How to Read Assembly Fanguage 752 Lisp Machine Manual

31. How to Read Assembly Language

Sometimes it is useful to study the machine language code produced by the Lisp Machine's
compiler, usually in order to analyze an crror, or sometimes to cheek for a suspected compiler
problem. This chapter explains how the Lisp Machine’s instruction set works and how to
understand what code written in that instruction sct is doing. Fortunately, the translation between
Lisp and this instruction set is very simple: after you get the hang of it. you can move back and
forth between the two representations without miuch trouble. ‘The following text does not assume
any special knowledge about the Lisp Machine, although it somectimes assumes some  general
computer science background knowledge.

31.1 Introduction

Nobody looks at machine language code by trying to interpret octal numbers by hand.
Instead, there is a program called the Disassemibler which converts the numeric representation of
the instruction sct into a more readable textual representation. It is called the Disassembler
because it does the opposite of what an Assembler would do; however, there isn’t actually any
assembler that accepts this input format, since there is never any need to manually write assembly
language for the lisp Machine.

The simplest way to invoke the Disassembler is with the Lisp function disassemble. Here is
a simplc cxample. Suppose we type:

(defun foo (x)
(assq 'key (get x 'propname)))

(compile ’'foo)
(disassemble 'foo)

This defines the function foo, compiles it, and invokes the Disassembler to print out the
textual representation of the result of the compilation. Here is what it looks like:

22 MOVE D-PDL FEF|6 ; "KEY
23 MOVE D-PDL ARG|0O i X
24 MOVE D-PDL FEF}7 ; ' PROPNAME

25 (MISC) GET D-PDL
26 (MISC) ASSQ D-RETURN

The Disassembler is also used by the FError Handler and the Inspector. When you sce stuff
like the above while using onc of these programs, it is disasscmbled code, in the same format as
the disassemble function uscs. Inspecting a compiled code object shows the disassembled code.

Now, what does this mecan? Before we get started, there is just a little bit of jargon to learn.

PS:KLMAN>CODE.TEXT.36 o 3-JUN-84



~Lisp Machine Manual 753 . Introduction

The acronym PDI stands for Push Down List, and means the same thing as Stack: a last-in
first-out memory. "The terms PDI. and stack will be used interchangeably. The Lisp Machine’s
architecture is rather typical of “stack machines™; there is a stack that most instructions deal with;
and it is used to hold values being computed. arguments, and local variables, as well as flow-of-
control information.  An important use of the stack is to pass arguments to instructions, though
not all instructions take their arguments from the stack.

The acronym ‘FEF stands. for Function Entry Frame. A FEF is a compiled code object
produced by the compiler.  After the defun form above was cvaluated. the function cell of the
symbol foo contained a lambda expression. ‘Then we compiled the function foo, and the contents
of the function cell were replaced by a FEF. ‘The printed representation of the FEF for foo
looks like this:

#<DTP-FEF-POINTER 11464337 FOO>

The FEF has three parts (this is a simplified explanation): a header with various fixed-format
ficlds: a part holding constants and invisible pointers, and the main body. holding the machine
language instructions. The first part of the FEF, the header, is not very interesting and is not
documented here (you can look at it with describe but it won’t be casy to undcrstand). The
sccond part of the IFEF holds various constants referred to by the function: for example, our
function foo references two constants (the symbols key and propname), and so (pointers to) those
symbols are stored in the FEF. This part of the FEF also holds invisible pointers to the value
cells of all symbols that the function uses as variables, and invisible pointers to the function cells
of all symbols that the function calls as functions. The third part of the FEF holds the machine
language code itself.

Now we can rcad the disassembled code. The first instruction looked like this:
22 MOVE D-PDL FEF|6 i 'KEY

This instruction has several parts. The 22 is the address of this instruction. The Disassembler
prints out the address of each instruction before it prints out the instruction, so that you can
interpret branching instructions when you sce them (we haven't seen one of these yet, but we will
later). The MOVE is an opcode: this is a MOVE instruction, which moves a datum from one
place to another. The D-PDL is a destination specification. The D stands for ‘Destination’, and
so D-PDL means ‘Destination-PDL’: the destination of the datum being moved is the PDL. This
means that the result will be pushed onto the PDIL., rather than just moved to the top; this
instruction is pushing a datum onto the stack. The next field of the instruction is FEF|6. This is
an address, and it specifies where the datum is coming from. The vertical bar serves to separate
the two parts of the address. The part before the vertical bar can be thought of as a base
register, and the part after the bar can be thought of as being an offsct from that register. FEF
as a basc register means the address of the FEF that we are disassembling, and so this address
means the location six words into the FEF. So what this. instruction docs is to take the datum
located six words into the FEF, and push it onto the PDL. The instruction is followed by a
comment field, which looks like yKEY. This is not a comment that any person wrote; the
disassembler produces these to cxplain what is going on. The semicolon just scrves to start the
comment, the way scmicolons in Lisp code do. In this case, the body of the comment, 'KEY, is
telling us that the address field (FEF|6) is addressing a constant (that is what the single-quote in
'’KEY mecans), and that the printed representation of that constant is KEY. With the help of this

PS:KL.MAN>CODE.TEXT.36 8-JUN-84



Introduction 754 Lisp Machine Manual

comment we finally get the real story about what this instruction is doing: it is pushing (a
pointer to) the symbol key onto the stack.

The next instruction looks like this:
23 MOVE D-PDL ARG|O X

This is a lot like the previous instruction: the only difference is that a different “base register”
is being used in the address. ‘The ARG base register -is used for addressing your arguments:
ARG|0 means that the datum being addressed is the zeroth argument.  Again, the comment field
explains what that means: “the value of X (which was the zeroth argument) is being pushed onto
the stack.

The third instruction is just likc the first and sccond ones; it pushes the symbol. propname
onto the stack.

The fourth instruction is something new:
25 (MISC) GET D-PDL

The first thing we sec here is (MISC). This means that this is onc of the so-called
miscellaneous instructions. There arc quitc a few of these instructions. With some cxceptions,
cach miscellancous instruction corresponds to a lisp function and has the same name as that Lisp
function. If a Lisp function has a corresponding miscellancous instruction, then that function is
hand-coded in Lisp Machine microcode.

Miscellancous instructions only have a destination field; they don't have any address field.
The inputs to the instruction come from the stack: the top n clements on the stack are used as
inputs to the instruction and popped off the stack, where n is the number of arguments taken by
the function. The result of the function is stored wherever the destination field says. In our case,
the function being executed is get, a Lisp function of two arguments. The top two values will be
popped off the stack and used as the arguments to get (the value pushed first is the first
argument, the value pushed sccond is the second argument, and so on). The result of the call to
get will be sent to the destination D-PDL; that is, it will be pushed onto the stack. (In case you
were wondering about how we handle optional arguments and multiple-value returns, the answer
is very simple: functions that use cither of those features cannot be miscellancous instructions! If
you arc curious as to what functions arc hand-microcoded and thus available as miscellancous
instructions, you can look at the defmic forms in the file SYS: SYS; DEFMIC LISP.)

The fifth and last instruction is similar to the fourth:
26 (MISC) ASSQ D-RETURN

What is new here is the new value of the destination field. This one is called D-RETURN,
and it can be used anywhere destination ficlds in general can be used (like in MOVE instructions).
Scnding something to “Destination-Return™ means that this value should be the returned value of
the function, and that we should rcturn from this function. This is a bit unusual in instruction
sets: rather than having a “return” instruction, we have a destination that, when stored into,
returns from the function. What this instruction does, then, is to invoke the Lisp function assq
on the top two clements of the stack and return the result of assq as the result of this function.

PS:KL.MAN>CODE.TEXT.36 8-JUN-84



Lisp Machine Manual 755 A More Advanced Example

~ Now, let’s look at the program as a whole and see what it did:

~ 22 MOVE D-PDL FEF|6 ; 'KEY
23 MOVE D-PDL ARG|O ; X
24 MOVE D-PDL FEF|7 ; ' PROPNAME

25 (MISC) GET D-PDL
26 (MISC) ASSQ D-RETURN

First it pushes -the symbol key. ‘Then it pushes the value of x. ‘Then it pushes the symbol
propname. ‘Then it invokes get. which pops the value of x and the symbol propname off the
stack and uses them as arguments, thus doing the cquivalent of cvaluating the form (get x
‘propname). The result is left on the stack; the stack now contains the result of the get on top,
and the symbol key underncath that. Next, it invokes assq on these two values. thus doing the
cquivalent of cvaluating (assq 'key (get x 'propname)). Finally, it returns the value produced
by assq. Now, the original Lisp program we compiled was:

{(defun foo (x)
(assq 'key (get x ’propname)))

We can sce that the code produced by the compiler is correct: it will do the same thing as
the function we defined will do.

In summary, we have scen two kinds of instructions so far: the MOVE instruction, which
takes a destination and an address, and two of the large set of miscellancous instructions, which
take only a destination, and implicitly get their inputs from the stack. We have seen two
destinations (D-PDL and D-RETURN), and two forms of address (FEF addressing and ARG
addressing).

31.2 A More Advanced Example

Here is a more complex Lisp function, demonstrating local variables, function calling,
conditional branching, and some other new instructions. o

(defun bar (y)

(let ((z (car y)))
(cond ((atom z)
(setq z (cdr y))
(foo y))
(t
ni1))))

The disassembled code looks like this:

PS:<I.MAN>CODE.TEXT.36 ‘ _ - 8-JUN-84



A More Advanced Example 756 1 isp Machine Manual

20 CAR D-PDL ARG|O LY
21 POP LOCAL|0 1z

22 BR-NOT-ATOM 27

23 CDR D-PDL ARG|O 1Y

24 POP LOCAL|0 1z

25 CALL D-RETURN FEF|6 L #°FOO
26 MOVE D-LAST ARG]|0 Py

27 MOVE D-RETURN °NIL

The first instruction here is a CAR instruction. It has the same format as MOVE: there is a
destination and an address. The CAR instruction reads the datum addressed by the address, takes
the car of it, and stores the result into the destination.  In our example, the first instruction
addresses the zeroth argument, and so it computes (car .y): then it pushes the result onto the
stack.

The next instruction is something ncw: the POP instruction. It has an address ficld, but it
uses it as a destination rather than as a source. ‘The POP instruction pops the top value off the
stack, and stores that value into the address specified by the address ficld. In our example, the
value on the top of the stack is popped off and stored into address LOCAL|0. This is a new
form of address; it mcans the zeroth local variable. ‘The ordering of the local variables is chosen
by the compiler, and so it is not fully predictable, although it tends to be by order of appearance
in the code: fortunately you never have to ook at these numbers, because the comment field
explains what is going on. In this casc, the variable being addressed is z. So this instruction
pops the top value on the stack into the variable z. The first two instructions work together to
take the car of y and storc it into z, which is indeed the first thing the function bar ought to do.
(If you have two local variables with the same name, then the comment field won't tell you
which of the two you're talking about; you'll have to figure that out yoursclf. You can tell two
local variables with the same name apart by looking at the number in the address.)

The next instruction is a familiar MOVE instruction, but it uses a ncw destination: D-
IGNORE. This mecans that the datum being addressed isn't moved anywhere. If so, then why
bother doing this instruction? The reason is that there is conceptually a set of indicator bits, as
are found in most modern computers such as the 68000, the Vax, as well as in obsolete
computers such as the 370. Every instruction that moves or produccs a datum sets the indicator
bits from that datum so that following instructions can test them. So the reason that the MOVE
instruction is being donc is so that somcone can test the indicators set up by the value that was
moved, namely the value of z.

All instructions except the branch instructions sct the indicator bits from the result produced
and/or stored by that instruction,

The next instruction is a conditional branch; it changes the flow of control, based on the
values in the indicator bits, which in this casc reflect the value popped by the POP instruction
21. The branch instruction is BR-NOT-ATOM 27, which mecans “Branch, if the quantity was not
an atom, to location 27; otherwise procced with exccution”. If z was an atom, the Lisp Machine
branches to location 27, and ecxccution procceds there. (As you can see by skipping ahead,
location 27 just contains a MOVE instruction, which will cause the function to return nil.)

PS:K<LMAN>CODE.TEXT.36 8-JUN-84



I isp Machine Manual 757 A More Advanced Example

CIf z is not an atom, the program keeps going, and the CDR instruction is next. This is just
like the CAR instruction except that it takes the cdr: this instruction pushes the value of (cdr y)
onto the stack. 'The next one pops that value off into the variable z.

There are just two more instructions left. ‘These two instructions are our first cxample of how
function calling is compiled. It is the only really tricky thing in the instruction set. Here is how
it works in our example: :

25 CALL D-RETURN FEF|6 :#’FOO
26 MOVE D-LAST ARG|0 ;Y

The form being compiled here is (foo y). 'This means we are applying the function which is
in the function cell of the symbol foo, and passing it one argument. the value of y. The way
function calling works is in the following three steps. First of all. there is a CALL instruction
that specifies the function object being applied to arguments. This creates a new stack frame on
the stack, and stores the function object there. Secondly, all the arguments being passed cexcept
the last onc arc pushed onto the stack. Thirdly and lastly, the last argument is sent to a special
destination, called D-LAST, meaning “this is the last argument”. Storing to this destination is
what actually calls the function, nor the CALL instruction itself,

There are two things you might wonder about this. First of all. when the function returns,
what happens to the returned value? Well, this is what we use the destination field of the CALL
instruction for. The destination of the CALL is not stored into at the time the CALL instruction
is exccuted; instead, it is saved on the stack along with the function operation (in the stack frame
created by the CALL instruction). Then, when the function actually returns, its result is stored
into that destination.

The other question is what happens when there isn’t any last argument; that is, when there is
a call with no arguments at all? This is handled by a special instruction called CALLO. The
address of CALLO addresses the function object to be called; the call takes place immediately and
the result is stored into the destination specified by the destination field of the CALLO instruction.

So, let's look at the two-instruction scquence above. The first instruction is a CALL; the
function object it specifies is at FEF|6, which the comment tells us is the contents of the function
cell of foo (the FEF contains an invisible pointer to that function cell). The destination field of
the CALL is D-RETURN, but we aren’t going to store into it yet; we will save it away in the
stack frame and usc it later. So the function doesn’t return at this point, even though it says D~
RETURN in the instruction; this is the tricky part.

Next we have to push all the arguments except the last onc. Well, there’'s only one
argument, so nothing nceds to be done here. Finally, we move the last argument (that is, the
only argument: the valuc of y) to D-LAST, using the MOVE instruction. Moving to D-LAST is
what actually invokes the function, so at this point the function foo is invoked. When it returns,
its result is sent to the destination stored in the stack frame: D-RETURN. Therefore, the value
returned by the call to foo will be returned as the value of the function bar. Sure enough, this
is what the original Lisp code says to do.

PS:KLLMAN>CODE.TEXT.36 8-JUN-84



The Rest of the Instructions 758 : 1isp Machine Manual

When the compiler pushes arguments to a function call, it sometimes does it by sending the
values to a destimion called D-NEXT (mcaning the “next™ argument). This is exactly the same
as D-PDL when producing a compiled function, ‘The distinction is important when the compiler
output is passed to the microcompiler to generate microcode.

Here is another example w illustrate function calling. ‘This Lisp function calls one function on
the results of another function.

(defﬁn a (xy)
(b (¢ xy)¥))

The disassembled code looks like this:

22 CALL D-RETURN FEF|6 #'B
23 CALL D-PDL FEF|7 #°C
24 MOVE D-PDL ARG|O ;X
25 MOVE D-LAST ARG|1 Y
26 MOVE D-LAST ARG|1 Y

The first instruction starts off the call to the function b. The destination field is saved for
later: when this function returns, we will return its result as a's result. Next, the call to ¢ is
started. Its destination ficld, too, is saved for later; when ¢ returns, its result should be pushed
onto the stack, so that it will be the next argument to b, Next, the first and second arguments
to ¢ arc passed: the second one is sent to D-LAST and so the function ¢ is called. Its result, as
we said, will be pushed onto the stack, and thus become the first argument to b. Finally, the
sccond argument to b is passed, by storing in D-LAST; b gets called, and its result is sent to
D-RETURN and is returned from a.

31.3 The Rest of the Instructions

Now that we've gotten some of the feel for what is going on, I will start cnumerating the
instructions in the instruction set. The instructions fall into four classes. Class 1 instructions have
both a dcstination and an address. Class Il instructions have an address, but no destination.
Class 111 instructions arc the branch instructions, which contain a branch address rather than a
general basc-and-offset address. Class 1V instructions have a destination, but no address; these
are the miscellancous instructions.

We have already seen just about all the Class I instructions. There are nine of them in all:
MOVE, CALL, CALLO, CAR, CDR, CAAR, CADR, CDAR, and CDDR. MOVE just moves a
datum from an address to a destination; the CxR and CxxR instructions arc the same but
perform the function on the value before sending it to the destination; CALL starts off a call to a
function with some arguments; CALLO performs a call to a function with no arguments.

We've scen most of the possible forms of address. So far we have scen the FEF, ARG, and
LOCAL basc registers. There are two other kinds of addresses. One uses a “constant” base
register, which addresses a sct of standard constants: NIL, T, 0, 1, and 2. The disassembler
doesn't even bother to print out CONSTANT|#n, since the number n would not be cven slightly
interesting; it just prints out 'NIL or '1 or whatever. The other kind of address is a special one

PS:KI.MAN>CODE.TEXT.36 3-JUN-84



[isp Machine Manual 759 The Rest of the Instructions

printed as PDL-POP, which means that to rcad the valuc at this address, an object should be
popped off the top of the stack.

There are more Class 11 instructions. The only onc we've seen so far is POP, which pops a
value off the stack and stores it into the specified address.  Another, called MOVEM (from the
PDP-10 opcode name. meaning MOVIE 1o Memory), stores the top ¢lement of the stack into the
specified address, but doesn’t pop it off the stack. '

Seven Class H instructions implement heavily-used two-argument functions:  +, -, *, /,
LOGAND, LOGXOR, and LOGIOR. 'These instructions take the first argument from the top of
the stack (popping it off) and their second argument from the specified address, and they push
the result on the stack. Thus the stack level does not change due to these instructions, Here is a
small fuiction that shows some of these new things:

(defun foo (x y)
{setq x (Togxor y (- x 2))))

The disassembled code looks likc' this:

16 MOVE D-PDL ARG|1 Y
17 MOVE D-PDL ARG|O i X
20 - '2

21 LOGXOR PDL-POP

22 MOVEM ARG|O 3 X

23 MOVE D-RETURN PDL-POP

Instructions 20 and 21 usc two of the new Class Il instructions: the - and LOGXOR
instructions. Instructions 21 and 23 usc the PDL-POP address type, and instruction 20 usecs the
“constant” base register to get to a fixnum 2. Finally, instruction 22 uses thc MOVEM
instruction; the compiler wants to usc the top value of the stack to-store it into the value of x,
but it doesn’t want to pop it off the stack because it has another use for it: to return it from the
function. :

Another four Class 11 instructions implement some commonly used predicates: =, >, { and
EQ. The two arguments come from the top of the stack and the specified address; the stack is
popped, the predicate is applied to the two objects, and the result is left in the indicators so that
a branch instruction can test it, and branch based on the result of the comparison. These
instructions remove the top item on the stack and don’t put anything back, unlike the previous
set, which put their results back on the stack.

Next, there are four Class II instructions to read, modify, and write a quantity in ways that
are common in Lisp codc. These instructions are called SETE-CDR, SETE-CDDR, SETE-1+,
and SETE-1-. The SETE- means to set thc addressed value to the result of applying the
specified onc-argument function to the present value. For cxample, SETE-CDR means to read
the valuc addressed, apply cdr to it, and storc the result back in the specified address. This is
used when compiling (setq x (cdr x)), which commonly occurs in loops; the other functions are
* used frequently in loops, too. ‘

PSKILLM AN)COI)E.'I;EX'I‘.36 8-JUN-84



The Rest of the Instructions 760 Iisp Machine Manual

There are two instructions used to bind special variables, ‘The first is BIND-NIL, which binds
the cell addressed by the address field o nil; the sccond is BIND-POP, which binds the cell to
an object popped oft the stack rather than nil. The latter instruction pops a value off the stack:
the former does not usce the stack at all. '

There are two instructions to store common values into addressed cells. SET-NIL stores nil
into the cell specified by the address field; SET-ZERO stores 0. Neither instruction uses the
stack at all.

Finally, the PUSH-E instruction creates a locative pointer (o the ccll addressed by the
specified address. and pushes it onto the stack. This is used in compiling (value-cell-location
'z) where z is an argument or a local variable, rather than a symbol (special variable).

Those arc all of the Class Il instructions. Here is a contrived example that uses some of the
ones we haven't scen, just to show you what they look like:

(defun weird (x y)
(cond ((= x y)

(let ((*foo* nil) (*barx 5))
(declare (special »foo* sbarx))
(setq x (cdr x)))

nil)

(t

(setg x nil)

(caar (variable-location y)))))

The disassembled code looks like this:

24 MOVE D-PDL ARG|0 i X

25 = ARG|1 1Y

26 BR-NIL 35

27 BIND-NIL FEF|6 ;#FO0*
30 PUSH-NUMBER 5

31 BIND-POP FEF|7 ; »BAR#
32 SETE-CDR ARG|0 i X

33 (MISC) UNBIND 2 bindings
34 MOVE D-RETURN °'NIL

35 SET-NIL ARG|O i X
36 PUSH-E ARG|1 1Y
37 CAAR D-RETURN PDL-POP

Instruction 25 is an = instruction; it numerically compares the top of the stack, x, with the
addressed quantity, y. The x is popped off the stack, and the indicators are set to the result of
the cquality test. Instruction 26 checks the indicators, branching to 35 if the result of the call to
= was nil; that is, thc machine will branch to 35 if the two values were not cqual. Instruction
27 binds *foo* to nil; instructions 30 and 31 bind *bar* to 5. Instruction 30 is a peculiar class
IV instruction called PUSH-NUMBER which pushes a constant integer on the stack. The integer
must be in the range of zero to 511 in order for PUSH-NUMBER to be used. Instruction 32
demonstrates the use of SETE-CDR to compile (setq x (cdr x)), and instruction 35 demonstrates

PS:KLLMAN>CODE.TEXT.36 8-JUN-84



Lisp Machine Manual ‘ 761 Function oty

the use of SET-NIL to compile (setq x nil). Instruction 36 demonstrates the use of PUSH-E o
compile (variable-location vy).

‘The Class HT instructions are for branching. These have neither addresses nor destinations of
the usual sort. Instead, they have branch-addresses: they say where to branch. if the branch is
going to happen. There are several instructions, differing in the conditions under which they
branch and whether they pop the stack.  Branch-addresses are stored internally as self-relative
addresses. o make Lisp Machine code relocatable, but the disassembler does the addition for you
and prints out FEF-relative addresses so that you can casily see where the branch is going to.

The branch instructions we have seen so far decide whether to branch on the basis of the nil-
indicator, that is, whether the last value dealt with was nil or non-nil. BR-NIL branches if it was
nil, and BR-NOT-NIL branches if it was not nil.. There are two more instructions that test the
result of the atom predicate on the last value dealt with. BR-ATOM branches if the valuc was
an atom (that is. if it was anything besides a cons). and BR-NOT-ATOM branches if the value
was not an atom (that is, if it was a cons). The BR instruction is an unconditional branch (it
always branches). )

None of the above branching instructions deal with the stack. There arc two more
instructions called BR-NIL-POP and BR-NOT-NIL-POP, which arc the samc as BR-NIL and
BR-NOT-NIL except that if the branch is not done, the top value on the stack is popped off the
stack. These are used for compiling and and or special forms.

Finally, there are the Class IV instructions, most of which are miscellancous hand-microcoded
Lisp functions. The file SYS: SYS; DEFMIC LISP has a list of all the miscellancous
instructions. Most correspond to Lisp functions, including the subprimitives, although some of
these functions arc very low level internals that may not be documented anywhere (don’t be
disappointed if you don’t understand all of them). Plcase do not look at this file in hopes of
finding obscure functions that you think you can use to spced up your programs; in fact, the
compiler automatically uscs these things when it can, and directly calling weird internal functions
will only serve to make your code hard to read, without making it any faster. In fact, we don’t
guarantce that calling undocumented functions will continue to work in the future.

The DEFMIC file can be uscful for determining if a given function is in microcode, although
the only definitive way to tell is to compile some code that uses it and look at the results, since
sometimes the compiler converts a documented function with one name into an undocumented
onc with another name,

3]_.4 Function Entry

When a function is first entered in the Lisp Machine, interesting things can happen because
of the features that arc invoked by usc of the various lambda-list keywords. The microcode
performs various scrvices when a function is entcred, even before the first instruction of the
function is exccuted. These scrvices are called for by various fields of the header portion of the
FEF, including a list called the Argument Descriptor List, or ADL. We won't go into the
detailed format of any of this, as it is complex and the details are not too intcresting.
Disassecmbling a function that makes use of the ADL prints a summary of what the ADL says to
do, before the beginning of the code. ’

PS:KLLMAN>CODE. TEXT.36 8-JUN-84



Function Entry 762 I isp Machine Manual

The function-entry services include the initialization of unsupplied optional arguments and of
&AUX variables. ‘The ADL has a little instruction set of its own, and i’ the form that computes
the initial value is something simple, such as a constant or a variable, then the ADI. can handle
things itself.  However, if things get too complicated, instructions are needed, and the compiler
generates some instructions at the front of the function to initialize the unsupplied variables. In
this case, the ADI. specifies several different starting addresses for the function, depending on
which optional arguments have been supplied and which have been omitted.  If all the optional
arguments are supplied, then the ADLL starts the function ofl” after all the instructions that would
have initialized the optional arguments: since the arguments were supplied, their values should
not be set, and so all these instructions are skipped over. Here's an example:

(defvar =*y»)

(defun foo (&optional (x (car *y*)) (z (* x 3)))
(cons x z))

The disassembled code looks like this:

Arg 0 (X) is optional, local,
initialized by the code up to pc 32.

Arg 1 (Z) is optional, local,
initialized by the code up to pc 35.

30 CAR D-PDL FEF|6 ;#Ye
31 POP ARG|O i X
32 MOVE D-PDL ARG|0 i X
33 » '3

34 POP ARG|1 iz
35 MOVE D-PDL ARG|0 ;X
36 MOVE D-PDL ARG|1 ¥4

37 (MISC) CONS D-RETURN

If no arguments are supplied, the function will be started at instruction 30; if only one
argument is supplicd, it will be started at instruction 32; if both arguments arc supplied, it will
be started at instruction 39,

The thing to keep in mind here is that when there is initialization of variables, you may see
it as code at the beginning of the function, or you may not, depending upon whether it is too
complex for the ADL to handle. This is true of &aux variables as wcll as unsupplicd &optional
arguments,

When there is a &rest argument, it is passed to the function as the zeroth local variable,
rather than as any of the arguments. This is not really so confusing as it might scem, since a
&rest argument is not an argument passed by the caller; rather it is a list of some of the
arguments, created by the function-entry microcode services. In any casc the comment tells you
what is going on. In fact, one hardly ever looks much at the address ficlds in disassembled code,
since the comment tells you the right thing anyway. Here is a silly example of the usc of a &rest
argument;

PS:KILMAN>CODE.TEXT.36 8-JUN-84



I isp Machine Manual 763 Special Class 1V Instructions

(defun prod (&rest values)
(apply #'+ values))

The disassembled code looks like this:

20 MOVE D-PDL FEF|6 ' s
21 MOVE D-PDL LOCALJ|O ; VALUES
22 (MISC) APPLY D-RETURN

As can be seen, values is referred to as LOCALJ0.

Another thing the microcode does at function entry is to bind the values of any arguments or
“8aux variables that are special. Thus, you won't see any BIND instructions for binding them.

31.5 Special Class 1V Instructions

We said carlier that most of the Class 1V instructions arc miscellancous hand-microcoded Lisp
functions. However, a few of them are not Lisp functions at all. There are two instructions that
are printed as UNBIND 3 bindings or POP 7 values: the number can be anything up to 16
(these numbers arc printed in decimal). ‘These instructions just do what they say, unbinding the
last n values that were bound or popping the top n values off the stack.

Another Class 1V instruction is PUSH-NUMBER. It pushes a constant integer, in the range
zero to 511, An example of it appeared on page 760.

The array referencing functions—aref, aset, and aloc—take a variable number of arguments,
but they are handled differently depending on how many there are. For one-, two-, and three-
dimensional arrays, these functions are turned into internal functions with names ar-1, as-1, and
ap-1 (with the number of dimensions substituted for 1). Again, there is no point in using these
functions yourself; it would only make your code harder to understand but not any faster at all.
When there are more than three dimensions, the functions aref, aset and aloc are called in the
ordinary manner.

(defun foo (y x i j &aux v)
(setq v (aref x i j))
(setf (aref y i) v))

16 MOVE D-PDL ARG|1 i X
17 MOVE D-PDL ARG|2 ;1
20 MOVE D-PDL ARG|3 $J
21 (MISC) AR-2 D-PDL

22 POP LOCAL|O iV
23 MOVE D-PDL ARG|0 ;Y
24 MOVE D-PDL ARG|2 i1
25 MOVE D-PDL LOCAL|0 iV

26 (MISC) SET-AR-1 D-RETURN

PS:KI.LMAN>CODE.TEXT.36 ' ' 8-JUN-84



Special Class IV Instructions 764 4 [ isp Machine Manual

Reference 1o one-dimensional arrays with constant subscripts use special instructions which
have the array index encoded instead of an address.

(defun foo (x)
(+ (aref x 3) (array-leader x 2))
(setf (aref x 5) t))

FOO:"

16 MOVE D-PDL ARG|O X
17 AR-1 (3) D-IGNORE

20 MOVE D-PDL ARG]|O : i X
21 ARRAY-LEADER (2) D-IGNORE

22 MOVE D-PDL ARG]|O 3 X

23 MOVE D-PDL 'T
24 SET-AR-1 (5) D-RETURN

The AR-1 instruction is to be distinguished from the MISC AR-1 instruction. AR-1 pops an
array off the stack and cncodes the subscript itself. The 3 in (3) is the subscript. ARRAY -
LEADER is similar but refers to an array Icader slot. SET-AR-1 pops an array and then pops a
value to store into it at the specified slot. SET-AR-1 is analogous. ‘There also exist
%INSTANCE-REF and SET-%INSTANCE-REF instructions.

When you call a function and expect to get more than one valuc back, a slightly different
kind of function calling is used. Here is an example that uscs multiple-value w get two valucs
back from a function call:

(defun foo (x)
(Tet (y z)
(multiple-value (y z)
(bar 3))

(+ xy z)))
The disassembled code looks like this:

20 MOVE D-PDL FEF|6 ; #'BAR
21 MOVE D-PDL 2 :

22 (MISC) %CALL-MULT-VALUE D-IGNORE
23 MOVE D-LAST '3

24 POP LOCAL|1 1z
25 POP LOCAL|O .Y
26 MOVE D-PDL ARG|0D i X
27 + LOCAL|O , ;Y
30 + LOCAL|1 iz

31 MOVE D-RETURN PDL-POP

A %CALL-MULT-VALUE instruction is used instcad of a CALL instruction. The destination
field of %CALL-MULT-VALUE is unused and will always bc D-IGNORE. %CALL-MULT-
VALUE takes two “arguments”, which it finds on the stack: it pops both of them. The first one
is the function object to be applied; the sccond is the number of return values that are expected.

PS:<I.MAN>CODE.TEXT.36 8-JUN-84



Lisp Machine Manual 765 Special Class 1V Instructions

The rest of the call proceeds as usual, but when the call returns, the returned values are left on
the stack. The number of objects left on the stack is always the same as the second “argument”
to %CALL-MULT-VALUE. In our cxample, the two values returned are left on the stack. and
they -are immediately popped off into z and y. ‘There is also a %CALLO-MULT-VALUE
instruction, for the same rcason CALLO cxists.

‘The multiple-value-bind form works similarly; here is an example:

(defun foo (x)
{multiple-value-bind (y *foo* z)
(bar 3) .
(declare (special *foox))

(+ xy z)))
The disassembled code looks like  this:

22 MOVE D-PDL FEF)?7 ;#'BAR
23 MOVE D-PDL '3

24 (MISC) %CALL-MULT-VALUE D~IGNORE
25 MOVE D-LAST '3

26 POP LOCAL|1 ¥
27 BIND-POP FEF|6 ; *FOO*
30 POP LOCAL|O . ;Y
31 MOVE D-PDL ARG|0 i X
32 + LOCAL|O ;Y
33 + LOCAL|1 iz

34 MOVE D-RETURN PDL-POP

The %CALL-MULT-VALUE instruction is still used, leaving the results on the stack; these
results are used to bind the variables,

Calls donc with multiple-value-list work with the %CALL-MULT-VALUE-LIST instruction.
It takes one “argument” on the stack: the function object to apply. When the function returns,
the list of values is left on the top of the stack. Here is an example:

(defun foo (x y)
(multiple-value-list (bar -7 y x}))

The disassembled code looks like this:

22 MOVE D-PDL FEF|6 ;#'BAR

23 (MISC) %CALL-MULT-VALUE-LIST D-IGNORE
24 MOVE D-PDL FEF|7 -7

25 MOVE D-PDL ARG|1 Y

26 MOVE D-LAST ARG|O 1 X

27 MOVE D-RETURN PDL-POP

Returning of more than one value from a function is handled by special miscellaneous
instructions. %RETURN-2 and %RETURN-3 are used to rcturn two or thrce values; these

PS:<I.MAN>CODE.TEXT.36 8-JUN-84



Special Class 1V Instructions 766 Lisp Machine Manual

instructions take (wo and three arguments, respectively, on the stack and return from the current
function just as storing to D-RETURN would. If' there are more than three return values, they
are all pushed, then the number that there were is pushed, and then the %RETURN-N
instruction is executed. None of these instructions use their destination field. Note:  the return-
list function is just an ordinary miscellancous instruction; it takes the list of values to return as an
argument on the stack and returns those values from the current function.

The function apply is compiled using a special instruction called %SPREAD o itcrate over
the clements of its Tast argument, which should be a list. %SPREAD takes onc argument (on the
stack), which is a list of values to be passed as arguments (pushed on the stack). If the
destination of %SPREAD is D-PDL (or D-NEXT). then the values are just pushed: if it is D-
LAST, then after the values are pushed. the function is invoked. apply with more than two
arguments will always compile using a %SPREAD whose destination is D-LAST. Here is an
example:

(defun foo (a b &rest c)
(apply #'format t a c)
b)

The disassembled code looks like this:

FOO:

20 CALL D-IGNORE FEF|6 :#'FORMAT
21 MOVE D-PDL 'T

22 MOVE D-PDL ARG}O ;A

23 MOVE D-PDL LOCAL]|O Hs

24 (MISC) %SPREAD D-LAST

25 MOVE D-RETURN ARG|1 ;B

Note that in instruction 23, the addrcss LOCAL|O is used to access the &rest argument.

The catch special form is also handled specially by the compiler. Here is a simple example
of catch:

(defun a ()
{catch 'foo (bar)))

The disassembled code looks like this:

24 MOVE D-PDL FEF|6 ;30
25 (MISC) %CATCH-OPEN D-RETURN

26 MOVE D-PDL FEF|7 "3 'FOO
27 CALLO D-RETURN FEF|8 i #'BAR

The %CATCH-OPEN instruction is like the CALL instruction; it starts a call to the catch
function. It takes one “argument”™ on the stack, which is the location in the program that should
be branched to if this catch is thrown to. In addition to saving that program location, the
instruction saves the state of the stack and of special-variable binding so that they can be restored
in the event of a throw. So instructions 24 and 25 start a catch block, and the rest of the

PSKKLLMAN>CODE. TEXT.36 8-JUN-84



I isp Machine Manual 767 Special Class 1V Instructions

function computes the two arguments of the catch. Note, however, that catch is not actually
called. "The last form inside the catch, in this case (bar), is compiled so as to return its values
dircctly out of the function a. ‘The only way that the inactive stack frame for catch matters is if
a throw is done during the exccution of bar. ‘This scarches for a pending call to catch and:
returns from that frame. In this case, since the %CATCH-OPEN instruction specifies D-
RETURN. the values thrown are returncéd from a.

You may have wondered why instruction 24 is there at all. If the destination of a catch is
not D-RETURN, it is necessary for throw to resume cxccution of the function containing the
catch. ‘Then it is necessary to specify what instruction to resume at. For example:

(defun a ()
(catch ’'foo (bar))
(print t))

The disassembled code looks like this:

26 MOVE D-PDL FEF|6 ;32
27 (MISC) %CATCH-OPEN D-IGNORE

30 MOVE D-PDL FEF|7 ;' (BAR)
31 MOVE D-LAST FEF|8 ; *FOO

32 CALL D-RETURN FEF|9 ;#'PRINT
33 MOVE D-LAST 'T -

The instruction 26 pushes 32, which is the number of instruction at which exccution should
resume if there is a throw. ’

- To allow compilation of (muitiple-value (...) (catch ..)), there is a special instruction called
%CATCH-OPEN-MULT-VALUE, which is a cross between %CATCH-OPEN and %CALL-
MULT-VALUE. :

PS:KLLMAN>CODE.TEX'T.36 8-JUN-84



	752_AsmLang
	753_AsmLang
	754_AsmLang
	755_AsmLang
	756_AsmLang
	757_AsmLang
	758_AsmLang
	759_AsmLang
	760_AsmLang
	761_AsmLang
	762_AsmLang
	763_AsmLang
	764_AsmLang
	765_AsmLang
	766_AsmLang
	767_AsmLang

