:experimental, :released,
‘broken or :obsolete). The second is another list with an clement for cach patch. The
clement for a patch is a list of length four: the minor version, the patch description (a string)
or nil for an unfinished patch, the author’s name (a string), and a flag that is t if the patch is
unrcleased.

On a Tops-20, for major version 259, this file has, by default, a name like
0Z:PS:KMYDIR>PATCH-259.DIRECTORY.

If :patchable is given an argument. this file for system FOO has a name like
0Z:PS:KPATDIR>FO0O-259.PATCH-DIRECTORY.

_) ‘ :
PS:KI.MAN>PATCH.TEXT.54 8-JUN-84

I isp Machine Manual o8l The Patch Facility
* the individual patch
For cach patch made, there is a Lisp source file and a QIFASL. file.

On a Tops-20. for version 25912, these files have, by default, names like
OZ:PS:KMYDIR>PATCH-259-12.LISP and OZ:PS:{MYDIR>PATCH-259-12.QFASL.

If - :patchable is given an argument, this file .fur system FOO has a name like
0OZ:PSKPATDIR>FO0O-259-12.PATCH -DIRECTORY.

On certain types of file systems. slightly different naming conventions are used to keep the
names short enough to be legal.

PS:<LLMAN>PATCH.TEXT.54 8-JUN-84

	660_MaintLargeSys
	661_MaintLargeSys
	662_MaintLargeSys
	663_MaintLargeSys
	664_MaintLargeSys
	665_MaintLargeSys
	666_MaintLargeSys
	667_MaintLargeSys
	668_MaintLargeSys
	669_MaintLargeSys
	670_MaintLargeSys
	671_MaintLargeSys
	672_MaintLargeSys
	673_MaintLargeSys
	674_MaintLargeSys
	675_MaintLargeSys
	676_MaintLargeSys
	677_MaintLargeSys
	678_MaintLargeSys
	679_MaintLargeSys
	680_MaintLargeSys
	681_MaintLargeSys

