Dates and Times 776 1 isp Machine Manual

34, Dates and Times

The time package contains a sct of functions for manipulating dates and times: finding the
current time, reading and printing dates and times. converting between formats, and other
miscellany regarding peculiarities of the calendar system. 1t also includes functions for aceessing
the Lisp Machine’s microsecond timer.

‘Times are represented in two different formats by the functions in the time package. Onc
way is 1o represent a time by many numbers, indicating a year, a month, a date, an hour, a
minute, and a sccond (plus, sometimes, a day of the week and timezone). If a year less than
100 is specified. a multiple of 100 is added to it to bring it within 50 years of the present. Year
numbers returned by the time functions arc greater than 1900. The month is 1 for January, 2 for
February. ctc. The date is 1 for the first day of a month. The hour is a number from 0 to 23.
The minute and second are numbers from 0 to 59. Days of the week are fixnums, where 0
means Monday, 1 means Tuesday, and so on. A timezone is specified as the number of hours
west of GMT: thus in Massachusetts the timezone is 5. Any adjusument for daylight savings time
is scparate from this.

This “decoded™ format is convenient for printing out times into a rcadable notation, but it is
inconvenient for programs to make sense of these numbers and pass them around as arguments
(since there are so many of them). So there is a sccond representation, called Universal Time,
which measures a time as the number of scconds since January 1, 1900, at midnight GMT. This
“encoded” format is casy to deal with inside programs, although it doesn't make much sense to
look at (it looks like a huge integer). So both formats are provided; there are functions to
convert between the two formats; and many functions cxist in two versions, one for cach format.

The Lisp Machine hardware includes a timer that counts once every microsecond. It is
controlled by a crystal and so is fairly accuratc. The absolute value of this timer doesn’t mean
anything uscful, since it is initialized randomly; what you do with the timer is to rcad it at the
beginning and end of an interval, and subtract the two values to get the length of the interval in
microseconds. These relative times allow you to time intervals of up to an hour (32 bits) with
microsecond accuracy.

The Lisp Machine keeps track of the time of day by maintaining a fimebase, using the
microsccond clock to count off the scconds. On the CADR, when the machine first comes up,
the timebase is initialized by querying hosts on the Chaosnet to find out the current time. The
l.ambda has a calendar clock which never stops, so it normally does not need to do this. You
can also sct the time base using time:set-local-time, described below.

There is a similar timer that counts in 60ths of a sccond rather than microseconds; it is useful
for measuring intervals of a few scconds or minutes with less accuracy. Periodic housckeeping
functions of the system are scheduled based on this timer. :

PS:<ILMAN>TIME.TEXT.40 8-JUN-84

| isp Machine Manual , 177 Getting and Setting the Time

3.1 Getting and Setting the Time

get-decoded-time

time:get-time :
Gets the current time, in decoded form. Return scconds, minutes, hours, date, month,
year, day-of-the-week, and daylight-savings-time-p, with the same meanings as decode-
universal-time (sce page 782). If the current time is not known, nil is returned.

The name time:get-time is obsolete.

get-universal-time
Returns the current time in Universal Time form.

time:set-local-time &optional new-time
Sets the local time to new-time. 1f new-time is supplicd. it must be cither a universal
time or a suitable argument to time:parse-universal-time (sce page 781). If it is not
supplied, or if there is an ecrror parsing the argument, you are prompted for the new
time. Note that you will not normally need to call this function; it is useful mainly when
the timebase gets screwed up for one reason or another,

34.1.1 Elapsed Time in 60ths of a Second

The following functions deal with a different kind of time. These arc not calendrical
date/times, but simply clapsed time in 60ths of a sccond. These times arc used for many internal
purposes where the idea is to measure a small interval accurately, not to depend on the time of
day or day of month.

time
Returns a number that increases by 1 every 60th of a seccond. The value wraps around
roughly once a day. Use the time-lessp and time-difference functions to avoid getting
in trouble duc to the wrap-around. time is completely incompatible with the Maclisp
function of the same name.

Note that time with an argument measurcs the length of time required to evaluate a form.
Sce page 794.

get-internal-run-time

get-internal-real-time
Returns the total time in 60ths of a second since the last boot. This value docs not wrap
around. Eventually it becomes a bignum. The Lisp Machine does not distinguish between

run time and real time.

internal-time-units-per-second Constant
According to Common Lisp, this is the ratio between a second and the time unit used by
valucs of get-internal-real-time. On the Lisp Machine, the value is 60. The value may
be different in other Common Lisp implementations.

PS:KLLMAN>TIME.TEXT 40 8-JUN-84

Printing Dates and 'Fimes 178 Iisp Machine Manual

time-lessp timel timel
tif vimel is carlier than time2. compensating for wrap-around, otherwise nil.

time-difference rimel time2
Assuming rimel is later than time2, returns the number of 60ths of a sccond difference
between them, compensating for wrap-around.

time-1increment ‘ime interval
Increments time by imterval, wrapping around if appropriate.

34.1.2 Elapsed Time in Microseconds

time:microsecond-time
Returns the value of the microsccond timer, as a bignum. ‘The values returnced by this
function wrap around back to zero about once per hour,

time:fixnum-microsecond-time

Returns as a fixnum the value of the low 23 bits of the microsecond timer. This is like
time:microsecond-time, with the advantage that it returns a value in the same format as
the time function, except in microscconds rather than 60ths of a sccond. This means that
you can compare fixnum-microsccond-times with time-lessp and time-difference.
time:fixnum-microsecond-time is also a bit faster, but has the disadvantage that since
you only see the low bits of the clock, the value can wrap around more quickly (about
every cight seconds). Note that the Lisp Machine garbage collector is so designed that the
bignums produced by time:microsecond-time arc garbage-collected quickly and efficiently,
so the overhead for creating the bignums is really not high.

34.2 Printing Dates and Times

The functions in this section crcatc printed represcntations of times and dates in various
formats and send the characters to a strecam. To any of these functions, you may pass nil as the
stream parameter and the function will return a string containing the printed representation of the
time, instcad of printing the characters to any stream.

The three functions time:print-time, time:print-universal-time, time:print-brief-universal-
time and time:print-current-time accept an argument called date-print-mode. whose purpose is to
control how the date is printed. It always defaults to the value of time:*default-date-print-
mode*. Possible values include: '

:dd//mm//yy Print the date as in ‘3/16/53".
:mm//dd//yy Print as in ‘16/3/53".
:dd-mm-yy Print as in ‘16-3-53’.
dd-mmm-yy Print as in ‘16-Mar-53’.

;Jdd mmm yy| Print as in ‘16 Mar 53’.
:ddmmmyy ' Print as in ‘16Mar53’.

PS:KL.MAN>TIME.TEXT .40 ‘ 8-JUN-84

Lisp Machine Manual _ , 779 Printing Dates and Times

:yymmdd Print as in *530316°.
'yymmmdd Print as in *53Marl6'.

time:print-current-time &optional (siream *standard-output*)
Prints the current time, formatted as in 11/25/80 14:50:02, (o the specified stream. The
date portion may be printed differently according to the argument date-print-mode.

Hme pr’lnt time scconds minutes hours date month year &optional
(stream *standard-output*) date-print-mode
Prints the specified time, formatted as in 11/25/80 14:50:02, to the specified stream.
The date portion may be printed differently according to the argument date-print-mode.

time:print-universal-time universal-time &optional (stream *standard-output®)
© (timezone time:*timezone*) date-print-mode
Prints the specified time, formatted as in 11/25/80 14:50:02, to the specified strcam.
The date ‘portion may be printed differently according to the argument date-print-mode.

time:print-brief-universal-time universal- time &optional (stream *standard- output‘)
reference-time date-print-mode

This is like time:print-universal-time cxcept that it omits scconds and only prints those
parts of universal-time that differ from reference-time, a universal time that defaults to the
current time. Thus the output is in onc of the following three forms:

02:59 ; the same day

3/4 14:01 ; a different day in the same year

8/17/74 15:30 ; a different year

The date portion may be printed differently according to the argument date-print-mode.

time:*default-date-print-mode* Variable
Holds the default for the date-print-mode argument to each of the functions above.

Initially the value herc is :mm//dd/yy.

time:print-current-date &optional (stream *standard-output®)
Prints the current time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the spccified strecam.

time:print-date seconds minutes hours date month year day-of-the-week &optional
. (stream *standard-output*) .
Prints the specified time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the specified stream.

time:print-universal-date universal-time &optional (stream *standard-output*)
(timezone time:*timezone*)
Prints the specified time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the specified stream.

PS:<1.MAN>TIME.TEXT .40 8-JUN-84

Reading Dates and Times 780 Lisp Machine Manual

34.3 Reading Dates and Times

These functions accept most reasonable printed representations of date and time and convert
them to the standard internal forms. The following are representative formats that arce accepted by
the parser. Note that slashes arc escaped with additional slashes, as is necessary if these strings
are input in traditional syntax.

"March 15, 1960" "3//15//60" "3//156//71960"

"15 March 1960" "15//3//6G0" "15//3//1960"
"March-15-60" "3-15-60" "3-15-1960"
"15-March-60" "15-3-60" "15-3-1960"
"15-Mar-60" "3-15" "15 March 60"
"Fifteen March 60" "The Fifteenth of March, 1960:;"

"Friday, March 15, 1980"

"1130." "11:30" "11:30:17" "11:30 pm"
"11:30 AM™ "1130" "113000"
"11.30" "11.30.00" "11.3" "11 pm"

"12 noon" "midnight" "m" "6:00 gmt” "3:00 pdt"
any date format may be uscd with any time format

"One minute after March 3, 1960"
meaning on¢ minute after midnight
"Two days after March 3, 1960"
"Three minutes after 23:59:59 Dec 31, 1959"

"Now" "Today" "Yesterday" "five days ago"
"two days after tomorrow" "the day after tomorrow"
"one day before yesterday" "BOB@OZ's birthday"

time:parse string &optional (startQ) (endnil) (futurept) base-time must-have-time
date-must-have-year time-must-have-second (day-must-be-validt)

Interpret string as a date and/or time, and return seconds, minutes, hours, date, month,
year, day-of-thc-week, daylight-savings-time-p, and rclative-p. start and end delimit a
substring of the string; if end is nil, the end of the string is used. must-have-time means
that siring must not be empty. date-must-have-year means that a ycar must be explicitly
specified. time-must-have-second means that the second must be specified. day-muist-be-
valid means that if a day of thc week is given, then it must actually be the day that
corresponds to the date. base-time provides the defaults for unspecified components; if it
is nil, the current time is used. fururep means that the time should be interpreted as
being in the future; for cxample, if the base time is 5:00 and the string refers to the
time 3:00, that means the next day if fururep is non-nil, but it mecans two. hours ago if
Sfuturep is nil. The relative-p returned value is t if the string included a relative part, such
as ‘onc minutc after’ or ‘two days beforc’ or ‘tomorrow’ or ‘now’; othcrwise, it is nil.

PS:KILMAN>TIME.TEXT.40 8-JUN-84

[isp Machine Manual . 781 Reading and Printing Time Intervals

If the input is not valid, the error condition sys:parse-error is signaled (sec page S0S).

time:parse-universal-time swing &optional (starr0) (end nil) (itturep t) buse-time
must-have-time date-must-have-year time-must-have-second (day-must-be-validt)
This is the same as time:parse except that it returns two values: an integer, representing
the time in Universal Time, and the relative-p value.

34.4 Reading and Printing Time Intervals

In addition to the functions for reading and printing instants of time, there are other
functions specifically for printing time intervals. A time interval is cither a number (mcasured in
seconds) or nil. meaning ‘never. ‘The printed representations used look like “3 minutes 23
seconds’ for actual intervals, or ‘Never' for nil (some other synonyms and abbreviations for “never’
“arc accepted as input).

time:print-interval-or-never inferval &optional (stream *standard -output*))
interval should be a non-negative fixnum or nil. Its printed representation as a time
interval is written onto sfream.

time:parse-interval-or-never siring &optional siart end
Converts sfring, a printed representation for a time interval, into a number or nil. start
and end may be used to specify a portion of string to be used; the default is to use all of
string. Tt is an crror if the contents of string do not look like a rcasonable time interval.,
Here are some examples of acceptable strings:

"4 seconds" "4 secs"” "4 s"
"5 mins 23 secs" "b m 23 s" : "23 SECONDS 5 M"
"3 yrs 1 week 1 hr 2 mins 1 sec”
"never." "not ever." "noﬂ "

Note that several abbreviations are understood, the components may be in any order, and
case (upper versus lower) is ignored. Also, “months” are not recognized, since various
months have different lengths and there is no way to know which month is being spoken
of. This function always acccpts anything that was produced by time:print-interval-or-
never: furthermore, it returns cxactly the same fixnum (or nil) that was printed.

time:read-interval-or-never &optional (stream *standard-input®)
Reads a line of input from stream (using readline) and then calls time:parse-interval-or-

never on the resulting string. -

PS:KLLMAN>TIME.TEXT.40 8-JUN-84

Time Conversions 182 Lisp Machine Manual

34.5 Time Conversions

decode-universal-time universal-time &optional (timezone time: *timezone*)
Converts universal-time inw its decoded representation. The following values arc returned:
seconds, minutes, hours, date, month, year. day-of-the-week, daylight-savings-time-p, and
the timezone used. daylight-savings-time-p tells you whether or not daylight savings time is
in effect; if so, the value of hour has been adjusted accordingly. You can specify
timezone explicitly if you want to know the equivalent representation for this time in other
parts of the world.

encode-universal-time scconds minutes hours date month year &optional timezone
Converts the decoded time into Universal ‘Time format, and return the Universal Time as
an integer. If you don't specify timezone, it defaults 10 the current timezone adjusted for
daylight savings time: if you provide it explicitly. it is not adjusted for daylight savings
time. If year is less than 100, it is shified by centuries until it is within 50 years of the
present. '

time:*timezone* Variable
The value of time:*timezone* is the time zonc in which this Lisp Machine resides,
expressed in terms of the number of hours west of GMT this time zone is. This value
docs not change to reflect daylight savings time; it tells you about standard time in your
part of the world.

E

34.6 Internal Functions

These functions provide support for those listed above. Some user programs may need to call
them directly, so they are documented here.

time:initialize-timebase
Initializes the timebase by querying Chaosnet hosts to find out the current time. This is
called automatically during system initialization. You may want to call it yourself to
correct the time if it appears to be inaccurate or downright wrong. Sce also time:set-
local-time, page 777.

time:daylight-savings-time-p hours date month year
Returns t if daylight savings time is in effect for the specified hour: otherwise, return nil.
If year is less than 100, it is shifted by centuries until it is within 50 years of the present.

time:daylight-savings-p _ .
Returns t if daylight savings time is currently in effect; otherwise, returns nil.

time:month-length month year
Returns the number of days in the specificd month; you must supply a year in case the
month is February (which has a different length during leap years). If year is less than
100, it is shifted by centurics until it is within 50 years of the present.

PS:KLLMAN>TIME.TEXT.40 8-JUN-84

1 isp Machine Manual ' _ 783 , Internal Functions

time:leap-year-p year
Returns t if year is a leap year; otherwise return nil. If pear is less than 100, it is shifted
by centuries until it is within 50 years of the present.

time:verify-date date month year day-of-the-week
If the day of the weck of the date specified by date, month, and year is the same as day-
of-the-week, returns nil; otherwise, returns a string that contains a suilable crror message.
Af year is less than 100, it is shifted by centurics until it is within 50 ycars of the present.

time:day-of-the-week-string day-of-the-weck &optional (maode :long)
Returns a string representing the day of the week. As usual, 0 means Monday, 1 mcans
‘Tuesday, and so on. Possible values of mode are:

slong Returns the full English name, such as "Monday", "Tuesday", ctc. 'This
is the default.

:short Returns a three-letter abbreviation, such as "Mon", "Tue", ctc.

:medium Returns a longer abbreviation, such as "Tues" and "Thurs".

:french . Returns the French name, such as "Lundi", "Mardi", etc.

:german Returns the German name, such as "Montag”, "Dienstag", etc.

iitalian Returns the Italian name, such as "Lunedi", "Martedi", etc.

time:month-string month &optional (mode:long)
Returns a string representing the month of the year. As usual, 1 mcans January, 2
means February, etc. Possible values of mode are:

slong Returns the full English name, such as "January", "February", etc.
This is the default.

:short Returns a three-letter abbreviation, such as "Jan”, "Feb", etc.

:medium Returns a longer abbreviation, such as "Sept", "Novem", and "Decem".
:roman Returns the Roman numeral for month (this convention is used in

o Europe).

:french Returns the French name, such as "Janvier", "Fevrier", etc.

:german Returns the German name, such as "Januar”, "Februar", etc.

iitalian Returns the Italian name, such as "Gennaio", "Febbraio”, etc.

time:timezone-string &optional (timezone time: *timezone*)
(daylight-savings-p (time:daylight-savings-p)) ,
Return the three-letter abbreviation for this time zonc. For cxample, if timezone is 5,
then cither "EST" (Eastern Standard Time) or "CDT" (Central Daylight Time) is used,
depending on daylight-savings-p.

PS:K.MAN>TIME.TEXT.40 | 8-JUN-84

	776_DateTime
	777_DateTime
	778_DateTime
	779_DateTime
	780_DateTime
	781_DateTime
	782_DateTime
	783_DateTime

