Lrrors and Debugging 098 Lisp Machine Manual

30. Errors and Debugging

The first portion of this chapter cexplains how programs can handle crrors, by means of
condition handlers. Tt also explains how a program can signal an crror if it detects something it
docesn’t like.

The sccond cexplains how users can handle crrors, by means of an interactive debugger, that
is, it explains how to recover if you do something wrong. A new user of the lisp Machine, or
somecone who just wants 0 know how to deal with crrors and not how to cause them, should
ignore the first sections and skip ahcad to section 30.7, page 726.

The remaining sections describe some other debugging facilities. Anyone who is going to be
writing programs for the Lisp Machine should familiarize himself with these.

The trace facility provides the ability to perform certain actions at the time a function is
called or at the time it returns. ‘The actions may be simple typcout, or more sophisticated
dcbugging functions,

The advise facility is a somewhat similar facility for modifying the behavior of a function.

The breakon facility allows you to cause the debugger to be entered when a certain function is
called. You can then use the debugger’s stepping commands to step to the next function call or
return.

The step facility allows the cvaluation of a form to be intercepted at every step so that the
user may cxamine just what is happening throughout the exccution of the form. Stepping works
only on interpreted code.

The MAR facility provides the ability to causc a trap on any memory reference to a word (or
a sct of words) in memory. If something is getting clobbered by agents unknown, this can help
track down the source of the clobberage.

30.1 Conditions

Programmers often want to control what action is taken by their programs when errors or
other exceptional situations occur. Usually different situations are handled in different ways, and
in order to express what kind of handling cach situation should have, cach situation must have an
associated name. In Zctalisp, noteworthy cvents are represented by objects called condition
instances. When an cvent occurs, a condition instance is created; it is then signaled, and a
handler for that condition may be invoked.

When a condition is signaled, the system (essentially) searches up the stack of ncsted function
invocations looking for a handler cstablished to handle that condition. The handler is a function
that gets called to deal with the condition. The condition mechanism itself is just a convenient
way for finding an appropriate handler function for a particular exceptional situation.

PS:<1.LMAN>ERRORS.TEXT.102 8-JUN-84

Iisp Machine Manual 6YY Conditions

- When a condition is signaled, a condition instance is created o represent the cvent and hold
information about it. This information includes condition names then classify the condition and
any other data that is likely to be of interest to condition handlers. A condition instance is
immutable once it has been created. Some conditions are errors, which means that the debugger
is invoked if they are signaled and not handled.

Condition instances are flavor instances. 'The flavor condition is the base flavor from which
all favors of condition are built. Several operations that are defined on condition instances are
described below. The flavor error, which is built on condition, is the base flavor for all kinds of
conditions which arc errors.

A condition name is a symbol then is used to identify a category of conditions. Fach
condition instance possesses one or more condition names. Fach condition handler specifies one or
more condition names that it should apply to. A handler applics to a condition if they have any
condition names in common. This is the sole purpose of condition names: to match condition
instances with their handlers. The meaning of cvery condition name signaled by the system is
described in this manual. The condition name index is a directory for them. Conditions that are -
crrors possess the condition name error,

In PL/1, CLLU, ADA and most other systems that provide named conditions, cach condition
has only onc name. That is to say, the categorics identified by condition names arc disjoint. In
Zetalisp, cach condition instance can have multiple condition names, which means that the
categories identified by condition names can overlap and be subdivided.

For cxample, among the condition names defined by the system arc condition, error,
sys.arithmetic-error, sys:floating-exponent-underflow and sys:divide-by-zero. condition is a
condition namc that all condition instances possess. error identifies the category of conditions that
are’ considered crrors. sys:arithmetic-error identifics the category of crrors that pertain to
arithmetic operations. sys:floating-exponent-underflow and sys:divide-by-zero are the most
specific level of categorization. So, the condition - signaled when you evaluate (* 1s-30 1s-30
1s-30 1s-30) possesses condition names sys:floating-exponent-underflow, sys:arithmetic-error,
error and condition, while the one signaled if you evaluate (// 1 0) possesses condition names
sys:divide-by-zero, sys:arithmetic-error, error and condition. In this cxample, the categories
fall into a strict hicrarchy, but this docs not need to be the case. ‘

Condition names are documented throughout the manual, with definitions like this:

sys:divide-by-zero (sys:arithmetic-error error) ~ Condition
The condition name sys:divide-by-zero is always accompanied by sys:arithmetic-error
and error (that is, it catcgorizes a subset of those categorics). The presence of error
implies that all sys:divide-by-zero conditions are errors. '

The condition- instance also records additional information about the event. For example, the
condition instance signaled by dividing by zcro handles the :function operation by returning the
function that did the division (it might be truncate, floor, ceiling or round. as well as /7). In
general, for cach condition name there are conventions saying what additional information is
provided and what opcrations to usc to obtain it.

PS:KL.MAN>ERRORS. TEXT.102 . 8-JUN-84

Handling Conditions 700 Lisp Machine Manual

The flavor of the condition instance is always one of the condition names, and so are its
component flavors (with a few exceptions: sivanilla-flavor and some other flavor components are
omitted. since they are not useful categories for condition handlers to specify). In our example,
the flavor of the condition is sys:arithmetic-error. and its components include error and
condition. Condition names require new flavors only when they require significantly different
handling by the crror system; you will understand in detail after finishing this section.

condition-typep condition-instance condition-name

Returns t if condition-instance possesses condition name condition-name. condition-name
can also be a combination of condition names using and, or and not; then the condition
tested for is a boolean combination of the presence or absence of various condition names,
Ixample:

(condition-typep error ’'fs:file-not-found)

(condition-typep error

"(or fs:file-not-found fs:directory-not-found))

arrorp object
Returns t if object is a condition instance and its flavor incorporates error. This is
normally cquivalent to (typep object ‘error). Somc functions such as open optionally
return -the condition instance rather than signaling it, if an crror occurs. errorp is uscful
in testing the value returned.

ccondition-names : Operation on condition
Returns a list of all the condition names possesses by this condition instance.

30.2 Handling Conditions

A condition handler is a function that is associated with certain condition names (catcgories of
conditions). The variable eh:condition-handlers contains a list of the handlers that are current;
handlers arc established using macros which bind this variable. When a condition is signaled, this
list is scanned and all the handlers which apply are called, one by one, until one of the handlers
either throws or returns non-nil.

Since each new handler is pushed onto the front of eh:condition-handlers, the innermost-
cstablished handler gets the first chance to handle the condition. When the handler is run,
eh:condition-handlers is bound so that the running handler (and all the ones that were
established farther in) are not in cffect. This avoids the danger of infinite recursion due to an
crror in a handler invoking the same handler.

One thing a handler can do is throw to a tag. Often the catch for this tag is right next to
the place where the handler is cstablished, but this does not have to be so. A simple handler
that applics to all errors and just throws to a tag is cstablished using ignore-errors.

ignore-errors body... Macro
An crror within the exccution of body causcs control to rcturn from the ignore-errors
form. In this case, the values are nil, t. If there is no crror inside body, the first value
is that of the last form in the body and the sccond is nil. '

PS:K<I.MAN>ERRORS. TEXT.102 8-JUN-84

I isp Machine Manual 701 Handling Conditions

Errors whose condition instances return true for the :«dangerous-condition-p opcration
are not handled. ‘I'hese include such things as ruining out of virtual memory.

A handler can also signal another condition. For example, signaling sys:abort has the effect
of pretending that the user typed the Abort key. ‘The following function creates a handler which
signals sys:abort.

si:eval-abort-trivial-errors form
Evaluates form with a condition handler for many common crror conditions such as
‘wrong-type-argument. :unbound-variable and :unclaimed-message. ‘The handler
asks the user whether o allow the debugger 10 be entered. If the user says ‘no’, the
handler signals the sys:abort condition. If the user says ‘yes., the handler does not
handle the condition, allowing the debugger to do so.

In some cases the handler attempts to determine whether the incorrect variable, operation,
or argument appceared in form: if it did not, the debugger is always allowed to run. The
assumption is that form was typed in by the user, and the intention is to distinguish
trivial mistakes from program bugs.

The handler can also ask to proceed from the condition. This is done by returning a non-nil
value. Sce the scction on proceeding, page 717, for more information.

The handler can also decline to handle the condition, by rcwrning nil. Then the next
applicable handler is called, and so on until cither some handler does handle the condition or
there arc no more handlers.

The handler function is called in the environment where the condition was signaled, and in
the same stack group. All special variables have the valucs they had at the place where the
signaling was donc, and all catch tags that were available at the point of signaling may be thrown
to.

The handler reccives the condition instance as its first argument. When establishing the
handler, you can also provide additional arguments to pass to the handler when it is called. This
allows the same function to be used in varying circumstances.

The fundamental means of cstablishing a condition handler is the macro condition-bind.

condition-bind (handlers..) body... Macro
condition-bind-default (handlers..) body... Macro
A condition-bind form looks like this:
(condition-bind ((conditions handler-form additional-arg-forms. . .)
(conditions handler-form additional-arg-forms. . .))
body. . .)

The purposc is to cxecute body with one or more condition handlers cstablished.

Each list of conditions and handler-form establishes one handler. conditions is a condition
name or a list of condition names to which the handler should apply. It is not evaluated.
handler-form is cvaluated to produce the function that is the actual handler. The
additional-arg-forms arc cvaluated, on entry to the condition-bind, to produce additional

PS:KILMAN>ERRORS.TEXT.102 8-JUN-84

Handling Conditions 702 L isp Machine Manual

arguments that are passed o the handler function when it is called. The arguments to the
handler function are the condition instance being signaled, followed by the values of any
additional-arg-forms.

conditions can be nil: then the handler applies to all conditions that are signaled. In this
case it is up to the handler function to .decide whether to do anything. It is important for
the handler to refrain from handling certain conditions that are used for debugging, such
as break and eh:call-trap. 'T'he :debugging-condition-p operation on condition
instances returns non-nil for these conditions. Certain - other conditions such as
sys:virtual-memory-overflow should be handled only with great care. ‘The :dangerous-
condition-p operation returns non-nil for these conditions. Example:

(condition-bind ((nil1 'myhandler "it happened here" 45))
(catch ’x '

coe))

(defun myhandler (condition string value)
(unless (or (condition-typep condition 'fs:file-error)
(send condition :dangerous-condition-p)
(send condition :debugging-condition-p))
(format error-output "~&~A:~%~A~%" string condition)
(throw x value)))

myhandler declines to handle file crrors, and all debugging conditions and dangerous
errors. For all other conditions, it prints the string specified in the condition bind and
throws to the tag x the value specified there (45).

condition-bind-default is likc condition-bind but establishes a default handler instead of
an ordinary handler. Default handlers work like ordinary handlers, but they are tried in a
different order; first all the applicable ordinary handlers are given a chance to handle the
condition, and then the default handlers get their chance. A more flexible way of doing
things like this is described under signal-condition (page 715).

Condition handlcrs that sirﬁply throw to the function that established them are very common,
so there arc special constructs provided for defining them.

condition-case (variables...) body-form clauses... Macro
(condition-case (variable)
body-form
(condition-names forms. . .)
(condition-names forms. . .)

)

body-form is exccuted with a condition handler established that will throw back to the
condition-case if any of the specified condition names is signaled.

Each list starting with some condition names is a clause, and specifics what to do if one
of those condition names is signaled. condition-names is cither a condition name or a list
of condition namcs; it is not cvaluated.

PS:K<I.LMAN>ERRORS.TEXT.102 8-JUN-84

Lisp M;ichinc Manual 703 Handling Conditions

Once the handler per se has done the throw, the clauses are tested in order until one is
found that applies. This is almost like a selectq, except that the signaled condition can
have several condition names, so the first clause that matches any of them gets to run.
‘The forms in the clause are exccuted with variable bound to the condition instance that
was signaled. The values of the last form in the clause are returned from the condition-
case form, '

If none of the specified conditions is signaled during the execution of body-form (or if
other handlers. established within body-form, handle them) then the values of body-form
are returned from the condition-case form.

variable may be omitted if it is not used.

It is also possible to have a clause starting with :no-error in place of a condition name.
‘This clause is exccuted if bodv-form finishes normally. Instcad of just one variable there
can be several variables; during the execution of the :no-error clause, these are bound to
the values returned by body-form. ‘The values of the last form in the clause become the
values of the condition-case form.

Here is an cxample:
(condition-case ()
(print foo)
(error (format t " <<Error in printing>>")))

condition-call (variables...) body-form clauses... Macro
condition-call is an cxtension of condition-case that allows you to give cach clause an
arbitrary conditional expression instcad of just a list of condition names. It looks like this:
(condition-call (variables...)
body-form '

(test forms...)

(test forms. . .)

vel)
The difference between this and condition-case is the fesr in cach clause. The clauses in
a condition-call resemble the clauses of a cond rather than those of a selectq.

When a condition is signaled, each rest is exccuted while still within the environment of
the signaling (that is, within the actual handler function). The condition instance can be
found in the first variable. 1f any test returns non-nil, then the handler throws to the
condition-call and the corresponding clause’s forms are executed. If every test returns nil,
the condition is not handled by this handler.

In fact, cach test is computed a sccond time after the throw has occurred in order to
decide which clause to exccute. The code for the test is copied in two different places,
once into the handler function to decide whether to throw, and once in a cond which
follows the catch.

The last clause can be a :no-error clause just as in condition-case. It is exccuted if the
body returns without crror. The values returned by the body are stored in the variables.
‘The values of the last form in the :no-error clausc are returned by the condition-call.

PS:KILMAN>ERRORS.TEXT.102 | 8-JUN-84

Handling Conditions 704 Lisp Machine Manual

Only the first of variables is used il there is no :no-error clause. ‘The variables may be
omitted entirely in the unlikely event that none is used. Example:
(condition-call (instance)
(do-it)
{(condition-typep instance
'(and fs:file-error (not fs:no-more-room)))

(compute-what-to-return))) ' :
The condition name fs:no-more-room is a subcategory of fs:file-error: therefore, this
handles all file crrors excepr for fs:no-more-room.

Fach of the four condition handler cstablishing constructs has a conditional version that
decides at run time whether to cstablish the handlers.

condition-bind-1f cond-form (handlers...) body... Macro
(condition-bind-if cond-form

((conditions handler-form additional-arg-forms. . .')
(conditions handler-form additional-arg-forms. . .))

body. . .) :

begins by cxccuting cond-form. I it rcturns non-nil, then all procceds as for a regular

condition-bind. If cond-form rcturns nil, then the body is still exccuted but without the

condition handler.

condition-case-1f cond-form (variables...) body-form clauses... Macro
(condition-case-if cond-form (variables...) -
body-form

(condition-names forms. . .)

(condition-names forms. . .)

ed)
begins by cxccuting cond-form. 1f it rcturns non-nil, then all proceeds as for a regular
condition-case. If cond-form returns nil, then the body-form is still executed but without
the condition handler. body-form’s values are returned, or, if there is a :no-error clause,
it is cxecuted and its values returned.

condition-call-1if cond-form ([variable]) body-form clauses... Macro
(condition-call-if cond-form (variables...)
body-form

(test forms. ..)

(test forms...)

ved)
begins by cxecuting cond-form. 1f it returns non-nil, then everything proceeds as for a
regular condition-call. If cond-form returns nil, then the body-form is still exccuted but
without the condition handler. In that case, body-form’s values are returned, or, if there
is a :no-error clause, it is executed and its values returned.

PS:KL.MAN>ERRORS.TEXT.102 _ ‘ 8-JUN-84

I isp Machine Manual 705 ' Standard Condition Flavors

condition-bind-default-1f cond-form (handlers..) body... Macro
This is used just like condition-bind-if. but establishes a default handler instcad of an
ordinary handler, :

eh:condition-handlers Variable
This is the list of cstablished condition handlers. ach clement looks like this:
(condition-names finction additional-arg-values. . .)
condition-names is a condition name or a list of condition names, or nil which mecans all

conditions.
Sunction is the actual handler function.

additional-arg-values arc additional arguments to be passed to the function when it is
called. function's first argument is always the condition instance.

Both the links of the value of eh:condition-handlers and the clements are usually created
with with-stack-list, so copy them if you want to save them for any period of time.

eh:condition-default-handlers ’ Variable
This is the list of cstablished default condition handlers. The data format is the same as

that of eh:condition-handlers.

30.3 Standard Condition Flavors

condition ' Flavor
The flavor condition is the base flavor of all conditions, and provides default definitions

for all the operations described in this chapter.

condition incorporates si:property-list-mixin, which decfines operations :get and :plist.
Each property name on the property list is also an opcration name, so that sending the
:foo message is equivalent to (send instance :get :foo). In addition, (send instance :set
:foo value) is cquivalent to (send instance :set :get :foo value).

condition also provides two instance variables, eh:format-string and eh:format-args.
condition’s method for the the :report operation passes these to format to print the error
message.

error : Flavor
The flavor error makes a condition an error condition. errorp rcturns t for such
conditions, and the debugger is entered if they are signaled and not otherwise handled.

sys:no-action-mixin Flavor
This mixin provides a definition of the proceed type :no-action.

PS:KLMAN>ERRORS.TEXT.102 8-JUN-84

Condition Operations 706 I isp Machine Manual

sys:proceed-with-value-mixin Flavor
This mixin provides a definition of the proceed type :new-value.

ferror Flavor
This flavor is a mixture of error, sys:no-action-mixin and sys:proceed-with-value-
mixin. 1t is the flavor used by default by the functions ferror and cerror, and is often
convenient for uscrs o instantiate. :

sys:warning Flavor
This flavor is a mixture of sys:no-action-mixin and condition.

sys:bad-array-mixin Flavor
‘This mixin provides a definition of the proceed type :new-array.

30.4 Condition Operations

Every condition instance can be asked to print an error message which describes the
circumstances that led to the signaling of the condition. ‘The casiest way to print one is to print
the condition instance without cscaping (princ, or format opcration ~A). 'This actually uscs the
:report operation, which implements the printing of an error message. When a condition instance
is printed with cscaping, it uscs the #c syntax so that it can be rcad back in. This is done
using si:print-readably-mixin, page 446.

:report stream Operation on condition
Prints on stream the condition’s error message, a description of the circumstances for
which the condition instance was signaled. The output should ncither start nor end with a
carriage return.

If you are defining a new flavor of condition and wish to change the way the error
message is printed, this is the operation to redefine. All others use this one.

:report-string Operation on condition
Returns a string containing the text that the :report operation would print.

Operations provided specifically for condition handlers to use:

:dangerous-condition-p Operation on condition
Returns t if the condition instance is one of those that indicate cvents that are considered
extremely dangerous, such as running out of memory. Handlers that normally handle all
conditions might want to make an exception for these.

:debugging-condition-p Operation on condition
Returns t if the condition instance is one of thosc that arc signaled as part of dcbugging,
such as break, which is signaled when you type Meta-Break. Although these conditions
normally enter the debugger, they are not errors; this serves to prevent most condition
handlers from handling them. But any condition handler which is written to handle all
conditions should probably make a spccific exception for these.

PS:<L.MAN>ERRORS.TEXT.102 | 8-JUN-84

Iisp Machine Manual 07 Condition Operations

See also the operations :proceed-types and :proceed-type-p. which have o do with
proceeding (page 717).

30.4.1 Condition Operations for the Debugger

Some operations are intended for the debugger to usc. They are documented because some
flavors of condition redefine them so as to cause the debugger to behave differently. This section
is of interest only to advanced users.

:print-error-message swck-group briefflag stream Operation on condition
This operation is used by the debugger to print a complete crror message. This is done
primarily using the :report operation.

Certain flavors of condition define a :after :print-error-message mcthod which, when
brief-flug is nil, prints additional helpful information which is not part of the error
message per se. Often this requires access to the stack group in addition to the data in
the condition instance. ‘The method can assume that if bricf-flag is nil then siack-group is
not the one which is executing.

For example, the :print-error-message method of the condition signaled when you call
an undefined function checks for the case of calling a function such as bind that is
meaningful only in compiled code; if that is what happened, it scarches the stack to look
for the name of the function in which the call appcars. ‘This is information that is not
considered crucial to the error itself, and is therefore not recorded in the condition
instance.

:maybe-clear-input swream Operation on condition
This operation is used on entry to the debuggcr to discard input. Certain condition
flavors, used by stepping redefine this operation to do nothing, so that input is not
discarded.

:bug-report-recipient-system Operation on condition
The value. returned by this operation is used to determine what address to mail bug
rcports to, when the debugger Control-M command is used. By default, it returns
"LISPM". The value is passed to.the function bug.

:bug-report-description siream &optional numeric-arg Operation on condition
This operation is used by the Control-M command to print on stream the information
that should go in the bug report. numeric-arg is the numeric argument, if any, that the
user gave to the Control-M command.

:find-current-frame stack-group Operation on condition
Returns the stack indices of the stack frames that the debugger should operate on.

The-first valuc is the frame “at which the error occurred.” This is not the innermost stack
frame; it is outside the calls to such functions as ferror and signal-condition which were
uscd to signal the error.

PS:KLLMAN>ERRORS.TEXT.102 8-JUN-84

Signaling Conditions 708 Lisp Machine Manual

The second value is the initial value for the debugger command loop’s current frame.

‘The third value is the innermost frame that the debugger should be willing to let the user
see. By default this is the innermost active frame, but it is safe to usc an open but not
active frame within it

The fourth value, if non-nil. tells the debugger to consider the innermost frame to be
“interesting”. Normally, frames that arc part of the interpreter (calls to sievall,
si:apply-lambda. prog. cond, clc.) are considered uninteresting.

This is a flavor operation so that certain Navors of condition can redefine it.

:debugger-command-loop Operation on condition
stuck-group &optional error-object ‘ '
Enters the debugger command loop. The initial crror message and backtrace have alrcady
been printed. ‘This message is sent in an error handler stack group; stack-group is the
stack group in which the condition was signaled. error-object is the condition object which
was signaled; it defaults to the one the message is sent to.

This operation uses :or method combination (see section 21.11, page 433). Some
condition flavors add methods that perform some other sort of processing or enter a
different command loop. For example, unbound variable crrors look for look-alike
symbols in other packages at this point. If the added method returns nil, the original
method that cnters the usual debugger command loop is called.

30.5 Signaling Conditions

" Signaling a condition has two steps, creating a condition instance and signaling the instance.
There are convenience interface functions that combine the two steps. You can also do them
separately. If you just want to signal an error and do not want to worry much about condition
handling, the function ferror is all you nced to know.

30.5.1 Convenience Functions for Signaling

ferror &rcst make-condition-arguments
Creates a condition instance using make-condition and then signals it with signal-
condition, specifying no local procecd types, and with t as the use-debugger argument so
the debugger is always entered if the condition is not otherwise handled.

The first argument to ferror is always a signal name (often nil). The sccond argument is
usually a format string and the remaining arguments are additional arguments for format;
but this is under the control of the definition of the signal name. Example:

(ferror ’'math:singular-matrix

"The matrix ~S cannot be inverted." matrix)

For compatibility with the Symbolics system, if the first argument to ferror is a string,
then a signal name of nil is assumed. The arguments to ferror are passed on to make-
condition with an additional nil preceding them.

PS:<I.MAN>ERRORS.TEXT.102 8-JUN-84

I isp Machine Manual : 709 Signaling Conditions

If you prefer, you can use the formatied output functions (page 496) to gencrate the error
message. Here is an example, though in a simple case like this using format is casier:
(ferror 'math:singular-matrix
(format:outfmt
"The matrix "
(prinl matrix)
" cannot be inverted.")
number)
In this case, arguments past the second one are not used for printing the crror message,
but the signal name may still expect them to be present so it can put them in the
condition instance.

COrror proceed-type ignore signal-name &rest - signal-name-arguments
Creates a condition instance, by passing the signal-name and signal-name-arguments to
make-condition, and then signals it. If proceed-type is non-nil then it is provided to
signal-condition as a procced type. For compatibility with old uses of cerror, if
proceed-type is t. :new-value is provided as the proceed type. If proceed-type is :yes,
:no-action is provided as the proceed type.

The second argument to cerror is not used and is present for historical compatibility. It
may be given a new meaning in the future.

If a condition handler or the debugger decides to proceed, the second value it returns
- becomes the value of cerror.

Common Lisp defines another calling sequence for this function:

(cerror continue-format-string error-format-string args. . .)
This signals an ecrror of flavor eh:common-lisp-cerror, which prints an error message
using error-format-string and args. It allows onc proceed type, whose documentation is
continue-format-string, and which proceeds silently, returning nil from cerror. cerror can
tell which calling sequence has been used and behaves accordingly.

warn jformat-string &rest args
Prints a warning on *error-output* by passing the args to format, starting on a fresh
line, and then returns.

If *break-on-warnings* is non-nil, however, warn signals a procedable error, using the
arguments to make an error message. If the user proceeds, warn simply returns.

break-on-warnings
If non-nil, warn signals an error rather than just printing a message.

check-type place type-spec [description) _ Macro
check-arg-type place type-spec [description) Macro
Signals a correctable error if the value of Place docs not fit the type type-spec. place is
something that setf can store in. fype-spec is a type specifier, a suitable second argument
to typep, and is not cvaluated (see scction 2.3, page 14). A simple example is:
(check-type foo (integer 0 10)) '
This signals an error unless (typep foo '(integer 0 10)); that is, unless foo’s value is an

PS:KLLMAN>ERRORS.TEXT.102 8-JUN-84

Signaling Conditions 710 Lisp Machine Manual

check-

infeger hetween zero and ten, inclusive.

If an crror is signaled, the crror message contains the name of the variable or place where
the erroncous value was found, and the crroncous value itself. An English description of
the type of object that was wanted is computed automatically from the type specifier for
usc in the crror message. For the commonly used type specifiers this computed
description is adequate. If it is unsatisfuctory in a particular case, you can specify
description, which is used instcad. In order to make the crror message grammatical,
description should start with an indefinite article.

The crror signaled is of condition sys:wrong-type-argument (sce page 61). The proceed
type :argument-value is provided. [If a handler proceeds using this proceed type, it
should specify onc additional argument; that valuc is stored into place with setf. 'The
new value is then tested, and so on. check-type returns when a value passes the test.

check-arg-type is an older name for this macro.

arg var-name predicate description [1ype-symbol] Macro
check-arg is an obsolete variant of check-type. predicate is cither a symbol which is
predicate (a function of one argument) or a list which is a form. If it is a predicate, it is
applicd to the value of var-name, which is valid if the predicatc returns non-nil. If it is a
form, it is cvaluated, and the value is valid of the form rcturns non-nil. The form ought
to make use of var-name, but nothing checks this,

There is no way to compute an English description of valid values from predicate, so a
description string must always be supplied.

type-symbol is a symbol that is used by condition handlers to dectermine what type of
argument was cxpected. If predicate is a symbol, you may omit fype-symbol, and
predicate is used for that purpose as well. The use of the fype-symbol is not really well-
dcfined, -and check-type, where a type specifier serves both purposes, is superior to
check-arg for this reason.

Examples:
(check-arg foo Stringp "a string")

(check-arg h
(or (stringp h) (typep h 'fs:host))
"a host name"
fs:host)

» Other functions that can be used to test for invalid values includc ecase and ccase (page
66), which arc crror-checking versions of selectq, and etypecase and ctypecase (page 21),
error-checking versions of typecase.

PS:K<I.MAN>ERRORS.TEXT.102 8-JUN-84

I isp Machine Manual 711 Signaling Conditions

assert sesi-form [(pluces...) [siring args...]] Macro
Signals an error if fesi-form cvaluates w0 nil. The rest of the assert form is relevant only
-if the error happens.

First of -all, the pluces are forms that can be stored into with setf, and which are used
(presumably) in rest-form. "The reason that the places are specified again in the assert is
so that the expanded code can arrange for the user to be able to specify a new value to
be stored into any one of them when he proceeds from the error. When the error is
signaled, one proceed-type is provided for cach place that is given. The condition object
has flavor eh:failed-assertion.

If the wuser does proceed with a new value in that fashion, the fese-form is cvaluated
again, and the crror repeats until the fesr-form comes out non-nil.

The siring and args are used to print the error message. If they are omitted, "Failed
assertion" is used. They arc cvaluated only when an crror is signaled, and are cvaluated
again cach time an crror is signaled. setfing the places may also involve evaluation,
which happens cach time the user proceeds and sets one.

Example:
(assert (neq (car a) (car b)) ((car a) (car b))
"The CARS of A and B are EQ: ~S and ~S"
(car a) (car b)) '
The places here are (car a) and (car b). The args happen to be the same two forms, by
not-exactly-coincidence; the current values of the places are often useful in the error
message. '

The remaining signaling functions are provided for compatibility only.

error &rcst make-condition-arguments
error cxists for compatibility with Maclisp and the Symbolics version of Zetalisp. It takes
arguments in three patterns:
(error string object [interrupt])
which is used in Maclisp, and
(error condition-instance)
(error flavor-name init-options. . .)
which are used by Symbolics. (In fact, the arguments to error are simply passed along to
make-condition if they do not appear to fit the Maclisp pattern).

If the Maclisp argument pattern is not used then there is no difference between error and
ferror.

cli:error format-string &rest args

The Common Lisp version of error signals an uncorrectable error whose error message is
_printed by passing format-string and args to format. -

PS:KI.MAN>ERRORS.TEXT.102 ‘ 8-JUN-84

Signaling Conditions ' 712 Lisp Machine Manual

fsignal formarstring Srest format-args
This function is for Symbolics compatibility only, and is cquivalent to
(cerror :no-action nil nil format-string format-args. . .)

signal signal-name &rest remaining-make-condition-arguments
The signal-name and remaining-make-condition-arguments are passed to make-condition,
and the result is signaled with signal -condition.

If the remaining-muake-condition-arguments arc keyword arguments and :proceed-types is
one of the keywords. the associated value is used as the list of proceed types. In
particular, if signal-name is actually a condition instance. so that the remaining arguments
will be ignored by make-condition, it works to specify the proceed types this way.

If the proceed types are not specified. a list of all the proceed types that the condition
instance knows how to prompt the user about is used by default.

arrset form [flag] : Macro
Catches crrors during the evaluation of form. If an error occurs, the usual error message
is printed unless flag is nil. ‘Then control is thrown and the errset-form returns nil. flag is
cvaluated first and is optional, defaulting to t. 1f no error occurs, the value of the errset-
form is a list of one clement, the value of form.

errset is an old. Maclisp construct, implemented much like condition-case. Many uscs
of errset or errset-like constructs really ought to be checking for more specific conditions
instead.

catch-error form [flag] Macro
catch-error is a variant of errset. This construct catches crrors during the cvaluation of
form and returns two values. If form returns normally, the first value is form’s first value
and the second value is nil. If an error occurs, the usual crror message is printed unless
flag is nil, and then control is thrown out of the catch-error form, which returns two
values, first nil and second a non-nil value that indicates the occurrence of an error. flag
is evaluated before form and is optional, defaulting to t.

errset Variable
If this variable is non-nil, errset forms arc not allowed to trap crrors. The debugger is
entered just as if there were no errset. This is intended mainly for debugging. The
initial value of errset is nil.

err Macro
This is for Maclisp compatibility only and should not be used.

(err) is a dumb way to causc an crror. If exccuted insidc an errset, that errset returns
nil, and no message is printed. Otherwise an error is signaled with error message just
"ERROR>»".

(err form) cvaluates form and causcs the containing errset to return the result. If

exccuted when not inside an errset, an error is signaled with form’s valuc printed as the
CITOT message.

PS:KI.MAN>ERRORS.TEX'T.102 8-JUN-84

Iisp Machine Manual 713 Signaling Conditions

(err form flug). which exists in Maclisp, is not supported.

30.5.2 Creating Condition Instances

You can create a condition instance quite satisfactorily with make-instance if you know
which instance variables to initialize. For example,
(make-instance 'ferror :condition-names ’(foo)
:format-string "~S loses.
:format-args losing-object)
creates an instance of ferror just like the one that would be signaled if you do
(ferror ’foo "~S losés." Tosing-object)

Note that the flavor name and its components’ names are added in automatically to whatever
you specify for the :condition-names keyword.

Direct use of make-instance is cumbersome, however, and it is usually handier to definc a
signal name with defsignal or defsignal-explicit and then create the instance with make-
condition.

A signal namc is a sort of abbreviation for all the things that are always the same for a
certain sort of condition: the flavor to usc, the condition names, and what arguments are
expected. In addition, it allows you to usc a positional syntax for the arguments, which is usually
more convenient than a keyword syntax in simple use. :

Here is a typical defsignal:
(defsignal series-not-convergent sys:arithmetic-error (series)
"Signaled by 1limit extractor when SERIES does not converge.")
This defines a signal name series-not- convergent, togcther with the name of the flavor to use
(sys:arithmetic-error, whose mcaning is being stretched a little), an interpretation for the
arguments (series, which is explained below), and a documentation string. The documentation
string 18 not used in printing the error message; it is documcntation for the signal name. It
becomes accessible via (documentation 'series-not-convergent 'signal).

series-not-convergent could then be used to signal an error, or just to create a condition
instance:

(ferror ’'series-not-convergent
"The series ~S went to infinity." myseries)

(make-condition ’series-not-convergent
"The series ~S went to infinity.” myseries)

The list (series) in the defsignal is a list of implicit instance variable names. They are
matched against arguments to make-condition following the format string, and cach implicit
instance variable name becomes an operation defined on the condition instance to return the
corresponding argument. (You can imagine that :gettable-instance-variables is in effect for all
the implicit instance variables.) In this cxample, sending a :series message to the condition
instance rcturns the value specified via myseries when the condition was signaled. The implicit

PS:KLLMAN>ERRORS.TEXT.102 _ 8-JUN-84

Signaling Conditions 714 Lisp Machine Manual

instance variables are actually implemented using the condition instance’s property list.

Thus. defsignal spares you the need to create a new flavor merely in order to remember a
particular datum about the condition.

defsignal : Macro
signal-name (flavor condition-names...) implicit-instance-variables documentation
extra-init-keyword-forms '
Defines signal-name to create an instance of flavor with condition names condition-names,
and implicit instance variable whose names are taken from the list implicit-instance-
variubles and whose values are taken from (he make-condition arguments {ollowing the
format string.

Instead of a list (favor condition-names...) there may appear just a flavor name. This is
cquivalent to using signal-name as the sole condition name.

The extra-init-keyword-forms arc forms to be cvaluated to produce additional keyword
arguments to pass to make-instance. ‘These can be used to initialize other instance
variables that particular flavors may have. ‘These expressions can refer to the implicit-
instance-variables. :

documentation is a string which is recorded so that it can be accessed via the function
documentation, as in (documentation signal-name 'signal).

defsignal-explicit Macro
signal-name (flavor condition-names...) signal-arglist documentation
inir-keyword-forms... i
Likc defsignal, defsignal-explicit defincs a signal name. This signal name is used the
same way, but the way it gocs about creating the condition instance is different.

First of all, therc is no list of implicit instance variables. Instcad, signal-arglist is a
lambda list which is matched up against all the arguments to make-condition except for
the signal-name itself. The variables bound by the lambda list can be used in the inir-
keyword-forms, which are cvaluated to get arguments to pass to make-instance. For
example:
(defsignal-explicit mysignal-3
(my-error-flavor mysignal-3 my-signals-category)
(format-string losing-object &rest format-args)
"The third kind of thing I like to signal.” ‘
:format-string format-string
:format-args (cons losing-object (copylist format-args))
:losing-object-name (send losing-object :name))
Since implicit instance variables are rcally just propertics on the property list of the
instance, you can creatc them by using init keyword :property-list. The contents of the
property list determines what implicit instance variables exist and their values.

PS:K<ILMAN>ERRORS.TEXT.102 8-JUN-84

Lisp Machine Manual A 715 Signaling Conditions

make-condition signal-name &rest arguments
make-condition is the fundamental way that condition instances are created. The signal-
name says how to interpret the arguments and come up with a flavor and values for its
instance variables. ‘The handling of the arguments is entirely determined by the signal-
name.

If signal-name is a condition instance, make-condition returns it. It is not uscful to call
make-condition this way explicitly, but this allows condition instances to be passed to
the convenience functions error and signal which call make-condition.

If the signal-name was defined with defsignal or defsignal-explicit, then that definition
specifies exactly how to interpret the arguments and create the instance. In general, if the
signal-name has an eh:make-condition-function property (which is what defsignal
defines), this property is a function to which the signal-name and arguments are passed,
and it does the work.,

Alternatively, the signal-name can be the name of a flavor. Then the arguments are
passed to make-instance, which interprets them as init keywords and values. ‘This mode
is not really recommended and exists for compatibility with Symbolics software.

If the signal-name has no eh:make-condition-function property and is not a flavor name,
then a trivial defsignal is assumed as a default. It looks like this:

(defsignal signal-name ferror ())
So the value is an instance of ferror, with the signal-name as a condition name, and the
arguments arc interpreted as a format string and args for it.

The signal-name nil actually has a definition of this form. nil is frequently used as a
signal name in the function ferror when there is no desire to use any condition name in
particular.

30.5.3 Signaling a Condition Instance

Once you have a condition instance, you arec ready to invoke the condition handling
mechanism by signaling it. A condition instance can be signaled any number of times, in any
stack groups.

signal-condition condition-instance &optional proceed-types invoke-debugger
ucode-error-status inhibit-resume-handlers
Invoke the condition handling mechanism on condition-instance. The list of proceed-types
says which procced types (among those conventionally defined for the type of condition
you have signaled) you arc prepared to implement, should a condition handler return one
(see “proceeding™). These arc in addition to any proceed types implemented nonlocally by
condition-resume forms.,

ucode-error-status is uscd for internal purposes in signaling errors detected by the
microcode.

PS:<LLMAN>ERRORS.TEXT.102 8-JUN-84

Signaling Conditions 710 Lisp Machine Manual

signal-condition tries various possible handlers for the condition. First eh:condition-
handlers is scanned for handlers that are applicable (according to the condition names they
specify) to this condition instance. Afier this list is exhausted. eh:condition-default-handlers is
scanned the same way. Each handler that is tried can terminate the act of signaling by throwing
out of signal-condition, or it can specify a way to procced from the signal. 'The handler can
also retwrn nil o decline o handle the condition: then the next possible handler is offered a
chance. :

If all handlers decline to handle the condition and invoke-debugger is non-nil, the debugger is
the handler of last resort. With the debugger, the user can ask to throw or to proceed. The
default value of invoke-debugger is non-nil if the condition-instance is an error.

If all handlers decline to act and invoke-debugger is nil, signal-condition proceeds using the
first proceed type on the list of available ones, provided it is a nonlocal proceed type. If it is a
local proceed type, or if there are no procced types, signal-condition just returns nil. (It would
be slightly simpler to proceed using the first proceed type whether it is local or not. But in the
case of a local proceed type, this would just mean returning the proceed type instcad of nil. 1t is
constdered slightly more useful to return nil, allowing the signaler to distinguish the case of a
condition not handled. The signaler knows which proceed types it specified, and can if it wishes -
consider nil as cquivalent to the first of them.)

Otherwise, by this stage, a proceed type has been chosen from the available list. If the
proceed type was among those specified by the caller of signal-condition, then proceeding
consists simply of returning to that caller. ‘The chosen procecd type is the first value, and
arguments (rcturned by the handler along with the proceed type) may follow it. If the proceed
type was implemented nonlocally with condition-resume (sec page 723), then the associated
proceed handler function on eh:condition-resume-handlers is called.

If inhibit-resumie-handlers is non-nil, resume handlers are not invoked. If a handler returns a
nonlocal proceed type, signal-condition just returns to its caller as if the proceed type were local,
If the condition is not handled, signai-condition returns nil.

The purpose of condition-bind~default is so that you can definc a handler that is allowed to
handle a signal only if none of the callers’ handlers handle it. A more flexible technique for
doing this sort of thing is to make an ordinary handler signal the same condition instance
recursively by calling signal-condition, like this:

(multiple-value-list
(signal-condition condition-instance
eh:condition-proceed-types nil nil t))
This passes along the same list of procecd types specified by the original signaler, prevents the
debugger from being called, and prevents resume handlers from being run. If the first value
signal-condition rcturns is non-nil, onc of the outer handlers has handled the condition; your
handler’s simplest option is to return those same values so that the other handler has its way (but
it could also cxamine them and return modified values). Otherwise, you go on to handle the
condition in your dcfault manner.

PS:KLLMAN>ERRORS.TEXT.102 8-JUN-84

[isp Machine Manual ' 717 P'roceeding

gh:trace-conditions Variable
' This variable may be set to a list of condition names to be #aced. Whenever a condition
possessing a traced condition name is signaled, an error s signaled to report the fact.
(Tracing of conditions is wrned off while this crror is signaled and handled). Proceeding
with proceed type :no-action causcs the signaling of the original condition to continue.

If eh:trace-conditions is t. all conditions are traced.

30.6 Proceeding

Both condition handlers and the user (through the debugger) have the option of proceeding
certain conditions,

Each condition name can define, as a convention, certain proceed types, which are keywords
that signify a certain conceptual way to procced. For example, condition name sys:wrong-type-
argument defines the proceed type :argument-value which means, “Here is a new value to use
as the argument.” '

Each signaler may or may not implement all the: proceed types which arc meaningful in
general for the condition names being signaled. For example, it is futile to proceed from a
sys:wrong-type-argument crror with :argument-value unless the signaler knows how to take the
associated value and store it into the argument, or do somcthing clsc that fits the conceptual
specifications of :argument-value. For some signalers, it may not make sense to do this at all.
Therefore, one of the arguments to signal-condition is a list of the proceed types that this
particular signaler knows how to handle.

In addition to the proceed types specified by the individual signaler, other proceed types can
be provided nonlocally; they are implemented by a resume handler which is in cffect through a
dynamic scope. Sce below, scction 30.6.3, page 723.

A condition handler can use the operations :proceed-types and :proceed-type-p on the
condition instance to find out which procced types arc available. It can request to proceed by
returning onc of the available proceed types as a value. This value is returned from signal-
condition, and the condition’s signaler can take action as appropriate.

If the handler returns more than one value, the remaining values are considered arguments of
the proceed type. The meaning of the arguments to a proceed type, and what sort of arguments
arc cxpected, arce part of the conventions associated with the condition name that gives the
proceed type its meaning. For example, the :argument-value proceed type for sys:wrong-type-
argument errors conventionally takes one argument, which is the new value to use. All the
values returned by the handler are returned by signal-condition to the signaler.

Here is an example of a condition handler that procceds from sys:wrong-type-argument
crrors. It makes any atom ecffectively cquivalent to nil when used in car or any other function
that cxpects a list. The handler uses the :description operation, which on sys:wrong-type-
argument condition instances rcturns a keyword describing the data type that was desired.

PS:KLLMAN>ERRORS.TEXT.102 8-JUN-84

Proceeding 718 ‘ Lisp Machine Manual

(condition-bind
({sys:wrong-type-argument
#'(lambda (condition)
(if (eq (send condition :description) 'cons)
(values :argument-value nil)))))
body. ..) :

Here the argument to the :argument-value proceed type is nil.

:proceed-types Operation on condition
Returns a list of the proceed types available for this condition instance. This operation
should be used only within the signaling of the condition instance, as it refers to the
special variable in which signal-condition stores its sccond argument.

iprocead-type-p proceed-iype Operation on condition
t if proceed-type is onc of the pmcccd types available for this condition instance. This
operation should be used only within the signaling of the condition instance, as it refers
10 the special variable in which signal-condition stores its sccond argument.

30.6.1 Proceeding and the Debugger

If the condition invokes the debugger, then the user has the opportunity to procced. When
the debugger is entered, the available proceed types are assigned command characters starting with
Super-A. Each character becomes a command to proceed using the corresponding proceed type.

Three additional facilities are required to make it convenient for the user to proceed using the
debugger. Each is provided by mecthods defined on condition flavors. When you define a new
condition flavor, you must provide methods to implement these facilitics.

Documentation:
It must be possible to tell the user what each proceed type is for.

Prompting for arguments:
The user must be asked for the arguments for the proceed type. Fach proceed type may
have different arguments to ask for.

Not always the same proceed types:
Usually the user can choose among the same sct of proceed types that a handler can, but
sometimes it is useful to provide the user with a few extra ones, or to suppress some of
them for him.

These three facilitics are provided by mecthods defined on condition flavors. Each proceed
type that is provided by signalers should be accompanicd by suitable methods. This means that
you must normally define a new flavor if you wish to use a new proceed type.

The :document-proceed-type opcration is supposed to print documentation of what a
proceed type is for. For example, when sent to a condition instance describing an unbound
variable error, if the procced type specified is :new-value, the text printed is something like
“Proceed, reading a value to use instead.”

PS:<I.MAN>ERRORS.TEXT.102 8-JUN-84

Lisp Machine Manual 719 Proceeding

:document-proceed-type proceed-type stream Operation on condition
Prints on stream a description of the purpose of proceed type proceed-type. 'This operation
uses :case method combination (see section 2111, page 433). to make it convenient to
define the way to document an individual proceed type. ‘The string printed should start
with an imperative verb form. capitalized, and end with a period. LExample:

This example is an :or method so that it can consider any proceed type. If it returns
non-nil, the system considers that it has handled the proceed type and no other methods
get a chance. eh:places is an instance variable of the flavor sys:failed-assertion; its
values are the proceed types this method understands.

(defmethod (sys:failed-assertion :or :document-proceed-type)
(proceed-type stream ignore)
(when (memq proceed-type eh:places)
{format stream
"Try again, setting ~S.~
You type an expression for it."
proceed-type)
t))

As a last resort, if the condition instance has a :case mcthod for :proceed-asking-user
with proceed-type as the suboperation, and this method has a documentation smng. it is
printed. This is in fact the usual way that a proceed type is documented.

The :proceed-asking-user opcration is supposed to ask for suitable arguments to pass with
the procced type. Sending :proceed-asking-user to an instance of sys:unbound-variable with
argument-:new-value would read and cvaluate one expression, prompting appropriately.

proceed asking-user Operation on condition
proceed-type continuation read-object-fn
The method for :proceed-asking-user embodics the knowledge of how to prompt for
and rcad the additional arguments that go with proceed-type.

:case mcthod combination is used (sec section 21.11, page 433), making it possible to
define the handling of each proceed type individually in a separatc function. The
documentation string of the :case method for a proceed type is also used as the default
for :document-proceed-type on that procced type.

The argument continuation is an internal function of the debugger which actually proceeds
from the signaled condition if the :proceed-asking-user method calls it. This is the
only way to cause proceeding actually to happen. Call continuation with funcall, giving a
proceed type and suitable arguments. The proceed type passed to continuation need not
be the same as the onc given to :proceed-asking-user; it should be one of the proceed
types available for handlers to use.

Alternatively, the :prompt-and-read mecthod can return without calling continuation;
then the debugger continues to read commands. The options which the fs:no-more-room
condition offers in the debugger, to run Dired or expunge a directory, work this way.

PS:<I.LMAN>ERRORS.TEXT.102 8-JUN-84

Proceeding : 720 Lisp Machine Manual

The argument read-object-fir s another internal function of the debugger whose purpose is
to read arguments from the user or request confirmation. I you wish to do those things,
you must funcall read-object-function to do it. Use the calling sequence documented for
the function prompt-and-read (sce page 453). (The read-object-fn may or may not
actually use prompt-and-read.)

Here is how sys:proceed-with -value-mixin provides for the proceed type :new-value. Note
the documentation string, which is automatically use by :document-proceed-type since no :case
method for that operation is provided.

(defmethod (proceed-with-value-mixin
:case :proceed-asking-user :new-value)
, (continuation read-object-function)
"Return a value; Lhe value of an expression you type."
(funcall continuation :new-value
(funcall read-object-function
:eval-read
"~&Form whose value to use instead: ")))

The :user-proceed-types opcration is given the list of proceed types actually available and is
supposcd to return the list of proceed types to offer to the user. By default, this operation
returns its argument: all proceed types arc available to the user through the debugger,

For cxample, the condition name sys:unbound-variable conventionally defines the proceed
types :new-value and :no-action. The first specifics a new value; the sccond attempts to use the
variable’s current value and gets another crror if the variable is still unbound. These are clean
operations for handlers to use. But it is morc convenient for the user to be offered only one
choice, which will use the variable’s new value if it is bound now, but otherwisc ask for a new
value. This is implemented with a :user-proceed-types mecthod that replaces the two proceed
types with a single one.

Or, you might wish to offer the user two different procced types that differ only in how they
ask the user for additional information. For handlers, there would be only onc proceed type.

Finally, there may be procecd types intended only for the debugger which do not actually
procecd; these should be inscrted into the list by the :user-proceed-types method.

:user-proceed-types proceed-types Operation on condition
Assuming that proceed-types is the list of procced types available for condition handlers to
return, this operation returns the list of proceed types that the debugger should offer to
the user.

Only the proceed types offered to the user need to be handled by :document-proceed-
type and :proceed-asking-user.

The flavor condition itsclf dcfines this to rcturn its argument. Other condition flavors
may redefine this to filter the argument in some appropriate fashion.

PS:KI.LMAN>ERRORS.TEXT.102 ' 8-JUN-84

I isp Machine Manual 721 Proceeding

pass-on mcthod combination is used (see section 2111, page 433), so that ift multiple
mixins define methods for :user-proceed-types, cach mcthod gets a chance to add or
remove proceed types. ‘The methods should not actually modify the argument, but should
cons up a new list in which certain kLyW(Hd\ are added or removed according to the
other keywords that are there.

Elements should be removed only if they are specifically recognized. ‘This is to say, the
method should make sure that any unfamiliar clements present-in the argument are also
present in the value. Arranging to omit certain specific proceed types is legitimate;
returning only the intersection with a constant list is not legitimate.

Here is an example of nontrivial use of :user-proceed-types:
(defflavor my-error () (error)) .

(defmethod (my-error :user-proceed-types) (proceed-types)
(if (memg :foo proceed-types)
(cons' :foo-two-args proceed-types)
proceed-types))

(defmethod (my-error :case :proceed-asking-user :fo00)
(cont read-object-fn)
"Proceeds, reading a value to foo with."
(funcall cont :foo
(funcall read-object-fn :eval-read
"Value to foo with: ")))

(defmethod (my-error :case :proceed-asking-user :foo-two-args)
(cont read-object-fn)
"Proceeds, reading two values to foo with."
(funcall cont :foo
(funcall read-object-fn :eval-read
"Value to foo with: ")
(funcall read-object-fn :eval-read
"Value to foo some more with: ")))

In this example, if the signaler provides the proceed type :foo, then it is described for the
uscr as “proceeds, rcading a valuc to foo with™; and if the user specifies that proceed type, he is
asked for a single value, which is used as the argument when procceding. In addition, the user
is offered the procced type :foo-two-args, which has its own documentation and which reads
two valucs. But for condition handlers there is really only one proceed type, :foo. :foo-two-
args is just an alternate interface for the user to proceed type :foo, and this is why the :user-
proceed-types mcthod offers :foo-two-args only if the signaler is willing to accept :foo.

PS:KI.MAN>ERRORS.TEXT.102 8-JUN-84

Proceeding 122 1Lisp Machine Manual

30.6.2 How Signalers Provide Proceed Types

Lach condition name defines a conceptual meaning for certain proceed types, but this docs
not mean that all of those proceed types may be used cvery time the condition is signaled. 'The
signaler must specifically implement the proceed types in order to make them do what they are
conventionally supposed o do. For some signalers it may be difficult to do, or may not cven
make sense. For example, it is no usce having a proceed type :store-new-value if' the signaler
does not have a suitable place o store, permanently, the argument the handler supplics.

Therefore, we require cach signaler to specify just which proceed types it implements. Unless
the signaler explicitly specifies proceed types one way or another, no proceed types are allowed
(cxcept for nonlocal ones. described in the following section).

One way to specify the proceed types allowed is to call signal-condition and pass the list of
proceed types as the sccond argument.

Another way that is less general but more convenient is signal-proceed-case.

signal-proceed-case ((variables..) make-condition-arguments...) clauses... Macro
Signals a condition, providing proceed types and code to implement them. Each clause
specifies a proceed type to provide, and also contains code to be run if a handler should
procced with that proceed type.
(signal-proceed-case ((argument-vars..)
signal-name signal-name-arguments. . .)
(proceed-type forms. . .)
(proceed-type forms. . .)

-)

A condition-object is crcated with make-condition using the signal-name and signal-name-
arguments; then it is signaled giving a list of the proceed types from all the clauscs as the
list of proceed types allowed.

The variables argument-vars are bound to the values returned by signal-condition, except
for the first value, which is tested against the proceed-type from cach clause, using a
selectq. The clausc that matches is executed.

Example: ,
{defsignal my-wrong-type-arg :
(eh:wrong-type-argument-error sys:wrong-type-argument)
(o1d-value arg-name description)
"Wrong type argument from my own code.")

(signal-proceed-case
((newarg)
‘my-wrong-type-arg
"The argument ~A was ~S, which is not a cons."
'foo foo ’cons)
(:argument-value (car newarg)))

PS:<LLMAN>ERRORS.TEXT.102 8-JUN-84

isp Machine Manual 723 Proceeding

‘The signal name my-wrong-type-arg creates crrors with condition name sys:wrong-type-
argument. ‘The signal-proceed-case shown signals such an crror, and handles the proceed type
:argument-value. 1If a handler proceeds using that proceed type, the handler’s value is put in
newarg. and then its car is returned from the signal-proceed-case.

30.6.3 Nonlocal Proceed Types

When the caller of signal-condition specifies proceed types. these are called Jocal proceed
types. “They are implemented at the point of signaling. 'There arc also nonlocal proceed 1ypes,
which are in cffect for all conditions (with appropriate condition names) signaled during the
exccution of the body of the establishing macro. We say that the macro establishes a resume
handler for the proceed type.

‘The most general construct for cstablishing a resumc handler is condition-resume. For
example, in
(condition-resume
"(fs:file-error :retry-open t
~ ("Proceeds, opening the file again.")
(lambda (ignore) (throw ’tag nil)))
(do-forever

(catch "tag (return (open pathname)))))
the proceed type :retry-open is available for all fs:file-error conditions signaled within the call to
open.

condition-resume handler-form &body body , Macro
condition-resume-1f cond-form handler-form &body body Macro
Both exccute body with a resume handler in effect for a nonlocal proceed type according
to the value of handler-form. For condition-resume-if, the resume handler is in cffect
only if cond-form’s value is non-nil.

The value of the handler-form should be a list with at least five elements:
(condition-names proceed-type predicate format-string-and-args
handler-function additional-args. . .)

condition-names is a condition name or a list of them. The resume handler applies to
these conditions only.

proceed-fype is the proceced type implemented by this resume handler.

predicate is cither t or a function that is applied to a condition instance and determines
whether the resume handler is in effect for that condition instance.

Jormat-string-and-args is a list of a string and additional arguments that can be passed to
format to print a description of what this proceed type is for. These are needed only for
anonymous proceed types. :

handler-function is the function called to do the work of proceeding, once this proceed
type has been returned by a condition handler or the debugger.

PS:KLLMAN>ERRORS.TEXT.102 , 8-JUN-84

Proceeding 124 Lisp Machine Manual

catch-error-restart-explicit-if makes it casy to establish a particular simple kind of resume
handler.

catch-error-restart-explicit-if Macro
cond-form (condition-names proceed-type formar-string format-args...) body...
Exccutes body with (it cond-form produces a non-nil value) a resume handler for proceed
type proceed-type and condition(s) condition-names. condition-names should be a symbol or
a list of symbols; it is not evaluated. proceed-1ype should be a symbol,

If proceeding is done using this resume handler, control returns from the catch-error-
restart-explicit-if form. The first value is nil and the second is non-nil.

Sormar-siring and the formar-args. all of which arc evaluated, are used by the
:document-proceed-lype opcration to describe the proceed type, if it is anonymous.

For condition handlers there is no distinction between local and nonlocal proceed types. They
arc both included in the list of available proceed types returned by the :proceed-types operation
(all the local procced types come first), and the condition handler selects one by returning the
proceed type and any conventionally associated arguments. The dcbugger’s :user-proceed-types,
:document-proceed-type and :proceed-asking-user operations are also make no distinction.

The difference comes after the handler or the debugger returns to signal-condition. 1If the
proceed type is a local one (onc of those in the sccond argument to signal-condition), signal-
condition simply returns. If the proceed type is not among those the caller handles, signal-
condition looks for a resumc handler associated with the proceed type, and calls its handler
function. The arguments to the handler function are ‘the condition instance, the additional-args
specified in the resume handler, and any arguments returned by the condition handler in addition
to the proceed type. The handler function is supposed to do a throw. If it returns to signal-
condition, an error is signaled.

You are allowed to use “anonymous” nonlocal proceed types, which have no conventional
meaning and are not specially known to the :document-proceed-type and :proceed-asking-
user operations. 'The anonymous proceed type may be any Lisp object. The default definition of
:proceed-asking-user handles an anonymous procced type by simply calling the continuation
passed to it, rcading no arguments. The default definition of :document-proceed-type handles
anonymous procced types by passing format the fonmuat-string-and-args list found in the resume
handler (this is what that list is for).

Anonymous procced types arc often lists. Such proceed types are usually made by some
variant of error-restart, and they are trcated a little bit specially. For onc thing, they arc all put
at the end of the list returned by the :proceed-types operation. For another, the debugger
command Control-C or Resume never uscs a proceed type which is a list. If no atomic proceed
type is available, Resume or Control-C is not allowed.

error-restart (condition-names format-string format-args...) body... Macro
error-restart-Toop _ Macro
catch-error-restart Macro
catch-arror-restart-if - Macro

cond-form (condition-names fonnat-string format-args...) body...

PS:<ILMAN>ERRORS.TEXT.102 _ 8-JUN-84

1isp Machine Manual) 725 ' Proceeding,

Al execute body with an anonymous: resume handler for condition-names. The proceed
type for this resume handler is a list. so the Resume key will not use it. condition-names
is cither a single condition name or a list of them, or nil mcaning all conditions; it is not
cvaluated.

Jormat-string and the formar-args, all of which arc cvaluated, are used by the
:document-proceed-type opcration to describe the anonymous proceed type.

If the resume handler made by error-restart is invoked by proceeding from a signal, the
automatically generated resume handler function does a throw back to the error-restart
and the body is executed again from the beginning. If body rcturns, the values of the
last form in it are returned from the error-restart form.

error-restart-loop is likec error-restart cxcept that it loops o the beginning of body
even if body completes normally. It is like enclosing an error-restart in an iteration.

catch-error-restart is like error-restart cxcept that it never loops back to the beginning.
If the anonymous proceed type is used for proceeding. the catch-error-restart form
returns with nil as the first value and a non-nil sccond value.

catch~error-restart-if is like catch-error-restart cxcept that the resume handler is only
in cffect if the value of the cond-form is non-nil.

All of these variants of error-restart can be written in terms of condition-resume-if.

These forms are typically used by any sort of command loop, so that aborting within the
command loop returns to it and reads another command. error-restart-loop is often right for
simple command loops. catch-error-restart is uscful when aborting should terminate ¢xccution
rather than retry, or with an explicit conditional to test whether a throw was done.

error-restart forms often specify (error sys:abort) as the condition-names. The presence of
error causcs them to be listed (and assigned command characters) by the debugger, for all errors,
and the presence of sys:abort causes the Abort key to use them. If you would like a procede
type to be offered as an option by the debugger, but do not want the Abort key to use it,
specify just error. ’

eh:invoke-resume-handler condition-instance proceed-type &rest args
Invokes the innermost applicable resume handler for proceed-type. Applicability of a
resume handler is determined by matching its condition names against thosc possessed by
condition-instance and by applying its predicate, if not t, to condition-instance.

If proceed-type is nil, the innermost applicable resume handler is invoked regardless of its
procced type. However, in this case, the scan stops if t is encountered as an element of
eh:condition-resume-handlers.

PS:KLLMAN>ERRORS.TEXT.102 8-JUN-84

The Debugger 720 [isp Machine Manual

eh:condition-resume-handlers Variable

The current list of resume handlers for nonlocal proceed types. condition-resume works
by binding this variable. Elements are usually lists that have the format described above
under condition-resume. The symbol t is also meaningful as an element of this list. 1t
terminates the scan for a resume handler when it is made by signal-condition for a
condition that was not handled. t is pushed onto the list by brcak loops and the
debugger to shield the cvaluation of your type-in from automatic invocation of resume
handlers established outside the break loop or the error.

The links of this list, and its clements, are often created using with-stack-list. so be
carcful if you try to save the value outside the context in which you cxamine it.

sys:abort (condition) _ Condition
‘This condition is sighaled by the Abort key: it is how that key is implemented. Most
command loops use some version of error-restart to sct up a resume handler for
sys:abort so that it will return to the innermost command loop if (as is usually the case)
no handler handles it. ‘These resume handlers usually apply to error as well as sys:abort,
so that the debugger will offer a specific command to return to the command loop cven if
it is not the innermost one.

30.7 The Debugger

When an crror condition is signaled and no handlers decide to handle the crror, an interactive
debugger is entered to allow the user to look around and see what went wrong, and to help him
continue the program or abort it. This scction describes how to use the debugger.

30.7.1 Entering the Debugger

There are two kinds of errors; those gencrated by the Lisp Machine’s microcode, and those
generated by Lisp programs (by using ferror or related functions). When there is a microcode
error, the debugger prints out a message such as the following:

>>TRAP 5543 (TRANS-TRAP)
The symbol FOOBAR is unbound.
While in the function LOSE-XCT « LOSE-COMMAND-LOOP « LOSE

The first line of this crror message indicates entry to the debugger and contains some
mysterious internal microcode information: the micro program address, the microcode trap name
and paramecters, and a microcode backtrace. Users can ignore this line in most cases. The second
line contains a description of the crror in English. The third line indicates where the error
happened by printing a very abbreviated “backtrace™ of the stack (sce below); in the example, it
is saying that the crror was signaled inside the function lose-xct, which was called by lose-
command-loop.

Here is an example of an crror from Lisp code:
>>ERROR: The argument X was 1, which is not a symbol,
While in the function FOO « SI:EVAL1 « SI:LISP-TOP-LEVEL1

PS:<I.MAN>ERRORS.TEX'T.102 8-JUN-84

I isp Machine Manual 127 ‘The Debugger

~ Here the first line contains the English description of the crror message, and the sccond line
contains the abbreviated backtrace. foo signaled the crror by calling ferror; however, ferror is
censored out of the backtrace.

After the debugger's initial message, it prints the function that got the crror and its
arguments. Then it prints a list of conumands you can use to proceed from the error, or to abort
to various command loops. ‘The possibilities depend on the kind of error and where it happened,
so the list is different cach tme: that is why the debugger prints it. ‘The commands in the list all
start with Super-A. Super-B and continuc as far as is necessary.

eh:*inhibit-debugger-proceed-prompt* Variable
If this is non-nil. the list of Super commands is not printed when the debugger is
cntered. 'T'ype Help P to sce the list.

The debugger normally uses the stream *debug-io* for all its input and output (sec page
460). By default it is a synonym for *terminal-io*. The value of this variable in the stack group
in which the error was signaled is the one that counts.

eh:*debug-io-override* Variable
If this is non-nil. it is used by the debugger instcad of the value of *debug-io*. The
valuc in the stack group where the crior was signaled is the one that counts.

The debugger can be manually cntered cither by causing an error (¢c.g. by typing a ridiculous
symbol name such as ahsdgf at the lisp rcad-eval-print loop) or by typing the Break kcy with
the Meta shift held down while the program is reading from the terminal. Typing the Break key
with both Control and Meta held down forces the program into the debugger immediately, even
if it is running. If the Break key is typed without Meta, it puts you into a read-eval-print loop
using the break function (sce page 795) rather than into the debugger.

eh &optional process
Causcs process to enter the dcbugger, and directs the debugger to read its commands from
the ambient value of *terminal-io*, current when you call eh, rather than process ’s own
value of *terminal-io* which is what would be used if process got an error in the usual
way. The process in which you invoked eh waits while you are in the debugger, so there
is no ambiguity about which process will handle your keyboard input.

If proce&s had albready signaled an crror and was waiting for cxposure of a window, then
it enters the debugger to handle that error. Otherwise, the break condition is signaled in
it (just like what Control-Meta-Break docs) to force it into the dcbugger.

The Resume command makes process resume execution. You can also usc other debugger
commands such as Abort, Control-R, Control-Meta-R and Control-T to start it up
again. Exiting the debugger in any way causes eh to return in its process.

process can also be a window, or any flavor instance which understands the :process
operation and rcturns a process.

If process is not a process but a stack group, the current state of the stack group is
cxamined. In this case, the debugger runs in “cxaminc-only” mode, and cxccutes in the

PS:KILMAN>DEBUG.TEXT.21 8-JUN-84

‘The Debugger 728 Lisp Machine Manual

process in which you voked eh. You cannot resume exccution of the debugged stack
group. but Resume cxits the debugger. It is your responsibility to ensure that no onc
tries 1o exccute in the stack group being debugged while the debugger is looking at it.

If process is nil. eh finds all the processes waiting to enter the debugger and asks you
which one to usc. '

30.7.2 How to Use the Debugger

Once inside the debugger. the user may give a wide variety of commands. This section
describes how to give the commands, then cxplains them in approximate order of uscfulness. A
summary is provided at the end of the listing.

Whien the debugger is waiting for a command, it prompts with an arrow:

If the error took place in the evaluation of an expression that you typed at the dcbugger, you
are in a sccond level (or deeper) crror. The number of arrows in the prompt indicates the depth.

The debugger also warns you about certain unusual circumstances that may causc paradoxical
results. For example, if default-cons-area is anything c¢xcept working-storage-area, a message
to that cffect is printed. If *read-base* and *print-base* arc not the same, a message is
printed.

At this point, you may type cither a Lisp cxpression or a command; a Control or Meta
character is interpreted as a command, whercas most normal characters are interpreted as the first
character of an expression. If you type the Help key or the ? key, you can get some
introductory help with the debugger.

If you type a Lisp expression, it is interpreted as a Lisp form and evaluated in the context of
the current frame. ‘That is, all dynamic bindings used for the evaluation arc those in cffect in the
current frame, with certain cxceptions explained below. The results of the evaluation are printed,
and the debugger prompts again with an arrow. 1f, during the typing of the form, you change
your mind and want to get back to the debugger's command level, type the Abort key or a
Control-G; the dcbugger responds with an arrow prompt. In fact, at any time that input is
expected from you, while you arc in the debugger, you may type Abort or Control-G to cancel
any dcbugger command that is in progress and get back to command level. Control-G is useful
because it can never exit from the debugger as Abort can.

This read-eval-print loop maintains the valucs of +, *, and - almost like the Lisp listen
loop. ‘The difference is that some single-character debugger commands such as C-M-A also set *
and + in their own way.

If an ecrror occurs in the cvaluation of the Lisp expression you type, you may enter a second
invocation of the dcbugger, looking at the new crror. The prompt in this event is ‘»=’ to make it
clear which level of crror you are cxamining. You can abort the computation and get back to the
first debugger level by typing the Abort key (sce below).

PS:KI.MAN>DEBUG.TEXT.21 8-JUN-84

Lisp Machine Manual 729 The Debugger

~ Various debugger commands ask for Lisp objects, such as an object to return or the name of
a catch-tag. You must type a form to be evaluated; its value is the object that is actually used.
This provides greater generality, since there are objects o which you might want to refer that
cannot be typed in (such as arrays). If the form you type is non-trivial (not just a constant form),
the debugger shows you the result of the evaluation and asks for confirmation before proceeding.
If you answer ncgatively, or if you abort, the command is canceled and the debugger returns to
command level. Once again, the special bindings in effect for evaluation of the form are those of
the carrent frame you have selected.

The Meta-S and Control-Meta-S commands allow you to look at the bindings in effect at
the current frame. A few variables are rebound by the debugger itself whenever a user-provided
form is cvaluated, so you you must use Meta-S to find the values they actually had in the erring
computation.

terminal-io *terminal-io* is rcbound to the stream the debugger is using.

standard-input

standard-output
standard-input and *standard-output* arc rebound to bc synonymous with
terminal-io.

.+ 4, ++

*, ##’ #tt’ #va'uest
+ and * arc rcbound to the dcbugger’s previous form and previous value.
Commands for examining arguments and such, including C-M-A, C-M-L and
C-M-V, lcave * sct to the value examined and + sct to a locative to where the
value was found. When the debugger is first ‘entered, + -is the last form typed,
which is typically the onc that caused the error, and * is the value of the previous
form.

evalhook
applyhook Thesc variables (sce page 748) are rcbound to nil, turning off the step facility if
it was in use when the error occurred.

eh:condition-handlers

eh:condition-default-handlers
These arc rebound to nil, so that errors occurring within forms you type while in
the debugger do not magically resume exccution of the erring program.

eh:condition-resume-handlers _
To prevent resume handlers established outside the error from being invoked
automatically by deeper levels of crror, this variable is rebound to a new value
which has an clement t added in the front.

PS:KLLMAN>DEBUG.TEXT.21 | 8-JUN-84

The Debugger ' 730 Lisp Machine Manual

30.7.3 Debugger Commands

All debugger commands are single characters. usually with the Control or Meta bits. ‘The
single most useful command is Abort (or Control-Z), which cxits from the debugger and throws
out of the computation that got the error. (1his is the Abort key, not a S-letter command.) Often
you arc not interested in using the debugger at all and just want to get back to Lisp top level; so
you can do this in onc keystroke.

If the error happened while you were innocently using a system utility such as the editor,
then it represents a bug in the system. Report the bug using the debugger command Control-M.
This gives you an editor preinitialized with the error message and a backtrace. You should type
in a precise description of what ‘you did that led up to the problem, then send the message by
typing End. Be as complete as possible, and always give the exact commands you typed, exact
filenames, cte. rather then general descriptions, as much as possible. The person who investigates
the bug report will have to try to make the problem happen again; if he does not know where to
find youwr file, he will have a difficult time.

The Abort command signals the sys:abort condition, returning control to the most recent
command loop. This can be Lisp top level, a break, or the debugger command loop associated
with another error. Typing Abort multiple times throws back to successively older read-eval-print
or command loops until top level is reached. Typing Meta-Abort, on the other hand, always
throws to top level. Meta-Abort is not a debugger command, but a system command that is
always available no matter what program you are in.

Note that typing Abort in the middle of typing a form to be cvaluated by the debugger
aborts that form and returns to the debugger's command level, while typing Abort as a debugger
command returns out of the debugger and the crring program, to the previous command level.
Typing Abort after entering a numeric argument just discards the argument.

Sclf-documentation is provided by the Help or ? command, which types out some
documentation on the debugger commands, including any special commands that apply to the
particular error currently being handled.

Often you want to try to procced from the crror. When the debugger is entered, it prints a
table of commands you can usc to procced, or abort to various levels. The commands are
Super-A, Super-B, and so on. How many .there arc and what they do is different each time
there is an error, but the table says what cach one is for. If you want to sec the table again,
type Help followed by P.

The Resume (or Control-C) command is often synonymous with Super-A. But Resume
only procceds, never aborts. If there is no way to proceed, just ways to abort, then Resume
docs not do anything.

The debugger knows about a current stack frame, and there are several commands that use it.
The initially current stack frame is the onc which signaled the error, cither the onc which got the
microcode-detected crror or the one which called ferror, cerror, or error. When the debugger
starts it up it shows you this frame in the following format: o

PS:KLLMAN>DEBUG.TEXT.21 - 8-JUN-84

Iisp Machine Manual 731 The Debugger

FOO: :
Arg 0 (X): 13

Arg ‘1 (Y): 1
and so on. This means that foo was called with two arguments, whose names (in the Lisp source
code) are x and y. 'The current values of x and y.are 13 and 1 respectively. ‘These may not be
the original arguments if foo happens to setq its argument variables.

‘The Clear-Screen (or Control-L) command clears the screen, retypes the crror message that
was initially printed when the debugger was entered, and prints out a description. of the current
frame, in the above format.

Several commands arc provided to allow you to examine the Lisp control stack and to make
frames current other than the one that got the error. The control stack (or “regular pdl”) keeps a
record of all functions currently active. If you call foo at Lisp's top level, and it calls bar. which
in wrn calls baz, and baz gets an error, then a backtrace (a backwards trace of the stack) would
show all of this information. ‘The debugger has two backtrace commands. Control-B simply
prints out the names of the functions on the stack: in the above example it would print

BAZ « BAR « FOO0 « SI:*EVAL '
« SI:LISP-TOP-LEVEL1 « SI:LISP-TOP-LEVEL
The arrows indicate the direction of calling. 'The Meta-B command prints a morc extensive
backtrace, indicating the names of the arguments to the functions and their current valucs; for
the example above it might look like:
BAZ:
Arg 0 (X): 13
Arg 1 (Y): 1

BAR:
Arg 0 (ADDEND): 13

FOO:
Arg 0 (FROB): (A B C . D)
and so on. The backtrace commands all accept numeric arguments which say how many frames
to describe, the default being to describe all the frames.

Moving around in the stack:

The Control-N command makes. the “next” older frame be current. This is the frame which
called the onc that was current at beforc. The new current frame’s function and arguments are
printed in the format shown immediately above.

Control-P moves the current frame in the reverse direction. If you use it immecdiately after
getting an error it selects frames that are part of the act of signaling.

Meta-< sclects the frame in which the error occurred, the same frame that was selected when
the debugger was entered. Meta-> selects the outermost or initial stack frame. Control-S asks
you for a string and scarches down the stack (toward older frames) from the current frame for a
‘frame whose exccuting function’s name contains that string. That frame becomes current and is
printed out. These commands are easy to remember since they are analogous to cditor commands.

PS:<LLMAN>DEBUG.TEXT.21 ‘ 8-JUN-84

‘Ihe Debugger 32 Lisp Machine Manual

The Control-Meta-N, Control-Meta-P, and Control-Meta-B commands are like the
corresponding Control commands bui don’t censor the stack to omit “uninteresting”™ functions.
When looking at interpreted code, the debugger usually tries to skip over frames that belong to
the functions composing the interpreter, such as eval, prog. and cond. Control-Meta-N,
Control-Meta-P. and Control-Meta-B show cverything. ‘They also show frames that arc not yet
active; that is. frames whose arguments are still being computed for functions that are going to
be called. The Control-Meta-U command goes down the stack (1o older frames) to the next
interesting function and makes that the current frame.

Meta-L prints out the current frame in “full screen™ format, which shows the arguments and
their values, the local variables and their values. and the machine code with an arrow pointing to
the next instruction o be executed. Refer to chapter 31, page 752 for help in reading this
machine code.

Commands such as Control-N and Control-P, which arc uscful to issuc repeatedly, take a
prefix numeric argument and repeat that many types. ‘The numeric argument is typed by using
Control or Meta and the number keys, as in the editor. Some other commands such as Control-
M also use the numeric argument; refer to the table at the end of the section for detailed
information.

Resuming exccution:

Meta-C is similar to Control-C, but in the case of an unbound variable or undefined
function, actually setqs the variable or defines the function, so that the crror will not happen
again. Control-C (or Resume) provides a replacement value but does not actually change the
variable. Meta-C procceds using the proceed type :store-new-value, and is available only if
that proceed type is provided.

Control-R is used to return a value or values from the current frame; the frame that called
that frame continues running as if the function of the current frame had returned. 'This command
prompts you for each value that the caller expects; you can type cither a form which evaluates to
the desired value or End if you wish to return no more values.

The Control-T command does a throw to a given tag with a given value; you are prompted
for the tag and the value.

Control-Meta-R reinvokes the current frame; it starts exccution at the beginning of the
function, with the arguments currently present in the stack frame. These arc the same arguments
the function was originally called with unless cither the function itself has changed them with setq
or you have set them in the debugger. If the function has been redefined in the meantime
(perhaps you edited it and fixed its bug) the new definition is used. Control-Meta-R asks for
confirmation before resuming exccution.

Meta-R is similar to Control-Meta-R but allows you to change the arguments if you wish.
You are prompted for the new arguments one by onc; you can type a form which cvaluates to
the desired argument, or Space to leave that argument unchanged, or End if you do not want
any more arguments. Space is allowed only if this argument was previously passed, and End is
not allowed for a required argument. Once you have finished specifying the arguments, you must
confirm before exccution resumes.

PS:KILMAN>DEBUG.TEXT.21 8-JUN-84

~1isp Machine Manual 733 The Debugger

Stepping through function calls and returns:

You can request a trap to the debugger on exit from a particular frame, or the next time a
function is called.

Each stack frame has a “trap on cxit” bit. The Control-X command toggles this bit. The
Meta-X command sets the bit to cause a trap for the current frame and all outer frames. If a
program is in an infinite loop, this is a good way to find out how far back on the stack the loop
is taking place. 'This also enables you to see what values are being returned. The Control-Meta-
X command clears the trap-on-cxit bit for the current frame and outer frames.

‘The Control-D command proceeds like Control-C but requests a trap the next time a
function is called. The Meta-D command toggles the trap-on-next-call bit for the crring stack
group. It is useful if you wish to set the bit and then resume exccution with something other
than Control-C. 'The function breakon may be used o request a trap on calling a particular
function. Trapping on entry to a frame automatically sets the trap-on-cxit bit for that frame: use
Control-X to clear it if you do not want another trap.

Transfering to other systems:

Control-E puts you into the editor, looking at the source code for the function in the current
frame. This is useful when you have found the function that caused the error and that needs to
be fixed. The editor command Control-Z will return to the debugger, if it is still there.

Control-M puts you into the editor to mail a bug report. The error message and a backtrace
are put into the cditor buffer for you. A numecric argument says how many frames to include in
the backtrace.

Control-Meta-W calls the window dcbugger, a display-oriented debugger. It is not
documented in this manual, but should be usable without further documentation.

Examining and sctting the arguments, local variables, and values:

Control-Meta-A takes a numeric argument, n, and prints out the value of the nth argument
of the current frame. It leaves * set to the value of the argument, so that you can use the Lisp
read-eval-print loop to examine it. It also lcaves + sct to a locative pointing to the argument
on the stack, so that you can change that argument (by calling rplacd on the locative). Control-
Meta-L is similar, but refers to the nth local variable of the frame. Control-Meta-V refers to
the nth value this frame has returned (in a trap-on-exit). Control-Meta-F refers to the function
cxecuting in the frame; it ignores its numeric argument and docsn’t allow you to change the
function.

Another way to cxamine and sct the arguments, locals and values of a frame is with the
functions eh-arg, eh-loc, eh-val and eh-fun. Usc these functions in expressions you evaluate
inside the debugger, and they refer to the arguments, locals, values and function, respectively, of
the debugger's current frame,

PS:KL.MAN>DEBUG.TEXT.21 8-JUN-84

The Debugger 134 Fisp Machine Manual

The names eh:arg, eh:val, ctc. arc for compatibility with the Symbolics system.

eh-arg arg-number-or-name

eh:arg arg-number-or-name
When used in an cxpression cvaluated in the debugger, eh-arg returns the value of the
specifed argument in the dcbugger's . current frame, Argument names arc comparcd
ignoring packages; only the pname of the symbol you supply is relevant. eh-arg can
appear in setf and locf to set an argument or get its location.

eh-loc local-number-or-name
eh:loc local-number-or-name
Like eh-arg but accesses the current frame’s local variables instcad of its arguments.

eh-val &optional value-number-or-name

eh:val &optional value-number-or-name
eh-val is used in an expression cvaluated in the debugger when the current frame s
returning multiple values, to cxamine those valucs. ‘This is only uscful if the function has
already begun to return some values (as in a trap-on-exit), since otherwise they are all nil.
If a name is specified, it is looked for in the function’s values or return-list declaration,

if any.

eh-val can be used with setf and locf. You can make a frame rcturn a specific sequence
of values by sctting all but the last value with eh-val and doing Control-R to rcturn the
last value. '

eh-val with no argument returns a list of all the values this frame is returning.

eh-fun
eh:fun
eh-fun can be called in an cxpression being cvalued inside the dcbugger to return the

function-object being called in the current frame. It can be used with setf and loct.

30.7.4 Summary of Commands

Control-A Prints argument list of function in current frame.

Control-Meta-A Sets * to the nth argument of the current frame,

Control-B Prints bricf backtrace.

Meta-B Prints longer backtrace.

Control-Meta-B Prints longer backtrace with no censoring of “unintcresting” functions.

Control-C or Resume Attempts to continue, using the first proceed type on the list of available
ones for this error.

Meta-C Attempts to continue, setq’ing the unbound variable or otherwise
“permanently” fixing the error. This uscs the procced type :store-new-
value, and is available only if that procced type is.

PS:KLMAN>DEBUG.TEXT.21 : 8-JUN-84

isp Machine Manual

Control-D

Meta-D

Control-E

Control-Meta-F
Control-G or Abort

Control-Meta-H

135 . The Debugger

Attempts to continue like Control-C, but trap on the next function call.

Toggles the flag that causes a trap on the next function call after you
continue or otherwise exit the debugger.

Switches to Zmacs w edit the source code for the function in the current
frame. ' ’

Scts * to the function in the current frame.

Quits to command level. This is not a command, but something you can
type to escape from typing in an argument of & command.

Describes the condition handlers and resume handlers -cstablished by the
current frame.,

Control-L or Clear-Screen

Meta-L
Control-Meta-L
Control-M

Controi-N or Line
Meta-N

Control-Meta-N

Control-P or Return
Meta-P

Cohtrol- Meta-P

Control-R
Meta-R

Control-Meta-R
Control-S
Meta-S

Control-Meta-S

Control-T

Redisplays error message and current frame.
Displays the current frame, including local variables and compiled code.
Scts * to the value of local variable n of the current frame.

Sends a bug report containing the crror message and a backtrace of n
frames (default is 3).

Moves to the next (older) frame. With argument, moves down # frames.

Moves to next frame and displays it likc Meta-L. With argument, move
down n frames.

Moves to next frame cven if it is “uninteresting”™ or still accumulating
arguments. With argument, moves down »n frames.

Moves up to previous (newer) frame. With argument, moves up n frames.

Moves to previous frame and displays it like Meta-L. With argument,
moves up n frames.

Moves to previous frame even if it is “uninteresting” or still accumulating
arguments. With argument, moves up n frames,

Returns a value or values from the current frame.

Reinvokes the function in the current frame (restart its execution at the
beginning), optionally changing the arguments.

Reinvokes the function in the current frame with the same arguments.
Scarches. for a frame containing a specified function.

Reads the name of a special variable and returns that variable’s value in
the current frame. Instance variables of self may also be specified even if
not special.

Prints a list of special variables bound by the current frame and the values
they arc bound to by the frame. If the frame binds self, all the instance
variables of self are listed cven if they are not special.

Throws a value to a tag.

PS:<ILMAN>DEBUG.TEXT.21 v 8-JUN-84

‘The Debugger 736 Lisp Machine Manual

Control-Meta-U Moves down the stack to the previous “interesting™ frame.

Control-X Toggles the flag in the current frame that causes a trap on cxit or throw
through that frame.

Meta-X Sets the Aag causing a trap on cxit or throw through the frame for the
current frame and all the frames outside of it.

Control-Meta-X Clears the flag causing a trap on cxit or throw through the frame for the
current frame and all the frames outside of it.

Control-Meta-V Sets * to the nth value being returned from the current frame. This is
non-nil only in a tap on exit from the frame.

Control-Meta-W Switches to the window-oriented debugger.

Control-Z or Abort Aborts the computation and throw back to the most recent break or
debugger, to the program’s command level, or to Lisp top level.

?orHelp Prints debugger command sclf-documentation.

Meta-< Moves to the frame in which the crror was signaled, and makes it current
once again.

Meta-> Moves to the outermost (oldest) stack frame.

Control-0 through Control-Meta-9
Numeric arguments to the-following command arce specified by typing a
decimal number with Control and/or Meta held down.

Super-A, ctc. The commands Super-A, Super-B. etc. are assigned to all the available
proceed types for this crror. The assignments are different cach time the
dcbugger is entered, so it prints a list of them when it starts up. Help P
prints the list again.

30.7.5 Deexposed Windows and Background Processes

If the debugger is entered in a window that is not cxposed, a notification is used to inform
you that it has happened.

In general, a notification appcars as a brief message printed inside squarc brackets if the
sclected window can print it. Otherwise, blinking text appears in the mouse documentation line
telling you that a notification is waiting; to sec the notification, type Terminal N or select a
window that can print it. In cither case, an audible beep is made.

In the case of a notification that the debugger is waiting to usc a decxposed window, you can
select and cxposc the window in which the error happencd by typing Terminal0S. You can do
this even if the notification has not been printed yet because the sclected window cannot print it.
If you sclect the waiting window, in this way or in any other way, the notification is discarded
since you already know what it was intended to tell you.

If the dcbugger is entered in a procéss that has no window or other suitable strcam to type
out on, the window system assigns it a “background window™. Since this window is initially not
cxposed, a notification is printed as above and you must usc Terminal 0 S to sce the window.

PS:KLLMAN>DEBUG.TEXT.21 8-JUN-84

[isp Machine Manual 137 Tracing FFunction Execution

At an error happens in - the scheduler stack group or the first level crror handler stack group
which are needed for processes to function, or in the keyboard or mouse process (both needed
for the window system to function). the debugger uses the cold Joad stream, a primitive facility

for terminal 170 which bypasses the window system.

If an crror happens in another process but the window system is locked so that the
notification mechanism cannot function, the cold load stream is used to ask what to do. You can
tell the debugger 1o use the cold load stream immediately, 1o forcibly clear the window system
locks and notify immediately as above, or to wait for the locks o become unlocked and then
notify as above. If you tell it to wait, you can resume operation of the machine. Meanwhile,
you can usc the command Terminal Control-Clear-Input to forcibly unlock the locks. or
Terminal Call to tell the debugger to use the cold load stream. 'The latter command normally
enters a break-loop that uses the cold-load stream. but if there are any background errors, it
offers to enter the debugger to handle them. You can also handle the errors in a Lisp listen loop
of your choice by mcans of the function eh (page 727), assuming you can sclect a functioning
Lisp listen loop.

30.7.6 Dcbugging after a Warm Boot

After a warm boot, the process that was running at the time of booting (or at the time the
machine crashed prior to booting) may be dcbugged if you answer ‘no’ when the system asks
whether to reset that process.

si:debug-warm-booted-process
Invoke the debugger, like the function eh (page 727), on the process that was running as
of the last warm boot (assuming there was such a process).

On the CADR, the state you sec in the debugger is not correct; some of the information
dates from some period of time in advance of the boot or the crash.

On the Lambda, the state you sce in the debugger will, in some system version, be accurate.

30.8 Tracing Function Execution

The trace facility allows the user to frace some functions. When a function is traced, certain
special actions arc taken when it is called and when it rcturns, The default tracing action is to
print a message when the function is called, showing its name and arguments, and another
message when the function returns, showing its name and value(s).

The trace facility is closely compatible with Maclisp. You invoke it through the trace and
untrace spccial forms, whose syntax is described below. Alternatively, you can use the trace
system by clicking Trace in the system menu, or by using the Meta-X Trace command in the
editor. This allows you to sclect the trace options from a menu instead of having to remember
the following syntax.

PS:KL.MAN>DEBUG.TEXT.21 8-JUN-84

Tracing Function Exccution 738 1 isp Machine Manual

trace

Special form
A trace form looks like:
(trace spec-1 spec-2 ...)

Fach spee can take any of the following forms:

a symbol This is a function name, with no options. The function is traced in the
default way. printing a message cach time it is called and cach time it
returns.

a list (function-namne option-1 option-2 ...)
Sunction-name is a symbol and the oprions control how it is to be traced.
The various options are listed below. Some options take arguments, which
should be given immediately following the option name.

a list (:function finction-spec option-1 option-2 ...)
This is like the previous form cxcept that function-spec nced not be a
symbol (see section 11.2, page 223). It exists because if function-name was
a list in the previous form, it would instcad be interpreted as the
following form:

alist ((fiuncrion-1 function-2...) option-1 option-2 ...)
All of the functions are traced with the same options. Each function can
be cither a symbol or a general function-spec.

The following trace options exist:
‘break pred Causcs a breakpoint to be entered after printing the entry trace

information but before applying the traced function to its arguments, if
and only if pred cvaluates to non-nil. During the breakpoint, the symbol
arglist is bound to a list of the arguments of the function.

:exitbreak pred This is just like break except that the breakpoint is entered after the

function has been executed and the cxit trace information has been
printed, but before control returns. During the breakpoint, the symbol
arglist is bound to a list of the arguments of the function, and the
symbol values is bound to a list of the values that the function is
returning.

Causes the error handler to be called when the function is cntered. Use

.error
Resume (or Control-C) to continue cxccution of the function. If this
option is specified, there is no printed trace output other than the crror
message printed by the error handler. This is semi-obsolete, as breakon
is more convenient and does more exactly the right thing.

:step Causes the function to be single-stepped whenever it is called. See the
documentation on the step facility, scction 30.11, page 746.

:stepcond pred Causes the function to be single-stepped only if pred cvaluates to non-nil.

:entrycond pred Causes trace information to be printed on function entry only if pred
cvaluates to non-nil.

:exitcond pred Causes tracc information to be printed on function cxit only if pred

cvaluates to non-nil.

PS:KKL.LMAN>DB-AID.TEXT.14 SN 8-JUN-84

1 isp Machine Manual

.cond pred

:wherein function

:argpd! pdl

:entryprint form

:exitprint form

:print form

:entry list

exit list

:arg :value :both nil

739 . Tracing FFunction Execution

This specifies both :exitcond and :entrycond together.

‘Causes the function to be traced only when called. directly or indirectly,

from the specified function fiuncrion. One can give several trace spees to
trace, all specifying the same function but with different wherein options,
so that the function is traced in different ways when called from different
functions.

This is different from advise-within, which only affects the function being
advised when it is called dircctly from the other function. The trace
‘wherein option means that when the traced function is called, the special
tracing actions occur if the other function is the caller of this function, or
its caller’s caller, or its caller’s caller's caller, etc.

Specifies a symbol pdl, whose value is initially set to nil by trace. When
the function is traced, a list of the current recursion level for the function,
the function’s name, and a list of arguments is consed onto the pd/ when
the function is eatered, and cdr'ed back off when the function is cxited.
The pdl can be inspected from within a breakpoint, for example, and
used to determine the very recent history of the function. 'This option can
be used with or without printed trace output. Fach function can be given
its own pdl, or onc pdl may serve several functions.

The form is evgluated and the value is included in the trace message for
calls to the function. You can give this option multiple times, and all the
Jorm’s thus spccified arc evaluated and printed. \\ precedes the values to
scparate them from the arguments.

The form is cvaluated and the value is included in the trace message for
returns from the function. You can give this option multiple times, and
all the form’s thus specified are evaluated and printed. \\ precedes the
valucs to scparate them from the returned values.

The form is evaluated and the value is included in the trace messages for
both calls to and returns from the function. Equivalent to :exitprint and

“:lentryprint at once.

This specifies a list of arbitrary forms whose values are to. be printed along
with the usual entry-trace. The list of resultant values, when printed, is
preceded by \\ to scparatc it from the other information.

This is similar to entry, but specifies expressions whose values are printed
with the exit-trace. Again, the list of values printed is preceded by \\.

These specify which of the usual trace printouts should be enabled. If
:arg is specified, then on function entry the name of the function and the
valucs of its arguments will be printed. If :value is spccified, then on
function exit the returned value(s) of the function will be printed. If
‘both is specified, both of these will be printed. If nil is specified,
ncither will be printed. If none of these four options are specified the
default is to :both. If any further options appear after one of these, they
arc not treated as options! Rather, they are considerced to be arbitrary
forms whose values are to be printed on entry and/or exit to the function,

PS:KL.MAN>DB-AID.TEXT.14 _ 8-JUN-84

Tracing Function Ixccution 740 Lisp Machine Manual

along with the normal trace information. The values printed will be
preceded by a //, and follow any values specificd by :entry or :exit.

Note that since these options “swallow™ all {ollowing options, if one is
given it should be the last option specificd.

In the evaluation of the expression arguments to various trace options such as :cond and
:break, the valuc of arglist is a list of the arguments given to the traced function. Thus
(trace (foo :break (null (car arglist))))
would cause a break in foo if and only if the first argument to foo is nil. 1f the :break option is
used. the variable arglist is valid inside the break-loop. If you setq arglist before actual function
execution, the arguments scen by the function will change.

In the evaluation of the cxpression arguments to various trace options such as :cond and
:break on exit from the waced function, the variable values is bound to a list of the resulting
values of the traced function. If the :exitbreak option is used, the variables values and arglist
arc valid inside the break-loop. If you setq values, the values returned by the function will
change.

The trace specifications may be “factored”™, as explained above. For example,
(trace ((foo bar) :break (bad-p arglist) :value))
is cquivalent to
(trace (foo :break (bad-p arglist) :value)
" (bar :break (bad-p arglist) :value))
Since a list as a function name is interpreted as a list of functions, non-atomic function namecs
(sce section 11.2, page 223) arc specified as follows:
(trace (:function (:method flavor :message) :break t))

trace returns as its value a list of names of all functions it traced. If called with no
arguments, as just (trace), it returns a list of all the functions currently being traced.

If you attempt to trace a function already being traced, trace calls untrace before setting up
the new trace.

Tracing is implemented with encapsulation (sec section 11.9, page 244), so if the function is
redefined (c.g. with defun or by loading it from a QFASL file) the tracing will be transferred
from the old definition to the new definition.

Tracing output is printed on .the stream that is the value of *trace-output*. This is
synonymous with *terminal-io* unless you change it.

untrace Special form
Undocs the effects of trace and restores functions to their normal, untraced state.
untrace accepts multiple specifications, e.g. (untrace foo quux fuphoo). Calling untrace
with no arguments will untrace all functions currently being traced.

PSKLLMAN>DB-AID./TEXT.14 _ 8-JUN-84

Lisp Machine Manual 741 Breakon

trace-compile-flag Variable
1f the value of trace-compile-flag is non-nil. the functions created by trace are
compiled, allowing you to trace special forms such as cond without interfering with the
exccution of the tracing functions. The default value of this flag is nil.

Sce also the function compile-encapsulations, page 302.

30.9 Breakon

‘The function breakon allows you to request that the debugger be entered whenever a certain
function is called.

breakon fimction-spec &optional condition-form
Encapsulates the definition of finction-spec so that a trap-on-call occurs when it is called.
This enters the debugger. A trap-on-exit will occur when the stack frame is exited.

If condition-form is non-nil, -its value should be a form to be evaluated cach time finction- '
spec is called. The trap occurs only if condition-form cvaluates to non-nil. Omitting the
condition-form is cquivalent to supplying t. If breakon is called more than once for the
same function-spec and different condition-forms, the trap occurs if any of the conditions
are true,

‘breakon with no arguments returns a list of the functions that arc broken on.

Conditional breakons are useful for causing the trap to occur only in a certain stack group.
This sometimes allows debugging of functions that arc being used frequently in background

processes.
(breakon ’foo ‘(eq current-stack-group °',current-stack-group))

If you wish to trap on calls to foo when called from the exccution of bar, you can use
(si:function-active-p 'bar) as the condition. If you want to trap only calls made directly from
bar, the thing to do is

(breakon '(:within bar foo0))
rather than a conditional breakon.

To break only the n’th time foo is called, do
(defvar 1 n)
(breakon ’foo '(zerop (decf i)))

Another uscful form of conditional breakon allows you to control trapping from the keyboard:
~(breakon 'foo ’(tv:key-state :mode-lock))
The trap occurs only when the Mode-Lock key is down. -This key is not normally used for
much clse. With this technique, you can successfully trap on functions used by the debugger!

PS:KLLMAN>DB-AID.TEXT.14 : 8-JUN-84

Advising a IF'unction 142 Lisp Machine Manual

unbreakon finction-spec &optional conditional-form
Remove the breakon set on function-spec. W conditional-form is specified, remove only
that condition. Breakons with other conditions are not removed.

With no arguments, unbreakon removes all breakons from all functions.

Toe cause the cncapsulation which implements the breakon to be compiled, call compile-
encapsulations or sct compile-encapsulations-flag non-nil. Scc page 302. 'This may climinate
some of the problems that occur if you breakon a function such as prog that is used by the
cvaluator. (A conditional to trap only in one stack group will help here also.)

30.10 Advising a Function

To advise a function is to tell it to do something extra in addition to its actual definition. It
is donc by means of the function advise. ‘The something extra is called a picce of advice, and it
can be done before, after, or around the definition itself. 'The advice and the definition are
independent, in that changing cither one docs not interfere with the other. Each function can be
given any number of picces of advice.

Advising is fairly similar to tracing, but its purposc is different. Tracing is intended for
temporary changes to a function to give the user information about when and how the function is
called and when and with what value it returns. Advising is intended for semi-permanent changes
to what a function actually does. The differences between tracing and advising are motivated by
this difference in goals.

Advice can be used for testing out a change to a function in a way that is casy to retract. In
this case, you would call advise from the terminal. It can also be used for customizing a
function that is part of a program written by somcone clse. In this case you would be likely to
put a call to advise in onc of your source files or your login init file (sce page 801), rather than
modifying the other person’s source code.

Advising is implemented with encapsulation (see scction 11.9, page 244), so if the function is
redefined (c.g. with defun or by loading it from a QFASL file) the advice will be transferred
from the old definition to the new dcfinition.

advise Macro
A function is advised by the special form
(advise function class name position
forml form2...)

None of this is cvaluated. function is the function to put the advice on. It is usually a
symbol, but any function spec is allowed (see section 11.2, page 223).. The forms are the
advice; they get cvaluated when the function is called. class should be cither :before,
:after, or :around, and says when to execute the advice (before, after, or around the
exccution of the definition of the function). The meaning of :around advice is explained
a couple of scctions below.

name is uscd to keep track of multiple pieces of advice on the same function. name is an
arbitrary symbol that is remembered as the name of this particular picce of advice. If you

PSKILMAN>DB-AID.TEXT.14 8-JUN-84

Fisp Machine Manual v 743 Advising a Tunction

have no name in mind, use nil; then we say the picce of advice is anonymous. A given
function and class can have any number of picces of anonymous advice. but it can have
only one picce of named advice for any one name. If you ury to define a second one, it
replaces the first.. Advice for testing purposes is usually anonymous. Advice used for
customizing someone clse’s program should usually be named so that multiple
customizations to one function have separate names. Then, if you reload a customization
that is alrcady loaded, it docs not get put on twice.

position says where to put this picce of advice in relation to others of the same class
alrcady present on the same function. I position is nil, the new advice goes in the
default position: it usually goes at the beginning (where it is exccuted before the other
advice), but if it is replacing another piece of advice with the same name, it goes in the
same place that the old picce of advice was in.

If you wish to specify the position, position can be the numerical index of which existing
picce of advice to insert this one before, Zero means at the beginning; a very large
number means at the end. Or, position can be the name of an existing picce of advice of
the same class on the same function; the new advice is inserted before that one.

For example,
(advise factorial :before negative-arg-check nil
(if (minusp (first arglist))
(ferror nil "factorial of negative argument")))
This modifics the (hypothetical) factorial function so that if it is called with a negative
argument it signals an crror instcad of running forever.

advise with no arguments returns.a list of advised functions.

unadvise Macro
(unadvise function class position)
removes picces of advice. None of its arguments are evaluated. function and class have
the same meaning as they do in the function advise. position specifies which piece of
advice to remove. It can be the numeric index (zero means the first one) or it can be the
name of the picce of advice.

If some of the arguments are missing or nil, all picces of advice which match the non-nil
arguments arc removed. Thus, if fiunction is missing or nil, all advice on all functions
which match the specified class and position are removed. If position is missing or nil,
then all advice of the specified class on the specified function is removed. If only function
is non-nil, all advice on that function is removed. :

The following are the primitive functions for adding and removing advice. Unlike the above
special forms, -these are functions and can be conveniently used by programs. advise and
unadvise arc actually macros that expand into calls to these two.

PS:KILMAN>DB-AID.TEXT.14 8-JUN-84

Advising a IFunction 744 Lisp Machine Manual

si:advise-1 finction class name position forms
Adds advice. The arguments have the same mcaning as in advise. Note that the forms
argument is nor a &rest argument.

si:unadvise-1 &optional function class position
Removes advice. If fincrion or class or position is nil or unspecified, advice is removed
from all functions or all classes of advice or advice at all positions are removed.

You can find out manually what advice a function has with grindef, which grinds the advice
on the function as forms that are calls to advise. These arc in addition 1w the definition of the
function.

To cause the advice to be compiled, call compile-encapsulations or sct compile-
encapsulations-flag non-nil. Sce page 302. '

30.10.1 Designing the Advice

For advice to interact uscfully with the definition and intended purpose of the function, it
must be able to interface to the data flow and control flow through the function. We provide
conventions for doing this.

The list of the arguments to the function can be found in the variable arglist. :before advice
can replace this list, or an clement of it, to change the arguments passed to the definition itself,
If you replace an clement, it is wisc to copy the whole list first with

(setq arglist (copylist arglist))
After the function's definition has been exccuted, the list of the values it returned can be found
in the variable values. :after advice can sct this variable or replace its clements to cause different
values to be returned.

All the advice is exccuted within a block nil so any picce of advice can exit the entire
function with return. The arguments of the return are returned as the valucs of the function and
no further advice is executed. If a picce of :before advice does this then the function’s definition
is not even called.

30.10.2 :around Advice

A piece of :before or :after advice is executed entirely before or entirely after the definition
of the function. :around advice is wrapped around the definition; that is, the call to the original
definition of the function is done at a spccified place inside the piece of :around advice. You
specify where by putting the symbol :do-it in that place.

For cxample, (+ 5 :do-it) as a picce of :around advice would add 5 to the value returned
by the function. This could also be donec by (setq values (list (+ 5 (car values)))) as :after
advice.

When there is morc than one piece of :around advice, the picces are stored in a sequence
just like :before and :after advice. Then, the first piece of advice in the scquence is the one
started first. The second picce is substituted for :do-it in the first one. The third one is

PS:KLMAN>DB-AID.TEXT.14 8-JUN-84

1 isp Machine Manual 745 Advising a FFunction

substituted for :do-it in the sccond one. ‘The original definition is substituted for :do-it in the
last picce of advice.

:around advice can access arglist, but values is not set up until the outermost :around
advice returns. At that time, it is sct to the value returned by the :around advice. 1t is
rcasonable for the advice to receive the values of the :do-it (c.g. with multiple-value-list) and
fool with them before returning them (e.g. with values-list).

:around advice can return from the block at any time, whether the original definition has
been exccuted yet or not. It can also override the original definition by failing to contain :do-it.
Containing two instances of :do-it may be uscful under peculiar circumstances. If you are
carcless, the original definition may be called twice, but something like

(if (foo) (+ 5 :do-it) (* 2 :do-it))
will work recasonably.

30.10.3 Advising One Function Within Another

It is possible to advise the function foo only for when it is called directly from a specific
other function bar. You do this by advising the function specifier (:within bar foo). That works
by finding all occurrences of foo in the definition of bar and replacing them with # :altered-
foo-within-bar. (Note that this is an uninterned symbol) This can be done even if bar’s
definition is compiled code. The symbol # :altered-foo-within-bar starts off with the symbol
foo as its dcfinition; then the symbol # :altered-foo-within-bar, rather than foo itself, is
advised. The system remembers that foo has been replaced inside bar, so that if you change the
definition of bar, or advisc it, then the replacement is propagated to the new definition or to the
advice. If you remove all the advice on (:within bar foo), so that its definition becomes the
symbol foo again, then the replacement is unmade and everything returns to its original state.

(grindef bar) prints foo where it originally appeared, rather than # :altered-foo-within-bar,
so the replacement is not scen. Instcad, grindef prints calls to advise to describe all the advice
that has been put on foo or anything else within bar.

An alternate way of putting on this sort of advice is to use advise-within.

advise-within Macro
(advise-within within-function function-1o-advise
class name position
- forms...)
advises function-to-advise only when called directly from the function within-function. The
other arguments mean the same thing as with advise. None of them are evaluated.

To remove advice from (:within bar foo), you can usc unadvise on that function specifier.
Alternatively, you can usc unadvise-within.

PS:KLLMAN>DB-AID.TEXT.14 - 8-JUN-84

Stepping Through an Eyaluation 746 Lisp Machine Manual

unadvise-within Macro
(unadvise-within within-function function-to-advise class position)

removes advice that has been placed on Gwithin within-function function-to-advise). Any
of the four arguments may be missing or nil; then that argument is unconstrained. All
advice matching whichever arguments arc -non-nil is removed. lor example, (unadvise-
within foo nil :before) removes all :before-advice from anything within foo. (unadvise-
within) removes all advice placed on anything within anything. By contrast, (unadvise)
removes all advice, including advice placed on a function for all callers. Advice placed on
a function not within another specific function is never removed by unadvise-within.,

The function versions of advise-within and unadvise-within arc called si:advise-within-1
and si:unadvise-within-1. advise-within and unadvise-within are macros that expand into calls
to the other two. :

30.11 Stepping Through an Evaluation

The Step facility gives you the ability to follow cvery step of the cvaluation of a form, and
examine what is going on. It is analogous to a single-step proceed facility often found in
machine-language debuggers. If your program is doing somecthing strange, and it isn't obvious
how it's getting into its strange state, then the stepper is for you.

There arc two ways to enter the stepper. Onc is by usc of the step function.

step form
This cvaluates form with single stepping. It returns the value of form.

For example, if you have a function named foo, and typical arguments to it might be t and
3, you could say
(step "(foo t 3))
to evaluate the form (foo t 3) with single stepping.

The other way to get into the stepper is to use the :step option of trace (sec page 738). If a
function is traced with the :step option, then whenever that function is called it will be single

stepped.

Note that any function to be stepped must be interprected; that is, it must be a lambda-
expression. Compiled code cannot be stepped by the stepper.

When evaluation is procceding with single stepping, before any form is cvaluated, it is
(partially) printed out, preceded by a forward arrow () character When a macro is cxpanded, the
expansion is printed out preceded by a double arrow (e) character. When a form returns a value,
the form and the valucs arc printed out preceded by a backwards arrow («) character; if there is
more than one valuc being rcturncd. an and-sign (A) character is printed between the values.
When the stepper has cvaluated the args to a form and is about to apply the function, it prints a
lambda (A) because cntering the lambda is the next thing to be done.

Since the forms may be very long, the stepper does not print all of a form; it truncates the
printed representation after a certain number of characters. Also, to show the rccursion pattern of
who calls whom in a graphic fashion, it indents cach form proportionally to its level of recursion.

PSKILMAN>DB-AID. TEXT.14 8-JUN-84

Lisp Machine Manual 747 Stepping Through an Evaluation

After the stepper prints any of these things, it waits for a command from the user. 'There are
several commands to tell the stepper how to proceed. or o look at what is happening. ‘The
commands are:

Control-N (Ncext)
Steps to the Next event. then asks for another command. Events include beginning to
cvaluate a form at any level or finishing the evaluation of a form at any level.

Space ‘ _
Steps to the next event at this level. In other words, continue to cvaluate at this level,
but don’t step anything at lower levels. This is a good way to skip over parts of the
evaluation that don’t interest you.

Control-A (Args)

Skips over the cvaluation of the arguments of this form, but pauses in the stepper before
calling the function that is the car of the form.

Control-U (Up) ‘
Continues cvaluating until we go. up one level. This is like the space command, only -
more so; it skips over anything on the current level as well as lower levels.

Control-X (eXit)
Exits: finishes evaluation without any more stepping.

Control-T (Type)
Retypes the current form in full (without truncation).

Control-G (Grind)
- Grinds (i.c. prettyprints) the current forin.

Control-E (Editor)
Switches windows, to the editor.

Control-B (Breakpoint)
Enters a break loop from which you can examine the values of variables and other
aspects of the current cnvironment. From within this loop, the following variables are
available:

step-form the current form.
step-values the list of returned values.

step-value the first returned value.
If you change the values of these variables, you will affect execution.

Control-L
Clears the screen and redisplays the last 10. pending forms (forms that are being

evaluated).

Meta-L
Like Control-I., but doesn't clear the screen.

Control-Meta-L
Like Control-L., but redisplays all pending forms.

? or Help ’
Prints documentation on these commands.

PS:KL.MANDDB-AID.TEXT.14 _ 8-JUN-84

Ivalhook 748 L isp Machine Manual

[t is strongly suggested that you write some little function and uy the stepper on it. If you
~get a feel for what the stepper does and how it works, you will be able to tell when it is the
right thing to use to find bugs.

30.12 Evalhook

The evalhook facility provides a “hook™ into the cvaluator; it is a way you can get a Lisp
form of your choice to be executed whenever the cvaluator is called. The stepper uses evalhook,
and usually it is the only thing that ever needs to. However, if you want to write your own
stepper or something similar, this is the primitive facility that you can use to do so. ‘The way this
works is a bit hairy, but unless you neced to write your own sicpper you don’t have to worry
about it.

evalhook Variable
gvalhook® Variable
If the value of evalhook is non-nil, then special things happen in the cvaluator. Its value
is called the hook function. When a form (any form, even a number or.a symbol) is to
be evaluated, the hook function is called instcad. Whatever values the hook function
returns are taken to be the results of the evaluation. Both evalhook and applyhook are
bound to nil before the hook function is actually called.

The hook function reccives two arguments; the form that was to be evalvated, and the
lexical environment of evaluation. These two arguments allow the hook function to
perform later, if it wishes, the very same cvaluation that the hook was called instead of.

applyhook Variable
appliyhook Variable
If the value of applyhook is non-nil, it is called the next time the interpreter is about to
apply a function to its evaluated arguments. Whatever values the apply hook function
returns are taken to be the results of calling the other function. Both evalhook and
applyhook are bound to nil before the hook function is actually called.

The hook function receives three arguments: the function that was going to be called, the
list of arguments it was going to reccive, and the lexical cnvironment of evaluation.
These arguments allow the hook function to perform later, if it wishes, the very same
cvaluation that the hook was called instead of.

When cither the cvalhook or the applyhook is called, both variables are bound to nil. They
are also rebound to nil by break and by the dcbugger, and setg’'ced to nil when errors are
dismissed by throwing to the Lisp top level loop. This provides the ability to escape from this
mode if something bad happens.

In order not to impair the cfficiency of the lisp interpreter, several restrictions arc imposed
on the cvalhook and applyhook. They apply only to cvaluation—whether in a read-cval-print
loop, internally in cvaluating arguments in forms, or by cxplicit usec of the function eval. They
do not have any ecffect on compiled function references, on use of the function apply, or on the
mapping functions.

PS:KLLLMAN>DB-AID.TEXT.14 8-JUN-84

Lisp Machine Manual - 749 Lvalhook

evalthook form evalhook applyhook &optional environment
Evaluates form in the specified environment, with evalhook and applvhook in cffect for all
recursive cvaluations of subforms of form. However, the evalhook is not called for the
cvaluation of form itself, '

environment is a list which represents the lIexical environment to be in effect for the
evaluation of form. nil means an empty lexical environment, in which no lexical bindings
cxist. 'This is the environment used when eval itself is called. Aside from nil, the only
reasonable way to get a value to pass for environment is to usc the last argument passed
o a hook function. You must take care not to use it after the context in which it was
made is cxited, because environments normally contain stack lists which become garbage
after their stack frames are popped.

environment has no effect on the evaluation of a variable which is regarded as special.
This is always donc by cxamining the value cell. However, environment contains the
record of the local special declarations currently in cffect, so it does enter in the decision
of whether a variable is special.

Here is an example of the usc of evalhook:
;; This function evaluates a form while printing debugging information.
(defun hook (x) '
(terpri)
(evalhook x '"hook-function nil))

:; Notice how this function calls evalhook to evaluate the form f,
:: 50 as to hook the sub-forms.
(defun hook-function (f env)
(let ((v (multiple-value-list
(evalhook f 'hook-function nil env))))
(format t "form: ~S~%values: ~S~%" f v)
(values-list v)))

The following output might be scen from (hook '(cons (car '(a . b)) 'c)):
form: (quote (a . b))
values: ((a . b))
form: (car (quote (a . b)))
values: (a)
form: (quote c)
values: (c¢)
(a . c)

applyhook function list-of-args evalhook applyhook &optional environment
Applics function to list-of-args in the specified environment, with evalhook and applyhook
in cffect for all recursive cvaluations of subforms of function's body. However, applyhook
is' not called for this application of function itself. For more information, refer to the
definition of evalhook, immediatcly above.

PS:KI.MAN>DB-AID.TEXT.14 <+ 8-JUN-84

The MAR » 750 1 isp Machine Manual

30.13 The MAR

The MAR facility allows any word or contiguous sct of words to be monitored constantly,
and can cause an error if the words are referenced in a specified manner. 'The name MAR is
from the similar device on the TIS PDP-10s; it is an acronym for ‘Memory Address Register'.
The MAR checking is done by the Lisp Machine’s memory management hardware, so the speed
of gencral execution is not significantly slowed down when the MAR is enabled. Howcver, the
speed of accessing pages of memory containing the locations being checked is slowed down
somewhat, since every reference involves a microcode trap.

These are the functions that control the MAR:

set-mar Jocation cvele-iype &optional n-words ‘
Scts the MAR on m-woerds words, starting at Jocation. location may be any object. Often
it will be a locative pointer 1o a cell, probably created with the locf special form. n-words
currently defaults to 1, but eventually it may default to the size of the object. cycle-type
says under what conditions (o trap. :read mcans that only rcading the location should
cause an crror, :write means that only writing the location should, t mcans that both
should. To set the MAR to detect setq (and binding) of the variable foo, use
(set-mar (variable-location foo) :write)

clear-mar
Turns off the MAR. - Warm-booting the machine disables the MAR but docs not turn it

off, ic. refercnces to the MARed pages arc still slowed down. clear-mar docs not
currently speed things back up until the next time the pages are swapped out; this may
be fixed some day.

e mo(dr:ar-mode) returns a symbol indicating the current state of the MAR. 1t returns one of:
nil The MAR is not set.
:read The MAR will cause an crror if there is a read.
:write The MAR will cause an error if there is a write.
t The MAR will causc an error if there is any reference.

Note that using thc MAR makes the pages on which it is set somewhat slower to access, until
the next time they are swapped out and back in again after the MAR is shut off. Also, use of
the MAR currently breaks the read-only feature if those pages were read-only. '

Procecding from a MAR break allows the memory reference that got an error to take place,
-and continues the program with the MAR still cffective. When proceeding from a write, you
have the choice of whether to allow the writc to take place or to inhibit it, lcaving the location

with its old contents.

PS:KL.MAN>DB-AID.TEXT.14 ‘ 8-JUN-84

[isp Machine Manual 751 The MAR

sys:mar-break (condition) Condition
This is the condition, not an error, signaled by a MAR break.

The condition instance supports these operations:

:object The object one of whose words was being referenced.
:offset The offset within the object of the word being referenced.
wvalue ~ “I'he value read, or to be written.

direction Either :read or :write.

The proceed type :no-action simply proceeds, continuing with the interrupted program as
if the MAR had not been set. If the trap was duc to writing, the proceed type
:proceed-no-write is also provided, and causes the program to proceed but does not
store the value in the memory location.

Most—but not all—write operations first do a rcad. setq and rplaca both do. This mcans
that if the MAR is in :read mode it catches writes as well as rcads: however, they trap during
the rcading. phase, and conscquently the data to be written are not yet known. This also means
that setting the MAR to t mode causes most writes to trap twice, first for a read and then again
for a writc. So when the MAR says that it trapped because of a read, this means a rcad at the
hardware Ievel, which may not look like a read in your program.

.

PS:KLLMAN>DB-AID.TEXT.14 ' : 8-JUN-84

	698_Errors
	699_Errors
	700_Errors
	701_Errors
	702_Errors
	703_Errors
	704_Errors
	705_Errors
	706_Errors
	707_Errors
	708_Errors
	709_Errors
	710_Errors
	711_Errors
	712_Errors
	713_Errors
	714_Errors
	715_Errors
	716_Errors
	717_Errors
	718_Errors
	719_Errors
	720_Errors
	721_Errors
	722_Errors
	723_Errors
	724_Errors
	725_Errors
	726_Errors
	727_Errors
	728_Errors
	729_Errors
	730_Errors
	731_Errors
	732_Errors
	733_Errors
	734_Errors
	735_Errors
	736_Errors
	737_Errors
	738_Errors
	739_Errors
	740_Errors
	741_Errors
	742_Errors
	743_Errors
	744_Errors
	745_Errors
	746_Errors
	747_Errors
	748_Errors
	749_Errors
	750_Errors
	751_Errors

