Processes (82 Lisp Machine Manual

29. Processes

The Lisp Machine supports mulii-processing: — several computations can be executed
concurrently by placing cach in a separate process. A process is like a processor, simulated by
software. Each process has its own program counter, its own stack of function calls and its own
special-variable binding environment in which to exccute its computation. (This is implemented
with stack groups: see chapter 13, page 256.)

I all the processes are simply trying to compute, the machine allows them all to run an cqual
share of the time. 'This is not a particularly cfficient mode of operation since dividing the finite
memory and processor power of the machine among several processes certainly cannot increase the
available power and in fact wastes some of it in overhead. The typical use for processes is that at
any time only one or two are trying to run. The rest are cither waiting for some event o occur
or stopped and not allowed to compete for resources.

A process waits for an cvent by means of the process-wait primitive, which is given a
predicate function which defines the event being waited for. A module of the system called the
process scheduler periodically calls that function. If it returns nil the process continues to wait; if
it returns t the process is made runnable and its call to process-wait returns, allowing the
computation to proceed.

A process may be active or stopped. Stopped processes are never allowed to run; they are
not considered by the scheduler, and so can never become the current process until they are
madc active again. The scheduler continually tests the waiting functions of all the active processes,
and those which return non-nil valucs arc allowed to run. When you first crcatc a process with
make-process, it is-inactive.

The activity of a process is controlled by two scts of Lisp objects associated with it, called its
run reasons and its arrest reasons. These scts arc implemented as lists. Any kind of object can
be in these sets; typically keyword symbols and active objects such as windows and other
processes are found. A process is considered active when it has at least one run reason and no
arrest reasons.

To get a computation to happen in another process, you must first create a process, then say
what computation you want to happen in that process. The computation to be exccuted by a
process is specified as an initial function and a list of arguments to that function. When the
process starts up it applies the function to the arguments. In some cascs the initial function is
written so that it never returns, while in other cases it performs a certain computation and then
returns, which stops the process.

To reset a process means to exit its cntire computation nonlocally using *unwind-stack (see
page 82). Some processes arc temporary and dic when reset. The other, permanent functions
start their computations over again when reset. Resetting a process clears its waiting condition, so
that if it is active it becomes runnable. To preser a function is to set up its initial fynction (and
arguments) and then reset it. This is how you start up a computation in a process.)

PS:KL.MAN>PROCES.TEXT.55 8-JUN-84

I isp Machine Manual 083 The Scheduler

AL processes ina Lisp Machine run in the same virtual address space, sharing the same set
of Lisp objects. Unlike other systems that have special restricted mechanisms for inter-process
communication, the Lisp Machine allows processes o communicate in arbitrary ways through
shared Lisp objects. One process can inform another of an event simply by changing the value of
a global variable. Buffers containing messages from one process to another can be implemented as
lists or arrays. ‘The usual mechanisms ‘of atomic operations, critical sections, and interlocks are
provided (scc store-conditional [page 688], without-interrupts [page 684]. and process-lock
[page 687)). :

A process is a Lisp object, an instance of one of several flavors of process (see chapter 21,
page 401). ‘The remainder of this chapter describes the operations defined on processes, the
functions you can apply 0 a process, and the functions and variables a program running in a
process can use to manipulate its process. :

29.1 The Scheduler

At any time there is a sct of active processes; as described above, these are all the processes
that arc not stopped. Each active process is cither currently running, runnable (ready to run), or
waiting for some condition to become true. The active processes are managed by a special stack
group called the scheduler, which repeatedly cxamines each active process to determine whether it
is waiting or ready to run. The scheduler then sclects one process and starts it up.

The process chosen by the scheduler becomes the current process, that is, the one process
that is running on the machine. The scheduler sets the variable current-process to it. It
remains the current process and continues to run until either it decides to wait, or a sequence
break occurs. In either case, the scheduler stack group is resumed. It then updates the process’s
run time meters and chooses a new process to run next. This way, cach process that is ready to
run gets its share of time in which to exccute.

Each process has a priority which is a number. Most processes have priority zero. Larger
numbers give a process more priority. The scheduler only considers the highest priority runnable
processes, so if there is one runnable process with priority 20 then no process with lesser priority
can run,

The scheduler determines whether a process is runnable by applying the process’s wait-function
to its wait-argument-list. 1f the wait-function returns a non-nil value, then the process is ready to
run; otherwise, it is waiting.

A process can wait for some condition to become truc by calling process-wait (see page
685). This function sets the process’s wait-function and wait-argument-list as specified by the
caller, and resumes the scheduler stack group. A process can also wait for just a moment by
calling process-allow-schedule (scc page 686), which rcsumes the scheduler stack group but
leaves the process runnable; it will run again as soon as all other runnable processes have had a
chance.

A scquence break is a kind of interrupt that is gencrated by the lLisp system for any of a
varicty of reasons; when it occurs, the scheduler is resumed. The function si:sb-on (sce page
687) can be uscd to control when sequence breaks occur. The default is to sequence break once a

PS:KILMAN>PROCES.TEXT.55 / 8-JUN-84

‘The Scheduler | 084 Lisp Machine Manual

sccond. Thus even i a process never waits and is not stopped, it is forced to return control to
the scheduler once a second so that any other runnable processes can get their turn,

The system does not generate a sequence break when a page fault occurs: thus time spent
waiting for a page to come in from the disk is “charged™ to a process the same as time spent -
computing, and cannot be used by other processes. 1t is done this way for the sake of simplicity;
this allows the whole implementation of the process system to reside in ordinary virtual memory,
so that it does not have to worry specially about paging. The performance penalty is small since
Lisp Machines arc personal computers, not multiplexed among a large number of processes.
Usually only one process at a time is runnable.

A process’s wait function is free to touch any data structure it likes and to perform any
computation it likes. Of course, wait [unctions should be kept simple, using only a small amount
of time and touching only a small number of pages, or system performance will be impacted
since the wait function will consume resources even when its process is not running.

If a wait function gets an ecrror, the crror occurs inside the scheduler. 1If this enters the
debugger, all scheduling comes t a halt until the user proceeds or aborts. Aborting in the
debugger inside the scheduler “blasts™ the current process by giving it a trivial wait function that
always returns nil; this prevents recurrence of the same problem. 1t is best to write wait functions
that cannot get crrors, by keeping them simple and by arranging for any problems to be detected
before the scheduler sees the wait function. process-wait calls the wait function once before
giving it to the scheduler, and this often exposes an error before it can interferc with scheduling.

Note well that a process’s wait function is cxccuted inside the scheduler stack-group, not
inside the process. This means that a wait function may not access special variables bound in the
process. It is allowed to access global variables. It can access variables bound by a process
through the closure mechanism (chapter 12, page 250). If the wait function is defined lexically
within the caller of process-wait then it can access local variables through the lexical scoping
mechanism. Most commonly any values nceded by the wait function are passed to it as
arguments. '

current-process Variable
The value of current-process is the process that is currently exccuting, or nil while the
scheduler is running. When the scheduler calls a process's wait-function, it binds
current-process to the process so that the wait-function can access its process.

without-1interrupts body... Macro
The body forms are evaluated with inhibit-scheduling-flag bound to t. This is the
rccommended way to lock out multi-processing over a small critical scction of code to
prevent timing errors. In other words the body is an atomic operation. The values of the
last form in the body are ultimately returned.

In this cxample, list is presumed to be a global variable referred to from two places in
the code which different processes will exccute.

PS:<ILMAN>PROCES.TEXT.55 8-JUN-84

Lisp Machine Manual - 085 The Scheduler

{(without-interrupts
(push item Tist))

(without-interrupts
{cond ((memqg iteim list)
(setq 1ist (delq item list))
t)
(t nil)))

inhibit-scheduling-flag ' Variable
The value of inhibit-scheduling-flag is normally nil. without-interrupts binds it to t,
which prevemts process-switching until inhibit-scheduling-flag becomes nil again. It is
cleancr to use without-interrupts than to refer directly to this variable.

process-wait whostaute function &rest arguments ,
This is the primitive for waiting. The current process waits until the application of -
Sunction to arguments returns non-nil (at which time process-wait returns). Note that
Junction is applicd in the cnvironment of the. scheduler, not the environment of the
process-wait, so special bindings in cffect when process-wait was called are nor be in
effect when function is applied. Be careful when using any free references in fiunction.
whostate is a string containing a brief description of the recason for waiting. 1f the who-
line at the bottom of the screen is looking at this process, it will show whostate.

Example:
(process-wait "Buffer"
#'(lambda (b) (not (zerop (buffer-n-things b))))
the-buffer)

process-sleep interval »
Waits for interval sixticths of a second, and then returns. It uses process-wait.

sleep seconds _ :
Waits seconds scconds and then returns. seconds need not be an integer. This also uses
process-wait.

process-wait-with-timeout whostate interval function &rest arguments
This is like process-wait cxcept that if interval sixticths of a second go by and the
application of finction to arguments is still returning nil, then process-wait-with-timeout
returns anyway. The value returned is the value of applying function to arguments; thus,
it is non-nil if the wait condition actually occurred, nil for a time-out. :

If interval is nil, there is no timcout, and this function is then cquivalent to process-
wait.

PS:<I.MAN>PROCES.TEXT.55 - 8-JUN-84

‘The Scheduler 686 Iisp Machine Manual

with-timeout (inmerval timeour-forms...) body... Muacro
body is exceuted with a timeout in effect for interval sixticths of a second. 1f body finishes
before that much time clapses. the values of the last form in body are returned.

If after interval has clapsed body has not completed, its exccution is terminated with a
throw caught by the with-timeout form. Then the tsimeour-forms arc evaluated and the
values of the Tast one of them are returned.

For example,
(with-timeout ((= 60. 60.) (format *query-io* " ... Yes.") t)
(y-or-n-p "Really do it? (Yes after one minute) "))
is a convenient way 1o ask a question and assume an answer if the user does not respond
promptly. ‘This is a good thing to do for queries likely to occur when the user has
walked away from the terminal and expects an operation to finish without his attention.

process-allow-schedule
Resumes the scheduler momentarily; all other processes will get a chance to run before

the current process runs again,

sys:scheduler-stack-group Constant
‘This is the stack group in which the scheduler executes.

sys:clock-function-1ist . Variable

This is a list of functions to be called by the scheduler 60 times a sccond. Fach function
is passcd onc argument, the number of 60ths of a sccond since the last time that the
functions on this list were called. 'These functions implement various system overhead
operations such as blinking the blinking cursor on the screen. Note that these functions
arc called inside the scheduler, just as are the functions of simple processes (sce page
695). The scheduler calls these functions as often as possible, but never more often than
60 times a seccond. ‘That is, if there are no processes ready to run, the scheduler calls the
clock functions 60 times a sccond, assuming that, all together,. they take less than 1/60
second to run. If there are processes continually ready to run, then the scheduler calls
the clock functions as often as it can; usually this is once a sccond, since usually the
scheduler gets control only once a second. ’

sys:active-processes Variable
This is the scheduler’s data-structure. It is a list of lists, where the car of each element is
an active process or nil and the cdr is information about that process.

sys:all-processes _ Variable
This is a list of all the processes in existence. It is mainly for debugging.

st:1nitial-process Constant
This is the process in which the system starts up when it is booted.

PS:<LLMAN>PROCES.TEXT.55 8-JUN-84

Lisp Machine Manual 087 | ocks

si:sb-on &optional when
Controls what cvents causes a sequence break, i.c. when rescheduling occurs. ‘The
following keywords are names of events which can cause a scquence break.

:clock This event happens periodically based on a clock. The default period is
one sccond. Sce sys:%tv-clock-rate, page 293.

:keyboard Happens when a character is reccived from the keyboard.

:chaos Happens when a packet is received from the Chaosnet, or transmission of

a packet to the Chaosnet is completed.

Since the keyboard and Chaosnet are heavily buffered, there is no particular advantage to
cnabling the keyboard and :chaos cvents, unless the :clock cvent is disabled.

With no argument, si:sb-on returns a list of keywords for the currently enabled cvents.

With an argument, the sct of cnabled cvents is changed. The argument can be a
keyword, a list of keywords, nil (which disables scquence breaks entirely since it is the
cmpty list), or a number, which is the internal mask, not documented here.

29.2 Locks

A lock is a software construct used for synchronization of two processes. A lock is cither held
by some process, or is free. When a process tries to scize a lock, it waits until the lock is free,
and then it becomes the process holding the lock. When it is finished, it unlocks the lock,
allowing some other process to scize it. A lock protects some resource or data structure so that
only one process at a time can use it.

In the Lisp Machine, a lock is a locative pointer to a cell. If the lock is free, the cell
contains nil; otherwise it contains the process that holds the lock. The process-lock and
process-unlock functions arc written in such a way as to guarantec that two processes can never
both think that they hold a certain lock; only one process can ever hold a lock at one time.

process lock locative &optional (lock-value current-process) (whostate "Lock") timeout
This is used to scize the lock that Jocative points to. If necessary, process-lock waits
until the lock becomes free. When process-lock returns, the lock has been scized. lock-
value is the object to store into the cell specified by locative, and whostate is passed on to
process-wait.

If timeout is non-nil, it should be a fixnum representing a time interval in 60ths of a
sccond. If it is necessary to wait more than that long, an error with condition name
sys:lock-timeout is signaled.

process-unlock locative &optional (lock-value current-process)
This is used to unlock the lock that locative points to. If the lock is free or was locked
by some other process, an error is signaled. Otherwise the lock is unlocked. lock-value
must have the same value as the Jock-value parameter to the matching call to process-
lock, or clse an error is signaled.

PS:KILMAN>PROCES.TEXT.55 ' , 8-JUN-84

Locks 088 1isp Machine Manual

sys:lock-timeout (error) ‘ Condition
This condition is signaled when process-lock waits longer than the specified timeout.

It is a good idea to use unwind-protect to make surc that you unlock any lock that you
seize. For example, if you write
(unwind-protect
{progn (process-lock lock-3)
' {function-1)
(function-2))

(process-unlock lock-3))
then cven if function-1 or function-2 docs a throw, lock-3 will get unlocked correctly.
Particular programs that usc locks often define special forms that package this unwind-protect up
into a convenient stylistic device.

. A higher level locking construct is with-lock:

with-lock (lock &key norecursive) body... Macro
Exccutes the body with Jock locked. /lock should actually be an expression whose value
would be the status of the lock; it is used inside locf to get a locative pointer with which
the locking and unlocking are done.

It is OK for onc process to lock a lock multiple times, recursively, using with-lock,
provided norecursive is not nil.

norecursive should be literally t or nil; it is not evaluated. If it is t, this call to with-
lock signals an error if the lock is alrcady locked by the running process.

A lower level construct which can be used to implement atomic operations, and is used in the
implementation of process-lock, is store-conditional.

store-conditional Jocation oldvalue newvalue
This stores newvalue into location iff location currently contains oldvalue. The value is t iff

the cell was changed.

If location is a list, the cdr of the list is tested and stored in. This is in accord with the
general principle of how to access the contents of a locative properly, and makes (store-
conditional (locf (cdr x)) ...) work.

An even lower-level construct is the subprimitive %store-conditional, which is like store-
conditional with no error checking, but is faster.

PS:KLL.MAN>PROCES. TEXT.55 8-JUN-84

Lisp Machine Manual 089 Creating a Process

29.2.1 Process Queues

A process queuc is a kind of lock which can record several processes which are waiting for
the lock and grant them the lock in the order that they requested it. The queue has a fixed size.
If the number of processes waiting remains less than that size then they will all get the lock in
the order of requests. I too many processes are waiting then the order of requesting is not
remembered for the extra ones, but proper interlocking is still maintained.

si:make-process-queue nume size
Makes and returns a process queue object named name, able 1o record size processes.
The count of size includes the process that owns the lock.

si:process-enqueue process-quene &optional Jock-value who-state
Attempts to lock process-quewe on behalf of Jock-value. 1f lock-value is nil then the
locking is donc on behalf of current-process.

If the queue is locked. then lock-value or the current process is put on the queue. 'Then
this function waits for that lock valuc to reach the front of the queue. When it does so,
the lock has been granted, and the function retwrns. The lock is now locked in the name
of lock-value or the current process, until sizprocess-dequeue is used to unlock it.

who-state appears in the who line during the wait. It defaults to "Lock".

si:process-deqeueue process-queue &optional lock-value
Unlocks process-queue. [lock-value (which defaults to the current process) must be the
value which now owns the lock on the queue, or an error occurs. The next process or
other object on the queuc is granted the lock and its call to si:process-enqueue will
therefore return.

si:reset-process-queue process-queue
Unlocks the queue and clears out the list of things waiting to lock it.

si:process-queue-locker process-queue
Returns the object in whose name the queue is currently locked, or nil if it is not now

locked.

29.3 Creating a Process

There are two ways of creating a process. Onec is to create a permanent process which you
will hold on to and manipulate as desired. The other way is to say simply, “call this function on
these arguments in another process, and don’t bother waiting for the result.” In the latter case
you ncever actually use the process itsclf as an object.

make-process name &key ...

Creates and returns a process named name. The process is not capable of running until it
has been reset or preset in order to initialize the state of its computation.

PS:<I.LMAN>PROCES.TEXT.55 | 8-JUN-84

Creating a Process 0690 I isp Machine Manual

Usually you do not need to specify any of the keyword arguments. The following
keyword arguments are allowed: '

:simple-p Specifying t here gives you a simple process (sce page 695).

flavor Specifies the flavor of process to be created. Sce section 29.5, page 695,
for a list of all the fHavors of process supplied by the system.

:stack-group Specifies the stack group the process is o use. If this option is not
specified, a stack group is created according to the relevant options below.

:warm-boot-action
What to do with the process when the machine is booted. Sce page 693.

:quantum See page 692.
:priority Sce page 693.
run-reasons l.cts you supply an initial run reason. The default is nil.

:arrest-reasons
Lets you supply an initial arrest reason. The default is nil.

'sg-area The arca in which to create the stack group. The default is the value of
default-cons-area.

:regular-pdl-area
:special-pdl-area
:regular-pd!-size
:special-pdl-size :
These arc passed on to make-stack-group, page 259.
:swap-sv-on-call-out
:swap-sv-of-sg-that-calls-me
:trap-enable Specify those attributes of the stack group. You don’t want to use these.

If you spccify :flavor, there can be additional options provided by that flavor.

The following functions allow you to call a function and have its exccution happen
asynchronously in another process. This can be uscd cither as a simple way to start up a process
that will run “forever”, or as a way to make something happen without having to wait for it to
complete. When the function returns, the process is returned to a pool of free processes for
reuse. The only difference between these three functions is in what happens if the machine is
booted while the process is still active.

Normally the function to be run should not do any 1/0 to the terminal, as it docs not have
a window and terminal 170 will cause it to make a notification and wait for user attention. Refer
to scction 13.5, page 264 for a discussion of the issues.

process-run-function name-or-options function &rcst args
Creates a process, presets it to apply function to args, and starts it running. The valué
returned is the new process. The process is killed if function returns; by default, it is
also killed if it is resct. Example:

PS:<I.MAN>PROCES.TEXT.55 8-JUN-84

Iisp Machine Manual 091 Process Generie Operitions

(defun background-print (file)
(process-run-function "Print" ’hardcopy-file file))
creates a background process that prints the specified file.

name-or-options can be cither a string specifying a name for the process or a list of
alternating keywords and values that can specify the name and various other parameters.

:name This keyword should be followed by a string which specifies the name of
the process. ‘The default is "Anonymous". '

‘restart-after-reset
This keyword says what to do to the process if it is reset. nil means the
process should be killed: anything clse means the process should be
restarted. nil is the default. :

:warm-boot-action
What to do with the process when the machine is booted. Sce page 693.

rrestart-after-boot
This is a simpler way of saying what to do with the process when the
machine is booted. If the :warm-boot-action keyword is not supplied or
its valuc is nil, then this kecyword’s value is used instcad. nil means the
process should be killed; anything clse mcans the process should be
restarted. nil is the default.

:quantum Sce page 692.
:priority Sce page 693,

process-run-restartable-function name-or-keywords function &rest args
This is the same as process-run-function cxcept that the default is that the process will
be restarted if reset or after a warm boot. You can get the same effect by using
process-run-function with appropriate keywords.

29.4 Process Generic Operations

These are the operations that are defined on all flavors of process. Certain process flavors may
define additional operations. Not all possible operations arc listed here, only those of interest to
the user.

29.4.1 Process Attributes

:name , Operation on si:process
Returns the name of the process, which was the first argument to make-process or
process-run-function when the process was created. The name is a string that appears
in the printed-representation of the process, stands for the process in the who-line and the
peek display, etc. '

PS:<1.MANYPROCES.TEXT.55 8-JUN-84

Process Generic Operations 092 I isp Machine Manual

:stack-group Operation o Si:process
Returns the stack group currently executing on behall of this process. This can be
different from the iitial-stack-group if the process contains several stack groups that
coroutine among themsclves, or if the process is in the crror-handler, which runs in its
own stack group.

Note that the stack-group of a simple process (see page 695) is not a stack group at all,
but a- function.

:initial-stack-group Operation on si:process
Returns the stack group the initial-function is called in when the process starts up or is
resct.

:initial-form ' Operation on si:process

Returns the initial “form™ of the process. ‘This isn't really a lisp form; it is a cons
whose car is the initial-function and whose cdr is the list of arguments to which that
function is applicd when the process starts up or is reset.

In a simple process (see page 695). the initial form is a list of onc clement, the process’s
function.

To change the initial form, use the :preset operation (sce page 694).

:wait-function Operation on si:process
Returns the process’s current wait-function, which is the predicate used by the scheduler
to dcterminc if the process is runnable. 'This is #'true if the process is running, and
#’false if thc process has no current computation (for instance, if it has just been
created, its initial function has rcturned) or if the program has decided to wait
indcfinitely. ‘The wait-function of a flushed process is si:flushed-process, a function
cquivalent to # 'false but recognizably distinct.

:wait-argument-1ist Operation on si:process
Returns the arguments to the process's current wait-function. This is frequently the &rest
argument to process-wait in the process’s stack. The system always uses it in a safe
manner, i.c. it forgets about it before process-wait returns.

:whostate Operation on si:process
Returns a string that is the state of the process to go in the who-line at the bottom of the
screen, This is "run" if the process is running or trying to run; otherwise, it is the
rcason why the process is waiting. If the process is stopped, then this whostate string is
ignored and the who-line displays arrest if the process is arrested or stop if the process
has no run reasons.

:quantum Operation on si:process

:set-quantum 60ths Operation on si:process
Respectively return and change the number of 60ths of a second this process is allowed to
run without waiting before the scheduler will run somcone else. The quantum defaults to

1 second.

PS:KL.MAN>PROCES. TEXT.55 8-JUN-84

AN

Lisp Machine Manual 093 Process Generie Operations

:quantum-remaining Operation on si:process
Returns the amount of ume-remaimng for this process to run, in 60ths of a second.

cpriority Operation on Si:process

:set-priority pnumy-numbw : Opcration on si:process
Respectively return and change the priority of this process. ‘The larger the number, the
more this process gets to run. - Within a priority level the scheduler runs all runnable
processes in a round-robin fashion. Regardless of priority a process will not run for more
than its quantum. ‘The default priority is 0, and no normal process uses other than 0.

:warm-boot-action Operation on si:process

:set-warm-boot-action action Operation on si:process
Respectively return and change the process’s warm-boot-action, which controls what
happens if the machine is booted while this process is active. (Contrary to the name, this
applies 1o both cold and warm booting.) This can be nil or :flush, which means to flush
the process (see page 695), or can be a function to call. The default is si:process-
warm-boot-delayed-restart, which resets the process. causing it to start over at its
initial function. You can also usc si:process-warm-boot-reset, which throws out of the
process’ computation and Kills the process, or si:process-warm-boot-restart, which is
like the default but restarts the process at an carlier stage of system reinitialization. This
is used for processes like the keyboard process and chaos background process, which are
nceded for reinitialization itself,

:simple-p Operation on si:process
Returns nil for a normal process, t for a simple process. Sce page 695.

:idle-time Operation on si:process
Returns the time in scconds since this process last ran, or nil if it has never run.

:total-run-time Operation on si:process
Returns the amount of time this process has run in 60ths of a second. This includes cpu
time and disk wait time,

:disk-wait-time Operation on si:process
Returns the amount of time this process has spent waiting for disk 170, in 60ths of a
second.

:cpu-time Operation on si:process

Returns the amount of time this process has spent actually exccuting instructions, in 60ths
of a second.

:percaent-utilization Operation on si:process
Returns the fraction of the machine’s time this process has been using recently, as a
percentage (a number between 0 and 100.0). The value is a weighted average giving more
weight to more recent history.

PS:KL.MAN>PROCES.TEXT.55 8-JUN-84

Process Generic Operations 094 Lisp Machine Manual

:reset-meters Operation on 8i:process
Rescts the run-time counters of the process to zero,

29.4.2 Run and Arrest Reasons

:run-reasons Operation on si:process
Returns the list of run reasons. which arc the rcasons why this process should be active
(allowed to run). :

:run-reason object Operation on si:process
Adds object to the process's run rcasons. This can activate the process.

:revoke-run-reason object ' Operation on si:process
Removes object from the process's run reasons. This can stop the process.

:arrest-reasons Operation on Si:process
Returns the list of arrest rcasons, which arc the rcasons why this process should be
inactive (forbidden to run).

:arrest-reason object Operation on Si:process
Adds object to the process’s arrest reasons. ‘This can stop the process.

:revoke-arrest-reason object Operation on Si:process
Removes object from the process’s arrest reasons. This can activate the process.

:active-p Operation on si:process
:runnable-p : Operation on si:process
These two operations are the same. t is returned if the process is active, i.e. it can run if
its wait-function allows. nil is returncd if the process is stopped.

29.4.3 Bashing the Process

ipreset function &rest args Operation on si:process
Scts the process’s initial function to finction and initial arguments to args. The process is
then reset so that any computation occuring in it is terminated and it begins anew by
applying function to args. A :preset opcration on a stopped process returns immediately,
but does not activate the process; hence the process will not really apply function to args
until it is activated later.

:reset &optional no-unwind kill Operation on si:process
Forces the process to throw out of its present computation and apply its initial function to
its initial arguments, when it next runs. The throwing out is skipped if the process has
no present computation (c.g. it was just created), or if the no-unwind option so specifies.
The possible values for no-unwind are:

:unless-current
nil Unwind unless the stack group to be unwound is the one currently
exccuting, or bclongs to the current process.

PS:KI.MAN>PROCES.TEXT.55 _ 8-JUN-84

Lisp Machine Manual 095 Process lavors

:always Unwind in all cases. This may cause the operation to throw through its
caller instcad of returning.

t Never unwind.

If kill is t, the process is to be killed after unwinding it. 'This is for internal usc by the
kill operation only.

A reset operation on a stopped process returns immediately, but does not activate the
process; hence the process will not really get reset until it is activated later.

:flush Operation on si:process
Forces the process to wait forever. A process may not :flush itsclf. IFlushing a process is
different from stopping it, in that it is still active and hence if it is reset or preset it will
start running again, '

A flushed process can be recognized because its wait-function is si:flushed-process. If a
process belonging to a window is flushed, exposing or sclecting the window resets the
process.

:ki11 Operation on si:process
Gets rid of the process. It is reset, stopped, and removed from sys:all-processes.

sinterrupt funciion &rest args Operation on si:process
Forces the process to apply function to args. When function returns, the process
continues the interrupted computation. If the process is waiting, it wakes up, calls
Junction, then waits again when function returns.

If the process is stopped it docs not apply function to args immediately, but will later
when it is activated. Normally the :interrupt operation returns immediately, but if the
process's stack group is in an unusual internal state :interrupt may have to wait for it to
get out of that state.

29.5 Process Fla&ors

These are the flavors of process provided by the system. It is possible for users to define
additional flavors of their own. .

si:process _ Flavor
This is the standard default kind of process.

si:simple-process Flavor

A simple process is not a process in the conventional sense. It has no stack group of its
own; instcad of having a stack group that gets resumed when it is time for the process to
run, it has a function that gets called when it is time for the process to run. When the
wait-function of a simple process becomes true, and the scheduler notices it, the simple
process's function is called in the scheduler's own stack group. Since a simple process
does not have any stack group of its own, it can’t save control state in between calls; any
state that it saves must be saved in data structure,

PS:<ILMAN>PROCES.TEXT.55 8-JUN-84

Other Pracess FFunctions 096 [isp Machine Manual

The only advantage of simple processes over normal processes is that they use up less
system overhead. since they can be scheduled without the cost of resuming stack-groups.
They are intended as a special. eflicient mechanism for certain purposes. For example,
packets received from the Chaosnet are examined and distributed to the proper receiver by
a simple process that wakes up whenever there are any packets in the input buffer.
However, they are harder to use, because you can't save state information across
scheduling. That is, when the simple process is ready to wait again, it must return; it
can’t call process-wait and continue (o do something clse later. In fact, it is an error to
call process-wait from inside a simple process. Another drawback to simple processes is
that if' the function signals an crror, the scheduler itself is broken and mulliprocessing
stops; this situation can be repaired only by aborting, which blasts the process. Also,
when a simple process is run, no other process is scheduled until it chooses to return; so
simple processes should never run for a long time without returning.

Asking for the stack group of a simple process docs not signal an error, but returns the
process's function instead. '

Since a simple process cannot call process-wait, it nceds some other way to specify its
wait-function. 'T'o set the wait-function of a simple process, usc si:set-process-wait (sce
below). So, when a simple process wants to wait for a condition, it should call si:set-
process-wait to specify the condition, then return.

si:set-process-wait simple-process wait-function wait-argument-list
Scts the wair-function and wait-argument-list of simple-process. Sce the description of the
si:simple-process flavor (above) for more information.

29.6 Other Process Functions

process-enable process
Activates process by revoking all its run and arrcst rcasons, then giving it a run reason of

:enable.

process-reset-and-enable process
Resets process, then enables it.

process-disable process
Stops process by revoking all its run rcasons. Also revokes all its arrest reasons.

The remaining functions in this scction are obsolcte, since they simply duplicate what can be done
by sending a message. They are documented here because their names are in the global package.

process-preset process function &rcst args
Sends a :preset message.

PS:KL.MAN>PROCES.TEXT.55 : 8-JUN-84

1 isp Machine Manual 097 Other Process Functions

process-reset process
Sends a creset message.

process-name process
Gets the name of a process. like the :name operation.

process-stack-group process
Gets the current stack group of a process. like the :stack-group operation.

process-initial- stack-group process
Gets the initial stack group of a process, like the :initial-stack-group operation.

process-initial-form process 4
Gets the initial form of a process, like the :initial-form operation.

process-wait-function process
Gets the current wait-function of a process, like the :wait-function operation.

process-wait-argument-1ist p
Gets the arguments to the current wait-function of a process, like the ‘wait-argument-list
operation, '

process-whostate p _
Gets the current who-line state string of a process, like the :whostate operation.

PS:<LLMAN>PROCES.TEXT.55 8-JUN-84

	682_Processes
	683_Processes
	684_Processes
	685_Processes
	686_Processes
	687_Processes
	688_Processes
	689_Processes
	690_Processes
	691_Processes
	692_Processes
	693_Processes
	694_Processes
	695_Processes
	696_Processes
	697_Processes

