Queryig the User 768 Lisp Machine Manual

32. Querying the User

The following functions provide a convenient and consistent interface for asking questions of
the user. Questions are printed and the answers are read on the strcam *query-io*, which
normally is synonymous with *terminal-io* but can be rebound to another stream for special
applications. '

The macro with-timeout (sce page 686) can be used with the functions in this chapter to
assume an answer if the user does not respond in a fixed period of time.

We first describe two simple functions for yes-or-no questions, then the more general function
on which all querying is built.

y-or-n-p &optional formar-string &rest format-args
This is used for asking the user a question whose answer is cither 'y’ for ‘yes’ or ‘n’ for
‘no’. It prints a message by passing fornmar-string and formar-args to format, rcads a one-
character answer. cchocs it as ‘Yes™ or ‘No’, and rcturns t if the answer is ‘yes’ or nil if
the answer is 'no’. ‘The characters which mean ‘yes’ are 'Y', “I", Space, and Hand-up.
The characters which mean "no” are ‘N'. Rubout. and Hand-down. If any other
character is typed. the function beeps and demands a 'Y or N answer.

You should include a question mark and a space at the end of the message. y-or-n-p
does type ‘(Y or NY for you.

query-io is used for all input and output.

y-or-n-p should be used only for questions that the user knows arc coming. If the user
is_not going to be anticipating the question (e.g. if the question is “Do you really want to
delete all of your files?” out of the blue) then y-or-n-p should not be used, because the
user might type ahcad a ‘1", ‘Y’, ‘N, Space, or Rubout, and thcrefore accidentally
answer the question. In such cascs, use yes-or-no-p.

yes-or-no-p &optional format-string &rest format-args
This is used for asking the user a question whose answer is ecither ‘yes’ or ‘no’. It prints a
message by passing format-string and format-args to format, becps, and reads in a line
from *query-io*. If the linc is ‘yes’, it returns t. If the line is ‘no’, it returns nil.
(Casce is ignored, as arc leading and trailing spaces and tabs.) If the input line is anything
clse, yes-or-no-p beeps and demands a ‘yes or no’ answer.

You should include a question mark and a space at the end of the mcssage. yes-or-no-
p docs type ‘(Yes or No)' for you.

query-io is used for all input and output.

To allow the user to answer a yes-or-no question with a single character, usc y-or-n-p.
yes-or-no-p should be used for unanticipated or momentous questions; this is why it
beeps and why it requires several keystrokes to answer it.

PS:KL.MAN>QUERY.TEXT.22 8-JUN-84

Lisp Machine Manual ‘ 769 Querying the User

)

fquery options formar-string &rest format-args
Asks @ question, printed by (format *query-io* format-string Sormar-args...), and returns
the answer. fquery takes carc of checking for valid answers, reprinting the question when
the user clears the screen, giving help, and so forth.

options is a list of alternating keywords and valucs, used to sclect among a varicty of
features. Most callers pass a constant list as the oprions (rather than consing up a list
whose contents varies). The keywords allowed are:

type What type of answer is expected. ‘The currently-defined types arc :tyi (a
single character), :readline or :mini-buffer-or-readline (a line terminated
by a carriage return). ctyi is the default. :mini-buffer-or-readline is
ncarly the same as readline, the only difference being that the former
uses a minibuffer if used inside the editor.

:choices Defines the allowed answers. The allowed forms of choices are
complicated and explained below. The default is the same set of choices
as the y-or-n-p function (sce above). Note that the :type and :choices
options should be consistent with cach other.

Jlist-choices If t, the allowed choices are listed (in parentheses) after the question. The
default is t: supplying nil causes the choices not to be listed unless the
user trics to give an answer which is not one of the allowed choices.

-help-function Specifies a function to be called if the user hits the Help key. The default
help-function simply lists the available choices. Specifying nil disables
special treatment of Help. Specifying a function of three arguments—the
stream, the list of choices, and the type-function—allows smarter hclp
processing. The type-function is the internal form of the :type option and
can usually be ignored.

:condition If non-nil, a signal name (see page 713) to be signaled before asking the
question. A condition handler may handle the condition, specifying an
answer for fquery to return, in which case the user is not asked. The
details are given below. The default signal name is :fquery, which signals
condition name :fquery.

:fresh-line If t, *query-io* is advanced to a fresh line before asking the question. If
nil, the question is printed wherever the cursor was left by previous
typeout. The default is t.

- :beep If t, fquery beeps to attract the uscrs attention to the question. The
default is nil, which means not to beep unless the user trics to give an
answer which is not onc of the allowed choices.

:stream The value should be cither an 170 strcam or a symbol or expression that

will cvaluate to one. fquery uses the specified stream instcad of *query-
io* for all its input and output.

:clear-input If t, fquery throws away typc-ahcad before reading the user’s response to
the question. Usc this for unexpected questions. The default is nil, which
means not to throw away typc-ahcad unless the user tries to give an
answer which is not onc of the allowed choices. In that case, type-ahead

PSKL.MAN>QUERY.TEXT.22 : 8-JUN-84

Querying the User 770 Lisp Machine Manual

is discarded since the user probably wasn’t expecting the question.

:make-complete
If t and *query-io* is a typcout-window, the window is “made complete”
after the -question has been answered. 'This tells the system that the
contents of the window are no longer useful. Refer to the window system
documentation for further explanation. The default is t.

The argument to the :choices option is a list cach of whose clements is a choice. ‘The
cdr of a choice is a list of the user inputs which correspond to that choice. These should
be characters for :type :tyi or strings for :type :readline. 'I'he car of a choice is cither a
symbol which fquery should return it the user answers with that choice, or a list whose
first clement is such a symbol and whose sccond clement is the string o be echoed when
the user selects the choice. In the former case nothing is cchoed. In most cases :type
rreadline would use the first format. since the user’s input has alrcady been cchoed. and
type :tyi would use the sccond format, since the input has. not been cchoed and
furthermore is a single character, which would not be mnemonic to see on the display.

A choice can also be the symbol :any. [f used, it must be the last choice. It means that
any input is allowed, and should simply be returned as a string or character if it does not
match any of the other choices.

Perhaps this can be clarified by cxample. The yes-or-no-p function uses this list of
choices:
((t "Yes") (nil "No"))
and the y-or-n-p function uscs this list:
(((t "Yes.") #\y #\t #\space #\hand-up)
((ni1 "No.") #\n #\rubout #\hand-down))

If a signal name is specified (or allowed to default to :fquery), before asking the question
fquery will signal it. (Sce scction 30.1, page 698 for information about conditions.)
make-condition will receive, in addition to the signal name, all the arguments given to
fquery, including the list of options, the format string, and all the format arguments.
fquery provides one proceed type, :new-value, and if a condition handler proceeds, the
argument it proceeds with is returned by fquery.

If you want to use the formatted output functions instcad of format to produce the
promting message, write
(fquery options (format:outfmt exp-orstring exp-or-string ...))

format:outfmt puts the output into a list of a string, which makes format print it exactly
as is. 'There is no need to supply additional arguments to the fquery unless it signals a
condition. In that casc the arguments might be passed so that the condition handler can
sce them. The condition” handler will reccive a list containing one string, the message, as
its third argument instcad of just a string. If this argument is passed along to format, all
the right things happen.

PS:<LLMAN>QUERY.TEXT.22 8-JUN-84

Lisp Machine Manual : 771 Querying the User

fquery (condition) - Condition
This condition is signaled, by default, by fquery. 'The condition instance supports these
operations:

:options Returns the list of options given to fquery.

format-string Returns the format string given to fquery.

-~ :format-args Rcturns the list of additional args for format, given to fquery.

One proceed type is provided, :new-value. It should be used with a single argument,
which will be returned by fquery in licue of asking the user.

format:y-or-n-p-options . Constant
A suitable list to pass as the first argument to fquery to make it behave like y-or-n-p.
format:yes-or-no-p-options _ Constant
A suitable list to pass as the first argument to fquery to make it bchave like yes-or-no-
p.
format:y-or-n-p-choices

Constant
A list which y-or-n-p uses as the value of the :choices option.

PS:KIL.MAN>QUERY.TEXT.22 o 8-JUN-84

	768_QueryIO
	769_QueryIO
	770_QueryIO
	771_QueryIO

