Miscellancous Useful Functions 184 Lisp Machine Manual

35. Miscellaneous Useful Functions

"This chapter describes a number of functions that don’t logically fit in anywhere else. Most of
these functions are not normally used in programs. but arc “commands™, ic. things that you type
directly at Lisp.

35.1 Documentation

documentation name doc-type
Returns the documentation string of name in the role doc-type. doc-type should be a
symbol, but only its print-name matters. function as doc-1ype requests the documentation
of name as a function, variable as doc-type requests the documentation of name as a
variable, and so on.

When doc-1ype is function, name can be any function spec, and the documentation string
of its function definition is returned. Otherwise, name must be a symbol, and doc-type
may be anything. However, only these values of doc-type are standardly used:

variable Documentation of name as a special variable. Such documentation is
recorded automatically by defvar, defconst, defconstant, defparameter
(page 33).

type Documentation of name as a type for typep. Recorded automatically
when a documentation string is given in a deftype form (page 19).

structure Documentation of name as a defstruct type. Recorded automatically by a
defstruct for name (chapter 20, page 372).

setf Documentation on what it means to setf a form that starts with name.
Recorded when there is a documentation string in a defsetf of name (page
345).
flavor Documentation of the flavor named name. Put on by the :documentation
- option in a defflavor for name (page 414).

resource Documentation of the resource named name. Put on when there is a
documentation string in a defresource of name (page 124).

signal Documentation for name as a signal name. Put on when there is a
documentation string in a defsignal or defsignal-explicit for name (page
714). :

Documentation strings for any doc-type can be added to name by doing (setf
(documentation name doc-type) string).

The command Control-Shift-D in Zmacs and the rubout handler, used within a call to a
function, prints the documentation of that function. Control-Shift-V, within a symbol, prints the
documentation of that symbol as a variable,

PS:KI.MAN>FD-HAC.TEXT .47 8-JUN-84

I isp Machine Manual , 785 Hardcopy

35.2 Hardcopy

The hardeopy functions allow you to specify the printer to use on cach call. 'The default is
sct up by the site files for your site, but can be overridden for a particular machine in the
LMLOGCS file or by a user in his INIT file. Any kind of printer can be used, no matter how it
is actually driven, if it is hooked into the software properly as described below.

A printer-type is a keyword that has appropriate propertics; a printer is cither a printer-type or
a list starting with one. ‘The rest of the list can specify which printer of that type you want to
use (perhaps with a host name or filename).

The printer types defined by the system arc:
«dover I'his printer type is used by itself as a printer, and refers to the Dover at MIT.

Xgp "This printer type indicates a printer that is accessed by writing spool files in MIT
XGP format. A printer would be specified as a list. (:xgp filename), specifying
where to write the spool file.

:press-file 'This printer type is used in a list together with a file name, as in (:press-file
"0Z:XRMS>FOO.PRESS"). Something is “printed” on such a printer by being
converted to a press file and written under that name.

hardcopy-file filename &rest options
Print the file filename in hard copy on the specified printer or the default printer. options
is a list of keyword argument names and values, ‘There are only two keywords that are
always meaningful: :format and :printer. Everything else is up to the individual printer
to interpret. The list here is only a paradigm or suggestion.

:printer The value is the printer to use. The default is the value of si:*default-
printer®.
format The value is a keyword that specifies the format of file to be parsed. The

standard possibilities arc :text (an ordinary file of text), :xgp (a file of the
sort once used by the XGP at MIT), :press (a Xcrox-style press file) and
:suds-plot (a file produced by the Stanford drawing program). However,
each kind of printer may define its own format keywords.

font

:font-list The value of fonr is the name of a font to print the file in (a string).
Alternatively, you can give :font-list and specify a list of such font names,
for use if the file contains font-change commands. The interpretation of a
font name is dependent on the printer being used. There is no neccessary
relation to Lisp machine display fonts. However, printers arc encouraged
to use. by dcfault, fonts that are similar in appearance 10 the Lisp
machine fonts listed in the file’s attribute list, if it is a text file.

:heading-font The value is the name of the font for use in page hcaders, if there are
. any. '

vsp ' The value is the extra spacing to usc between lines, in over and beyond
the height of the fonts.

PS:KL.MAN>FD-HAC.TEXT 47 8-JUN-84

Hardeopy 786 Lisp Machine Manual

page-headings
If the value is non-nil, a heading is added to cach page.

‘copies The value is the number of copies to print.

:spool If the printer provides optional spooling, this argument says whether to
spool (default is nil). Some printers may mumslmlly always spool; others
may have no way to spool,

set-printer-default-option printer-type option value
Sets a default for option for printers of type printer-iype. Any use of the hardcopy
functions with a printer of that type and no value specified for oprion will use the value
value. For example,
(set-printer-default-option :dover :spool t)
causes output to Dover printers to be spooled unless the :spool option is cxplicitly
specified with value nil.

Currently defaultable options are :font, :font-list, :heading-font, :page-headings, :vsp,
:copies, and :spool. :

hardcopy-stream siream &rcst options
Like hardcopy-file but uses the text read from stream rather than opening a file. The
‘format option is not allowed (since implementing it requires the ability to open the file
with unusual open options).

hardcopy-bit-array array left top right bottom &rest options
Print all or part of the bit-array array on the specified or default printer. options is a list
of keyword argument names and values; the only standard option is :printer, which
specifies the printer to use. The default printer is si:*default-bit-array-printer*, or, if
that is nil, si:*default-printer.

lefi, top, right and bottom specify the subrectangle of the array to be printed. All four
numbers measure from the top left corner (which is element 0, 0).

hardcopy-status &optional printer (stream *standard-output®)
Prints the status of printer, or the default printer. This should include if possible such
things as whether the printer has paper and what is in the queue.

si:*default-printer®* Variable
' This is the default printer. It is sct from the :default-printer sitc option.

si:*default-bit-array-printer® Variable
If non-nil, this is the dcfault printer for printing bit arrays, overriding si:*default-
printer*. A scparatc default is provided for bit arrays since some printers that can print
files cannot print bit arrays. This variable is sct initially from the :default-bit-array-

printer site option.

PS:KLMAN>FD-HAC.TEXT 47 8-JUN-84

I isp Machine Manual 4 787 Metering

Defining a printer type:
A printer type is any keyword that has suitable functions on the appropriate propertics.

To be used with the function hardcopy-file. the printer type must have a si:print-file
property. To be used with hardcopy-stream, the printer type must have a si:print-stream
property. hardcopy-bit-array uscs the si:print-bit-array property. hardcopy-status uscs the
si:print-status property. (The hardcopy functions” names are not themselves used simply to avoid
using a symbol in the global package as a property name of a symbol that might be in the global
package as well).

Each property, to be used. should be a function whose first argument will be the printer and
whose remaining arguments will fit the same patern as those of the hardcopy function the user
called. (They will not necessarily be the same arguments, as some additional keywords may be
added to the list of keyword arguments; but they will fit the same description.)

For example,
(hardcopy-file "foo" :printer '(:press-file "bar.press"))
results in the execution of
(funcall (get :press-file ’si:print-file)
"(:press-file "bar.press")
"foo" :printer '(:press-file "bar.press"))

A printer type need not support operations that make no sense on it. For cxample, there is
no si:print-status property on :press-file.

35.3 Metering

The metering system is a way of finding out what parts of your program use up the most
time. When you run your program with mectering, cvery function call and return is recorded,
together with the time at which it took place. Page faults are also recorded. Afterward, the
metering system analyzes the records and tells you how much time was spent executing withain
cach function. Because the records are stored in the disk partition called METR, there is room
for a lot of data.

Before you meter a program, you must cnable metering in some or all stack groups.
meter:enable is used for this. Then you cvaluate onc or more forms with metering, perhaps by
using meter:test or meter:run. Finally, you usc meter:analyze to summarize and print the
metering data.

There are two parameters that control whether metering data are recorded. First of all, the
variable sys:%meter-microcode-enables contains bits that cnable recording of various kinds of
events. Sccondly, cach stack group has a flag that controls whether events arc recorded while
running in that stack group.

PS:KLLMAN>ED-HAC.TEXT 47 8-JUN-84

Mctering 788 [isp Machine Manual

sys:%meter-microcode-enables ' Variable
Enables recording of metering data. Each bit controls recording of one kind of event.
1 This bit cnables recording of page faults.
2 ‘This bit enables recording of consing.
4 This bit enables recording of function entry and cxit.
8 ‘This bit enables recording of stack group switching.

The value is normally zero, which turns off” all recording.
These are the functions used to control which stack groups do metering:

meter:enable &rcst rhings
Enables metering in the stack groups specified by things. Each thing in rhings may be a
stack group, a process (which specifies the process’s stack group). or a window (which
specifies the window’s process's stack group). t is also allowed. It cnables metering in all

stack groups.

meter:disable &rest things
Disables metering in the stack groups specified by rhings. The arguments allowed are the

same as for meter:enable. (meter:disable 1) turns off (meter:enable t), but does not
disable stack groups cnabled individually.. (meter:disable) disables all stack groups no
matter how you specified to enable them, '

meter:metered-objects Variable
This is a list of all the rhings you have enabled with meter:enable and not disabled.

These are the functions to cvaluate forms with metering:

meter:run forms _
Clears out the metering data and cvaluates the forms with sys:%meter-microcode-

enables bound to 14 octal (record function entry and exit, and stack group switching).
Any of the evaluation that takes place in cnabled stack groups will record metering data.

meter:tast form (enables #014)
Clears out the mectering data, cnables metering for the current stack group only, . and

evaluates form with sys:%meter-microcode-enables bound to enables.

This is how you print the results:

meter:analyze &kecy analyzer stream file buffer return info &allow-other-keys
Analyzes the data recorded by metering. analyzer is a keyword spccifies a kind of
analysis. :tree is the default. Another useful alternative is :list-events. Particular
analyzers handic other keyword arguments in addition to those listed above.

The output is printed on stream, writicn to a file named file, or put in an editor buffer
named buffer (at most onc of these three arguments should be specificd). The default is
to print on *standard-output®.

PS:{LMAN>FD-HAC.TEXT .47 8-JUN-84

I isp Machine Manual : 789 Metering

Analyzing the metering data involves creating a large intermediate data base. Normally
this is created afresh cach time meter:analyze is called. If you specify a non-nil value for

return

the intermediate data structure is returned by meter:analyze, and can be passed

in on another call as the info argument. This can save time. But you can only do this if
you use the same analyzer cach time, as different analyzers use different termporary data
structurcs.

The default analyzer :tree prints out the amount of run time and real time spent cxecuting
cach function that was called. The real time includes time spend waiting and time spent writing
metering data to disk: for computational tasks. the latter makes the real time less useful than the
run time. :tree handles these additional keyword arguments to meter:analyze:

find-callers
:stack-group

:sort-function

'summarize

inclusive

The argument for this keyword is a function spec or a list of function specs. A
list of who called the specified functions, and how often, is printed instead of the
usual output.

‘The argument is a stack group or a list of them: only the activitics in those stack
groups are printed.

The argument is the name of a suitable sorting function that is used to sort the
items for the various functions that were called. Sorting functions provided
include meter:max-page-faults, meter:max-calls, meter:max-run-time (the
default), meter:max-real-time, and meter:max-run-time-per-call.

The argument is a function spec or a list of function specs; only those functions’
statistics are printed.

If this is non-nil, the times for cach function include the time spent in executing
subroutines called from the function.

Note: if a function is called recursively, the time spent in the inner call(s) is
counted twice (or more).

The analyzer :list-events prints out onc line about cach cvent rccorded. The line contains
the run time and real time (in microscconds), the running count of page faults, the stack group
name, the function that was running, the stack depth, the type of event, and a piece of data.

For example:

0 0 0 ZMACS-WINDOWS METER:TEST 202 CALL SI:EVAL
115 43 0 ZMACS-WINDOWS METER:TEST =~ 202 RET - SI:EVAL
180 87 0 ZMACS-WINDOWS METER:TEST 202 RET CATCH

real run pf stack-group function stack event data
time time level type

list-events is often uscful with recording of page faults (sys:%meter-microcode-enables sct

to 1).

PS:KL.MAN>FD-HAC.TEXT 47 ; 8-JUN-84

Poking Around in the Lisp World 790 Lisp Machine Manual

meter:reset
Clears out all metering data,

Because metering records pointers to Lisp objects in a disk partition which is not part of the
Lisp address space. garbage collection is inhibited (by arresting the g process) when you turn on
metering.

meter:resume-gc-process
Allows garbage collection to continue (if it is already turned on) by unarresting it.

35.4 Poking Around in the Lisp World

who-calls x &optional package (inheritorst) (inheritedt)

X must be a symbol or a list of symbols. who-calls trics to find all of the functions in
the Lisp world that call x as a function, use x as a variable, or usc x as a constant.
(Constants which are lists containing x are not found.) It trics to find all of the functions
by scarching all of the function cells of all of the symbols in package and packages that
inherit from package (unless inheritors is nil) and packages package inherits from (unless
inherited is nil). package defaults to the global package, which mecans that all normal
packages arc checked.

If who-calls cencounters an interpreted function definition, it simply tells you if x appears
anywhere in the interpreted code. who-calls is smarter about compiled code, since it has
been nicely predigested by the compiler. Macros expanded in the compilation of the code
can be found because they are recorded in the caller’s debugging info alist, cven though
they are not actually referred to by the compiled code.

If x is a list of symbols, who-calls does them all simultancously, which is faster than
doing them onc at a time.

who-uses is an obsolete name for who-calls.
The cditor has a command, Meta-X List Callers, which is similar to who-calls.

The symbol :unbound-function is treated specially by who-calls. (who-calls
:unbound-function) scarches all the compiled code for any calls through a symbol that is
not currently defined as a function. 'This is uscful for finding errors such as functions you
misspelled the names of or forgot to write. '

who-calls prints onc line of information for each caller it finds. It also returns a list of
the names of all the callers.

what-f1les-call x &optional package (inheritorst) (inheritedt)
Similar to who-calls but rcturns a list of the pathnames of all the files that contain
functions that who-calls would have printed out. This is useful if you need to recompile
and/or cdit all of those files.

PSKLLMAN>FD-HAC.TEXT.47 8-JUN-84

I isp Machine Manual . 91 Poking Around in the Lisp World

apropos subsiring &optional package &key (inheritorst) inherited dont-print predicate boundp
Jboundp '
(apropos substring) trics to find all symbols whose print-names contain substring as a
substring. Whenever it finds a symbol, it prints out the symbol's name; if the symbol is
defined as a function and/or bound to a value, it tells you so and prints the names of the
arguments (if any) to the function.

A predicate is non-nil, it should be a function; only symbols on which the function
returns non-nil arc counted. In addition, fboundp non-nil mecans only symbols with
function definitions are considered, and boundp non-nil means that only symbols with
values are considered. ' :

apropos looks for symbols on package. and all packages that use package (unlcss
inheritors is nil). 1f inherited is non-nil, all packages used by package arc scarched as
well. package can be a package or a symbol or string naming a package. It can also be a
list of packages, symbols and strings; all of the packages thus’ specified arc scarched.
package defaults to a list of all packages except invisible ones.

apropos returns a list of all the symbols it finds. If dont-print is non-nil, that is all it
does. : ‘

sub-apropos substring starting-list &key predicate dont-print
Finds all symbols in starting-list whosc names contain substring, and that satisfy predicate.
If predicate is nil, the substring is the only condition. The symbols arc printed if dont-
print is nil. A list of the symbols found is returned, in any case.

This function is most uscful when applied to the value of *, after apropos has returned
a long list.

where-1s pname &optional package
Prints the names of all packages that contain a symbol with the print-name pname. If
pname is a string it gets upper-cased. The package package and all packages that inherit
from it arc scarched. package can be a package or the name of a package, or a list of
packages and names. It defaults to a list of all packages except invisible ones. where-is
returns a list of all the symbols it finds.

describe x

describe trics to tell you all of the interesting information about any object x (cxcept for
array contents). describe knows about arrays, symbols, floats, packages, stack groups,
closures, and FEFs, and prints out the attributes of each in human-rcadable form.
Sometimes objects found inside x arc described also: such recursive descriptions are
indented appropriately. - For instance, describe of a symbol also describes the symbol’s
value, its definition, and cach of its propertics. - describe of a float (full-size or short)
shows you its internal representation in a way that is uscful for tracking down roundoff
errors and the like.

If x is a named-structurc, describe invokes the :describe opcration to print the
description, if that is supported. To understand this, you should read the section on
named structures (scc page 390). If the :describe operation is not supported, describe

PS:<LLMAN>FD-HAC.TEXT 47 8-JUN-84

Poking Around in the Lisp World 792 Lisp Machine Manual

looks on the named-structure symbol for information that might have been left’ by
defstruct: this information would tell it what the symbolic names for the entries in the
structure are, and describe knows how to usc the names to print out what cach field's
name and contents is.

describe of an instance always invokes the :describe operation. All flavors support it
since Sl vanilla-flavor defincs a method for it

describe always returns its argument, in case you want to do something clse to it.

inspect x
A window-oriented version of describe. Sce the window system documentation for

details, or try it and type Help.

disassemble function
Prints out a human-readable version of the macro-instructions in finction. function should
be a FEF, or a function spec whose definition is a FEF. The macro-code instruction set

is cxplained in chapter 31, page 752.

The grindef function (scc page 528) may be used to display the definition of a non-compiled
function.

room &rcst areas
Prints a summary of memory usage.

The first line of output tells you the amount of physical memory on the machine, the
amount of available virtual memory not yet filled with data (that is, the portion of the
available virtual memory that has not yet been allocated to any region of any area), and
the amount of wired physical memory (i.c. memory not available for paging).

Following lines tell you how much room is left in some arcas. For each arca it tells you
about, it prints out the name of the arca, the number of regions that currently make up
the arca, the current size of the area in kilowords, and the amount of the area that has
been allocated, also in kilowords. If the arca cannot grow, the percentage that is free is
displayed.

(room) tells you about thosc arcas that arc in the list that is the value of the variable
room. These arc the most intcresting ones.

(room areal areal...) tells you about those areas, which can be cither the names or the
numbers.

(room t) tells you about all the areas.

(room nil) does not tell you about any arcas; it only prints the first line of output.

PS:KILMAN>FD-HAC.TEXTA47 8-JUN-84

I'isp Machine Manual ' A 793 Uitility Programs

room Variable
The value of room is a list of arca names and/or arca numbers, denoting the arcas that
the function room should describe if given no arguments. Its initial value is:
(working-storage-area macro-compiled-program)

35. Ullllly Programs

ed &optional x
ed is the main function for getting into the editor, Zmacs. ‘The commands of Zmacs are

very similar to those of Emacs.

(ed) or (ed nil) simply enters the editor, leaving you in the same buffer as the last time
you were in the editor. 1t has the same cffect as typing System E.

(ed t) puts you-in a fresh buffer with a generated name (like BUF FER-4).
(ed pathname) cdits that file. pathname may be an actual pathname or a string.

(ed 'foo) wries hard to edit the definition of the foo function. It can find a buffer or file
containing the source code for foo and paosition the cursor at the beginning of the code.
In general, foo can be any function-spec (sce section 11.2, page 223).

(ed 'zweireload) reinitializes the editor. 1t forgets about all existing buffers, so use this
only as a last resort.

zwei:save-all-files
This function is uscful in cmergencies in which you have modified matcnal in Zmacs

buffers that nceds to be saved, but the editor is partially broken. This function docs what
the cditor's Save All Files command does, but it stays away from redisplay and other
advanced facilities so that it might work if other things are broken.

dired &optional pathname
Puts up a window and edits the dircctory named by pathname, which defaults to the last
file opened. While cditing a directory you may view, edit, compare, hardcopy, and
delete the files and subdircctories it contains. While in the directory cditor type the Help
key for further information.

mail &optional user text call-editor-anyway -
Sends the string fexs as mail to wuser. user should also be a string, of the form
"username@hosiname". Multiple recipients scparated by commas arce also allowed.

If you do not provide two arguments, mail puts up an cditor wmdow in which you may
compose the mail. Type the End key to send the mail and return from the mail function.

The window is also used if call-editor-anyway is non-nil.

PS:KLLMAN>FD-HAC.TEXT 47 : 8-JUN-84

Utility Programs 794 Lisp Machine Manual

bug &optional topic text call-editor-anyway
Reports a bug. fopic is the name of the faulty program (a symbol or a string). 1t defaults
o lispm (the Lisp Machine system itself). sext is a string which contains the information
to report. Il you do not provide two arguments, or if call-editor-anyway is non-nil, a
window is put up for you to compose the mail.

bug is like mail but includes information about the system version and what machine you
arc on in the text of the message. This information is important to the maintainers of the
faulty program: it aids them in reproducing the bug and in determining whether it is one
that is alrcady being worked on or has alrcady been fixed.

print-notifications &optional (from0) 1o
Reprints any notifications that have been received. - from and to are used to restrict which
notifications arc printed: both count from the most recent notification as number 0. ‘Thus,
(print-notifications 2 8) prints six notifications after skipping the two most recent.

The difference between notifications and sends is that sends come from other users, while
notifications arc usually asynchronous messages from the Lisp Machine system itsclf.
However, the default way for the system to inform you about a send is to make a
notification! So print-notifications normally includcs all sends as well.

Typing Terminal 1 N pops up a window and calls print-naotifications to print on it.

si:print-disk-error-log
Prints information about the half dozen most recent disk crrors (since the last cold boot).

peek &optional character
Selects the PEEK utility, which displays various information about the system, periodically
updating it. PEEK has several modes, which are entered by typing a single key which is
the name of the mode or by clicking on the menu at the top. The initial mode is
sclected by the argument, character. If no argument is given, PEEK starts out by
explaining what its modes are.

time form
Evaluates form and prints the length of time that the cvaluation took. The values of form

arc returned.

Note that time with no argument is a function to return a time valuc counting in 60ths of
a sccond; sce page 777. This unfortunate collision is a consequence of Common Lisp.

PSKLMAN>ID-HAC.TEXT 47 8-JUN-84

Iisp Machine Manual _ 795 The Lisp Listen Loop

35.6 The Lisp Listen Loop

These functions constitute the Lisp top level read-eval-print loop or listen loop and its
associated functions.

si:1isp-top-level
This is the first function called in the initial Lisp environment. It calls lisp-reinitialize,
“clears the screen, and calls sizlisp-top-levelt.

lisp-reinitialize
This function does a wide varicty of things, such as resctting the values of various global
constants and initializing the error system.

si:1isp-top-levell *rerminal-io*
This is the actual listen loop. Within it. *terminal-io* is bound to the argument
supplied. This is the strcam used for reading and printing if. *standard-input* and
standard-output arc synonyms for *terminal-io*, as they normally are.

The listen loop reads a form from *standard-input*, cvaluates it, prints the result (with
cscaping) to *standard-output*, and repeats indefinitely. If several values are returned
by the form all of them are printed. Also the values of *, +, -, //, ++, **, +++,
*** and *values* arc maintained (scc below).

break format-string &rcst format-args
Enters a breakpoint loop, which is similar to a Lisp top level loop. format-string and the
Sformat-args arc passed to format to print a message.
;Breakpoint message; Resume to continue, Abort to quit.

and then enters a loop reading, cvaluating, and printing forms. A difference between a
break loop and the top level loop is that when rcading a form, break checks for the
following special cascs: If the Abort key is typed, control is retrned to the previous
break or error-handler, or to top-level if there is none. If the Resume key is typed,
break returns nil. If the list (return form) is typed, break cvaluates form and returns the
result, without ever calling the function return.

Inside the break loop, the strcams *standard-output*, *standard-input*, and query-io
are bound to bc synonymous to *terminal-io*; *terminal-io* itself is not rebound.
‘Several other internal system variables are bound, and you can add your own symbols to
be bound by pushing clements onto the value of the variable sys:*break-bindings* (see
page 797).

break used to be a special form whose first argument was a string or symbol which was
simply printed without evaluating if. 1In order to facilitate conversion, break really still is
a special form. If the call appears to use the old conventions, it behaves in the old way,
but the compiler issucs a warning if it sees such code.

PS:K<LMAN>FD-HAC.TEXT .47 8-JUN-84

The Lisp Listen Loop 796 Lisp Machine Manual

prini

//

++

+++

177/

Variable

‘The value of this variable is normally nil. I it is non-nil, then the read-cval-print loop
uses its value instcad of the definition of print to print the values returned by functions.
This hook lets you control how things are printed by all read-cval-print loops—the Lisp
top level, the break function, and any utility programs that include a rcad-eval-print loop.
It does not affect output from programs that call the print function or any of its relatives
such as print and format: if you want to do that, rcad about customizing the printer, on
section 23.1. page S13. If vou set print (0 a new function. remember that the read-cval-
print loop expects the function 1o print the value but not to output a return character or
any other delimiters.

Variable
While a form is being cvaluated by a read-cval-print loop, - is bound to the form itself.

Variable
While a form is being cvaluated by a rcad-cval-print loop, + is bound to the previous
form that was rcad by the loop.

Variable
Variable
While a form is bcing cvaluated by a rcad-eval-print loop, * is set to the result printed
the last time through the loop. 1If there were several values printed (because of a
multiple-value return), * is bound to the first valuc. // is bound to a list of all the
valucs of the previous form.

If cvaluation of a form is aborted. * and // remain set to the results of the Tast
successfully completed form. If evaluation is successful but printing is aborted, * and //
arc alrcady sct for the following form.

Note that when using Common Lisp syntax you would type just /.

: Variable
+ + holds the previous value of +, that is, the form evaluated two interactions ago.
Variable
+ + + holds the previous value of + +.
Variable
Variable

Hold the previous values of * and //, that is, the results of the form ecvaluated two
interactions ago. Only forms whose cvaluation is successful cause the values of * and //
to move into ** and ////.

Note that when using Common Lisp syntax you would type just //.

PS:KLLMAN>FD-HAC.TEXT .47 _ 8-JUN-84

;
s

Lisp Machine Manual , 797 The Garbage Collector

b v . , Variable
/111111 ‘ Variable
Hold the previous values of ** and ////, that is, the results of the form cvaluated three
interactions ago. Note that when using Common Lisp syntax you would type just ///.

values ' Variable
values holds a list of all Tists of values produced by evaluation in this Lisp listener.
"(car *values®) is ncarly- cquivalent to //, (cadr *values*) to ////, and so on. The
difference is that an clement is pushed on *values* for cach form whose cvaluation is
started. If evaluation is aborted, the clement of *values* is nil.

sys:*break-bindings* Variable
When break is called, it binds some special variables under control of the list which is
the value of sys:*break-bindings*. Each clement of the list is a list of two clements: a
- variable and a form that is evaluated to produce the value to bind it to. 'The bindings
happen sequentially, Uscrs may push things on this list (adding to the front of it), but
should not replace the list wholesale since several of the variable bindings on this list are
essential to the operation of break. '

1isp-crash-1ist - Variable
The value of lisp-crash-list is a list of forms. lisp-reinitialize scquentially cvaluates
these forms, and then scts lisp-crash-list to nil. -

In most cases. the initialization facility should be used rather than lisp-crash-list. Refer
to chapter 33, page 772.

35.7 The Garbage Collector

gc-on
Turns automatic garbage collection on. Garbage collection will happen when and as
needed. Automatic garbage collection is off by default. '

Since garbagc collection works by copying, you are asked for confirmation if there may
not be enough space to complete a garbage collection even if it is started immediately.

gc-off
Turns automatic garbage collection off.

gc-on Variable
t when garbage collection is on, nil when it is not. You cannot control garbage collection
by sctting this variable; it cxists so you can cxaminc it. In particular, you can tell if the
system found it necessary to turn off garbage collection because it was closc to running
out of virtual memory.

~ Normally, automatic garbage collection happens in incremental mode; that is, scavenging
happens in parallel with computation. Each consing operation scavenges or copies four words per
word consed. In addition, scavenging goes on whenever the machine appears idle.

PS:<I.MAN>FD-HAC.TEXT 47 8-JUN-84

‘The Garbage Collector 798 Lisp Machine Manual

si:1inhibit-idle-scavenging-flag Variable
If this is non-nil, scavenging is not done during idle time.

If you arc running a noninteractive crunching program, the incremental nature of garbage
collection may not be helpful. Then you can make garbage collection more cfficient by making it
a batch process. '

si:gc-reclaim-immediately Variable

If this variable is non-nil. automatic garbage collection is done as a batch operation:
when the garbage collection process decides that the time has come, it copies all the
uscful data and discards the old address space, running full blast. (It is still possible to
use the machine while this is going on, but it is slow.) More specifically, the garbage
collection process scavenges and reclaims oldspace immediately right after a flip happens,
using all of the machine’s physical memory. This variable is only relevant if you have
wrned on automatic garbage collection with (gc-on).

A batch garbage collection requires less free space than an incremental one. If there is
not cnough space to complete an incremental garbage collection, you may be able to win
by sclecting batch garbage collection instead.

si:gc-reclaim-immediately-1f-necessary Variable
If this variable is non-nil, then automatic garbage collection is done in batch mode if,
when the flip is done, there docs not secem to be enough space left to do it incrementally.
‘This variable’s value is relevant only if si:gc-reclaim-immediately is nil.

- si:gc-flip-ratio » Variable

This variable tells the garbage collector what fraction of the data it should expect to have
to copy, after cach flip. It should be a positive number no larger than onc. By default,
it is onc. But if your program is consing considerable amounts of garbage, a value less
than onc may be safe. The garbage collector uscs this variable to figure how much space
it will nced to copy all the living data, and therefore indircctly how often garbage
collection must be done.

si:gc-flip-minimum-ratio Variable
This value is uscd, when non-nil, to control warnings about having too little space to
garbage collect. lts value is a positive number no greater than one, just like that of
si:gc-flip-ratio. The differencc between the two is that si:gc-flip-ratio controls when
garbage collection is recommended, whereas si:gc-flip-minimum-ratio controls when the
system considers the last possible time to do so. If si:gc-flip-minimum-ratio is nil,
si:gc-flip-ratio serves both purposes.

Garbage collection is turned off if it appears to be about to run out of memory. You get a
notification -if this happens. You also get a notification when you are ncarly at the point of not
having cnough space to guarantce garbage collecting successfully.

In addition to turning on automatic garbage collection, you can also manually request one
immediatc complete collection with the function si:full-gc. The usual reason for doing this is to
make a band smaller before saving it. si:full-gc also rescts all temporary areas (see sireset-
temporary-area, page 299).

PS:KIL.MAN>FD-HAC.TEXT.47 8-JUN-84

Lisp Machine Manual ‘ 799 The Garbage Collector

si:full-gc .
Performs a complete garbage collection immediately. This does not turn automatic garbage
collection on or off; it performs the garbage collection in the process you call it in. A
full gc of the standard system takes about 7 minutes, currently.

si:clean-up-static-area arca-number
This is a more selective way of causing static areas to be garbage collected once. 'The
“argument is the area number of a static arca; that particular arca will be garbage collected
the next time a garbage collection is done (more precisely, it will be copied and discarded
after the next flip). If you then call sizfull-gc, it will happen then.,

gc-status
‘The function gc-status prints information related to garbage collection. When scavenging
is in progress, it tells you how the task is progressing. While scavenging is not in
progress and oldspace does not exist, it prints information about how soon a new flip will
be required. : :

While a garbage collection is not in progress, the output from gc-status looks like this:
Dynamic (new+copy) space 557,417, 01d space 0, Static 3,707,242,
Free space 10,453,032, with 10,055,355 needed for garbage collection

assuming 100% live data (SI:GC-FLIP-RATIO = 1).

If GC is turned on, a flip will happen in 397,677 words.

Scavenging during cons Off, Idle scavenging On,

Automatic garbage collection Off.

GC Flip Ratio 1, GC Reclaim Immediately Off

or

Dynamic (new+copy) space 561,395, 01d space 0, Static 3,707,242,
Free space 10,453,032, with 10,058,670 needed for garbage collection
assuming 100% live data (SI:GC-FLIP-RATIO = 1).

A flip will happen in 394,362 words.

Scavenging during cons On, Idle scavenging On,

Automatic garbage collection On.

GC Flip Ratio 1, GC Reclaim Immediately Off

The “dynamic space” figure is the amount of garbage collectable space and the “static” figure
is the amount of static space used. There is no old space since an old space only exists during
garbage collection.

The amount of space needed for garbage collection represents an estimate of how much space
user programs will usec up while scavenging is in progress. It includes a certain amount of
padding. The difference between the free space and that amount is how much consing you can
do before a garbage collection will begin (if automatic garbage collection is on).

The amount nccded for a garbage collection depends on the value of si:*gc-reclaim-
immediately*; more if it is nil.

While a garbage collection is in progress, the output looks like this:

PS:KLLMAN>FD-HAC.TEXT 47 8-JUN-84

1.ogging In 800 Lisp Machine Manual

Incremental garbage collection now in progress.

Dynamic (new+copy) space 45,137, 01d space 972,514, Static 3,707,498,
Between 3,701,440 and 4.629.998 words of scavenging left to do.

Free space 9,289,795 (of which 928,558 might be needed for copying).
Ratio scavenging work/free space = 0.55.

Scavenging during cons On. Idle scavenging On,

Automatic garbage collection On.

GC Flip Ratio 1, GC Reclaim Immediately Off

Notice that most of the dynamic spacc has become old space and new space is small. Not
much has been copied since the flip ook place. The maximum and minimum cstimates for the
amount of scavenging are based on different limits for how much of old space may need to be
copied; as scavenging progresses, the maximum decrcases steadily, but the minimum may
increase. 'The free space is smaller now, but it will get larger when scavenging is finished and old
space is freed up. (The total amounts are not the same now because unused parts of regions may
not be included in any of the figures.) '

si:set-scavenger-ws numberof-pages
Incremental scavenging is restricted to a fixed amount of physical memory to reduce its
interference with your other activities.

This function spccifics the number of pages of memory that incremental garbage collection
can usc. 256 is a good value for a 256k niachinc. If the garbage collector gets very poor
paging performance, use of this function may fix it. :

35.8 Logging In

Logging in tells the Lisp Machine who you are, so that other users can sce who is logged in,
you can receive messages, and your INIT file can be run. An INIT file is a Lisp program which
gets loaded when you log in; it can be uscd to set up a personalized environment.

When you log out, it should be possible to undo any personalizations you have made so that
they do not affect the next uscr of the machine. Therefore, anything done by an INIT file
should be undoable. In order to do this, for every form in the INIT file, a Lisp form to undo
its effects should be added to the list that is the value of logout-list. The login-forms construct
helps make this easy; see below.

user-1id . Variable
The value of user-id is cither the name of the logged in user, as a string, or else an
empty string if there is no user logged in. It appcars in the who-line.

logout-1ist Variable
The value of logout-list is a list of forms to be evaluated when the user logs out.

PSIKLMAN>FD-HAC.TEXT.47 8-JUN-84

Fisp Machine Manual . 801 Logging In

Togin name &optional host inhibit-inir-file
Sets your name (the variable user-id) to name and logs in a file server on fhost. host also
becomes your default file host. The default value of host depends on which 1isp Machine
vou use using; it is called the associated machine (see page 815). login also runs the
Jdogin initialization list (sce page 773).

Af host requires passwords for logging in you are asked for a password. Adding an
asterisk at the front of your password cnables any special capabilitics you may be
authorized to use, by calling fs:enable-capabilities (pagc 609).

Unless inhibit-init-file is specified as non-nil, login loads your init file if it exists. On TS,
your init file is nume LISPM on your home dircctory. On TOPS-20 your init file is
LISPM.INIT on your directory. On VMS, it is LISPM.INI. On Unix, it is lispm.init.

If anyone is logged into the machine alrcady, login logs him out before logging in name.
(Sce logout.) Init files should be written using the login-forms construct so that logout
can undo them. Usually, however, you cold-boot the machine before logging in, to
remove any traces of the previous user. login returns t.

logl &rest options
Like login but the arguments are specified differently. options is a list of keywords and
valucs; the keywords :host and :init specify the host to log in on and whether to load the
init file if any. Any other keywords arc also allowed. log1 itsclf ignores them, but the
init file can act on them. 'The purpose of log1, as opposed to login, is to cnable you to
specify other keywords for your init file's sake.

si:user-init-options Variable
During the cxccution of the user’s init file, inside log1, this variable contains the
arguments given to log1l. Options not meaningful to log1 itsclf can be specified, so that
the init file can find them here and act on them.

Togout :
First, logout cvaluates the forms on logout-list. Then it sets user-id to an cmpty string
and logout-list to' nil. Then it runs the :logout initialization list (sec page 773), and
returns t.

login-forms undoable-forms... Macro
The body of a login-forms is composed of forms to be evaluated, whose effects are to be
undone if you log out. For example,
(1ogin-forms
(setq fs:+defaults-are-per-hosts t))
would sct the variable immediatcly but arrange for its previous value to be restored if you
log out.

login-forms is not an Al program; it must be told how to undo each function that will
be used immediately inside it. ‘This is done by giving the function name (such as setq) a
:undo-function property which is a function that takes a form as an argument and
returns a form to undo the original form. For setq, this is donc as follows:

PS:KLLMAN>FD-HAC.TEXT .47 | 8-JUN-84

Dribblc Files 802 1Lisp Machine Manual

(defun (setq :undo-function) (form &aux results)
(do ((1 (cdr form) (cddr 1)))
((null 1))
(cond ((boundp (car 1))
(push ‘(setq .(car 1) '.(symeval (car 1))) results))
(t (push '(makunbound ’,(car 1)) results)}))
"(progn . .results))

Undo functions are standardly provided for the functions setq. pkg-goto-globally, setq-
globally, add-initialization. deff, defun, defsubst. macro, advise and zweiset-
comtab. Constructs which macroexpand into uses of those functions arc also supported.

Note that setting *read-base* and *print-base* should be done with setq-globally
rather than setq., since those variables are likely to be bound by the load function while
the init file is exccuted.

login-setq {variable value}... Macro
login-setq is like setq cxcept that it puts a setq form on logout-list to sct the variables
to their previous values. login-setq is obsolete; use login-forms around a setq instcad.

login-eval x
login-eval is used for functions that arc “mcant to be called” from INIT files, such as

zwei:set-comtab-return-undo, which conveniently return a form to undo what they did.
login-eval pushes the result of the form x onto logout-list. 1t is obsolete now because
login-forms is a cleancr interface.

si:undoable-forms-1 wundo-list-name forms &optional complaint-string
This is what login-forms uscs. forms is a list of forms; they. are cvaluated and forms for
undoing their cffects arc pushed onto the valuc of the symbol wndo-list-name. 1f an
clement of forms has no known way to be undone, a message is printed using the string
complaint-string. For login-forms, the string supplicd is "at logout".

35.9 Dribble Files

dribble &optional filename
With an argument, dribble opens filename as a ‘dribble file’ (also known as a ‘wallpaper
file') and then enters a Lisp listen loop in which *standard-input®* and *standard-
output* arc rcbound to dircct all the output and cchoing they do to the file as well as to
the terminal.

‘Dribble output can be sent to an editor buffer by using a suitable pathname; see scction
24.7.6, page 575.

Calling dribble with no arguments tecrminates dribbling; it throws to the original call to
dribble, which closes the file and returns. '

PS:KLLMAN>FD-HAC.TEXT 47 8-JUN-84

L isp Machine Manual 803 Version Information

dribble-all &optional filename
Like dribble c¢xcept that all input and output gocs to the dribble file. including break
loops, querics, warnings and sessions in the debugger. This works by binding *terminal-
io* instcad of *standard-output* and *standard-input*.

35.10 Version Information

Common Lisp defines several standard ways of inquiring about the identity and capabilities of
the Lisp system you arc using.

features Variable
A list of atoms which describe the software and hardware features of the Lisp
implementation. By default. this is
(:loop :defstruct :lispm :cadr :mit :chaos :sort :fasload :string
:newio :roman :trace :grindef :grind :common)

Most important is the symbol :lispm: this indicates that the program is exccuting on the
Lisp Machine. :cadr indicates the type of hardware, :mit which version of the Lisp
Machine operating system, and :chaos that the Chaosnet protocol is available. :common
indicates that Common Lisp is- supported. ’

Most of the other clements are for Maclisp compatibility. Common Lisp defines the
variable *features* but docs not define what should appear in the list. The order of
clements in the list has no significance. Membership checks should usc string-equal so
that packages arc not significant

The #+ and #- rcad constructs (page 525) check for the presence of an clement in this
list. Thus, #+lispm when rcad by a Lisp Machine causes the following expression to be
significant, because :lispm is present in the features list.

The remaining standard means of inquiry arc specified by Common Lisp to be functions
rather than variables, for rcasons that seem poorly thought out.

Tisp- 1mp1ementét10n type
Returns a string saying what kind of Lisp implementation you are using. On the Lisp
Machine it is always "Zetalisp".

1isp-implementation-version
Returns a string saying the version numbers of the Lisp implementation. On the Lisp

Machine it looks something like
"System 98.3, CADR 3.0, ZMAIL 52.2".

machine-type
Returns a string describing the kind of hardware in use. It is "CADR" or "LAMBDA".

PS«<1 ..M/\N)FD-H/\C.TEXT.M 8-JUN-84

Booting and Disk Partitions 804 ' Iisp Machine Manual

machine-version _
Returns a string describing the kind of hardware and microcode version. 1t starts with the
value of machine-type. 1t might be "CADR Microcode 309",

machine-instance :
Returns a string giving the name of this machine. Do not be confused: the value is a
string. not an instance. lxample: "CADR-18". :

software-type
Returns a string describing the type of operating system software that Lisp is working
with, On the lisp Machine, it is always "Zetalisp", sincce the Lisp Machine Lisp
software is the operating system.

software-version
Returns a string describing the version numbers of the operating system software in usc.
This is the same as lisp-implementation-version on the Lisp Machine since the same
software is being described.

short-site-name
Returns a suring giving briefly the name of the site you are at. A site is an institution
which has a group of Lisp Machines. The string you get is the value of the :short-site-
name site option as given in SYS: SITE; SITE LISP. Scc scction 35.12, page 810 for
more information. Example: "MIT Al Lab".

long-site-name
Returns a string giving a verbose name for the site you are at. This string is specified by
the site option :long-site-name. Example: "Massachusetts Institute of Technology,
Artificial Intelligence Laboratory".

35.11 Booting and Disk Partitions

A Lisp Machine disk is divided into several named partitions (also called bands sometimes).
Partitions can be used for many things. Every disk has a partition named PAGE, which is used
to implement the virtual memory of the Lisp Machine. When you run Lisp, this is where the
Lisp world actually resides. ‘There are also partitions that hold saved images of the lisp Machine
microcode, conventionally named MCRn (where » is a digit), and partitions that hold saved
images of Lisp worlds. conventionally named LODn. A saved image of a lisp world is also
called a virtual memory load or system load. 'The microcode and system load arc stored separately
so that the microcode can be changed without going through the time-consuming process of
generating a new system load.

The directory of partitions is in a special block on the disk called the label. The label names
one of the partitions as the current microcode and onc as the current system load. When you
cold-boot, the contents of the current microcode band are loaded into the microcode memory,
and then the contents of the current saved image of the Lisp world is copied into the PAGE
partition. Then Lisp starts running. When you warm-boot, the contents of the current microcode
band arc loaded, but Lisp starts running using the data alrcady in the PAGE partition.

PS:KLLMAN>FD-HAC.TEXT 47 8-JUN-84

Lisp Machine Manual S 805 Booting and Disk Partitions

For cach partition. the directory of partitions contains a brief textual description o the
contents of the partition. For microcode partitions, a typical description might be "UCADR 310";
this means that version 310 of the microcode is in the partition. For saved Lisp images, it is a
little more complicated. Ideally, the description would say which versions of which systems are
Joaded into the band. Unfortunately. there isn’t enough room for that in most cases. A typical
description is "99.4 Daed 5.1". meaning that this band contains version 99.4 of System and
version 5.1 of Daedalus. ‘The description is created when a Lisp world is saved away by disk-
save (sce below).

35.11.1 Manipulating the Label

print-disk-label &optional (unit0) (stream *standard-output*)
Prints a description of the label of the disk specified by wnit onto stream. ‘The description
starts with the name of the disk pack. various information about the disk that is gencrally
uninteresting. and the names of the two current load partitions (microcode and saved Lisp
image). This is followed by onc line of description for cach partition. Fach one has a .
name, disk address, size. and textual comment. ‘The current microcode partition and the
current system load partition arc marked with asterisks, cach at the beginning of the line.

unit may be the unit number of the disk (most Lisp machines just have one unit, number
0). or the host name of another Lisp Machine on the Chaosnet, as a string (in which case
the label of unit 0 on that machine is printed, and the user of that machine is notified
that you are looking at his label), or, for CADRs only. the string "CC" (which prints the
label of unit 0 of the machine connccted to this machine’s debugging hardware).

Use of "CC" as the wunif is the way to cxamine or fix up the label of a machinc which
cannot work because of problems with the label. On a lLambda, this must bc done
through the SDU.

set-current-band partition-name &optional (unit Q)
Scts the current saved lisp image partition to be partition-name. 1f partition-name is a
number, the name LODn is used.

unit can be a disk drive number, the host name of another Lisp Machine, or the string
"CC". Scec the comments under print-disk-label, above.

If the partition you specify goes with a version of microcode different from the one that is
current, this function offers to sclect the an appropriatc microcode partition as well.
Normally you should answer Y.

set-current-microload partition-name &optional (unit 0)
Sets the current microcode partition to be partition-name. f partition-name is a number,
the name MCRu# is used.

unit can be a disk drive number, the host name of another Lisp Machine, or the string
"CC". Sce the comments under print-disk-label, above.

PS:<L.MAN>FD-HAC.TEXT .47 8-JUN-84

Booting and Disk Partiions 806 Lisp Machine Manual

si:current-band &optional (unit0)

si:current-microload &optional (unit0)
Return, respectively, the name of the current band and the current microload on the
specified unit.

When using the functions to set the current load partitions. be extra sure that you are
specifying the correct partition. Having done it cold-booting the machine will reload {rom: those
partitions. Some versions of the microcode will not work with some versions of the Lisp system,
and if you set the two current partitions incompatibly. cold-booting the machine will fail. "To fix
this, on a CADR, use another CADR’s debugging hardware, running print-disk-label and set-
current-band on the other CADR and giving "CC" as the wnir argument. On a Lambda, this is
done via the SDU,

si:edit-disk-1abel unit &optional inir-p
Runs an interactive label editor on the specified unit. 'This editor allows you to change
any ficld in the label. The Help key documents the commands. You have to be an
expert to need this and to understand what it docs. so the commands arc not documented
here. Ask someonc if you nced help. You can screw yourself very badly with this
function.

disk-restore &optional partition
Allows booting from a band other than the current onc. partition may be the name or
the number of a disk partition containirrg a virtual-memory load, or nil or omitted,
meaning to use the current partition. The specified partition is copied into the paging
arca of the disk and then started.

Although you can use this to boot a different Lisp image than the installed one, this does
not provide a way to boot a different microcode image. disk-restore brings up the new
band with the currently running microcode.

disk-restore asks the user for confirmation before doing it.

describe-partition partition &optional unit
Tells you various uscful things about a partition; including where on disk the partition

begins, and how long it is.

If you specify a saved Lisp system partition, such as LOD3, it also tells you important
information about the contents of the partition: the microcode version which the partition
gocs with, the size of the data in the partition and the highest virtual address used. The
size of the partition tells how large a partition you need to make a copy of this one, and
the highest virtual address used (which is measured in units of disk blocks) tells you how
large a PAGE partition you need in order to run this partition.

PS:KL.MANDFD-HAC.TEXT47 : 8-JUN-84

I isp Machine Manual _ 807 Booting and Disk Partitions

35.11.2 Updating Software

Of all the procedures described in this section, the most common one is to take a partition
containing a Lisp image, update it to have all the latest patches (see section 28.8. page 672), and
save it away in a disk partition. ‘The function load-and-save-patches does it all conveniently
for you.

load-and-save-patches
loads patches and saves a band, with a simple user interface. Run this function
immediately after cold booting, without logging in first: it logs in automatically as LISPM
(or whatever is specified in the site files). The first thing it docs is print the list of disk
partitions and ask you which one to save in. Answer LODn, using the name of a
partition from the printed list. You must then confirm. Then the patches are loaded and
the resulting world is saved with no further user interaction, as long as no problem ariscs.

It is convenient to use this function just before you depart, allowing it to finish
unattended. : :

If you wish to do somcthing other than loading all and only the latest patches, you must
perform the steps by hand. Start by cold-booting the machine, to get a fresh, empty system.
Next, you must fog in as something whose INIT file does not affect the Lisp world noticably (so
that when you save away the Lisp image, the side-cffects of the INIT file won't get saved too);
on MIT-0OZ, for cxample, you can log in as LISPM with password LISPM. Now you can load in
any new software you want; usually you should also do (load-patches) for good mcasure. You
may also want to call si:set-system-status to changce the release status of the system.

When you're done loading cverything, do (print-disk-label) to find a band in which to save
your new Lisp world. It is best not to rcuse the current band, since if something goes wrong
during the saving of the partition, while you have written, say, half of the band that is current,
it may be impossible to cold-boot the machine. Once you have found the partition, you use the
disk-save function to save everything into that partition.

disk-save partition-name &optional no-query incremental
Saves the current Lisp world in the designated partition. partition-name may be a
partition name (a string), or it may be a number in which case the name LODn is used.

- The user is first asked for yes-or-no confirmation that he really wants to rcuse the named
partition. A non-nil value for no-query prcvcnts this question. This is only for callers that
have alrcady asked.)

Next it is nccessary to figure out what to put into the textual description of the band, for

- the disk label. This starts with the brief version of si:system-version-info (sce page
674). Then comes a string of additional information; if no-query is nil, the user is offered
the chance to provide a new string. The current valuc of this string is returned by
si:system-version-info and printed by booting. The version info and the string both go
in the comment ficld of the disk label for this band. If they don’t together fit into the
fixed sizc available, the user is asked to retype the whole thing (the version info as well
as your comment) in a compressed form that doces fit.

PS:KILMAN>EFD-HAC. TEXT.47 8-JUN-84

Booting and Disk Partitions 808 Lisp Machine Manual

The Lisp environment is then saved away into the designated partition, and then the
cquivalent of a cold-boot from that partition is donc,

Once the patched system has been successfully saved and the system comes back up. you can
make it current with set-current-band.

When you do a disk-save, it may tell you that the band you wish to save in is not big
cnough to hold all the data in your current world. It may be possible for you to reduce the size
of the data so that it will fit in that band, by garbage collecting. Simply do (si:full-gc).

Try o avoid saving patched systems afier running the editor or the compiler. This works, but
it makes the saved system a lot bigger. In order o produce a clean saved environment, you
should try to do as litde as possible between the time you cold-boot and the time you save the
partition.

si:login-history Variable
The value of sislogin-history is a list of entries. one for cach person who has logged into
this world since it was created. ‘This makes it possible to tell who disk-saved a band
with something broken in it. Fach cntry is a list of the user 1. the host logged into,
the Lisp Machine on which the world was being cxccuted, and the date and time.

35.11.3 Saving Personal Software

If you have a large application system which takes a while to load, you may wish to save a
band containing it.

To do this, boot a fresh band, log in without running your init file, do make-system to
load the application system, and then invoke disk-save. When disk-save asks for an additional
comment, give your name or the name of the application system you loaded, and a date. This
will tell other people who to ask whether the band is still in usc if they would like to save other
things.

You can greatly reduce the amount of disk space nceded for the saved band by making it an
incremental band; that is, a band which contains the differences between the Lisp world you want
to save and the system band you originally loaded. Since all the pages of the system which your
application program did not change do not have to be saved, an incremental band is gencrally
much smaller—pecrhaps by a factor of ten.

To make an incremental band, give a non-nil third argument to disk-save, as in
(disk-save "1od4" nil t)
Figuring out which pages nced to be saved in the incremental band takes a couple of extra
minutes.

You can restore the incremental band with disk-restore or boot it like any other band. This
works by first booting the original band and then copying in the differences that the incremental
band rccords. It takes only a little longer than booting the original system band.

PS:KL.MAN>FD-HAC.TEXT 47 8-JUN-84

Lisp Machine Manual o809 Booting and Disk Partitions

The original band to which an incremental band refers must be a complete load. When you
update a standard system band (loading patches, for instance) vou should always make a complete
load, so that the previous-system band is not nceded for the new one to function.

The incremental band records the partition name of the original system band. ‘That original
band must still exist, with the same contents,, in order for the incremental band to work properly.
The incremental band contains some error check data which is used o verify this. The error
checking is done by the microcode when the incremental band is booted. but it is also done by
set-current-band, so that you arc not permitted to select an incremental band il it is not going
to work.

When using incremental bands, it is important to preserve the system bands that they depend
on. Therefore, system bands should not be updated oo frequently. describe-partition on an
incremental band says which full band it depends on; you can use this to determine which bands
should be kept for the sake of incremental bands that depend on them.

In order to realize the maximum savings in disk space possible because of incremental bands,
you must make the partition you saved in smaller once the save is finished and you know how
much spacc was actually used. This is done with si:edit-disk-label. The excess space at the end
of the partition can be used to make another partition which is used for the next incremental
band saved. Eventually when some of the incremental bands arc no longer needed the rest must
be shuffied so that the free space can be put together into larger partitions. This can be done
with si:copy-disk-partition. :

An casicr technique is to divide a couple of the initial partitions into several ecqual-sized
partitions of about 4000 pages, and usc these for all incremental saving. You can casily provide
room for 12 incremental bands this way in addition to a few system bands and file system.

You must not do a garbage collection to reduce the size of the world before you make an an
incremental band. This is because garbage collection alters so many pages that an incremental
band would be as big as a complete band.

35.11.4 Copying Bands

The normal way to install new software on a machine is to copy the microcode and world
load bands from another machine.

The first step is to find a machine that is not in usc and has the desired system. Let us call
this the source machine. The machine where the new system is to be installed is the target
machine. You can usc finger to sec which machines are free, and usc print-disk-label with an
argument to examine the label of that machine’s disk and see if it has the system you want.

Then you should do a (print-disk-label) to find suitable partitions to copy them into. It is
advisable not to copy them into the sclecied partitions; if you did that, and the machine crashed
in the middle, you would be unable to boot it.

Before copying a band from another machine, double-check the partition names by printing
the labels of both machines, and make sure no one¢ is using the other machine. Also double-
check with describe-partition that the world load and microcode go together. Then use this

PS:KLLMAN>FD-HAC.TEXT 47 8-JUN-84

Site Options and Host Table 810 Lisp Machine Manual

function:

si:receive-band source-host source-band target-band &optional subset-start subset-size
Copics the partition on source-host’s partition named source-band onto the local machine’s
partition named farget-band. This takes about ten minutes. 1t types out the size of the
partition in pages, and types a number cvery 100 pages telling how far it has gotten. It
displays an entry in the who line on the remote machine saying what’s going on.

The subsct-start and subser-size arguments can be used to transfer only part of a partition,
They are measured in blocks. The default for the first is zero, and the default for the
sccond is 1o continue to the end of the data in the band. These arguments are uscful for
restarting a transfer that was aborted duc to network problems or a crash, based on the
count of hundreds of blocks that was printed out before the crash.

To go the other direction, use si:transmit-band.

si:transmit-band source-band target-host target-band &optional subset-start subset-size
I'his is just like si:receive-band. cxcept you usc it on the source machine instead of the
target machine. It copics the local machine’s partition named source-band onto target-
machine’s partition named farget-band.

It is preferable to usc sirreceive-band so that you are present at the machine being
written on.

After transferring the band. it is good practicc to make surc that it rcally was copied
successfully by comparing the original and the copy. All of the known rcasons for crrors during
band transfer have (of course) beén corrected, but peace of mind is valuable. If the copy was not
perfectly faithful, you might not find out about it until a long time later, when you use whatever
part of the system that had not been copied properly.

si:compare-band source-host source-band target-band &optional subser-start subset-size
‘This is like si:receive-band, cxcept that it docs not change anything. It compares the
two bands and complains about any differences.

Having gotten the current microcode load and system load copied into partitions on your
machine, you can make them current for booting using set-current-band.

35.12 Site Options and Host Table

The Lisp Machinc system has options that are sct at cach sitc. These include the network
addresses of other hosts, which hosts have file scrvers, which host to find the system source files
and patch files on, where to send bug reports, what timezone the site is located in, and many
other things.

The per-sitc information is dcfined by three files: SYS: SITE; SITE LISP, SYS: SITE;
LMLOCS LISP, and SYS: CHAOS; HOSTS TXT.

PS:KLLMAN>FD-HAC.TEXT 47 8-JUN-84

Lisp Machine Manual . 811 Site Options and Host Table

SYS: CHAOS; HOSTS TXT is the network host table. It gives the names and addresses of
all hosts that are 1o be known to the Lisp Machine for any purposes. It also says what type of
machine the host is, and what operating system runs on it.

SYS: SITE; LMLOCS LISP specifies various information about the Lisp Machines at your
site, including its name, where it is physically located, and what the default machine for logging
in should be.

SYS: SITE; SITE LISP specifies all other site-specific information. Primarily, this is
contained in a call 10 the special form defsite.

defsite site-name (site-option value)... Macro
This special form defines the values of site-specific options, and also gives the name of
the site. Each site-option is a symbol, normally in the keyword package. which is the
name of some site option. value is the value for that option; it.is cvaluated. Here is a
list of standardly defined site options:

:sys-host The value is a string, the name of the host on which the system source ’
files are stored. ‘This host becomes the translation of logical host SYS.

:sys-host-translation-alist
'The value is an alist mapping host names into translation-list variables.
Each translation list variable’s value should be an alist suitable for being
the third argument to fs:add-logical-pathname-host (sce page 574).
The car of an clement may be nil instead of a host name; then this
clement applies to all hosts not mentioned.

The normal place to find the system sources is on the host specified by
the :sys-host keyword, in the dircctories specified by the translation list
variable found by looking that host up in the value of the :sys-host-
translation-alist keyword. If you specify a different host as the system
host with si:set-sys-host, that host is also looked up in this alist to find
out what dircctorics to use there.

Here is what is used at MIT:

(defsite :mit
(:sys-host-translation-alist '
"(("AI" . its-sys-pathname-translations)
("0Z" . oz-sys-pathname-translations)
("FS" . its-sys-pathname-translations)
("LM" . its-sys-pathname-translations)
(nil . its-sys-pathname-translations)))

cl)

PS:<KL.MANDED-HAC.TEXT.A7 8-JUN-84

Site Options and Host Table 812 ' Lisp Machine Manual

(defconst oz-sys-pathname-translations
’(("CC;" "<L.CC>")
("CHAOS ;" "<L.CHAQS>")
("DEMO;" "<L.DEMO>")

("SITE;" "<L.SITE>")
(I!SYS:" "<L'SYS>")
("SYS2;" "<L.SYS2>")

("ZMAIL;" "<L.ZMAIL>")
("ZWET;" "<L.ZWEI>")
))

:sys-login-name

:sys-login-password .
These specify the username and password to use to log in automatically to
recad system patch files, microcode symbol tables and crror tables. ‘The
values should be strings.

:chaos nil if the site has no Chaosnct; otherwise, a string, the name of the
Chaosnet that the site is on. Names for Chaosnets will eventually be used
to permit communication between Chaosnets, probably through special
gateway servers. Except when multiple sites arc on a single Chaosnet,
normally the Chaosnet namic should be the same as the site name (but as
a string, not a symbol).

:standalone The value should be t for a Lisp Machine that is operated without a
network conncction. This causes the Lisp Machine to not to try to use
the Chaosnet for getting the time. On the Lambda, the time will obtained
from the SDU's clock. On the CADR, the time will be obtained from
the user.

:default-associated-machine
This should be a string which is the name of a host to use as the
associated host for any Lisp Machine not mentioned in the LMLOCS file.

:usual-Im-name-prefix :
This should bc a string which is the typical beginning of host names of
Lisp Machines at your site. At MIT, it is "CADR-".

:chaos-file-server-hosts
‘ This should be a list of names of hosts that have file servers, including
Lisp Machines which other Lisp Machines should know about.

Imfile-server-hosts
This should be a list of names of Lisp Machines that provide scrvers for
the LMFILE file system. ‘The cntry for such a machinc should be one of
the nicknames of that machine. By virtue of its presence in this list, it
becomes the name by which the LMFILE file system there can be
accessed remotely.

:chaos-time-server-hosts
'This should be a list of names of hosts that support TIME scrvers. These

PSKL.MAN>FD-HAC.TEXT.47 8-JUN-84

Lisp Machinc Manual . 813 Site Options and Host Table

arc hosts that the Lisp Machine can ask the time of day from when you
boot.

:chaos-host-table-server-hosts -
This should be a list of names of hosts that support host-table servers,
which can be uwsed to inquire about hosts on nctworks that the Lisp
Machine docs not know about in its own host table.

:chaos-mail-server-hosts
This should be a list of names of hosts that support mail servers which
are capable of forwarding mail to any known host.

‘timezone This should be a number, the number of hours carlier than GMT of
standard time in the timezone where this site is located.

:host-for-bug-reports
This should be a string, the name of the host at which bug-report
mailboxes are located.

:local-mail-hosts
This should be a list of names of hosts that ZMail should consider “local”
and omit from its summary display.

:spell-server-hosts
This should be a list of hosts that have spelling corrector servers.

:comsat This should be t if mail can be sent through the COMSAT: mail demon.
This is true only at MIT.

:default-mail-mode
This should be the default mode for use in sending mail. The options are
file (use COMSAT), :chaos (use onc of the :chaos-mail-server-hosts),
or :chaos-direct (like :chaos, but go direct to the host that the mail is
addressed to whenever possible).

:gmsgs This should be t if GMSGS servers are available.

:arpa-gateways
This should be a list of names of hosts that can be used as gateways to
‘the Arpanct. These hosts must provide a suitable Chaosnet server which
will make Arpanet conpections. It should be nil if your site does not have
an Arpanct connection.

:arpa-contact-name ‘
If you have Arpanct gateways, this is the Chaosnet contact name to use.
Nowadays, it should be "TCP".

:dover This should be t if your site has a Dover printer.

:default-printer .
This should be a keyword which describes the default printer for hardcopy
commands and functions to use. Possible valucs include :dover, nil, or
any other printer type that you define (sce section 35.2, page 785).

“:default-bit-array-printer
Like :default-printer, but this is the default for only hardcopy-bit-array

PS:KLLMAN>FD-HAC.TEXT 47 8-JUN-84

Site Options and Host Table 814 Lisp Machine Manual

to use.
:esc-f-arg-alist

This says what various numeric arguments to the Terminal F command
mcan. It is a list of clements, onc for cach possible argument. The car
of an element is cither a number or nil (which applies to Terminal F with
no argument). The cdr is either :dogin (finger the login host), :lisp-
machines (finger all lisp Machines at this sitc), :read (read some hosts
from the keyboard), or a list of host namcs.

:verify-lm-dumps
If the valuc is t, lisp Machine file system dump tapes arc verified.

Other site options are allowed, and your own software can look for them.

35.12.1 Updating Site Information

To update the site files, you must first recompile the sources. Do this by
(make-system ’'site 'compile)
This also loads the site files.

To just load the site files, assuming they are compiled, do
(make-system 'site)

load-patches docs that automatically.

You should never load any site filc directly. All the files must be loaded in the proper
fashion and sequence, or the machinc may stop working.

35.12.2 Accessing Site Options
Programs examine the site options using these variables and functions:

site-name : Variable
The value of this variable is the name of the sitc you are running at, as defined in the
defsite in the SITE file. You can use this in run-time conditionals for various sites.

get-site-option keyword A ,
Returns the value of the site option keyword. The value is nil if keyword is not

mentioned in the SITE file.

define-site-variable variable keyword [documentation) Macro
Defines a variable named variable whose value is always the same as that of the site
option keyword. When new site files are loaded, the variable’s value is updated.
documentation is the variable’s documentation string, as in defvar.

PS:KL.MAN>FD-HAC. TEXT 47 8-JUN-84

Lisp Machine Manual 4 815 Site Options and Host Table

define-site-host-11ist variable keyword [documentation) Macro
Detines a variable named variable whose value is a list of host objects specified by the site
option keyword. The value actually specified in the SITE file should be a list of host
names. When new site files are loaded, the variable's valuc is updated. documentation is
the variable’s documentation string, as in defvar.

35.12.3 The LMLOCS File

The LMLOCS file contains an entry for cach Lisp Machine at your site, and tells the system
whatever it nceds to know about the particular machine it is running on. It contains onc form, a
defconst for the variable machine-location-alist. The value should have an clement for cach
Lisp Machine, of this form:

("MIT-LISPM-1" "Lisp Machine One"
"907 [Son of CONS] CADR1's Room x6765"
(MIT-NE43 9) "0Z" ((:default-printer :dover)))

The general pattern is
(host-full-name pretty-name
location-string
(building floor) associated-machine site-options)
The host-full-name is the same as in the host table,

The pretty-name is simply for printing out for users on certain occasions.

The location-string should say where to find the machine’s console, prefcrably with a
telephone number, This is for the FINGER scrver to provide to other hosts.

The building and floor are a somewhat machinc-understandable version of the location.
The associated-machine is the default file server host name for login on this Lisp Machine.

site-options is a list of sitc options, just like what goes in the defsite. These site options
apply only to the particular machine, overriding what is present in the SITE file. In our example,
the site option :default-printer is specified as being :dover, on this machine only.

si:associated-machine _ Variable
The host object for the associated machine of this Lisp Machine,

PSKI.MAN>FD-HAC.TEXT 47 8-JUN-84

	784_Misc
	785_Misc
	786_Misc
	787_Misc
	788_Misc
	789_Misc
	790_Misc
	791_Misc
	792_Misc
	793_Misc
	794_Misc
	795_Misc
	796_Misc
	797_Misc
	798_Misc
	799_Misc
	800_Misc
	801_Misc
	802_Misc
	803_Misc
	804_Misc
	805_Misc
	806_Misc
	807_Misc
	808_Misc
	809_Misc
	810_Misc
	811_Misc
	812_Misc
	813_Misc
	814_Misc
	815_Misc

