Initializations 172 Lisp Machine Manual

33. Initializations '

There are a number of programs and facilitics in the Lisp Machine that require that
“initialization routines™ be run cither when the facility is first loaded. or when the system is
booted, or both. ‘These initialization routines may sct up data structures, start processes running,
open network connections, and so on. ‘

It is casy to perform an action when a file is loaded: simply place an expression to perform
the action in the file. But this causes the action to be repeated if the file is loaded a second time,
and often that should not be done. Also, this does not provide a way to causc actions to be
taken at other times, such as when the system is booted or when a garbage collection is started.

The initialization list facility serves these nceds. An initialization list is a symbol whose value
is a list of initializations. put on by various programs, all to be performed when a certain event
(such as a cold boot) happens. When the cvent occurs. the system function in charge of handling
the cvent (si:lisp-reinitialize, for cold boot) exccutes all the initializations on the appropriate list,
in the order they are present on the. list,

Each initialization has a name, a form to be cvaluated, a flag saying whether the form has
yet been cvaluated, and the source file of the initialization, if any. The name is a string or a
symbol and lics in the car of an initialization; thus assoc may be used on initialization lists to
find particular initializations,

System and user files place initializations on initialization lists using the function add-
initialization. 'The name of the initialization is specified so that the system can distinguish
between adding a new initialization and repeating or changing the definition of an initialization
alrcady known: if therc is alrcady an initialization with the specified name, this is a new
definition of the same initialization. One can specify that the initialization be executed
immediately if it is ncw but not if it is repeated.

User programs arc free to create their own initialization lists to be run at their own times.

33.1 System Initialization Lists

There are scveral initialization lists built into the system. Each onc is invoked by the system
at a specific time, such as immediatcly after a cold boot, or during disk-save. A user program
can put initializations on these lists to cause actions to bc taken at those times as the program
needs. ‘This avoids the need to modify system functions such as lisp-reinitialize or disk-save in
order to make them interact properly with the user program.

The system initialization lists arc gencrally identified by keywords rather than by their actual
names. We name them here by their keywords. In each case, the actual initialization list symbol
is in the si package, and its name is the conventional keyword followed by ‘-initialization-list’.
Thus, for :cold, there is si:cold-initialization-list. 'This is just a convention.

PS:K<L.LMAN>INIT.TEXT.17 8-JUN-84

| isp Machine Manual _ 773 System hitialization Fists

Unless otherwise specified. an initialization added to a system list is not run when it is added,
only when the appropriate event happens. A few system lists are exceptions and also run cach
initialization when it is added. Such exceptions are noted explicitly.

The :once initialization list is used for initializations that need to be done only once when the
subsystem is loaded and must never be done again. For example, there are some databascs that
need to be initialized the first time the subsystem is loaded, but should not be reinitialized every
time a new version of the software is lToaded into a currently running system. ‘This list is for that
purpose. When a new initialization is added to this fist, it is exccuted immediately: but when an
initialization is redefined, it is not exccuted again.

‘The :cold initialization list is used for things that must be run once at cold-boot time. The
initializations on this list are run after the ones on :system but before the ones on the :warm list.

The :warm initialization list is used for things which must be run every time the machine is
booted, including warm boots. The function that prints the greeting, for example, is on this list.
For cold boots, the :cold initializations are done before the :warm oncs.

The :system initialization list is like the :warm list but its initializations arc run before thosc
of the :cold list. These are gencrally very fundamental system initializations that must be done
before the :cold or :warm initializations can work. Initializing the process and window systems,
the file system, and the Chaosnct NCP falls in this category. By default, a new initialization
added to this list is run immediately also. In general, the system list should not be touched by
user subsystems, though therc may be cases when it is necessary to do so.

The :before-cold initialization list is used for things to be run by disk-save. Thus they
happen cssentially at cold boot time, but only once when the world is saved, not cach time it is
started up.

The :site initialization list is run cvery time a new site table and host table are loaded by
update-site-configuration-info. By default, adding an initialization to this list runs the
initialization immediately, even if the initialization is not new.

The :site-option initialization list is run every time the sitc options may have changed; that
is, when a new site tables are loaded or after a cold boot (to sec the per-machine options of the
machine being booted on). By dcfault, adding an initialization to this list runs the initialization
immediately, even if the initialization is not new.

The :full-gc initialization list is run by the function si:full-gc just before garbage collecting.
Initializations might be put on this list to discard pointers to bulky objects, or to turn copy hsts
into cdr-coded form so that they will remain permanently localized.

The :after-flip initialization list is run after every garbage collcction flip, at the beginning of
scavenging. These initializations can force various objects to be copied into new space near each
other simply by referencing them all consecutively.

The :after-full-gc initialization list is run by the function si:full-gc just after a flip is done,
but before scavenging.

PS:<LLMAN>INIT.TEXT.17 ' | 8-JUN-84

Programming Initializations 114 Lisp Machine Manual

The :login and :logout lists arc run by the login and logout functions (sec page §01)
respectively. Note that disk-save calls logout. Also note that often people don't call logout;
they just cold-boot the machine.

33.2 Programming Initializations

add-initialization nwme form &optional list-ofkevwords initialization-list-name
Adds an initialization called name with the form form to the initialization tist specified
cither by initialization-list-name or by keyword. If the initialization list alrcady contains an
initialization called name, it is redefined to exccute form.

initialization-list-name, if specified. is a symbol that has as its value the initialization list.
If it is void, it is initialized (1) to nil, and is given a sizinitialization-list property of t. If
a keyword specifies an initialization list, initialization-list-name is ignored and should not
be specified. :

The keywords allowed in list-of-keywords are of two kinds. Most specify the initialization
list to use; a list of such keywords makes up most of the previous section. Aside from
them, four other keywords arc allowed, which specify when to evaluate form. They are
called the when-keywords. Here is what they mean: '

:normal Only place the form on the list. Do not evaluate it until the time comes
to do this kind of initialization. This is the default unless :system, :once,
:site or :site-option is specified.

first Evaluate thc form now if it is not flagged as having been cvaluated
before. This is the default if :system or :once is specified.

:now Evaluate the form now unconditionally as well as adding it to the list.

:redo Do not evaluatc the form now, but set the flag to nil ecven if the

initialization is alrcady in the list and flagged t.

Actually, the keywords are compared with string-equal and may be in any package. If
both kinds -of keywords arc used, the list keyword should come before the when-keyword
in list-of-keywords; otherwise the list keyword may override the when-keyword.

The add-initialization function kceps each list ordered so that initializations added first
are at the front of the list. Therefore, by controlling the order of exccution of the
additions, you can control explicit dependencics on order of initialization. Typically, the
order of additions is controlled by the loading order of files. The system list is the most
critically ordered of the predefined lists.

The add-initialization keywords that specify an initialization list are defined by a variable;
you can add new keywords to it.

PS:<L.MAN>INIT.TEXT.17 8-JUN-84

Lisp Machine Manual . 775 Programming Iiitializations

si:initialization-keywords Variable

Fach clement on this list defines the keyword for one initialization list. Lach clement is a
list of two or three clements. ‘The first is the keyword symbol that names the initialization
list. ‘The second is a special variable, whose value is the initialization list itself. ‘The
third, if present, is a symbol defining the default “time™ at which initializations added to
this list should be evaluated: it should be si:normal. si:now. sifirst, or sicredo. ‘This

~third clement just acts as a default; if the list of keywords passed to add-initialization
contains onc of the keywords normal, now, first, or redo. it overrides this default. 1f
the third element is not present, it is as if the third clement were si:normal.

delete-initialization name &optional keywords initialization-list-name
Removes the specified initialization from the specified initialization fist. Keywords may be
any of the list options allowed by add-initialization.

initializations initialization-list-name &optional redo-flag flag-value

Performs the initializations in the specified list. redo-flag controls whether initializations
that have already been performed are re-performed; nil means no, non-nil is yes, and the
default is nil. flag-value is the valuc to be bashed into the flag slot of an entry. If it is
unspecified, it defaults to t, meaning that the system should remember that the
initialization has been done. The reason that there is no convenient way for you to
specify onc of the specially-known-about lists is that you shouldn’t be calling initializations
on them. This is done by the system when it is appropriate.

reset-initializations initialization-list-name

Bashes the flag of all entries in the specified list to nil, thereby causing them to get rerun
the next time the function initializations is called on the initialization list.

PS:KL.MANDINIT.TEXT.17 ' | 8-JUN-84

	772_Initializations
	773_Initializations
	774_Initializations
	775_Initializations

