ofalof.2.2.2.8 8 2.8 8.2 2.8 8. 0.0 8.8 282808080 8022820¢s¢0e 4

:

i
| ENGINEERS' GUIDE |
: »
: to ;‘
: %
:
: 3

ICES COGO |

»
b2 8.0.9.2.2.8.8.9.2.0.8.8.8.8 0.9 0828002000882 8 880000 s

First Edition
August, 1967

R67-46

DEPARTMENT
OF
CIVIL
ENGINEERING

SCHOOL OF ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts 02139

Al
pd

ot
st

e
b

st

«©

Ve

ala ‘e PUTEVS o S, U3 L J, J, J, J, ats
Ste sk sk sk sk ook ok sk sk sk sk sk sk sk sk ook sk sk sk ok oK

¥

ENGINEERS' GUIDE *

3k

to *

sk

ICES COGO 1I *

V3

-«

s ool sk skl sk sk sk sk skoskoskosk ok sk sk ok sk ok

First Edition
August, 196(7

Civil Engineering Systems Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts

Copyright (© 1967
by
Massachusetts Institute of Technology
All Rights Reserved

Printed in United States of America

FOREWURD

The advances reported herein were developed at the M.I. T. Civil En-
gineering Systems Laboratory (CESL), a research unit of the Department of
Civil Engineering dedicated to the advancement of the teaching and practice
of civil engineering.

This document is one of a series of publications resulting from the Inte-
grated Civil Engineering System (ICES) Project, initiated and carried out
under the general direction of Professor C. L. Miller, Head of the Depart-
ment. The ICES Project is a cooperative venture of government, industry,
and university groups interested in the development of a large-scale,
computer-based system which integrates advanced information system and
powerful problem-solving capabilities. An operational system has been
initially implemented on the IBM System/360.

Support for the ICES Project has been provided by a number of CESL
research sponsors. Special recognition is due the following: the IBM Cor-
poration, the Massachusetts Department of Public Works in cooperation with
the U.S. Bureau of Public Roads, the Massachusetts Bay Transportation
Authority, the National Science Foundation, the McDonnell Automation Com-
pany, the Wisconsin State Highway Commission, the Ford Foundation, and
the Union Pacific Railroad Foundation.

Additional information on the availability of the publications and compu-
ter systems resulting from the ICES Project may be obtained from Professor
Daniel Roos, Director, Civil Engineering Systems Laboratory, Room 1-163,

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.

CONTRIBUTORS

A number of people have participated in the development of ICES COGO I
at the M.I,T. Civil Engineering Systems Laboratory during the period 1964
to 1967. The principal contributors and their contributions include:

C. L. Miller
Formulated the over-all system and designed the language; developed
the external specifications and wrote the Engineers' Guide; provided
over-all supervision.

Steven B. Lipner
Supervised the implementation of the system, including supervision of
and responsibility for all programming development and system docu-
mentation; programmed and optimized major portions of the system.

Betsy Schumacker
Programmed the complete Traverse subsystem and developed the file
save and restore capability; served as systems consultant to the systems
design and development staff.

Daniel Roos
Designed the internal data structure; formulated the internal design and
development of COGO in the ICES environment.

T. H. Kaalstad and E. E. Newman
Performed testing and evaluation of completed commands; assisted in
technical development, administration, and production of completed
system.

Many CESL staff members have contributed to the programming of the
system. Special recognition is due to the following:

Thomas A. Casey Marc R. Levin

Kerry B. Chesbro Paul M. Martin
Larry-Stuart Deutsch John C. Prokopy

Michael R. Dunlavey Henry A. Radzikowski, II
Kenneth G. Follansbee Angel (7) Silva

Lawrence A. Hall Howard C. Stotland

Carl Jones, III

iii

ENGINEERS' GUIDE

to

ICES COGO 1

PART 1

GENERAL SPECIFICATIONS

Civil Engineering Systems Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts

TABLE OF CONTENTS

INTRODUCTION , . . . v v ¢ ¢ v o o o o e e
PROBLEM-SOLVING APPROACH« v v v v v v v s o o«
Information Processor ¢ v v v v v v e v v e e e e e e
Geometric Objects and Data Tables
Commands . . v v v v v 4 v v e e e e e e e e e e e e e e e .
Command Processing and Execution
Example Problem e e e e e e e e e e e e e e e e e
DEFINITION OF OBJECTS e e e e e e e e e e e e e e e
Object Definition . . e e e e e e e e e e e e e e e
Absolute and Relative Ob_]ects C e e e e e e
Deletion of Stored Objects + ¢ ¢« v v v v v v v v v v o o
DATA TABLES . . . & ¢« v v i i v et e e e e e e e e e e e e e
Point Table ¢ ¢ v i i i i vt t e e e e e e e e e e e e
Line Table . . . ¢ ¢ v v v i v v i v it e et e e e e e e e e e e
Course Table & ¢ ¢ 4 4 i v 4 6 6 4 e e v o e e e e e
Curve Table e o e e e e e e e .
Chain Table . . . v v v ¢ v v v v v o o o 4 o o o o o o
Profile Table e e e e s e e e s e e e e e e e e e e e e
Scalar Table v &« v v i i e et e e e e e e e e e e e e
Text Table ¢ ¢ v v« v v v v v v v o
OBJECT GEOMETRY AND NOMENCLATURE
Point . .« v v v e i e
Curve Points ¢ ¢« ¢« i 0 i i e e e e e e e e e e e
Directions . ¢« & v v vt v v 4 a4 e e et e e e e e e e e e e e
Line e
COUTSE « v v v v v e e ottt e et e e o e e e e e e o .
Curve e et e
Chain . . . e e e e e e e e e e e e e e e e e e e
INPUT/OUTPUT CONTROL e e e e e e e e e e e e e e e e e
System Settings e e e e e e e e e e e e e e
Check Mode . . v & v v v v b e v e e e e e e e e e e e e e
Data Forms ¢ ¢ v v v v v v v v e e e e e e e e
Output Control ¢ . . o v v v v v v v v e e
ERROR CHECKING . . . 4 &t v v v e v e v v e e e e e e e e e e e
Command Err0ors . . & v v v v v v v v v v e e e e e e e e
Undefined Objects e e e e e e e e e e e e
Geometric Errors . . . v v v v v i i i e e e e e e e e e e e e
Geometric Warnings 00w e ..
PROBLEMS, RUNS, and FILES ., 4 v v v v v o .
Problem v v v vt e e e e e e e e e e e e e e e e e e e
Problem Data Tables
Run o e e et e e e e e e e e e e e e e e e e e e e

INTRODUCTION

ICES COGO 1 is an information processor for the computer solution of
geometric problems in such areas as

Engineering surveying and mapping

Highway, railway, waterway, and airport design
Structural, bridge, and building design
Right-of-way and land acquisition

Construction layout and control

Subdivision design and layout

Utility surveying, mapping, and records
Cadastral surveys and property records

Urban planning and design geometrics

Military and aerospace installation design
Architectural design geometrics and site planning

The processor is made up of a language, a set of processing routines,
and a set of information files. While the COGO (for COordinate GeOmetry)
language is designed for the natural expression of geometric problems in the
above areas, the system may be applied to a variety of geometric problems
in any area which involves points, lines, curves, and polygons in two or
three dimensional space.

ICES COGO I operates on geometric objects and variables which can be
identified, stored, retrieved, computed, printed, and manipulated by means
of commands issued by the Engineer-User. The purpose of this document is
to describe the external specifications of the processor as a guide to the
Engineer-User. Part 1 describes the general specifications for the proces-
sor, and Part 2 describes the detailed specifications for the individual

commands.

PROBLEM-SOLVING APPROACH

Information Processor

The COGO information processor operates in the ICES environment and
includes the following components:

a) a command-structured, problem-oriented language which the
Engineer-user utilizes to compose commands which describe the
solution procedures, results, and data for problems in the area
of civil engineering geometrics;

b) a set of processing routines which are executed by the computer
to achieve the problem-solving actions specified by the commands;

c) a setof information files or data tables which provide for the stor-
age and retrieval of geometric objects which are components of the
problems being solved.

The language provides the mechanism for the Engineer to communicate with
the problem-solving capabilities of the processing routines and with the in-
formation files. Through commands the Engineer describes:

a) the known data for the variables and problem components;

b) the relationships between the variables and problem components;

c) the information storage, retrieval, and processing to be performed;
d) the results to be recorded.

The language and the commands are intended to provide a natural, flexible,
and general way of providing such descriptions for geometric problems.

The language is machine independent; that is, it is independent of both
the hardware and software of the computer. The Engineer need not be aware
of the computer per se to use the language. He does not need to be proficient
in computer programming at lower language levels nor knowledgeable of com-
puter hardware. The language isolates him from the need for such under-
standing. Any such understanding he does have will give him insight as to
the functions of the computer but is not required for use of the subsystem.

The processing routines are machine dependent; that is, they must exist
as machine executable code for a particular computer system. The process-
ing routines are the province of the computer facility to which the Engineer
submits his COGO problems for processing. The processing routines take
the form of software--an organized set of programs, subprograms, and sub-
routines in machine language which are executed by the hardware. Given the
existence of the processing routines at an available facility, the Engineer
need only concern himself with the language and local procedures for sub-
mitting COGO problems to the facility.

The information files are automatically generated by the processing
routines when commands which define new geometric objects are executed.
The information files are contained in the physical storage devices of the
computer--the core memory and, when needed, the secondary storage de-
vices such as disks. The Engineer can save his information files between
runs if he so specifies.

In order to use COGO, the Engineer must of course understand civil en-
gineering geometric problem-solving and his particular problem. There is
nothing automatic about the system with respect to problem formulation and
solution description. These are entirely the province of the Engineer. Like
writing a speech, knowing the language is not enough. One must assemble
the words in meaningful and effective ways to convey a message. With
COGO, the Engineer is fully responsible for assembling the commands in
such a way that he achieves the desired solution to the problem which he for-
mulates. Writing COGO is an art, proficiency in which improves with prac-
tice, but again like speech writing, requires that one know his subject.

Geometric Objects and Data Tables

Individual problems in civil engineering geometrics can be expressed as
a particular configuration of simple geometric objects and a particular com-
bination of known and unknown values. Examples of objects include points,
lines, courses, curves, alignments, parcels, profiles, and so forth. Exam-
ples of values include distances, angles, directions, coordinates, stations,
and so forth. The objective of the COGO language is to allow the Engineer to
specify the particular combination and configuration which describe and solve
his particular problem rather than being restricted in any way by a predeter-
mined or programmed combination and configuration.

The geometric objects comprise the building blocks for formulating and
solving a geometric problem. Individual objects are identified, defined, and
stored in appropriate data tables via commands. Once stored, an object can
be referred to in subsequent commands and used to define other objects.
Examples of identified objects which might appear in commands include:

POINT 24 COURSE 'B14! ALIGNMENT 'RAMP-K!
LINE 15 PARCEL 'P23-A8! BASELINE 'B5'
CURVE 78 TRAVERSE 'T4! PROFILE 'RC/L!

Scalars or single value variables may also be identified, defined, stored,
and referred to in commands, such as

DISTANCE 'X2' AZIMUTH 'A8! ANGLE '"JACK'

The data tables store the information necessary to construct the object so
that it can be used in computations and information processing.

Commands

A command is a prescribed set of words, objects, and data items which
defines a new object or specifies some action requested by the Engineer.
Examples of commands include:

STORE POINT 17 N 1000. E 2000. STA 5+00 Z 150.15
LOCATE POINT 2 FROM POINT 4, DISTANCE 125.16, AZIMUTH
134 15 25
LOCATE POINT 8, INTERSECT CURVE 24 WITH LINE 15
PRINT ANGLE AT POINT 4 FROM POINT 2 TO POINT 4792
STORE ALIGNMENT 'K', 2, 7, CURVE 15, CURVE 38, COURSE 'A!', 24
DESCRIBE PARCEL 'LOT/18!

The first word (such as STORE, LOCATE, PRINT) is the command name.
Subsequent words (such as POINT, DISTANCE, INTERSECT) are labels for
data items or objects or are command modifiers which specify the particular
combination of objects and data items and the processing action to be taken.

The design of the language and the allowable forms for the commands
are intended to provide the Engineer with a natural way to express the for-
mulation and solution of his problem as a series of readable technical
phrases. However, when conciseness is preferred, abbreviated forms of
the commands may be used. Command words and modifiers may be ab-
breviated. Optional words which allow for readability may be omitted. If
the data items and objects are in the standard form and order, the labels
may often be omitted. The following are two extremes of the same command:

LOCATE POINT 4 FROM POINT 8, DISTANCE FROM POINT 7 TO
POINT 3, AZIMUTH 'A5' PLUS 90
LOC 4, 8, 7 TO 3, 'A5' P 90

Accordingly, the form of a command can vary from a complete readable
technical phrase to a single abbreviated word followed by a string of data
values, or any combination in between.

Command Processing and Execution

The commands written by the Engineer serve as the input to the compu-
‘ter and the COGO processing routines. In an off-line or batch mode of opera-
tion, the Engineer writes his commands out on paper and then has them
punched onto cards. The deck of cards is then read into the computer via a
local or remote card reader as the input device. Output is recorded via a
local or remote printer as the output device. In an on-line mode of operation
the Engineer may input his commands directly to the computer, working with
a typewriter type unit as the input and output device. The on-line mode has
significant advantages, particularly in an interactive computer environment
when the Engineer can inspect the results of each command before inputting
the next.

The commands are processed individually, one at a time, and in the
order in which they are received by the computer. Each command may be
thought of as a small program which

a) is processed and executed independently of the commands which
precede and follow;

b) may make use of data stored in the Data Tables by the commands
which precede it; and ‘

c) may store data in the Data Tables for use by the commands which
follow.

Accordingly, COGO uses an incremental problem-solving approach, each
command adding an increment to the formulation and solution of the problem.
Small, simple problems require a small number of commands to build up a
solution. Large, complex problems require a large number of commands.
Since there is no practical restriction on the number of commands which
may be used in solving a problem, there is no practical restriction on the
size or complexity of problems which can be handled. A problem may in-
volve as few as 3 or 4 commands or as many as several thousand or more
commands. The Engineer may formulate his problem in as large or small
terms as are most convenient and natural. What constitutes a problem and
the commands to build up the solution are under his full control.

The processing and execution of each command is the work of the pro-
cessing routines. Consider the following command:

LOCATE POINT 4, INTERSECT CURVE 5 WITH LINE 6, PRINT

The action of the processing routines is roughly as follows:

1) An executive routine determines that the command is a Locate
command and stores the information from the command.

2) The data for Curve 5 is retrieved from the Curve Data Table, and
the data for Line 6 is retrieved from the Line Table.

3) The subroutine for intersecting a curve with a line is retrieved and
executed to compute the coordinates of Point 4.

4) The coordinates of Point 4 are stored in the Point Table.
5) The coordinates of Point 4 are printed in the output report.

6) Control returns to the executive to read and process the next com-
mand (which may refer to Point 4 since it is now stored in the
Point Table).

If for any reason the command cannot be processed or executed (such as
command improperly constructed, Curve 5 or Line 6 not stored, no inter-
section, and so forth), appropriate messages are printed and corrective
action, if appropriate, taken. An extensive part of the work of the proces-
sor is concerned with checking the validity of the command and in generating
diagnostics to guide the Engineer when trouble is encountered.

SIMPLIFIED DIAGRAM OF COGO COMMAND PROCESSING

ENGINEER

1

Y

COGO
COMMANDS

COGO
OUTPUT

Y

i

INPUT DEVICE OUTPUT DEVICE

AND
ICES EXECUTIVE

OPERATING SYSTEM

v 1

MACHINE INSTRUCTIONS USERS
COGO AND il COGO
PROCESSING —3 PROBLEM DATA INFORMATION
ROUTINES FOR 3| FILES
CURRENT COMMAND (DATA TABLES)
- - - —

Example Problem

The problem-solving approach may be illustrated by a very simple
example problem. The problem sketch, Engineer's solution, listing of the
input commands, and listing of the output for the example problem are given
in the plates which follow. The explanation of commands in the Engineer's
solution is as follows:

1) The COGO Information Processor is specified.

2) The System is set for particular input/output conventions.

3) A comment is given.

4) The known coordinates of Point 4 are stored in the Point Table.

5) The coordinates of Point 8 are computed, using a numerical dis-
tance and direction, and are stored in the Point Table.

6) Curve 3 is defined and stored in the Curve Table. One of many
possible ways of defining and storing a curve is used.

7) The distance from the PI of Curve 3 to Point 2 is assigned name
'X1', computed as half the distance between Point 4 and PI of Curve
3, and is stored in the Distance Table. The value of the distance is
to be printed.

8) The coordinates of Point 2 are computed, using stored distance 'X1'
and a computed direction between two stored points, and are stored
in the Point Table.

9) The coordinates of Point 7 are computed, by intersecting a line de-
fined by a point and a computed direction with a course defined by
two stored points, and are stored in the Point Table.

10) Parcel 'LOT/18' is defined by a list of stored objects and is stored
in the Chain Table.

11) Values for distances between stored points are requested.
12) The value of an angle defined by stored points is requested.

13) A complete report describing all values associated with the stored
objects which define 'LOT/18' is requested. The coordinates of
points and curve points, curve elements, lengths and directions of
all sides, area, and so forth, are to be printed.

14) The end of the computer run is specified.
While a very small subset of the total capabilities is illustrated in this

simple problem, the concept of incremental problem-solving and the building
up of a solution with a set of flexible commands is illustrated.

EXAMPLE PROBLEM

Problem Sketch

N 539284.175
E 172359.243

Engineer's Solution (Long and Short Form)

a)
2)
(3)
@)

(7)

i)

3
(G)|STorEe CURVE 3, PBATSE, DBBTO4 M 75 30, TTL G6O. R /00. P4 AT 4

coGo

\SE7 SYSTEM NE, BEARINGS

F LOTA/B /N SUNSHINE SUBDIVISION

Lsro,e: POINT 4 N S$539284./75 £ [72359.243

LOCATE POINT 8 FROM POINT & DISTANCE SGL 74 BEARING NI /5 20E

LSTORE™ pISTANCE’ X/ P/-3 TO & LWVIOED BY 2.0, PRINT

(BlLOCATE 2 FROM Pt 3, p/.sr V7 AZ P73 70 £
(9)|LOCATE 7 //VTEk&ECf Cddﬂs&‘ K TO 8 WTH LINE 7'#.?(/2 A7 AZ 2 704 P 27
(IONSTORE PARCEL 1.07‘//8 7 8, CURVE 3, 2,7

\PRINT DOISTANCE & 70 7, 4 719 2

V22NPRINT ANGLE AT &£ f;com & 70 P73
NOESCR/IBE PIRCEL LO7-/8°
NEIN LS AL

n
2
(3)p8
4)
&)

CoGgo
F"‘r NE, BEA

LOTF I8 IN SUNSHINE SUBDIVISION
S &, S539284/75 /72359 243
Loc 8 4, 3Gl 78 N RS /5 20 £
s Cue 3 P8BS, DESBTO 4 M 755, TTL. GGO , R /00, PA%4
o DS ‘xi’ P/a TO4 DIV 2, PR/
Loc 2, P13, ‘xI' Pr 3 7O 4
O 7 INT LivE THRU 2, 2TO4 P 47, WITH Cou 4 70 8
S PAR LOT - /8° 7,8 CURS, 2, 7

o/ 4707, 4 70 2

ANG AT 4 8 PT 3

10

CrGH

wELCONME TC COGCsYCUR FRIENGLY
SET SYSTEM NELBEARINGS

$ LUT/18 IN SUNSHINE SUBDIVISI

STURE PUINT 4 N 39284.175

Listing ot Output

CLORDINATE GEUMETRY SYSTEM

OnN

€ 172359.243

LCCATE POINT & FRUM PUINT 4 DISTANCt S6l.74 BEARING N 45 15 20 €
STORE CURVE 3, PR AT 3,015 8 TO 4 M 75 33, TIL 660., R 100. PA AT 4
STORE UISTANCE *X1',PlI 3 T4 4 DIVIUED BY 2.0, PRINT

DISTANCE X1 375957
LUCATE 2 FRUM PI 3, OIST *x1' AZ PI 3 TC 4
LOCATE 7 INTERSECT CCURSE 4 TO 8 WITH LINE THRU 2 AT AZ 2 TC 4 P 47

SICRE PARCEL 'LOT/L3"

PRINT DISTANCE &« TU 7y 4 TO 2
VDISTANCE FRUM 4 TU
OISTANCE FRCM 4 TQ

PRINT ANSLE AT 4 FROM 8 TO PT
ANGLE AT 4 FROUM

DESCRIBE PARCEL fLOT/18°*

DESCRIPTIUN UF CHAIN LOT/18

T8 yCURPVE 3,2,7

7 29 4.929
2 375.997

3

8 T4 PT 3 58 10 48.58

CHAIN ELEMENTS

COURSE FROM 7 .70 8 LENGTH 276.811
COURSE FROM 8 10 °C 3 LENGTH 42€.231 BEARING
CURVE 3 Tyt C CURVE ELEMENTS
RADIUS 100.000 DEGREE 57 17 44.81
LENGTH 233.316 ULELTA 133 40 48.58
TANGENT 233,769 BACK S 3D 14 40.00 E
EXTERNAL 154,260 AHEAD N 76 33 51.42 W
LUNG CHURD 133,882
MID. ORD. 80,670
CGURSE FROM PT 3 TO 2 LENGTH 142,228 BEARING N 76
CCURSE FREHM 2 10 7 LENGTH 331.040 BEARING N 29
CHAIN PUINTS
POINT 7 N 939484 .,750 E 172561.615 S owERERRRkEE R E
POINT 2 N 539679.610 E 1727%8.221 S kAR kR KRR
CURVE 3 Tyere € CURVE POINTS
POINT CC 3 N 539261.026 E 172886.521 S ek FREE KR KK
POINT PC 3 N 5393114395 E 172972.509 S 0+ 0.0
PUOINT PT 3 N 539163.7603 £ 172863.235 S 2+33.316
PUINT PI 3 N 539109, 446 E 1730580.656 S 2+33.769
POINT 2 N 539166.810 E 172724.950 S Xk REackRREE
POINT 7 N5 39484,75) E 172561.615 S EEEEEKEKEEEK
AREA SEGMENT FRUNM PU TQ PT NN CURVE 3 8049.763 SGQUARE FEET
TOTAL AREA CF LIST 122242.652 SAUARE FEET Z.896 ACRES
FINISH
THE Ao CVE (0G0 PRSELEM INCLUDED 0 ERRORS WHICH REQUIRED CUMMAND ABORT.

UF THESE CUMMARNDS

O INVOLYED ATTEMPTS TO RETRIEVE UNSIORED UBJECTS.

11

BEARING N 45 15 20.00 E
S 30 14 40.00 E

33 51.42 W
33 51e42 W

NN NN

~

Tk kR wkkdk
ko R kR Ak

ok ROk Rk Rk
ok Rk Rk kR
R r eI T T LT
Aok ok KRR KRR E

Rk Aok ok ok A oK
TSI T

DEFINITION OF OBJECTS

Object Definition

Each object to be stored in a data table is given a unique name or identi-
fication number in the command which stores the object. When the command
is executed, entries which provide the values or information to define the ob-
ject are made in the data table. The entries stored in the data table remain
unchanged unless the object is redefined in a subsequent command. An ob-
ject is redefined if the same name or number is reused to store an object.
The new table entries then replace the old entries. When an object is rede-
fined, a message is printed in the output to alert the Engineer in case the
redefinition was unintentional.

Once an object is defined (stored in the data table), it may be referred
to or used as a data item in subsequent commands. Use of an object as a
data item does not affect the table entries. If the Engineer attempts to com-
pute with an undefined object, the command containing the undefined object
will not be executed, an appropriate error message being printed. The sys-
tem keeps count of the number of commands with one or more undefined ob-
jects. When the number of such commands exceeds a set limit, the execu-
tion of commands is terminated, the remaining commands being edited but
not processed.

Absolute and Relative Objects

An absolute object is one with table entries which are numerical data
values. An absolute object is independent of other objects in other data
tables and is independent of the objects used as data items to define it when
it was stored. A point is an example of an absolute object, with numerical
values for coordinates, station, and elevation as the table entries. A rela-
tive object is one stored in terms of other objects in other tables. A rela-
tive object is dependent on the stored objects which define it. If they are
redefined, the relative object is redefined. A course is an example of a
relative object, being defined in the Course Table by the identification num-
bers of two points which are in turn stored in the Point or Curve Tables.

Deletion of Stored Objects

Stored objects may be deleted from the data tables if desired by use of
the Delete command. Since the capacity of the system is quite large com-
pared to usual problem sizes, the need to delete objects to free storage
should be quite rare. However, some Engineers may prefer to reuse blocks
of identification numbers and names of convenient (small) size in the same
problem. The Delete capability will be useful in such instances.

13

WMWY LWV IWw § Wy

W EVIVIINY MY Tu VL

[A N S N R V) ey

NO [IN CHECK| YES
MODE
, :
YES |IS OBJECT| NO s
STORED NO |is OBJECT
STORED
\ YES
NO |REDEFINITIONS| YES)
ALLOWED NO |DO VALUES| YES
CHECK
\ Yy Y
) MESSAGE STORE
Mizgggs REDEFINED OBJECT MESSAGE
\ CHECK
MESSAGE
\ NO
INCREMENT CHECK
TOTAL
ERROR Y
COUNT PRINT
BOTH
VALUES

(RETURN)

NOTE: The above logic is applied to each coordinate of a point individually - thus if the N and E coordinates
of a point have been stored but it has not been stationed, a command which stores the point's station

is not considered to redefine the point.

MACRO LOGIC FOR RETRIEVING AN OBJECT

FROM DAT

[A TABLE

IS OBJECT STORED?

YES

}

RETRIEVE
OBJECT

RETURN

NO

Y
MESSAGE
OBJECT HAS
NOT BEEN
STORED

!

INCREMENT
TOTAL AND
"UNDEFINED"

ERROR COUNTS

Y

UNDEFINED INHIBIT
Y_ | FURTHER

ERRORS> |—»-

MAXIMUM EXECUTION

FOR THE RUN
*N

RETURN TO

READ NEXT [«

COMMAND

14

DATA TABLKS

The folldwing data tables are maintained by the system:
Point Table

Each point to be stored is assigned an identification number which can
be any integer from 0 to 9999. The stored data for each point is the horizon-
tal coordinates, station, elevation or any subset of these items. A point is
an absolute object. The Point Table has a capacity of 10, 000 points.

Line Table

Each line to be stored is assigned an identification number which can be
any integer from 0 to 999. A line is defined by a stored point and a direction.
The stored data for each line is the point number and the direction magnitude.
The direction is absolute, but a line is a relative object which moves with
the point which defines it. The Line Table has a capacity of 1, 000 lines.

Course Table

Each course to be stored is assigned a name which can be any 1 to 4
characters enclosed in single quotes. A course is defined as the line seg-
ment between two stored points. The stored data for each course is the
point numbers for the beginning and end points. A course is a relative
object which moves with the points which define it.

Curve Table

Each horizontal curve to be stored is assigned an identification number
which can be any integer from 0 to 999. A curve is defined as a circular
curve segment with or without equal or unequal transition spirals. The
stored data for each curve includes the horizontal coordinates and station of
each curve point (PI, PC, PT, TS, ST, and so forth) and the elements of the
curve (radius, length, and so forth). A curve is an absolute object. The
Curve Table has a capacity of 1,000 curves.

15

Chain Table

Horizontal alignments, traverses, parcels, ramps, right-of-way lines,
baselines, and similar kinds of horizontal geometry objects are stored in
the Chain Table. Such objects are defined and stored as lists of other
stored objects, treated as ''links' which when connected form the continuous
object or ''chain." The list may include any combination of stored points,
courses, curves, and other chains. Each chain to be stored is assigned
a name which can be any 1 to 8 characters enclosed in single quotes. The
stored data for each chain is the list of objects which define it. A chain is a
relative object which moves with the objects which define it. ’

Profile Table

Vertical alignments are stored in the Profile Table. Profiles are de-
fined by the stored points at the VPI's and the symmetric or asymmetric
curve lengths. Each profile to be stored is assigned a ' name which can be
any 1 to 8 characters enclosed in single quotes. The stored data for each
profile is a table of point numbers and vertical curve lengths. The profile
is a relative object which moves with the points which define it.

Scalar Tables

Separate tables are maintained for distances, angles, and directions--
a Distance Table, Angle Table, and Direction Table. KEach scalar to be
stored is given a name which can be any 1 to 4 characters enclosed in single
quotes. The stored data for each scalar is its absolute numerical value.

Text Table

Descriptive information associated with a stored chain may be stored in
the Text Table. Each set of text to be stored is assigned the same name as
that of the chain with which it is associated. The text is printed whenever
the chain is described in an output report. The text feature allows non-
geometric information, such as ownership, value, buildings, land use, and
so forth, to be stored with objects such as parcels.

Objects stored in different tables may have the same name or number.
For example, POINT 4, LINE 4, CURVE 4 each refer to a different object.
DISTANCE 'A", AZIMUTH 'A', and ANGLE 'A' refer to different scalars.

16

Object
Label

Point
POINT

Distance
DISTANCE

Angle
ANGLE

Direction
_P:g_IMUT H
BEARING

Line
LINE

Course
COURSE

Curve
CURVE

Chain
CHAIN
TRAVERSE

ALIGNMENT

PARCEL

Profile
PROFILE

st
bt

Id. Number
or NameX%

Numeric
1 to 4 digits
0 to 9999

Alphanumeric
1 to 4 characters

Alphanumeric
1 to 4 characters

Alphanumeric
1 to 4 characters

Numeric
1 to 3 digits
0 to 999

Alphanumeric
1 to 4 characters

Numeric

1 to 3 digits
0 to 999

Alphanumeric
1 to 8 characters

Alphanumeric

-1 to 8 characters

Table Table
Capacity Entries
10, 000 Horizontal Coord.
Points Station
Elevation
Open* magnitude
(Absolute value)
Open* magnitude
(Absolute value)
Open* magnitude
(Absolute value)
1, 000 Point Number
Lines Direction
Open* Beginning and
End Point Numbers
1,000 Coordinates and
Curves Station of all
Curve Points.
Curve Elements
Open* Chain List
Open* VFPI Points
VC lengths

Alphanumeric names must be enclosed in single quotes.

17

Absolute

or Relative

Absolute

Absolute

Absolute

Absolute

Relative
Absolute

Relative

Absolute

Relative

Relative
Absolute

i Capacity a function of hardware configuration but not a practical
constraint.

OBJECT GEOMETRY AND NOMENCLATURE

Point

A point is defined geometrically by its horizontal coordinates, station,
and elevation or any subset thereof, such as horizontal coordinates only,
station and elevation only, horizontal coordinates and station, and so forth.
Points stored in the Point Table are termed integer points when it is neces-
sary to distinguish them from curve points.

Externally, the coordinate system being used may be X,Y or N, E (Y
followed by X), as determined by the system setting. Internally, the system
is X,Y. A point is stored internally as the numerical values for the individ-
ual data items which are defined (coordinates, elevation, station). If entries
are made in the Point Table for a point already stored, the new values for
the individual data items replace the old values, the old values being retained
for those data items unchanged. Thus selective entries can be made in the
Point Table, as illustrated in the following examples:

Resulting Table Entries

Commands X Y Z S
STORE POINT 2 X 100. Y 200. 100.| 200, | sk} ook
STORE POINT 2 X 5+400. 100.| 200. | *%3*%| 500.
STORE POINT 2 X 600. Y 300. Z 400. 600.! 300.{ 400. | 500.

X and Y are defined after the first command, and S is also defined after the
second. All data values are defined after the third command. The third
command redefines the point because defined table entries are changed.

When stored points are printed, the numerical values are printed for the
defined data items and a row of asterisks for those undefined.

Curve Points

Curve points of stored curves may be used as data items in many com-
mands. The convention for referring to a curve point is to give the curve
point label followed by the stored curve member. For example:

PC 4 means the PC of Curve 4

PI 8 means the PI of Curve 8
SC 2 means the SC of Curve 2

18

The distance data item
DISTANCE PT 3 TO TS 5

means the distance from the PT of Curve 3 to the TS of Curve 5.

Directions

Externally, directions may be given as bearings or azimuths, inter-
changably. The azimuths may be measured from North or from South, as
determined by the system setting. Numerical directions and angles can be
input as ‘

degrees, minutes, and decimal seconds
degrees, minutes, and even seconds
degrees and decimal minutes

degrees and even minutes

decimal degrees

even degrees

Internally, the system works with azimuths from north in decimal radians
from 0 to +2rr.

Line

A line is defined geometrically by the horizontal coordinates of a stored
point on the line (the line point) and the direction of the line. A line has po-
sition in space and a forward direction but has infinite length. In computing
with a line, the line is extended ahead and back from the line point.

A line is stored internally in the Line Table as the identification number
of the line point (which may be a curve point) and the numerical value of the
direction of the line. In computing with a stored line, the horizontal
coordinates of the line point are automatically retrieved from the Point
Table or Curve Table. Accordingly, the horizontal coordinates of the line
point must be stored. If the line point is redefined (coordinates changed),
the line is shifted (position changed) parallel to itself as the line direction is
not changed, Hence a line is a relative object with respect to the line point
but an absolute object with respect to its direction.

19

offset
distance _#

7~
Minus offset -~
\Y
{s®
Plus offset //0"
e
~
P
LINE OBJECT NOMENCLATURE
inus
\ oﬁse‘
Course a
ens'o
Course direction exle

Beginning Point (;OURSE

sfsel
Yistance s¢eset
Course, on
extens_—

Co\,\TS

-
—

rse
offse! offset SO ——"

COURSE OBJECT NOMENCLATURE

20

Course

A course is defined geometrically as a line segment between two stored
points. A course has length and direction, a beginning point and an end
point. Its length is the distance between the two points, and its direction is
the direction of the line from the beginning point toward the end point.

A course is stored internally in the Course Table as the identification
numbers of the two points (which may be curve points) defining it. In com-
puting with a stored course, the horizontal coordinates of the points which
define it are automatically retrieved from the Point Table or Curve Table.
Accordingly the horizontal coordinates of the points must be stored. A
stored course is a relative object. If one or both of the points which define
a stored course are redefined (coordinates changed), the course is moved
(position, length, and direction are changed).

In operations such as intersecting two objects, one or both of which is a

course, if the intersection does not occur on the course, the course is ex-
tended and treated like a line, and the user is so notified by a message.

Curve

A curve is defined geometrically as a circular curve segment in the
horizontal plane, with or without spiral transitions of equal or unequal length.
A curve has specific end points (PC or TS and PT or ST) and absolute posi-
tion in space. If a curve has transition spirals, the entire curve (circular
curve segment plus spirals) is stored and retrieved as a single curve with
a single identification number.

A cutve is stored internally with numerical values which completely de-
fine its geometry and position in space. The station and horizontal coordi-
nates of each curve point are stored in the Curve Table, as are the basic curve
elements (radius, length, spiral lengths, and so forth). A curve is stored
as an absolute object. Once stored, it is independent of the points and values
initially used to define it. If any single curve point or curve element is to be
redefined, the entire curve is redefined.

In operations such as intersecting two objects, one or both of which is a
curve, if the intersection does not occur on the curve, the curve may be ex-
tended. Internally, curves are extended by extending the back and ahead
tangents to the curve. Hence curve extensions are lines extending back from
the beginning of the curve (PC or TS) and ahead from the end of the curve (PT
or ST). Projections onto curve extensions are always to the nearest tangent.

21

'muS‘
Beginning End of
of Curve Curve
P/C : EV\ P\T
N
o 7
i —_— N4, be
%S S N AT ottset sy,
S N Curve % N\,
0‘)(*‘000/ (Concentric) */@08/ o éeo
X .\0(\/ % <, (od
2 N7 058
o %e,
et oo
cC
Curve Center
CURVE OBJECT NOMENCLATURE
CURVE ———— Chain Connector
2
6
/Pc PTG //,’
/ N “
/ \PC curve PT~ |

COURSE ‘At II

8 |
|
|

Chain List

4, CURVE 2, CURVE 5, 6, 3, 8, COURSE 'Al', CURVE 7, 2, 4

EXAMPLE OF CHAIN OBJECT

22

Chain

A chain is defined geometrically as a continuous linear or curvilinear
object in the horizontal plane which can be defined in terms of stored points,
courses, curves, and other chains, Objects such as alignments, traverses,
parcels, baselines, and so forth, are classified as a single general object
called a chain and are stored in the Chain Table. The term chain is derived
from the concept of the chain object as a series of connected links, each link
being a stored object which is to be connected with the previous object.
Chains are defined and stored in the Chain Table as an ordered list of the
links, the chain list.

A chain is a relative object, the chain list defining the topology of the
chain., When a chain is used for purposes of computation or plotting, the
geometry of chain is constructed from the current numerical values in the
Point and Curve Tables for the objects in the chain list. If an object in the
list is redefined (moved), the geometry of the chain will be different in sub-
sequent references to it. Points in the list may be thought of as thumbtacks,
and curves and courses may be thought of as templates with a thumbtack at
each end. If one or more of the tacks are moved (coordinates changed), the
chain takes on a new shape and position for that portion affected.

In constructing the geometry of a chain from the absolute values associ-
ated with the objects in the chain list, the internal processing routines gen-
erate a connector for each object in the list not preceded by the word GAP.
The connector takes the form of a straight line segment (a course) which
connects the object with the previous object in the list. The beginning point
of the connector course is the end point of the previous object, and the end
point of the connector course is the beginning point of the object. If, for
example, two curves are being connected, the connector would be the
course from the PT (or ST) of the previous curve to the PC (or TS) of the
current curve. In chain computations, descriptions, and plots, the connec-
tors are treated as courses which make up the continuous chain. A gap may
be included in the chain by using the work GAP in the list between the two
objects which are not to be connected. GAP means no connector course is
to be generated. ‘

No connector course is generated between the last object in the list and
the first. Hence a chain is assumed to be an open chain, a gap occuring be-
tween the last and the first object. A closed chain can be obtained by making
the end point of the last object coincide with the beginning point of the first
object. For example, if the last object in the list is a stored point and it is
the same point as the first object in the list, the chain will be closed on itself.

23

INPUT/OUTPUT CONTROL

System Settings

Facility is provided to modify the system for local surveying and geo-
metric conventions. The Set command is used to set switches which control
input/output conventions such as

a) N,E or X,Y coordinate system

b) Azimuths or bearings as standard direction

c) Azimuths measured from North or from South

d) Two or three decimal places on distance and coordinate output
e) Even seconds of arc or decimal seconds on output

The Set command is also used to control the mode of operation and to store
constants.

There are standard settings which are fixed for a given installation.
The system is automatically initialized with the standard settings each time
the command COGO is executed. The Engineer can change the standard
settings for his individual run by use of the Set command. Once a setting
is made, it remains unchanged until another Set command is given which
changes the setting. The Set command can be given at any point in a COGO
problem.

The foilowing are examples of the Set command:

SET SYSTEM NE, BEARINGS, NAZIMUTH, DEC3, ASEC
SET SYSTEM XY, AZIMUTHS, SAZIMUTH, DEC2, ADEC

Check Mode

The system operates in two modes: the Compute Mode, which is the
normal mode of operation, and the Check Mode, which is a special mode of
operation. When in the Compute Mode, entries are made in the data tables
when commands are executed. When in the Check Mode, when commands
are executed, the computed values for ''redefined' points, scalars, and
curves are not stored but are compared with the values already stored. If
they do not compare within a specified tolerance, a NO CHECK message is
printed along with the computed and the stored values. The stored values
are left unchanged, and the system goes on to the next command.

24

The system ic put into the Check Made and taken ant of the Check Maode

(put into the Compute Mode) by the Engineer by use of the Set Command.
The tolerance value is also specified by the Set command. The Check Mode
provides the Engineer with a capability for checking a COGO solution via
COGO commands. The Engineer can check his own solution or another En-
gineer's solution. Since each COGO problem can usually be solved in a va-
riety of different ways, the Check Mode capability provides a very flexible
and practical method of independent checking and verification.

Data Forms

Geometric variables such as distances, directions, and angles which
are used as input data items in many commands can be expressed in the

following basic forms:

a) Numerical Data Value

Examples: DISTANCE 125,16
BEARING N 27 15 24.39 W
ANGLE 83 45

b) Stored Data Value

Examples: DISTANCE 'X4!'
AZIMUTH 'A!
ANGLE 'B3!

c) Computed Data Value

Examples: DISTANCE POINT 4 TO POINT 8
BEARING PI 3 TO PC 5
ANGLE AT 4 FROM 6 TO 8

The computed form provides for rather extensive computations to be carried
out within commands, making rather simple commands quite powerful in
scope of application. Computed forms are also provided for such standard
data items as station, offset, line, and course.

25

Output Control

Printed output is under command control; that is, the Engineer specifies
the output he wants via commands. The Print command and the Describe
command are used to print the numerical values associated with or comput-
able from stored objects, such as the following examples:

PRINT POINTS 4, 8, 20 TO 60, 15, 400 TO 600

PRINT DISTANCES 4 TO 8, 5 TO 10 TO 8

PRINT ANGLE AT POINT 4 FROM 12 TO 16

DESCRIBE ALIGNMENT 'B3', PARCEL 'LOT/4', TRAVERSE 'T48'
PRINT ALIL DISTANCES

PRINT ALL TABLES

Undefined objects in the print list are ignored when the command is executed.
All output is under format control and is fully labeled. Each command is
reproduced in the printed output; that is, the input is reproduced in the out-
put. Intermediate output (output following the command execution) is pro-
vided for in many commands. Intermediate output may be generated auto-
matically through the Set command or can be requested selectively as part

of the command.

3

L R R R R P R R R R R R R R TR R R PP
$ ssescssescessecancnse EXAMPLES OF STANDARD DUT2UT FORMATS <cceecccccccsane
L I R R R R R R R R PR Y R TR
SET SYSTEM Nt, BFA, NA7, DEC3, ADFC

PRINT POINT 4
POINT 4 N 540125.328 E 101050. 875 S 5+ 0.0 4 3259.540

PRINT DISTANCE 8 TO PC 24
DISTANCE FROM e TN PC 24 5737.154

PRINT BFARING 7 TO 2
BEARING FROM 70 2 $59 5 493,99 W

PRINT ANSLE AT 8 FROM 2 T) 4
ANGLE AT 8 FROM 2 1IN 4 275 37 25.37

PRINT LINE 35
LINE '35 THRU A AT BEARING N 45 39 44.88 F

PRINT CJURSFE *SIDF?
COURSEF SINE FROM 210 7 LFNGTH 32094.123 BFARING N 5% 5 43.39 C

PRINT CURVFE 24

CURVF 24 TYPF SCS CJURVE FLEMENTS
173 2733.610 DFF, 109 4 30.47
TTA 2R32.812 RACK N 49 S7 40,49 4
TOTAL LFN 3885.R38 AHEAD N 59 6 49.99 F

SPIRAL 3ACK

LFNGTH 270.000 ANGLE 3 0 0.00 xC 193,945
LONG TAN. 133.352 JBACK M 49 57 40.49 W YC 3.490
SHORT TAN, 66 684 AHEAD N 46 57 40.49 4 P N.873
LONG CHORD 199.976 PHI C N 59 59.92 K 99.991

CIRCUL AR SECTINN

RANDIUS 1909.859 DEGREF T 0 0.00
LFNGTH 3385.R838 DELTA 121 34 30.47
TANGENT 2340.682 BACK N 45 57 40.49 W
EXTFRNAL 1111.126 A4EAD N 54 36 49.99 €
LONG CHORD 2959.546

MIN, DRD. 732.451

26

SOIRAL AHE AN
LrNL FUVLUUU ANLLE % 20 UeUU AL £994 D1
LAING TAN. ?200.065 BACK N S4 36 49.99 F YC 7.851
SHORT TAN, 170,069 AHFAD N S9 6 49,99 E P 1.963
LONG CHCPD 239.918 PHI 1 29 59.72 K -143.349
CURVE 24 TYPE STS CURVE POINTS
POINT CC 24 N 5%6143.124 E 108860.528 S REEkEEkERXEEE
POINT TS 24 N 554612.,925 E 107707.898 S 216+85.862
PAINT ST 24 N &§57857.814 E 108007.828 S 255+71.699
POINT PI 24 N 556403,627 E 105576.739 S 244+469.472
POINT SR 24 N 6554698.711 £ 107605.802 S 218+19.214
POINT SC 24 N 554744.273 E 107557.063 S 218+85.862
POINT CT 24 N 556341.721 E 105846.277 S 242426.543
POINT CS 24 N 557697.171 E 107754.560 S 252+71.599
PATNT SA 24 N 6557755.114 E 107836.135 S 253+471.758
DESCRIBE AL TIGNMENT 'ROADN/3?
DESCRIPTINN OF CHAIN RNAD/3
CHAIN ELFMFNTS
COURSF FROM 4 TN 8 LENGTH 15448 .697 3EARINS
COURSE FROM 8 T2 TS 24 LENGTH 5737.164 BEARING
CURVE 24 TYPE SCS CURVE ELFYENTS
TTR 2783.610 DEF. 109 4 30.47
TTA 2832.812 BACK N 49 57 40.49 W
TAOTAL LEN 3835.7383 AHFAD ¥ 59 6 43.99 E
SOIRAL BACK
LENGTH 270.000 ANGLE 3 0 0.00 XC 199 .945
LONG TAN, 133,352 BACK N 49 S7 40.49 4 YC 3,490
SHIRT TAN. 6h.684 AHFAD N 456 ST 4049 W P 0. 873
LING CHORD 199.976 PHI C 0 59 59,92 K 99, 991
CIRCULAR SECTION
RANT VS 1999,.859 DEGREFE 3 0 0.00
LFNGTH 3385.838 DELTA 121 34 30.47
TANGENT ?7340.682 BACK N 46 57 40.49 W
EXTERNAL 1111.126 AHFAD N 54 36 49.99 E
LONG CHORD 2959, 546
MIN, ORD. 732.45)
SPIRAL AHFAD
LENGTH 300.000 ANGLE 4 30 0.00 Xr, 299, 815
LONG TAN. 200.065 BACK N %4 36 49.99 £ YC 7. 851
SHNRY TAN, 170,059 AHEA) N 59 6 49.99 E P 1.963
LONG CHORD 239.918 PHY C 1 29 59.72 K -143.969
COUR SF FROM ST 24 TO 7 LENGTH 29261.311 HEARING
CHAIN PDOINTS
POINT 4 N 54012%5.328 E 101050.875 S 5+ 0.0
PNINT 3 N 550922.17% E 112100.3225 S 153+48.697
CURVF 24 TYPE SCS CURVFE POINTS
PAINT CC 24 N %956140.124 E 108850.528 NERAL L AL L AL E L
POINT TS 24 N 554612,975 E 107707,.894 S 216+85.862
POINT ST 24 N S557857.R81% € 108007.828 S 255+71.599
POINT PI 24 N 556403.5637 E 105576.739 S 244+69.472
PATNT S8 24 N 554698.711 E 107605.802 S 218+19.214
PNINT SC 24 N 554744.2213 E 107557.0A3 S 219+85.862
POINT CI 24 N 556341.721 E 105846.277 S 242426,543
POINT CS 24 N 557697.171 E 107754.560 S ?252+71.699
PAINT SA 24 N 3557755.114 E 107836.135 S 253+71.758
POINT 7 N S§72R78.5K19 E 133119.573 S 548+33.010

27

NN N ANNN NGNS

ok R R KR
Fok Rk Rk
HERERAERKEE
Rk Rk ok
[T3IITIT I L]
EERER KRR
EITTITT TS
Tk kb
EREKERE Rk

N 45 39 44.88 €
N 49 57 40.49 W

N 59

NN NN NN NN

5 49.99 E

3259.640
LR R R S 2

Ak kkrked
gk Rkkfkk
LR 232222 22 2
LA 2222 22 2 2
Xl Aok R
EEEF kR ke
ok kkkE Rk
Fdod ok ko ok
EE 322221224

L2222 2 2 2

ERROR CHECKING

Each command is subjected to extensive checking by the processor.
Errors which are detected are reported by messages which appear in the
output. The following general cases may be identified:

Command Errors

Commands which are illegal, improperly constructed, incomplete, or in
any way fail to conform with the command specifications are detected and
reported. Such commands are not fully processed and are not executed.
Each command is scanned and processed from left to right. Once an illegal
condition is detected, processing ceases and the remaining (right hand) por-
tion of the command is printed to assist in locating the illegal condition.

The system then goes on to the next command. Hence only one (the first one
detected) illegal condition is reported per command (there may be others in
the unprocessed portion).

Undefined Objects

Commands which reference (attempt to retrieve and compute with) an
undefined object (not stored in data table) are detected and reported. Such
commands are not fully executed and may not be fully processed. The first
undefined object in the command which the processor attempts to retrieve
inhibits further processing and execution of the command. The undefined
object is identified in the output. The undefined object reference counter is
updated by one, and the system goes on to the next command. Hence only
one (the first one detected) undefined object is reported per command (there
may be others in the unprocessed and unexecuted portions).

Geometric Errors

Commands which call for computations which are not geometrically pos-
sible are detected and reported. An example would be an attempt to inter-
sect two objects which do not intersect, even if extended, such as two con-
centric curves. The error message which is printed identifies the invalid
condition. Further processing and execution of the command is inhibited,
and the system goes on to the next command.

28

Geometric Warnings

Commands which call for computations which are possible but which re-
quire assumptions for execution are detected and reported. An example
would be an attempt to intersect two objects which do not intersect them-
selves but which do intersect if one or both is extended. Whenever a reason-
able assumption can be made which will result in a solution which may be
acceptable to the Engineer, such action is taken. A warning message is
printed which identifies the action taken. Such commands are processed and
executed as valid commands. It is the Engineer's responsibility to review
the output and satisfy himself that the action taken was valid. If not, he
should resubmit the problem with corrected commands.

A careful study of the output from a COGO run should be standard prac-
tice. In addition to reviewing the error and warning messages, the Engineer
should study the information included in the output to assist him in verifying
whether or not his problem was correctly stated. Each problem should con-
clude with a group of commands under the Check Mode to help verify the
solution. A random traverse through the problem is an excellent way to
check the solution.

T T T T
i3 I I EXAMPLES OF TYPICAL MESSAGFS cesesense essee
B eeceesmescsssssnscssecer st s ees e st et s e st se s et e s oatnosnese e escsnesseteoneeas
B e eesescecenseasancacacsneseecassstecenoarecstsnteerssescesoscaccsanssosssrsra
$ tseecsersccescccaca CXAMPLE 2F COMYMAND ERR(CR MESSAGE aesesecsnsanaes

T T

LOCATE 50 FROY & CFFSET 50. ANGLE 20
FxF OINPUT ERR3R 7.1 - REQUIREDN NATA IS MISSING
w%% THPUT WARNTING 7.7 - AN FRROR WAS DETECTED WHILE PROCESSING THIS COMMAND.
EkEx INPUT WARNING 7.8 — COMMAND NOY COMPLETFLY PROCESSED
*EERF SYMANL S IF COMMAND TMPUT NUT YET PRNACESSED FOLLOW -
FEEXANGLE 20 %k

T T T T
$ teecsscsscsescsannae FXAMPLE OF REDEFINED DRJECT MESSAGE ceevecccccecas

% LR R I R I A I R I I I R R I I I I R R R R I R I I I NN AP S S S Y

LOCATE 7 FRUOM 4 DIST 200, AZ 45
POINT 7 RFING REDFFINED

29

L I R R R R R R R R O R R L L R
¢ secssscscsccsscncsee EXAMPLE DF JNNDEFINED OBJECT MESSAGE ceeececccscscce

[R R R R L R R R I L R L R R R R R ey

LOCATE 60 FROM &4 DIST 4 T .15, AZ 8 TD 20

TRtk ook ok ok Rk ok ok Rokdckkok kR Rk kR RR Rk Rk kkokk ok kkkokk Rk kR ke k kxR ¥k

ERROR. - POINT! 15 HAS NOT BEEN STORED.

dokododk ok deoloR Fok ok R kR ook kR koo ok ek koo ktck ok R kb Rk ok ek kkk kR ko ke ko ko k ke ke k kkk

ERROR EXIT FROM THIS COMMAND

hrEkrforkrkEhhkhk ook kkkdokkk Rk kdokk ok ke ok Rk ghhkk ik ki hk Ak ek ek ke rkdk

*%%x [NPUT WARNING 7.8 - COMMAND NOT COMPLETELY PROCESSED
*%%%x SYMBOLS OF CCMAND INPUT NOT YET PROCESSFD FOLLOW -
*¥%%xXAZ2 8 TO 20 ok

$ ceccccscscacsessecssassasccsssseessenesse s rtescssesseseretcesnsesssensasensv e
$ eeccscscccacccccassne EXAMPLE OF GEOMETRIC ERRDR MESSAGE cessecsessvccs

L I L R R R R I I T LR LR R R Y R R R I I

LOCATE 70, INTFRSECT LINE THRU 4 TO 8 WITH LINE THRU 4 AT 45 15 20

e e e 2 e gk oo e A ke e e ok e % o %ok ok ok ok % X e ool ko ok ok e Qe e o ek X sk sdeate sl ool e kol ok kol ool Rk R ok ook R ek R ok

ERROR — NO INTERSECTION.
ERROR EXIT FROM THIS COMMAND

e o ook ok e kot ok o ol e e e ool ol sl o ook o e e o Sl ook ok e sk ol ok o ol o sk e ootk e i e ko ol e o el e e ook ok okl ok ok

L I L R R R L R R I R R P R L XL R R T
$ cecesvecssssvesccees LXAMPLE OF GEOMETRIC WARNING MESSAGE cecesvescccces

L R R R R R N I I I T R I

LOCATE 80, PROJECT 7 ON CURVE 3

Sk gk kkkkkkRrkR sk kxR axk kR ok kkkok kR xdokkpr R e dok ke gk kR ke xxE L

WARNING. POINT 30 HAS REFN LOCATED ON EXTENDED TANGENT TO CURVE.
TANGENT HAS BEEN EXTENDER 413.53% FROM THE PT.

ek ok kool ok ok ok koo Rk R ook kol g fokoR Sok R folok ok fok koo ok ok ok kok ko Rk ko ek kg kkd fkkkk kk ok

L I T TR R D R T I X
$ cessssccssccscscsccse FXAMPLE OF SET CHECK MOOE cecccscccccans
L I R R R RN I L R L T R R R R R R R R N I R
SET SYSTEM CHECK

SET CONSTANT DTCL 0.01

LOCATE B FROM 4, DIST 561,74, AZ 45 15 20
% CHECK*¥

LOCATE 8 FROM 4, DIST S561.0, AZ 45
*XND CHECK**
CALCULATED VALUES

POINT 3 N 539680.362 E 172755.930 S ERERRAFRKERE
STORED VALUES
POINT 3 N 539679.610 E 172758.221 S kEkEEXEXEEEKE

30

7 sk EREEEER

7 FExxokkkkkkk

PROBLEMS, RUNS, and FILES

Problem

A COGO problem is defined as the ICES System command COGO followed
by one or more COGO commands. A problem may have any number of COGO
commands. A problem is terminated by another command COGO (initiating
the next COGO problem) or by some other ICES System command such as
another subsystem name or the command FINISH.

Problem Data Tables

A new set of COGO data tables is initialized each time the command
COGO is given. Accordingly, each problem has its own set of data tables
which is built up by the COGO commands for the problem. Provision is pro-
vided to save the problem data tables. If they are not saved, the problem
data tables are automatically destroyed at the end of the problem.

Run

A COGO run is defined as one or more COGO problems submitted at the
same time as a batch for processing on the computer. A run can have any
number of COGO problems, each starting with the command COGO. A run
is terminated by the ICES System command FINISH.

Files

Problem data tables can be saved, restored, deleted, listed, and printed
with the FILE command. Each set of problem data tables to be savedand re-
stored is given a unique file name. The problem data tables are stored as a
permanent file on a secondary storage device under the filename. When the
FILE SAVE command is given, the current contents of the problem data
tables are filed. When the FILE RESTORE command is given, the problem
data tables which were saved are restored and become part of the problem
data tables for the current problem. All defined objects in the restored data
tables are then available for use in the COGO commands which follow. The
restored data tables are merged with the current data tables, the restored
objects taking precedence.

31

Usually, the FILE SAVE command will be the last COGO command in a
problem if the complete set of data tables is to be saved. However, it can
be given at any point if only the contents of the data tables up to that point
are to be saved. Similarly, the FILE RESTORE command will usually be
the first COGO command (following the command COGO) if the problem is to
start out with the previously saved tables. However, it can be given at any
point if the saved data tables are not needed until that point.

Through the use of the FILE command and the save and restore capabil-
ity, the same Engineer can work on the same problem over a period of time,
continuing work on the problem in different runs. Or different Engineers
can work on the same problem, each having access to the same problem data
tables through use of a common filename.

$ 1 $ $ s $ 3 $ $ $ $ $ $ $ $ $
s $ $ $ 3 $ $ RIN 1 $ $ s $ $ $

D eeecsecrcransescsacscstestersescecns st sootsovosansratesessasatetcansossoacnae

A . PRUBLEM 1 csecesesesessetcanssserenanns

$'...;.....................................

CoGo $ DATA TABLES INITIALIZED FUR PROBLEM 1

WELCGME T4 CUGH,YCUR FRIENDLY CCORDINATE GEOMETRY SYSTEM
SET SYSTFM NE BEA

STORE 25 N 3000 E 2C00 $ 5+00

LOCATE 1 FRCM 25 175.16 N 45 15 E OFFSET PLUS 50

STORKE CURVE 8 PB 1 D3 N 45 15 E TL 123.28 DEG 2 30 P LENGTH 30CO
STA UF PB STA CF 25 PLUS 175.16

STORE BEARING *A* PI1 3 TG4 PT 8 PRINT
BEAR ING A S 59 45 0.00 E

LOCATE 12 FRCM PT 8 256.33 'A"

STORE LINE 4 THRU 25 AT N 45 15 E

LCCATE 2 INTERSECT CURVE 8 WITH LINE 4 OFFSET PLUS 74
FILE SAVE *PASSWURD' 'ORDBLEMLY

XA e ok Rk R ok kR bR Rk Rk okl ok Rtk kR Aok Rk xR ko kR ok ko
PROBLEM DATA TABLES SAVED IN FILE PROBLEMI

AR RO R R R R ok R R ok R R ok R R R R R R Rk %
$ ceeccccsstesasonss DAT A TASLES FRUY PROBLEM 1 SAVED escsenasssevescsses
L R R R R R R R R R R R R R L LR R R R

$ teseecvecsesessessceseenanes PRUBLEM 2 tteeeteseccanetsascasanasanae

L L N R R R R

COGU $ DATA TABLES INITIALIZED FOR PROBLEM 2
WELCUME T0O COCO,YOUR, FRIENOLY COCRDINATE GEOMETRY SYSTEM

SET SYSTEM Nb BEA

STOREF 456 N 2500 E 1000

D 1s N 100C ¥ 3509

TRAVELRSE *75°

SACK 46 TO 18

COURSE 46 TO 32 DIST UNKNOWN ANGLE MINJS 77 O

S 25 2500 M 98

32

L Ta 3150 ANGLE UNKNOWN
0} 52 3029 M 56
o 18 UNICGND wiN M 97
AFEAD 18 T3 46 CANSLE MINUS 157 0 0

END CF TRAVERSE
2ok kR A Ak gk R R ok i ok kol %R ook ok ok ok de kgt ok el ek ik ok ol e ok ootk ook ok ok Xk ok ok
CLOSED TRAVERSE
R e A e e e e R S S R S S L L L 2

UNRADWN ANGLE AT PUINT 25 CLOCKWISE 125 0 0.00
UNKNWN NUT COUNTED AS A MISSING PART

TWC MISSING DISTANCES
DISTANCE HRCHM PUINT 4h 16 POINT 32 2716.208
DISTANCFE FROC PUINT 52 TO POINT 18 3485.710

A e g ok e ok e 20 o e ok % ok o ok ook K ol ok ok e a8 8 Rk ok o o ok koK o ok ok ook ok Sk ok ok RORR SOk R IoR KKK

L P L R T R R

$ ceeccccnccscnssacssacascncons PROBLEM 3 cesessscesscssscsssnssssssscss

$ ceeccseecccsscctsccccctsrssrenssereartesssstsveesesreertessseenseresseecenosenee

COGOo

WELCGME TO CUGU,YCUR FRIENDLY COURDINATE GEOMETRY SYSTEM
SEL SYSTEM NE REA

+ILE RESTORE *PROPLEML®
e e Aok R R e ok R ok X o oK RO R OR R SRR R O R R Rk ok K ok &

FILE PRUBLEM]1 STORED IN DATA TABLES
LR R e e S RS S R RS ds

$ ceesccsccceccsesce DATA TABLES FROM PROBLEM 1 RESTORED cecsseccsscnansenne

LOCATE 5 PROJECY 2 OGN LINE 4 QOFFSET P 50

C 3 INTERSECT LINE 4 OFFSEY P 74 WITH LINE THRU PI 8 AT tA?
D 4 PRUJECT 3 ON CURVE 8
V] 3 INTERSECT CURVE 8 OFF P 24 WITH COURSE PC 8 TO 12

PRINT PIINTS 1 TO 30

POINT 1 N 3087.806 E 2159.597 S xxFEEKEREKKN
POINT 2 N 3390 .4 44 E 2498.978 S 11+30.405
POINT 3 N 4400.149 E 3517.532 S EEEEEEREXRX KX
POINT 4 N 3822.410 E 3587.006 S 23+14,161
POINT 5 N 3407.483 E 2482.081 S RrkRRkEE Kk kK
POINT 8 N 3177 367 E 2284.284 S wEERXAEFEK KK
POINT 12 N 3397 .580 E 5236.666 S dickkkk kR kg
POINT 25 N 3000.000 E 2000.000 S 5+ 0.0

PRINT CURVE 8

CURVE 8 TYPE C CURVE ELEMENTS
RADTIUS 2291.831 DEGREE 2 30 0.cC0
LENGTH 3000.000 DELTA 75 0 0.00
TANGENT 1758.5484 RACK N 45 15 0.00 E
EXTERNAL 536.959 AHEAD S 59 45 0.00 E
LONG CHORD 2790.357
MID. ORD. 473.599
CURVE 8 TYPE C CURVE PUINTS

POINT CC <] N 1546.972 E 3860.631 S FEEEREREREEK
PUINT PC 8 N 3174.597 E 2247.148 S 7+498.440
POINT PI 8 N 3526, 737 £ 5015.196 S 374984440
PUINT PI 8 N 4412. 666 E 3496.069 N 25+57.024

FILE SAVE *PASSWORD' *PROBLEM3*

et ok Aok o o B ok ook ok ook e s ok e oo sk e ool o e ok R K ol ook ok ok ok

PRNBLEM DATA TABLES SAVED IN FILF PRUBLEM3
e e e s S

$ ececescescsccacsscns DATA TABLEFS FRUM PROUBLEM 3 SAVED sesssccscscensccsnne

D eeeescccesescscectcssttescatscctaactsssactccesssasnenssssssatensasarscnssnana
THE NEXT COMMAND SPECIFIES THE END OF RUN 1

$ ceeessccncene etescsesvescna

P eeevcacocrnneseracreacssatatssesescses sttt sesaccssots ettt cessescscss s
$ $ $ $ % k3 $ $ $ $ $ $ $ % 3 $

FINISH

33

NINNNNNNN

NSNS

ok Kok ok kK
Stk gk R Rk
T T
o oo R A
FRR AR
REREKEERKEK
PETII T I 1]
A A oo

ook R okt koK
koo
¥ %ok ok ok ok
A o e e ok ok e A ke

ENGINEERS' GUIDE

to

ICES COGO I

PART 2

COMMAND SPECIFICATIONS

Civil Engineering Systems Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts

SECTION DIRECTORY

Command Conventions and Standard Data Items .

Set Commands

File Commands . .
Print and Delete Commands
Store Commands
Point Commands
Distance Commands
Angle Commands .
Direction Commands
Line Commands
Course Commands
Curve Commands
Chain Commands .
Text Commands
Station Commands
Profile Commands
Locate Commands
Alignment Command
Layout Command .

Traverse Command

10

12

13

14

15

17

18

20

22

24

30

33

34

36

41

51

65

71

ALIGNMENT
rPOT
CURVE
AREA
DELETE
DESCRIBE
EQUATE
FILE ..
LAYOUT TIES
CURVE

COMMAND DIRECTORY

ooooo

..........

...........

OFFSETS . . .
ALIGNMENT

LOCATE n FROM .
ON

INTERSECT .
PROJECT . .

FORESECT

TIE . .
MODIFY CURVE .
PRINT . .
PROFILE
VPI .
SET
STATION
STORE

.....
.....

.....

ooooo

POINT
DISTANCE
ANGLE

AZIMUTH . .

LINE
COURSE
CURVE
CHAIN
TEXT .

TRANSPOSE CURVE

CHAIN
TRAVERSE
ADJUST
CLOSURE
BACK . .
COURSE
AHEAD .

...........

ooooo

......

ooooo

ooooo

.....

......

.....

.....

.......

ooooooo

51
52
54
32
12
31
14
10
65
66
68
69
42
43
46
48
49
50
28
12
36
36

34
13
14
15
17
18
20
22
24
30
33
29
31
71
72
72
74
74
76

Object
Label

Point
POINT

Distance
DISTANCE

Angle
ANGLE

Direction
ﬂIMU TH
BEARING

Line
LINE

Course
COURSE

Curve
CURVE

Chain
CHAIN
TRAVERSE

ALIGNMENT

PARCEL

Profile
PROFILE

ok
b

T ale
27

SUMMARY OF DATA TABLES

Id. Number Table

or Name** Capacity
Numeric 10, 000
1 to 4 dlgits Points
0 to 9999
Alphanumeric Open*
1 to 4 characters
Alphanumeric Open*
1 to 4 characters
Alphanumeric Open*
1 to 4 characters
Numeric 1, 000
1 to 3 digits Lines
0 to 999
Alphanumeric Open*
1 to 4 characters
Numeric 1, 000
1 to 3 digits Curves
0 to 999
Alphanumeric Open*
1 to 8 characters
Alphanumeric Open*

1 to 8 characters

iii

Table
Entries

Horizontal Coord.

Station
Elevation

magnitude
(Absolute value)

magnitude
(Absolute value)

magnitude
(Absolute value)

Point Number
Direction

Beginning and

End Point Numbers

Coordinates and
Station of all
Curve Points.
Curve Elements

Chain List

VPI Points
VC lengths

i Alphanumeric names must be enclosed in single quotes.

Absolute

or Relative

Absolute

Absolute

Absolute

Absolute

Relative
Absolute

Relative

Absolute

Relative

Relative
Absolute

) Capacity a function of hardware configuration but not a practical
constraint.

COMMAND CONVENTIONS and STANDARD DATA ITEMS

Command Description Conventions

In order to describe the specifications for the commands in concise
qorm, a set of standard conventions, rules, symbols, and data items has
been adopted and is described herein. A typical command might be specified
in the following sample form:

LOCATE n INTERSECT object with object (NEAR pa) print
In this sample command the conventions provide the following interpretations:

1) The word LOCATE, the first word, is the command name. The
minimum abbreviation is LOC, the underscored portion.

2) The symbol n stands for the identification number of an integer
point to be stored. Since it is underscored, it is required.

3) The word INTERSECT is a command modifier, i.e., it denotes
which method for point location is to be performed. It is required
and the minimal abbreviation is INT.

4) The lower case words ''object' are data items which can take any of
the standard allowable forms. Since they are underscored, they
are required. If the command were such that either or both were
not required, they would not be underscored.

5) The word "with" may be included to make the command more read-
able. It is one of a number of words which, if they appear in a com-
mand specification in lower case, are ignored in command process-
ing. Such "ignorable words' must be fully written, i.e., they
cannot be abbreviated.

6) The data item (NEAR pa) is optional because it is enclosed in paren-
theses. Ifitis included, the word NEAR and the symbol pa must be
given. The symbol pa stands for the identification number of any
stored point (or curve point of any stored curve).

7) The word '"'print'" stands for an optional (because it is not under-
scored) command modifier.

The following are actual commands which could follow from the above
general form:

LOCATE 4 INTERSECT LINE 1 WITH CURVE 5 NEAR PC 5 PRINT
LOC 5 INT LINE THRU 4 AT AZI 45 LINE THRU 2 TO 7
LOC 10 INT CUR 7 CUR 3 N PI 3 PRI

Even though upper case and lower case are used throughout the command
descriptions, they are so used only to differentiate between standard data
items, objects, command modifiers, and command names. An actual com-
mand, when written and keypunched, must have all characters in upper case
and must have one or more blanks (or a comma) separating all words, items,
and values within the actual command.

Command Ditto

If the previous command is to be repeated, the command word may be
replaced by a D (for ditto) followed by one or more blanks. The ditto feature
is used for STORE in the following example commands:

STORE POINT 4 100 200

D DISTANCE 'X' 525,16
D ANGLE 'A1' AT 4 FROM 6 TO 8

Command Continuation

If a command requires more than one line (card), it may be continued on
the next line (card) by using a freestanding minus sign (one preceded and fol-
lowed by one or more blanks). There may be up to 5 continuation lines
(cards), with the maximum length for a command being 400 characters
including blanks and comments.

Comments

Comments may be inserted by using the $ character (followed by one or
more blanks) as the first character on the line (card). Comments may not
be continued. If the comment requires more than one line (card), each com-
ment line (card) should begin with the $ character.

If a command or command continuation requires less than a full line
(card), the remaining unused portion may be used for comment information,
the comment being separated from the command by a freestanding $
character.

Comments are not processed, but they are duplicated in the output as
they are read. Liberal use of comments is encouraged.

Ionorable Words

In many instances in commands, simple words are allowed to make the
command more readable but are optional and are ignored by the processor.
The following is a list of such words:

on from of with rule
to at thru by

When they are shown in a command specification in small letters, they are
optional and are ignored. If the Engineer includes them in a command, the
full word must be given, not an abbreviation. In some cases such words are
required words, modifiers, or data items label. In such cases the word is
given in caps and is underscored.

Numerical Data Values (v,va,vb . . .)

Where a numerical data value is called for in a command or data item,
the symbols v, va, vb . . . are used. Decimal points may be omitted for
whole number data values, the following being equally acceptable:

200.0 200 200.
Decimal points should not be used for integer values such as point numbers.

In data items which include or are preceded by the PLUS/MINUS opera-
tor, a negative numerical value must be indicated by the MINUS modifier,
not by a negative sign. With the exception of numerical coordinate and ele-
vation values and other indicated exceptions, the system is based on numeri-
cal data values always being positive.

When a numerical data value for a bearing is used, the system expects
natural quadrant labels such as in the following examples:

N 3525 15W S 45 E

When a numerical data value for a station is used, a plus sign may be
included, but it must be embedded in the numerical value; that is, not pre-
ceded or followed by blanks. The following examples are acceptable:

5+00. 500 25+35.16 2535.16

3

A numerical angle or direction value can be given in any one of the
following forms:

degrees, minutes, seconds examples: 35 15 25.16
328 10 20
degrees, minutes examples: 86 15.4
18 30
degrees examples: 45.5

62

Algebraic Operations

Limited algebraic operations are permitted within some commands and

data items.

p/m

operator

They are indicated by the appearance of the following:

The word PLUS or the word MINUS is to be given. If
p/m is optional and is not given, PLUS is assumed.

One of the following words is to be given to denote an
algebraic operation: PLUS, MINUS, MULTIPLY (BY),
or DIVIDED (BY)

Standard Symbols for Object Identifiers

The standard symbols for object identifiers used in command descrip-
tions and their meaning are as follows:

Meaning

Symbols
n,na,nb . .
Pi, pj,pk
pa,pb,pc . .
i, k.
a,b,c.

Identification number of an integer point to be storad in the
Point Table. The optional label (POINT) may precede the
point number. .

Identification number of an integer point already stored in
the Point Table. The optional label (POINT) may precede
the point number.

Identification number of a stored integer point or a stored
curve point. The optional label (POINT) may precede an
integer point number.

Identification number of a line or curve, as determined by
the preceding LINE or CURVE label.

Name of a distance, angle, direction, course, chain, pro-
file, or text, preceded by a required or optional label.
The name must always be enclosed in single quotes.

4

Standard Allowable Forms tor Scalar Data ltems

Standard allowable forms for scalars (single valued quantities) appearing
as data items in commands are as follows:

Scalar Data Item Allowable Forms
distance numerical value: (DISTANCE) v
stored value : (DISTANCE) a
computed value : (DISTANCE) from pa TO pb
angle numerical value: (ANGLE) v
stored value : (ANGLE) a

computed value : (ANGLE) AT pa from pb to pc
(Clockwise angle from pb to pc is computed)

c/angle A positive clockwise angle is to be given, directly or
indirectly. It may be given directly in the form
PLUS angle

or indirectly in one of the following forms

MINUS angle
The value of angle is subtracted from 3600 to
obtain the clockwise angle.

P/M DEFLECTION angle
T If PL PLUS, the value of angle is added to 180° to
obtain the clockwise angle.
If MINUS, the value of angle is subtracted from
180° to obtain the clockwise angle.

direction numerical value: (AZIMUTH) v, (P/M angle)
stored value : (AZIMUTH) a, (P/M angle)
computed value : (AZIMUTH) pa TO pb, (P/M angle)
line direction : (AZIMUTH) of LINE i, (P/M angle)

The optional word (BEARING) may be used in place
of the optional word (AZIMUTH). If the optional data
item (P/M angle) is included, the given value is
modified by the value of angle to obtain the direction
to be used for the direction data item.

station numerical value: (STATION) v (P/M distance)
stored value : (STATION) OF pa (P/M distance)
If the optional data item (P/M distance) is given, the
given value is modified by the value of distance to
obtain the station to be used for the station data item.

offset standard form: OFFSET P/M distance
PLUS means to the right in the forward sense im-
plied by the command in the horizontal plane or up
in the vertical plane. MINUS means to the left or
down.

5

Standard Allowable Forms for Object Data Items

Standard allowable forms for the following types of objects appearing as
data items in commands are as follows:

Object Data Item Allowable Forms

line LINE i, offset (i is a stored line)
LINE THRU pa at direction, offset
LINE THRU pa TOWARD pb, offset

course COURSE a, offset (2 is a stored course)
COURSE from pa TO pb, offset

curve CURVE i, offset (i if a stored curve)
chain CHAIN a, offset (a is a stored chain)

TRAVERSE, ALIGNMENT, BASELINE, or
PARCEL may be used in place of the word CHAIN

In each case, if the optional data item offset is included, the object actually
used in the computations will be one parallel to and/or concentric with the
given object at the offset distance.

Examples of Allowable Forms for Data Items

Data Jtem Example
distance 125.175

DISTANCE 1000

DIST 'A'

4 TO 8

DIST FROM POINT 12 TO PC 5

angle 90
42 15 55.93
ANGLE 'A25'
'A25!
AT 4, 8, 3
ANGLE AT POINT 12 FROM 4 TO PC 5

direction 90
N 25 15 30.6 E |
AZIMUTH 'AZ4' PLLUS ANGLE AT 5, 7, 2
14 TO 8 PLUS 90
AZ PC 5 TO PI 5 MINUS ANGLE 'A25!
PC5TOPIS5M''AZ2E!
AZ OF LINE 28 M 90

Data Item

course

curve

chain

station

offset

line

Print Modifier

Example

COURSE 'M'

COU 'C25'", OFFSET PLTUS 50

COURSE 'JACK', OFFSET MINUS DISTANCE FROM PC 3 TO
PT 8

COURSE FROM POINT 4 TO POINT 7

COU 4 TO 7, OFF P 25

CURVE 2
CUR 4, OFF PLUS DIST 6 to 3765

CHAIN 'F'

TRAVERSE 'J-W!

ALIGN 'ROUTE-3', OFFSET MINUS DIST 20 TO 30
PARCEL 'JONES!'

BASELINE 'B', OFFSET PLUS 125.

2+00

STA 8+00.

STA 125+00 PLUS DIST FROM 4 TO 7
STA OF PC 5 MINUS 10.

STA OF POINT 4 PLUS PC 3 TO PI 3
STA OF 2

OFFSET PLUS 125.12

OFF M 100

OFFSET PLUS DIST FROM POINT 15 TO POINT 4
OFF M 3 TO 8

LINE 4

LINE 4, OFFSET PLUS 100.

LINE THRU 2 AT N 35 15 20 W, OFFSET MINUS PC 3 TO 18

LINE THRU 5 AT AZ 2 TO 7 PLUS ANGLE 'A4', OFF P
DIST X!

LINE THRU 2 AT 270

LINE THRU 8 TOWARD 20

LINE THRU 7 AT 3 TO 5 PL.US 90, OFFSET PLUS 100

The word print as an optional data item at the end of a command takes
the form PRINT. If the print modifier is given, intermediate output will be
printed, usually the data values for the object being stored by the command.
The Set command can be used to automatically insert a print modifier
wherever it is allowed.

SET COMMANDS

Set System

SET (SYSTEM) specs

where specs is one or more of the following (for each pair, only one can be
given):

NE or XY

NAZIMUTH or SAZIMUTHS

AZIMUTHS or BEARINGS

DEC3 or DEC2

ASEC or ADEC

COMPUTE MODE or CHECK MODE
PRINT MODE or NOPRINT MODE
REDEFINE MODE or NORDEFINE MODE

The meaning of the settings is as follows:

NE - OnI/0O, horizontal coordinates, North followed by East

XY - On I/0O, horizontal coordinates, X followed by Y

NAZIMUTHS - OnI/O, all azimuth values measured from north

SAZIMUTHS - OnI/O, all azimuth values measured from south

AZIMUTHS - On output, directions printed as azimuths

BEARINGS - On output, directions printed as bearings

DEC3 - On output, distance and coordinate values with 3
decimals

DEC2 - On output, distance and coordinate values with 2
decimals

ASEC - On output, angle and direction values with even seconds

ADEC - On output, angle and direction values with 2 decimals

COMPUTE - Entries made in data tables

CHECK - Comparisons made with data table entries

PRINT - Optional print modifier automatically inserted for
intermediate output after each command

NOPRINT - No intermediate output unless requested by giving

: optional print modifier in command

REDEFINE - Redefinition of objects is permitted and is not to be
considered an error

NORDEFINE - Redefinition of objects is not permitted, and if attempted,

the command is considered in error and is not
executed,

Set Constants

SET (CONSTANT) values
where values is one or more of the following:
DTOLERANCE

ATOLERANCE
MAXIMUM (ERRORS)

14 1< 1<

The meaning of the various values forms is described in the sections which
follow.

DTOLERANCE

The constant is for giving the tolerance to be used when the system is
operating in the check mode when checking stored values for distances and
coordinates. The value for v is the tolerance. For example, the command

SET CONSTANT DTOL 0.01

would mean that distances, coordinates, stations, and so forth, which com-
pare within + 0. 01 would be considered "CHECK.,"

ATOLERANCE

The constant is for giving the tolerance to be used when the system is
operating in the check mode when checking stored values for angles and
directions. The value for v is the tolerance in seconds. For example, the
command

SET CONSTANT ATOL 0.5

would mean that angles and directions which compare within + 0.5 seconds
would be considered "CHECK."

MAXIMUM ERRORS

The constant is for stating the maximum number of commands (except
Print commands) which reference one or more undefined objects allowed in
a single run before execution of further commands is inhibited. For exam-
ple, the command

SET CONSTANT MAXIMUM ERRORS 10

would mean that after 10 such commands have been detected in a run, the
commands which follow will not be executed.

9

FILE COMMANDS

File Save

FILE SAVE password filename

where password is a 1- to 8-character password defined by the installation
in the INSTALLATION SET command and filename is a 1- to 8-character
name to be assigned to the file which is to be created. Both password and
filename must be enclosed in single quotes.

This command will cause the current contents of the COGO data tables
(i.e., all presently defined objects) to be stored as a permanent file on disk,
which file will have name filename.

The password prevents unauthorized users from creating files; i.e., if
the given password is not one of those specified by the installation in the IN-
STALLATION SET command, then the file will not be created and a message
will be printed.

If a file with filename already exists, a message will be printed, the old
contents of the file destroyed, and the new contents stored in the file.

Example:

FILE SAVE 'USERA' '"PROBLEMI1'

File Restore

FILE RESTORE filename

where filename is a 1- to 8-character name of the file whose contents are to
be stored in the COGO data tables. This command has no effect on the file
itself; i.e., the contents of the file will not be changed.

An automatic SET SYSTEM REDEFINE MODE command is executed in-
ternally for all redefinition of objects. If objects having the same identifiers
appear both in the data tables and on the file, the value on the file will take
precedence and will replace the value in the data table. The over-all effect
of this command is to merge the file with the current contents of the data
tables, the file taking precedence over the data tables.

10

If the system is in the CHECK mode when the FILE RESTORE command
is given, the precedence rule will be reversed for the types of objects which
are checked. The objects being read in from the file will be checked against
the stored objects. If they do not check, the file values and the stored values
are printed and the stored values are not changed.

Example:

FILE RESTORE 'PROBLEM1!

File Delete

FILE DELETE password list
FILE DELETE password ALL

where password is a 1- to 8-character password defined by the installation
in the INSTALLATION SET command, list is a list of 1 or more file names
which are 1 to 8 characters, and ALL specifies all files.

This command will cause the specified files to be deleted if the password
is valid. If it is not valid, a message will be printed.

Password and the filenames in list must be enclosed in single quotes.
Examples:
FILE DELETE 'USERA' '"PROBLEMI!' 'PROBLEM2!
FILE DELETE 'USERB' ALL
File List

FILE LIST

This command will list the names of all currently defined files in the COGO
user data set.

File Print

FILE PRINT list
FILE PRINT ALL

where list and ALL are the same as in the file delete command. If the list
form is used, each file name must be enclosed in single quotes.

11

This command will print the names and/or id's of all objects stored in
the specified file name or in all files if the ALL form is used. No values
will be printed, only the object identifiers.

Example:

FILE PRINT 'PROBLEMI1!' 'COGO37!

PRINT AND DELETE COMMANDS

The Print command provides for the printing of numerical data for
stored objects and the Delete command the deletion of stored objects from
the data tables. The general forms of the commands are

PRINT type list DELETE type list
PRINT ALL types DELETE ALL types
PRINT ALL TABLES DELETE ALL TABLES

where type may be any one of the following words, and types may be more
than one (TABLES is the equivalent of giving all types):

POINTS AZIMUTHS DISTANCES PROFILES
LINES BEARINGS COURSES TEXTS
CURVES ANGLES CHAINS
and where list is one or more object names (3, b, ¢. . .) or identification
numbers (i, j, k. . .). If an object in the list is not a stored object, a

message will be printed to identify the undefined object, but it will not con-
tribute to the error count. Further, the remaining objects in the list will be
processed and printed.

When type is POINTS, LINES, or CURVES, the items in the print list
can be of the form J TO k (meaning all stored objects in the identification
number range j to k). When type is DISTANCES, AZIMUTHS, BEARINGS,
or COURSES, the items in the list can take the form pa TO pb, and in the
case of ANGLES, the form AT pa from pb to pc, the numerical output values

being computed using the stored point values.

More detailed information on the print commands, including a descrip-
tion of the numerical values which are printed and special forms of the print
command, is given under the command specifications for each type object.

The PRINT command word can also be abbreviated to the single letter P
followed by one or more blanks.

12

SLUOKE CUONMMANDD

The Store command provides for the defining of objects to be stored and
the storage in the data tables of numerical values associated with such ob-
jects. The following is a summary list of such commands. They are defined
in detail in the command specifications for each type object.

Point
STORE (POINT)nXv, Yv, STAv, Zv
STORE (POINT)n Nv, Ev, STAv, Zv

Distance
STORE DISTANCE a distance (operator, distance), print
STORE DISTANCE a RADIUS of CURVE i at station, print
STORE DISTANCE a STATION OF pa MINUS STATION OF pb, print

Angle
STORE ANGLE a angle (operator, modifier), print

Azimuth or Bearing
STORE AZIMUTH a direction, round, print
STORE AZIMUTH a TANGENT to CURVE i at station, print

Line
STORE LINE i thru pa at direction, print
STORE LINE ithru pa TOWARD pb, print
STORE LINE i thru n PARALLEL to LINE j, offset, prlnt
STORE LINE ithrun TANGENT to CURVE j, at station, offset, print

Course
STORE COURSE a pa to pb, print
STORE COURSE a pa to n, distance, direction, print
STORE COURSE a na to nb, PARALLEL to COURSE b, offset, print

Curve
STORE CURVE i, reference, b/spiral, element, a/spiral, a/tangent,
c/station
STORE CURVE i, CONCENTRIC with CURVE j, offset, c/station
STORE CURVE i, PARALLEL to CURVE j, offset, c/station

Chain
STORE CHAIN a, list

Text
STORE TEXT an

The STORE command word can also be abbreviated to the single
letter S followed by one or more blanks.

13

POINT COMMANDS

Store Point

b

STORE (POINT)
STORE (POINT)

[T2

T
T

N[N
1< I<

b

’

nXv, ¥
aNv, E

<1<
7
<[«

|

where n is the identification number of the point to be stored. If the numer-
ical data values (v's) are in proper order, compatible with the system set-
ting, the labels (X,Y, etc.) may be omitted. If one item has a label, all
those which follow must have a label. If all items are labeled, they may be
in any order. Assuming the system is set for X,Y, the following are exam-
ples of consistent commands.

STORE POINT 4 X 1000 Y 2000 STA 15+00 Z 300
STORE POINT 4 1000 2000 15+00 300
STORE POINT 4 1000 2000 Z 300

STORE POINT 4 N 2000 E 2000 Z 300 STA 15400
STORE POINT 4 STA 15+00, Z 300

STORE POINT 4 1000 2000

STORE POINT 4 STA 15+00

Coordinates and elevation values may be entered with a negative sign.

Print Stored Points

PRINT POINTS pi, pj, pk .
PRINT POINTS pi TO pj, (pk TO TO P,
PRINT ALL POINTS

The first two forms may be mixed. The values printed are the table entries
for the stored points. Undefined entries are printed as a row of asterisks.

Delete Stored Points

Same forms as for Print Stored points with use of word DELETE instead
of PRINT.

Equate Point

EQUATE n to pa, print

where n is the identification number of a new point to be stored in the Point
Table with the same data values as in the Point Table for stored point pa.
The expected use of this command is for cases where a position in the hori-
zontal plane has a number of different station and/or elevation values, de-
pending on which alignment or profile it is associated with. Typically, this
command would be followed by appropriate commands to store the correct
station and elevation, preserving the horizontal coordinate values.

14

DISTANCE COMMANDS

Store Distance

STORE DISTANCE a distance, (operator, modifier), print

where a is the name of the distance to be stored. If the optional data items
operator, modifier are included, the value of distance is modified by the
value of modifier to compute the value to be stored for a. If operator is
P/M, modifier takes any of the standard forms for distance; that is, facility
is provided to add or subtract two distances. If operator is MULTIPLY or
DIVIDE, modifier must be a numerical data value (v) which is treated as a
scalar. For example,

STORE DISTANCE 'X' DIST 4 TO 8 PLUS 50.

The distance from point 4 to point 8 would be computed, 50. would be added
to it, and the sum stored for 'X'.

Compute Radius and Store Distance

STORE DISTANCE a RADIUS of CURVE i at station, print

The radius to Curve i at the value of station is computed and stored. If sta-
tion is omitted and i is a circular curve or a circular curve with transition
spirals, the circular curve radius is stored. If station is omitted and i is a
spiral, the command is considered to be an error and no value is stored. If
station is specified but is not on the curve, the command is considered to be
in error and no value is stored. In each such case, a message in printed.

Compute Station Difference and Store Distance

STORE DISTANCE a STATION OF pa MINUS STATION OF pb, print
The station of stored point pb is subtracted from the station of stored point

pa and the difference (absolute value) is stored for a. A numerical value for
station may be inserted in place of the OF pa and OF pb data items.

Print Stored Distances

PRINT DISTANCES a, b, c,
PRINT ALL DISTANCES

The value printed is the magnitude of the distance.

15

Compute and Print Distances

PRINT DISTANCES pa TO pb, (pc TO pd), . .
PRINT DISTANCES pa TO pb (TO pc TO pd . .

The two forms can be combined, such as

PRINT DISTANCES 2 TO 4, 6 TO8 TO 7, 3 TO5, PC2TO9 TOPT 3

Delete Stored Distances

DELETE DISTANCES a, b, ¢
DELETE ALL DISTANCES

Example Distance Commands

STORE DISTANCE 'A' POINT 8 TO POINT 5

STORE DISTANCE 'B35' PC 3 TO CC 3 DIVIDE BY 2.0
STORE DISTANCE '99' DIST 'A' MINUS DIST 'B'

STORE DISTANCE 'JACK' 4 TO 6 PLUS 8 TO 10, PRINT

STORE DISTANCE 'M' RADIUS OF CURVE 4 AT STA 5+25.17
S DIS 'M' RAD CUR 4 5+425.17

STO DIST 'BEN' STA OF PC 18 MINUS STA OF PT 15

PRINT DISTANCES 'A', 'B35', '99', 'JACK', 'M!', 'BEN'
PRI DIST 2 TO 4 TO 6 TO 8, 5 TO 7

16

ANGLE COMMANDS

Store Angle

STORE ANGLE a angle (operator, modifier), print

where a is the name of the angle to be stored. If the optional data items
operator, modifier are included, the value of angle is modified by the value
of modifier to compute the value to be stored for a. If operator is P/M,
modifier takes any of the standard allowable forms for angle; that is, facility
is provided to add or subtract two angles. If operator is MULTIPLY or
DIVIDE, modifier must be a numerical data value (v) which is treated as

a scalar. Examples:

STORE ANGLE 'Al1" ANGLE AT 2 FROM 4 TO 6 PLUS ANGLE 'B!
STORE ANGLE 'C' ANGLE 'Al' DIVIDED BY 3.0

Printed Stored Angles

PRINT ANGLES a, b, c,
PRINT ALL ANGLES

The value printed is the magnitude of the angle in degrees, minutes, and
seconds.

Compute and Print Angles

PRINT ANGLE AT pa from pb to pc, (AT pd from pc to pf),

Delete Stored Angles

DELETE ANGLES a, b, c
DELETE ALL ANGLES

17

DIRECTION COMMANDS

In the command specifications which follow, the word BEARING may be
substituted wherever the word AZIMUTH appears.

Store Azimuth

STORE AZIMUTH a direction, round, print

where a is the name of the direction to be stored. If the optional data item
round is included, it takes one of the following forms:

ROUND to v MINUTES
ROUND to v SECONDS

The value of direction is rounded to the nearest even v minutes or seconds

before being stored.

Compute Tangent and Store Direction

STORE AZIMUTH a TANGENT to CURVE i at station, print

The direction of the tangent ahead at the value of station on curve iis com-
puted and stored. If the station occurs before the beginning of the curve, the
back tangent direction is stored; if after the end of the curve, the ahead tan-
gent direction is stored. Messages are printed in these cases.

AZIMUTH a CURVE i

station \\
\

STORE AZIMUTH a TANGENT to CURVEi at station

18

Print Stored Directions

PRINT AZIMUTHS a, b, c . . .
PRINT ALL AZIMUTHS

The value printed is the magnitude of the direction in degrees, minutes, and
seconds.

Compute and Print Directions

PRINT AZIMUTHS pa TO pb, round
PRINT AZIMUTHS pa TO pb, (pc TO pd), .
PRINT AZIMUTHS pa TO pb (TO pc TO pd . .

The second and third forms may be mixed. In the first form the optional
data item round is as described under Store Azimuth except that the rounding
occurs before printing instead of before storage.

Delete Stored Directions

DELETE AZIMUTHS a, b, c . .
DELETE ALL AZIMUTHS

Print Direction of Stored Line

PRINT AZIMUTH of LINE i

Example Direction Commands

STORE AZIMUTH 'AZ1' 275 15 23.17

STORE AZIMUTH '4!' AZ 32 TO 56 PLUS 90

STORE AZIMUTH 'C3' 3 TO 7 PLUS ANGLE AT 15, 18, 20
STORE BEARING 'B' 5 TO 8 ROUND TO 30 SECONDS
STORE BEARING 'H' TANGENT TO CURVE 4 AT STA 10450
PRINT AZIMUTHS 2 TO 4, 6 TO 8, 3 TO5 TO 7

19

LINE COMMANDS

Store Line

STORE LINE i thru pa at direction, print
STORE LINE i thru pa TOWARD pb, print

where iis the identification number of the line to be stored, pa is the stored
point on the line, and direction is the direction of the line. In the second
form, the direction of the line is computed as the direction from pa to stored

point pb.

direction
\
\,\“?'

pa

STORE LINE | thru pa at direction STORE LINE i thru pa TOWARD pb

Compute and Store Parallel Line

STORE LINE i thru n PARALLEL to LINE j, offset, print
STORE LINE ithrun PAR.ALLEL to 11ne, offset, print

Point n is first located at the offset distance from the stored point on the
stored line j and the coordinates of n are stored in the Point Table. Line i
will have the same direction as line j. If the offset data item is omitted, the
two lines will coincide, an offset distance of zero being used. This command
stores both Line i and Point n. In the second and more general form, the
equivalent of line j is determined from the line data item.

line point

offset .
LINE D

STORE LINE i thru n PARALLEL to LINE j, offset

20

Compute and Store Tangent Line

STORE LINE i thrun TANGENT to CURVE j at station, offset, print

Point n is first located on stored curve j at the value of station (if offset is
specified, n is actually located on the radial to the curve at the offset dis-
tance) and the coordinates of n are stored in the Point Table. The forward
direction of the tangent to the curve at the value of station is computed for
the direction of the line. This command stores both Line i and Point n.

STORE LINE i thru n TANGENT to CURVE j at station, offset

Print Stored Lines

PRINT LINES i, j, k. . .
PRINT LINES i TO j, (k TO 1),
PRINT ALL LINES

The first two forms can be mixed, such as in the following example:
PRINT LINES 14, 8, 50 TO 60, 35, 100 TO 200, 3, 5, 20 TO 30
For each line, the point number and direction are printed.

Delete Lines

To delete lines from the Line Table, the same forms as Print Lines
may be used with the command DELETE replacing the command PRINT.

21

COURSE COMMANDS

Store Course

STORE COURSE a pa to pb, print

where a is the name of the course to be stored, pa is the beginning point,
and pb is the end point.

Compute and Store Course

STORE COURSE a pa to n, distance, direction, print

The coordinates of n are computed at the values of distance and direction
from stored point pa. Point n is stored in the Point Table and then serves
as pb in the Store Course command.

direction

STORE COURSE g, pa to n, distance, direction

Print Stored Courses

PRINT COURSES a, b, c
PRINT ALI. COURSES

The value printed is the length and direction of the course.

Compute and Print Courses

PRINT COURSES pa TO pb, (pc TO pd), .
PRINT COURSES pa TO pb TO pc (TO pd TO pe)

The two forms may be mixed, such as

PRINT COURSES 2 TO 4, 6 TO8 TO 7, 3 TO5, PC2 TO9 TO PT 3
22

Compute and Store tarallel Course

STORE COURSE a, na to nb, PARALLEL to COURSE b, offset, print
STORE COURSE a na a to nb PARALLEL to course, prlnt
Points na and nb are computed at the offset distance from the beginning and
end points, respectively, of stored course b. Points na and nb are stored in
the Point Table and then serve as pa and pb in the Store Course command.
If offset is omitted, an offset distance of zero is used, and the two courses
will coincide. In the second and more general form, the equivalent of
course a and the offset are determined from any of the forms of the course
data item.

nb

na

STORE COURSE g, na to nb, PARALLEL to COURSE b, offset

Delete Stored Courses

DELETE COURSES a, b, c.
DELETE ALL COURSES

Transpose Stored Courses

TRANSPOSE COURSES a, b, c

The order of the beginning point and the end point for course a is transposed
in the Course Table; that is, the beginning point becomes the end point, and
vice versa. The Station Course command should usually follow this com-
mand to provide stationing in the new forward sense.

Station Stored Courses

STATION COURSE a station

See Station command for detailed specifications.

23

CURVE COMMANDS

Store Circular Curve

STORE CURVE i, reference, element, a/tangent, c/station, print

where iis the identification number of the curve to be stored in the Curve
Table and the data items are as described below:

reference: allowable forms - one of the following
PB at pa, DB direction, TL distance
PB at pa, DB direction, TTL distance
PC at pa, DB direction
PI at pa, DB direction
PB at pa, Platpb

element: allowable forms - one of the following

RADIUS distance
DEGREE angle
LENGTH distance
TANGENT distance
LCHORD distance
EXTERNAL distance
CCatpa

a/tangent: allowable forms - one of the following
DA direction
p/m DEFLECTION angle
p/m DELTA angle
PA at pa (only with 2nd, 4th, and 5th form of reference)
p/m s/element (only if element is RADIUS or DEGREE)
where s/element is one of the following
LENGTH distance
TANGENT distance
LCHORD distance
EXTERNAL distance

c/station (optional)
STATION of label station
where label is any curve point label except CC. label may also
be PB.
If c/station is omitted, PC (or TS) is assumed to have station value
of 0+00.

If reference is of the second or fifth form, then element may be TL distance.

24

DEFLECTION

Circular CURVE Nomenclature and Data ltems

Example Curve Commands

PB AT 5, DB N 45 E, TL 125.16, R 2000, DA S 35 E
PC AT 7, DB 4 TO 6, DEG 3, PLUS DEF 78 15

PI AT 8§ DB 270 15, R 3000, MINUS L 1000

PB AT 4, DB 45 0, CC AT CC 2, PA AT 7

, PBAT PT 3, DB PI 3 TO PT 3, TL 0., T 1000, DA 45
, PCATS5, DB 'A', DEG 'B', P TAN 4 TO 8§

, PB 10, PI 12, R 3 TO 5, PA 20

STORE CURVE
STORE CURVE
STORE CURVE
STORE CURVE
STORE CURVE
STORE CURVE
STORE CURVE

-

-

N O~k WY~

STORE CURVE 8, PB 2,DB 45, TL 100.,SLB 300,R 3000,SLA 200, DA 135
STORE CURVE 9, PI 4, DB 25, SLB 400, DEG 5, SAA 10, P DEF 60
STORE CURVE 10, TS 3, DB 'Z', SLB 500, R 5000, DA 178 56 22
STORE CURVE 12, PB 5, PI 6, DEG 3 30, SL 400, PA AT 44

MODIFY CURVE 2, DEG 2 30
MODIFY CURVE 3, R 3500
MODIFY CURVE 9, SL.B 300

STORE CURVE 20, CONCENTRIC WITH CURVE 4, OFFSET P 50
STORE CURVE 22, CONCENTRIC WITH CURVE 6, OFF M 3 TO 5
STORE CURVE 24, PARALLEL TO CURVE 2, OFFSET M 24.
STORE CURVE 26, PARALLEL TO CURVE 24, OFF P 'X3!

PRINT CURVES 1 TO 15, 24, 50 TO 60, 98, 127
25

Store Circular Curve with Transition Spirals

STORE CURVE i, reference, b/spiral, element, a/spiral, a/tangent,
c/station, print

where iis the identification number of the curve to be stored in the Curve
Table and the data items are as described below:

reference
Allowable forms same as for store circular curve except that the
third form becomes
TS at pa, DB direction

b/spiral (back spiral - spiral from TS) - allowable forms
SLB distance

SAB angle
element (of circular curve segment) - allowable forms

RADIUS distance

DEGREE angle

If a/tangent gives DELTA, then element may also be

LENGTH distance

TANGENT distance

LCHORD distance

EXTERNAL distance

a/spiral (ahead spiral - spiral to ST) - allowable forms
SLA distance

SAA an gl e

a/tangent: allowable forms - one of the following
DA direction

p/m DEFLECTION angle (deflection angle of total curve)
p/m DELTA angle (delta angle of circular curve)
PA at pa (only with 2nd, 4th, and 5th form of reference)

c/station (optional)
Same forms as for Store Circular Curve.

If the curve is to have equal length transition spirals at both ends, then
either b/spiral or a/spiral or both may take one of the following forms:

SL distance
_S_é angle

The same values will be used for both spirals, so in this case one or the
other of the data items may be omitted.

26

If the curve is to have a transition curve on only one end, the other
spiral may be given as a zero length spiral (SLB 0. or SLA 0.) or may be
omitted.

DEFLECTION

Spiraled CURVE Nomenclature and Data ltems

2
PC PT
CcC
Type C-Circular Curve Type SCS-Spirals at Both Ends
P1
CI
PC coNIA
ST
CcC
Type SC-Spiral at Beginning Type CS-Spiral at End

CURVE TYPES and CURVE POINT LABELS

27

Modify Stored Curve

MODIFY CURVE i, b/spiral, element, a/spiral, c/station, print

Stored curve i is recomputed and redefined using given new values for the
spirals and/or element data items. The command is the equivalent of a
Store Curve command except that reference and a/tangent are not given be-
cause the stored values which define them are held. The location of the PI
and the directions of the back and ahead tangents (DB and DA) are held fixed.

If the spiral data items are not given, the stored values for spiral lengths
are held fixed. If the element data item is not given, the stored value for
circular curve radius is held fixed. If c/station data item is not given, the
stored value for the PI is held fixed in restationing the curve.

Store Concentric Curve

STORE CURVE i, CONCENTRIC with CURVE j, offset, c/station, print

A new curve iis generated which has the same center and tangént directions
as stored curve j. The tangents are shifted by the value of offset. This
command does not apply to spiral curves.

offset CURVE

CURVEi CONCENTRIC with CURVE j CURVEi PARALLEL to CURVEj

Store Parallel Curve

STORE CURVE i, PARALLEL to CURVE j, offset, c/station, print

A new curve i is generated which has the same curve element values and
tangent directions as stored curve j. The tangents are shifted by the value
of offset.

28

Restation Stored Curve

STATION CURVE i, label station

where label is any curve point label except CC. The stored curve i is re-
stationed with respect to label which is given by the value of station.

Print Stored Curves

PRINT CURVES i, j, k. . .
PRINT CURVES i TO j, (k TO 1),
PRINT ALL CURVES

The first two forms can be mixed. The curve point values (coordinates and
station) and the curve element values (radius, length, and so forth) are
printed.

Delete Stored Curves

To delete curves from the Curve Table, the same forms as Print
Curves may be used with the command DELETE replacing the command
PRINT.

Transpose Stored Curve

TRANSPOSE CURVE i

Curve i is transposed; that is, the old PT becomes the new PC. A clock-
wise curve is converted to a counterclockwise curve, and vice versa. The
values of the curve elements are unchanged and the position of the curve in
space is unchanged (PI and CC unchanged).

A stored curve has a forward sense (PC toward PT) and curve direction
(clockwise or counterclockwise) which are defined at the time the curve is
stored. Situations can develop where the Engineer may want to reverse the
forward sense and curve direction of a stored curve in order to include it in
a chain list. The Transpose Curve command facilitates coping with such
situations.

Alignment Curves

The Store Curve commands provide for the definition and storage of in-
dependent curves. The more common way of defining and storing curves
will be via the Curve subcommands of the Alignment command, the proce-
dure for which is defined in the Alignment specifications.

29

CHAIN COMMANDS

In the command specifications which follow, wherever the word CHAIN
is used, any one of the following words may be substituted: TRAVERSE,
ALIGNMENT, PARCEL, BASELINE, CENTERLINE, LIST.

Store Chain

STORE CHAIN a, list

where a is the name of the chain to be stored, and list is the appropriate list

of stored objects which define the chain. Objects which may be included in

the list include:

Objects

Integer Points
Curve Points
Courses
Curves

Chains

Gaps

Form

(POINT) pi

label i

COURSE a
CURVE i
CHAIN a
GAP

List:2,8,4,7,5,2 a8

List: CURVE 7, CURVE 4, CURVE 8, CURVE 3,

/ ~ CURVE 5, CURVE 9
/ S~
< 7
2
\\ /
?’_——_'/7
List:4, CURVE 8, CURVE 3, 7 7, List:5,2,7,4,8,3
/ 5 /\8
| FARI A7 / \
/ / \ /N !\
4 Y V,

EXAMPLES OF CHAIN OBJECTS AND LISTS

30

Describe Stored Chain

DESCRIBE CHAIN a

A report is printed which describes the detailed geometry of the chain. The
report includes the associated text, coordinates of all points, the lengths and
directions of all sides, and the standard data for all curves. If the chain is
a closed figure (last point in the list is same as first point in list), the area
is also printed.

Print Stored Chain List

PRINT CHAINS a, b, c.
PRINT ALL CHAINS

The list stored in the Chain Table for each chain is printed.

Delete Stored Chains

DELETE CHAINS a, b, c . .
DELETE ALL CHAINS

The indicated chains are deleted from the Chain Table.

Transpose Stored Chains

TRANSPOSE CHAIN a

The order of all objects in the list for chain a is transposed in the Chain
Table; that is, the last object becomes the first, next to last the second, and
so forth. Each curve in the list is also transposed (see Transpose Curve
command). The Station Chain command should usually follow this command
to provide continuous stationing in the new forward sense.

A chain has a forward sense (the forward order of the list) which is de-
fined at the time the chain is stored. Situations can develop where the user
may want to reverse or transpose the order. For example, the user may
wish to define an alignment with a list that includes already stored chains
which are in opposite order to the forward sense of the alignment. The
Transpose Chain command facilitates coping with such situations.

Station Stored Chains

STATION CHAIN a (FROM pa) station (AHEAD to pb), (BACK to pc)

See Station command for detailed specifications.

31

Chain Area

AREA list

where list is the same as for Store Chain; that is, a list of objects which de-
fines the chain which bounds the closed figure for which the area is to be
computed (i.e., list defines the perimeter of the figure). The beginning
point of the first object in the list should coincide (same point or same hori-
zontal coordinates) with the end point of the last object in the list to define a
closed figure. If they do not coincide, a closing link or special connector is
generated to close the figure, and the Engineer is notified via a message.

The perimeter or boundary of the figure may include curves, segments
of which will be automatically added or subtracted to give the correct net
area enclosed by the curvilinear boundary. The area of each curve segment
is printed as it is computed. If a curve has spirals, separate segment areas
are computed for each spiral and the circular curve, with subchords from
the TS to SC to CS to ST. '

The list should define a single figure; that is, the boundary should not
intersect itself. If it does cross itself, resulting in multiple closed figures,
the area computed will not have meaning.

To compute and print the area of a single stored chain, the command
would be

AREA CHAIN a

and to compute and print the segment areas of a single stored curve, the
command would be

AREA CURVE i

Example Chain Commands

STORE PARCEL 'A' 4, 3, CURVE 8, 7, 5, 4
STORE ALIGNMENT 'RAMP-J' 12, CURVE 5, CURVE 10, 27
STORE TRAVERSE 'BOUND' 16, 20, 4, 10, 15, 94, 25
STORE ALIGN 'B', ALIGN 'A', ALIGN 'RAMP-J', ALI 'C!
STORE BASELINE 'B24-X', TRA '2', 18, TRA 'X12!
DESCRIBE PARCEL 'A!

DESCRIBE CHAINS 'RAMP-J', 'BOUND', 'B24-X!

STATION ALIGN 'B' FROM PC 12 STA 5+00, AHEAD TO PT 4
STATION ALIGN 'RAMP-J' 0+00

AREA PARCEL 'A!

AREA 2, 4, 6, 8, 5, CURVE 10, 2

32

TEXLT COMMANDD

Store Text

STORE TEXT a, n

where a is the name of the set of text and n is the number of lines (cards)
which follow the command and which contain the text. When the command is
executed, the next n cards are read and stored in the Text Table as Text a.
The text can contain any legal characters.

Text OutEut

Whenever the command DESCRIBE CHAIN a is executed, the Text Table
is checked. If there is a stored text with the same name, that set of text is
printed before the regular output report for the Describe command. The
text printout is a card image of the text which is stored.

Stored text may also be printed with the commands:

PRINT TEXTS a, b, c. . .
PRINT ALL TEXTS

and may be deleted with the commands:

DELETE TEXTS a, b, c
DELETE ALL TEXTS

Example Store Text

STORE TEXT 'LOT/18', 7
PARCEL LOT/18 IS LOCATED IN SUNSHINE SUBDIVISION,
TOWN OF LEXINGTON, MIDDLESEX COUNTY, MASSACHUSETTS,
IN THE NORTHWEST QUADRANT OF THE INTERSECTION
OF OLD COLONY ROAD AND MINUTEMAN LANE,
OWNED BY SMITH REAL ESTATE CORPORATION,
OCCUPIED BY SERVICE STATION AND PARKING LOT.
ASSESSED VALUATION $376,500.

33

STATION COMMAND

Station Point

STATION Rl station

Stored integer point pj is given the value of station.

Station Points on Curve

STATION ON CURVE i, (POINTS) pi, pj, pk .

The stations of the stored integer points in the list are computed on stored
curve iand are stored in the Point Table. If a point is not on the curve
(+.1), the station is computed for the radial projection of the point onto the
curve or nearest tangent to the curve, a message being printed. Stationing
is always computed with respect to the station of the beginning point of

the curve segment except when the point is projected onto the ahead tangent.
Then station is based on the station of the end (PT or ST) point of the curve.

Restation Stored Curve

STATION CURVE i, label station

where label is any curve point label except CC. The stored curve i is re-
stationed with respect to label which is given the value of station.

Station Points on Course

STATION ON COURSE a, (POINTS) pi, pj, pk -

The stations of the stored integer points in the list are computed on stored
course a and are stored in the Point Table. If a point is not on the course
(+.1), the station is computed for the projection of the point onto the course
or course extension, a message being printed. Stationing is always com-
puted with respect to the beginning point of the course, and stationing is as-
sumed to be increasing in the direction toward the end point, with one excep-
tion. If the station of the end point is stored and is compatible with the
station of the beginning point (absolute value of difference in station equals
length of course) and indicates descending stationing, then the point will be
correctly stationed in the descending stationing.

34

Station or Restation Stored Course

STATION COURSE a station

The stored course a is stationed with respect to the beginning point. If both
points are integer points, the beginning point is given the value of station and
the end point is given the value of station plus the length of the course. If
the end point is a curve point, its station value is left unchanged and the be-
ginning point is given the value of station. If the beginning point is a curve
point, its station value is left unchanged and the end point is given the value
of station plus the length of the course. If both points are curve points, no
stationing will be performed and the user will be so notified.

Station or Restation Stored Chain

STATION CHAIN a (FROM pa) station (AHEAD to pb) (BACK to pc)

Stored chain a is stationed or restationed continuously, starting at point pa,
which is assigned the value of station. Stationing is computed forward to
point pb and is backed up to point pc. pa, pb, and pc must be points in the
chain list for chain a (pa may be a PC or TS curve point; pb may be a PT or
ST curve point; pc may be a PC or TS curve point). Every point, course,
curve, and chain in the chain list from pb to pc is stationed or restationed,
the station values being stored in the data tables.

If pa is not given, it is taken to be the point at the beginning of the chain.
If pb is not given, it is taken to be the point at the end of the chain. If pc is
not given, it is taken to be the same point as pa (i.e., no back stationing).
For example, if chain 'A'is stored as

STORE ALIGNMENT 'A' 2, 8, CURVE 5, CURVE 7, 4, 6
the command
STATION ALIGN 'A' STA 5400

will store 5+00 as the station of Point 2 and will station 'A' continuously
from Point 2 to Point 6,

The command

STATION ALIGN *A' FROM PC 5, STA 10400, AHEAD TO 4,
BACK TO 8

will store 10+00 as the station of the PC of Curve 5, will back up the sta-
tioning to Point 8, and will compute and store stationing ahead to Point 4.

35

PROFILE COMMANDS

Profile Command

The command calls a general purpose profile subprogram which pro-
cesses a set of building block subcommands which define and store a vertical
alignment profile in the Profile Table. The general form of the command
and the order of the subcommands is as follows:

PROFILE a
VPI subcommands (three or more)
END of PROFILE, print

where a is the name (1 to 8 characters enclosed in single quotes) of the pro-
file and the VPI subcommands are as described in the section which follows.
If the optional print modifier is given with the required END command, a
Print Profile command is executed.

VPI Subcommand

VPI at Ppj, station, elevation, length

where pj is the identification number of the integer point at the VPI. If sta-
tion is not given, it is understood that the station of pj is already stored in
the Point Table, and the stored value is used in the profile computations. If
elevation is not given, it is understood that the elevation of pj is already
stored in the Point Table, and the stored value is used in the profile compu-
tations. If length is not given, it means that no vertical curve is to be gen-
erated at the VPI. The first (initial point) and last (terminal point) VPI sub-
commands should not include the length data item. When the data items are
given, they take the following forms:

Data Item Allowable Forms

station STATION v
where v is the station of pj

DISTANCE v
the station of pj is computed by adding v to the station
of the previous VPI

36

Data Item Allowable Forms

elevation]_L‘_LEVATION vor Zv
where v is the elevation of pj

ELEVATION at station on (PROFILE) b
where b is the name of a stored profile. The eleva-
tion of pj will be computed at the value of station on
profile b.

GRADE p/m v

" where v is the grade in decimal percent of the tan-
gent from the previous VPI to pj (PLUS is assumed
if p/m is not given). The elevation of pj is com-
puted using the grade value and the distance value.

GRADE at station on (PROFILE) ¢

" where c is the name of a stored profile. The grade
will be computed at the value of station on profile c.
This grade value will then be used to compute the
elevation of pj as in the previous form.

The AT forms are provided for use in computing ramp
profiles and other conditions where the profile being
computed is constrained by another (stored) profile.

length LENGTH v

where v is the length of the symmetric vertical curve
at the VPI.

LB vb, LA va
where vb is the length back and va is the length ahead
of an asymmetric vertical curve at the VPI.

| DISTANCE

NGTH

LA VPT

VPI
STATION ELEVATION

PROFILE and VPI Nomenclature and Data Items

37

If the given length causes the vertical curve to overlap the previous ver-
tical curve, an asymmetric vertical curve length back which will eliminate
the overlap is used and the Engineer is so notified.

Unknown Conditions in VPI Subcommand

If in the elevation data item the elevation and the grade are given; that
is, the command is of the form:

VPI at pj station, elevation, grade, length

where elevation is either of the first two forms of the elevation data item and
grade is either of the second two forms of the elevation data item, the VFPI
subcommand of this form may be preceded by one VPI subcommand of the
following form: T

VPI at n station, GRADE ? length

or

VPI at n STATION ?, grade, length
The unknown grade or station will be back computed from the VPI with sta-
tion, elevation, and grade. The two VPI's can be separated by any number

of VPI subcommands of the form:

VPI at n, station, grade, length

There can be more than one unknown condition in a profile so long as each
subcommand with an unknown (?) is followed by a subcommand with both ele-
vation and grade values in the elevation data item.

Note: The word UNKNOWN may be used in place of the symbol ? and
should be used when the problem is to be run at an installation
which does not have the ? character on its printer chain.

Shift VPI

Since the VPI is defined by an integer point stored in the Point Table, it
may be shifted by changing the station and/or elevation of that point by use of
the Store Point command or any other command which changes these entries
in the Point Table. Since the Profile is a relative object and is dependent on
the entries in the Point Table, the Engineer must be careful that he does not
unintentionally shift a Profile by changing a point station or elevation.

38

Change or Store Vertical Curve Liength

MODIFY VC at (VPI) pj (ON) (PROFILE) a, length

The Profile Table entry for the vertical curve length of the vertical curve at
pj on stored Profile a is changed to the value of length, where length is as
described for the VPI subcommand. The new value of length replaces the
old value and will be used in generating the profile when it is referred to in
subsequent commands.

Print Stored Profile

PRINT PROFILES a, b, c.
PRINT ALL PROFILES

A report is printed which describes the detailed geometry of each profile.
The report includes such standard information as the station and elevation of
the VPC, VPI, and VPT of each vertical curve, its length, grade back and
ahead, high or low point location, and so forth.

Print Elevations on Stored Profile

PRINT ELEVATIONS ON (PROFILE) a list

where each item in list can be a numerical station value or an item of the
form:

EVEN v (STATIONS) va TO vb

Example:

PRINT ELEV ON PROFILE 'P2',6+25,74+19, EVEN 50 10+00 TO 20+00,
15476

Elevations will not be printed beyond the limits of the stored'profile. If sta-

tion wvalues in the list are given in order of increasing magnitude, the speed
of processing is greatly increased.

Delete Stored Profiles

DELETE PROFILES a, b, c . . .
DELETE ALL PROFILES

The indicated profiles are deleted from the Profile Table.
39

Constrained Vertical Curves

In the VPI subcommand (page 36-37), the length data item may take the
following special forms to fit a vertical curve to given constraints:

THRU pk
THRU STATION v, ELEVATION v

CLEAR pk BY P/M v

CLEAR STATION v, ELEVATION v BY P/M v
FIXED (GRADE) v AT (STATION) v

The length of a symmetrical vertical curve is computed internally to fit the
specified constraint. If LENGTH v is given and one of the above constraints,
then an asymmetrical vertical curve of total length v is computed internally
which fits the constraint.

Example Profile Commands

PROFILE 'MAIN!'

VPI AT 27 S 0+00 Z 1000

VPI 30 S 10+00 G 2.25 L. 700

VPI AT 24 LLB 800. LA 600.

VPI 43 S 56+17 Z 1256.47 L 1200

VPI 15 STA ?, GM 3.5, L 1000

VPI 25, S 179+25, G 1.5, L 800

VPI 35, S 214+00, Z 1123., GM 2., L 1500

VPIL 7, DIST 2000., G AT 25+00 ON 'RAMP', L 1200
VPI 8, S 342+00, E 15+00 ON 'AX', LLB 700 LA 800
VPI AT 45 S 400+00 G ?, L 2000

VPI AT 50

END OF PROFILE, PRINT

PRINT ELEV ON 'MAIN', EVEN 20, 80+00 TO 300+00
STORE VPI 15 ON PROFILE 'MAIN', L 800

STORE 8 S 345400

PRINT PROFILE 'MAIN'

40

LOCALTE COMMAND

Introduction

The Locate command provides a variety of ways to locate (compute and
store the coordinates) of a point with respect to one or more stored objects.
The basic cases and forms of the command are as follows:

1) Locate From

To locate a point at a given distance and direction from a stored
point. The distances and directions can be given in a variety of ways. A
series of Locate From commands is the equivalent of an open traverse.
The basic form is

LOCATE n from pa distance, direction, offset, print

2) Locate On

To locate a point on a stored or defined object. The object may be
a line, course, or curve. The location on the object can be given as a sta-
tion or as a distance from a stored point. The basic form is

LOCATE n ON object p/m distance from pa, offset, print

3) Locate Intersection

To locate a point at the intersection of two stored or defined objects.
The two objects can be any combination of lines, courses, and curves, with
or without offsets. The basic form is

LOCATE n, INTERSECT object (WITH) object, (NEAR pa),
print

4) Locate Projection

To locate a point as the projection of a stored point onto a stored
or defined object. The object may be a line, course, or curve, with or
without an offset. The basic form is

LOCATE n, PROJECT pa on object, print
Special forms are also provided for locating points by foresection and by

distance and angle ties. The specifications for all forms are described in
the sections which follow.

41

Locate From Point

LOCATE n from pa p/m distance, direction, offset, print
LOCATE n from pa p/m distance, p/m angle FROM pb, offset, print

Point n is located at the value of distance from pa at the value of direction
(in the second form, the value of direction is computed as the direction from
pa to pb, PLUS or MINUS the value of angle). A MINUS distance causes n to
be located in the opposite direction from the value of direction (PLUS is as-
sumed if not given). If offset is given, n is actually located on a line paral-
lel to that defined by pa and direction and at the offset distance.

MINUS offset
\o.
pb™ c/angle \ 5
N direction \ S
PLUS offset \
N . \
n
R
MINUS dist. PLUS dist.
LOCATE n from pa P/M distonce{d————;}c'l‘;c m’ROm] offset-

Example Locate From and On Commands

LOCATE 4 FROM 8 DIST 176.15 AZ 135 15 20

1.OC 4 8 176.15 135 15 20

LOCATE 5 FROM 4 7 TO 15 N 75 25 W

LOC 6 5 'X' AZ 4 TO 7 PLUS ANGLE AT 2, 8, 10
LOC 20 4, M 100, P 138 15 FROM 6, OFFSET P 24,

LOCATE 12 ON LINE 5 100. FROM 2
LOCATE 14 ON CURVE 4 50 FROM PC 4
LOCATE 13 ON CURVE 8 AT STA 127+57. 16
LOC 18 ON CURVE 8 24. FROM 13 OFF P 20.

42

Locate On Object

LOCATE n ON object p/m distance from pa, offset, print
LOCATE n ON object at STATION station, offset, print

The object provides the direction along which distance is measured to locate
n. object can take any of the standard allowable forms for line, course, or
curve but without the object offset modifier. pa must be a stored point on the
object. If it is not on (within + 0. 1), the command is considered to be in er-
ror and is not executed. PLUS distance means nis ahead of pa, MINUS dis-
tance that n is behind pa. TIf necessary, the obJect will be extended to locate
n. n. If offset is given, n is located on the perpendicular or radial to the object
at the offset distance. If objectis a curve and n is located on the curve (not
on an offset), n is stationed on the curve. If object is a course and n is lo-
cated on the course (not on an offset), n is stationed on the course if the sta-
tions of the end points are stored and are compatible.

The second form is processed the same as the first form with the fol-
lowing prior action taken internally:

a) If object is a line, pa is taken to be the line point. If object is a
course, pa is taken to be the beginning point of the course. If ob-
ject is a curve, pa is taken to be the beginning point (PC or TS) of
the curve.

b) The value for distance is then computed by subtracting from the
given value of station, the stored station for the point taken to be pa.

object
PLUS dist.

MINUS dist.

object §/ object

extension B“:/ \\éxtension
/ \

// n AN

LOCATE n ON object P/M distance from pa, offset

43

Locate On Tangent

LOCATE n ON CURVE i, sign, at TANGENT definition, offset, print

Point n is located and stationed on the curve at a point of tangency de-
fined by definition, where definition can take one of the following forms:

direction
The tangent to the curve at n will have the value of direction.

THRU pb
A line thru pb will be tangent to the curve at n.

TO CURVE j, sign
The tangent to Curve i will also be tangent to curve j.

The required data item sign (which can appear in two places in the command)
takes one of the following forms:

CL

Clockwise continuation of the curve beyond n in the same direction
as that of the tangent to the curve

CC

Counterclockwise continuation

If the offset data item is given, n is actually located on the radial to the
curve at the offset distance from the computed point of tangency. If the tan-

gent point cannot be located on the curve, the command is considered to be
in error and the point is not located.

LOC 2 ON CURVE {, CL,TAN TO CURVE 6, CC
LOC 3 ON CURVE {,CL, TAN TO CURVE 6, CL
LOC 4 ON CURVE {, CC, TAN TO CURVE 6, CL
LOC 5 ON CURVE 1,CC, TAN TO CURVE 6, CC CURVE 6

Examples of Use of Sign dato item in Locate On Tangent

44

n4
\\offset

direction

\

\
offset\ Curve i pa
n Curve i

n ON CURVE i TANGENT direction, offset |LOC n ON CURVE i TANGENT THRU po,offset

|
|

Curve i

LOCATE n ON CURVE i TANGENT to CURVE j, offset

45

Locate Intersection

LOCATE n INTERSECT object with object (NEAR pa), print

Point n is located at the intersection of the first object with the second ob-
ject. ‘Each object can be any of the standard allowable forms for line,
course, or curve and either or both objects may have an offset. If offsetis
given with the object, the intersection is computed on the offset to the speci-
fied object.

The optional data item NEAR pa may be used when two or more inter-
sections are possible. The location assigned to n is the intersection nearest
to pa. If multiple intersections are possible and the near point is not given,
an assumed near point is taken from the first of the two objects as follows:
If the first object is a line, pa is taken to be the line point; if a course, the
beginning point of the course; if a curve, the beginning point of the curve.
One or both objects will be extended if necessary to achieve an intersection.

Point n is stationed as follows:

a) If the first object is a curve (without offset), and if the intersection
occurs on that curve (not on an extension), n will be stationed on the
curve.

b) If the first object is a course (without offset), and if the intersection
occurs on that course (not on an extension), and if the stations at
the end points are stored and are compatible, n will be stationed on
the course.

If neither of the above conditions is fully met, Point n will not be stationed.

When no intersection is possible even if the objects are extended, n is
not located and an error message is printed. No intersection cases include
lines or courses which are parallel or nearly parallel, curves which are
concentric, and lines or courses which are outside of and miss curves.
Lines or courses are considered nearly parallel if the acute angle of inter-
section is less than 0.1 degree. If the acute angle of intersection is less
than one degree, a warning message designating a weak solution is printed,
but the point is located.

46

~ \object

offset .
\extension

object

offseté:‘\)\\n

//'/\object

| oCe extension
offset o>

object

LOCATE n INTERSECT object with object

Example Locate Intersect Commands

LOCATE 42 INTERSECT LINE 8 WITH LINE 4, PRINT

LOC 48 INT LINE THRU 3 AT N 15 W WITH COURSE 2 TO 5

LOC 35 INT CURVE 4 WITH LINE 6 NEAR PT 4

LOC 45 INT CURVE 2, OFFSET P 12. WITH CURVE 5, OFF M 10.
LOC 36 INT COURSE 'A8' WITH COURSE PC 5 TO PI 5

L.LOC 44 INT CURVE 3 WITH LINE THRU 5 AT 6 TO 8, NEAR 14

47

Locate Projection

LOCATE n PROJECT pa on object, print
Point n is located at the projection of pa onto object. object can be any of

the standard allowable forms for line, course, or curve, with or without an
offset. If object is a line or course, the projection is perpendicular to the
object. If object is a curve, the projection is radial to the curve. If offset

is given with the object, n is located on the offset. The object will be ex-
tended, if necessary, to achieve the projection. Point n will be stationed on
the object if the object is a curve or a course without offset and if not extended.

pa
%
012 &
0
n

\ object extension

) \\
object
ffset
/\/oi se

pa object
' extension

CATE n PROJECT pa on object

Example Locate Project Commands

LOCATE 55, PROJECT 8 ON CURVE 4

LOC 56, PROJ 10 ON COURSE 2 TO 7, OFFSET P 47.15
LOC 57, PROJ 12 ON LINE THRU 3 AT AZ 5 TO 6 P 90
LOC 58, PROJ 13 ON CURVE 5, OFF M DIST 'X', PRINT
L.OC 59, PROJ 14 ON LINE 5, OFF PPI 7 TO PT 14

48

Locate Foresection

LOCATE n FORESECT pa c/angle AND pb c/angle, print

Point n is located at the intersection of the two lines defined by the points
and the computed directions (direction as a data item can be given in place of
either or both c/angle data items). The first c/angle is the angle at pa from
pb to n. The second c/angle is the angle at pb from pa to n. This is a
special case of the intersection of two lines.

n
-—-—"-—7
c/angle —

LOCATE n FORESECT pg, c/angle AND pb, c/angle

Example Locate Foresect Commands

LOCATE 70 FORESECT 5, P 305 04, AND 8, P 62 14 59

LOC 72 FOR 3, N 45 E, AND 6, N 37 W

LOC 74 FOR 10, M ANG AT 2 FROM 5 TO 7, AND 12, AZ 'A!
LOC 76 FOR PC 4, P 'Al', AND P17, AZ3 TO 5

49

Locate By Ties

LOCATE n TIE pa distance, TIE pb DISTANCE distance, APPROX
direction, print
LOCATE n TIE pa distance, TIE pb c/angle, (NEAR or FAR), print

The first form is the equivalent of intersecting two circles with centers
at pa and pb and with radii equal to the values of distance, respectively.
Since two intersections are possible, the approximate direction from pa to n
is required to determine which intersection to use for n.

The second form is the equivalent of intersecting a circle with center pa
and radius distance with a line through pb at a computed direction (direction
as a data item can be given in place of c/angle). c/angle is the angle at pb
from pa to n. Two solutions are possible. NEAR is given when n is the
solution nearest to pa, FAR when it is the farthest solution. NEAR is as-
sumed if neither is given.

APPROX direction

c/angle

LOCATE n

-

TIE pa, distance, TIE pb, c/angle, (NEAR or FAR)

Example Locate Ties Commands

LOCATE 4 TIE 2 156.43, TIE 8 DIST 3 TO 5, APPROX 45

LOC 20 TIE PC 5 'X', TIE PT 3 DIST 100, APPROX 4 TO 5
LOC 30 TIE 8 DIST 5 TO 7, TIE 7 PLUS ANG AT 7, 8, 5, NEAR
LOC 40 TIE 5 100 TIE 2 N 35 E, FAR, PRINT

50

ALIGNMENT COMMAND

Introduction

The Alignment command and associated subcommands can be used to
solve a wide variety of horizontal alignment problems, ranging from the
simplest to the very complex. Each subcommand defines a point (POT) or
curve in the alignment and adds an object to the chain list for the alignment.
The alignment is automatically stored in the Chain Table for later retrieval.

Three basic types of alignment problems are handled--Open, Incomplete,
and Inverse. An Open Alignment is analogous to an open traverse; that is,
each curve or point is independent of those ahead. An Incomplete Alignment
is analogous to a closed traverse with missing parts; that is, the alignment
must be computed as a whole to determine the unknowns. An Inverse Align-
ment is analogous to an inverse traverse; that is, the coordinates of each PI
and point are known but may be subject to adjustment.

General Form

The general form of the command and the order of the subcommands is
as follows:

ALIGNMENT a, type

Initial Point POT Subcommand
Curve and POT Subcommands
Terminal Point POT Subcommand
END of ALIGNMENT, (DESCRIBE)

where a is the name of the alignment. The alignment is stored in the Chain
Table. type is one of the following:

OPEN, INCOMPLETE, or INVERSE, round

If DESCRIBE is given, a DESCRIBE CHAIN a command is executed after the
processing and execution of all subcommands.

The Initial Point, Curve, POT, and Terminal Point subcommands de-
scribe, in order, the points and curves which define the alignment. Detailed
subcommand specifications are given with the specifications for each type
alignment. General information applicable to all three types is given in the
sections which follow.

51

The END subcommand terminates the processing of the curve and point
subcommands. It must be included. The number of curve and point sub-
commands is limited only by the data table capacities--1,000 curves and

10, 000 points.

POT Subcommands - General Information

A POT is a point which is used to define an alignment. It might be any
of the following:

a) The initial or starting point of the alignment

b) An intermediate point in the alignment which may be a point on tan-
gent, or an angle point (equivalent of a PI with no curve)

c) The terminal or ending point of the alignment

POT's are integer points and are stored in the Point Table with their coordi-
nate values and their station on the alignment. Each POT is added to the
chain list for the alignment.

The POT subcommand provides the information to determine the coordi-
nates of the point; either directly as an independent object, or indirectly as a
dependent object located with respect to the previous curve or point.

\ POT
N

POT

TD c/angle

Previous POT or PT of previous curve

Alignment POT Nomenclature and Data Items

52

As an independent object, the subcommand takes the general [ori,
POT p/data (STATION station)
where p/data takes one of the following forms:

a) n coord
where n is the point number assigned to the POT and coord is
the numerical values of the coordinates, such as

POT 4 X 1000. Y 2000.
POT 8 N 2500. E 3000.

b) n at pa
where n is the point number assigned to the POT and pa is any
stored point. n is given the same coordinates as those for pa.
Examples

POT 6 AT PC 15 .
POT 9 AT POINT 3 .

c) atpj
the point number and the coordinates of stored integer point pj
are assigned to the POT. Examples

POT AT 5.
POT 2 .

(Note --pj will be stationed on the alignment, the old station, if
any, being lost.)

d) atlIP
This form is used, in the case of the Incomplete Alignment, for
the Terminal Point POT subcommand when the terminal point
is the same point as the initial point.

When the independent form is used for an intermediate POT, the POT will
usually be an angle point (a PI without a curve).

As a dependent object, the subcommand takes the general form:

POTn pot/distance, pot/direction, (STATION station)

where n is the point number assigned to the POT, and the remaining data
items provide the information to locate n from the previous object as a given
distance and at a given, computed, or implied direction. It is the equivalent
of the Course Subcommand in Traverse. The specific forms which the sub-
command can take are described in the specifications for the three types of
alignments.

53

If the station data item is given, the value of station is assigned to the
POT. If it is omitted, stationing is carried forward from the previous
object.

Curve Subcommand - General Information

The Curve subcommand is used to define a horizontal curve in the align-
ment. The Curve subcommand is a subset of the Store Curve command with
certain of the data required to define the curve being automatically carried
forward from the previous object as follows:

a) The curve reference point (PB) is always understood to be provided
by the previous object. If the previous object was a POT, then PB
is understood to be the POT. If the previous object was a curve and
TL is given for distance, the PB is understood to be the PT of the
iorevious curve; if TTL is given, then PB is the PI.

b) The back tangent direction (DB) may be carried forward from the
previous object. If the previous object was a POT and DB is not
given, then DB is understood to be the same direction as that used
to locate the POT. If the previous object was a curve and DB is not
given, then DB is understood to be the same as the forward tangent
direction of the previous curve.

Because of the carry forward feature, the Curve subcommand differs
from the Store Curve command principally with respect to the reference data
item. PB is never given and DB is only given if the implied reference point
is to be an angle point in the alignment. In an Inverse Alignment, the
a/tangent data item is also not given, being automatically provided by the
next object. In essence, Curve and Store Curve differ in that Curve obtains
some of the data necessary to define the curve from the adjacent objects.

The following are additional differences between the Store Curve com-
mand and the Curve subcommand; in the subcommand

a) If c/station is not given, stationing is automatically carried forward
from the previous object.

b) The print modifier is not allowed, the printing of values for all
curves in the alignment being initiated by the DESCRIBE modifier.

Each curve defined by a Curve subcommand is stored in the Curve Table
for later retrieval.

The specific forms for the Curve Subcommand are given in the specifi-
cations for each type of alignment.

54

Previous POT or PT of Previous Curve

Alignment CURVE Nomenclature and Data Items

55

OPEN ALIGNMENT

Introduction

In an open alignment, the data to define each curve and POT is available
(no missing parts and no adjustment required). Each curve and POT is in-
dependent of those ahead of it. Subcommands are processed to completion,
incrementally, in the order in which they are given. An open alignment is
analogous to an open traverse.

An open alignment can always be defined by a series of Store Point,
Store Curve, Locate From, and Store Chain commands. The Open Align-
ment command and subcommands provide a more concise way of defining and
storing the alignment and the points and curves which define it.

General Form

The general form of the command and the order of the subcommands are
as follows: '

ALIGNMENT a, OPEN (required)
Initial Point POT Subcommand (required)
Curve and POT Subcommands (optional)
Terminal Point POT Subcommand (optional)
END of ALIGNMENT, (DESCRIBE) (required)

Initial Point POT Subcommand

POT p/data, STATION station

The subcommand is required.

Intermediate Point POT Subcommand

POT p/data, (STATION station)
POT n TL distance (TD direction or c/angle), (STATION station)
POT n TTL distance, (STATION station)

If the second form is used and neither TD direction nor c/angle is given, a
c/angle value of PLUS 180 is used. If the third form is used, the previous
subcommand must have been a curve with no angle point at the PT (or ST).

56

‘l'erminal Point POl Subcommand

May take any of the forms for an intermediate point subcommand and is
optional. (An open alignment may end with a curve.)

Curve Subcommand

CURVE i, reference, b/spiral, element, a/spiral, a/tangent, c¢/station
CURVE i, STORED, c/station

where the data items are the same as for the Store Curve command except
as follows:

a) the reference data item takes one of the following forms:

TL distance

TTL distance

DB direction, TL distance

DB c/angle, TL distance

Pl at pa

PI coord (the numerical values for the PI coordinates are
given)

If either of the first two forms is given, a c/angle of PL.US 180 is
assumed; that is, the DB direction is carried forward from the
previous subcommand (these forms should not be used for a curve
immediately following the initial point POT subcommand).

b) element may be TL distance if reference gives Pl and curve i does
not have spirals.

c) If c/station is not given, stationing is carried forward from the
previous curve or POT.

In the second form of the command, the stored curve i is used in place
of a newly defined curve. ‘

Example Open Alignment

ALIGNMENT 'RT-3' OPEN

POT 2 N 5000, E 6000, STA 25+00

CURVE 10, DB N 45 15 20 E, TL 1256, RADIUS 4000, P DELTA 88 27
D 12, TL 200, DEG 2 00, M 92 15

D 14, TL 300, SLB 300, R 3000, SLA 400, P 90

POT 4 TL 1000.

END OF ALIGN, DESCRIBE

57

INCOMPLETE ALIGNMENT

Introduction

An incomplete alignment is one with missing parts. The alignment must
be processed as a whole to determine the values of the missing parts before
the individual curves and POT's can be fully defined, computed, and stored.
An incomplete alignment is analogous to an incomplete traverse with two
missing parts.

An incomplete alignment can always be formulated and solved as a tra-
verse problem. In fact, the Traverse Subprogram is used to solve for the
missing parts in an incomplete alignment. The Incomplete Alignment com-
mand and subcommands provide a concise and natural way to state the prob-
lem and an automatic way of solving it.

General Form

The general form of the command and the order of the subcommands
are as follows:

ALIGNMENT a, INCOMPLETE (required)
Initial Point POT Subcommand (required)
Curve and POT Subcommands - (required)
Terminal Point POT Subcommand (required)
END of ALIGNMENT, (DESCRIBE) (required)

Stationing of POT's and curves is carried forward from the given station of
the initial point.

Initial Point POT Subcommand

POT p/data, TD direction, STATION station

where TD direction gives the direction of the tangent from the initial point
to the POT or PI ahead.

Intermediate Point POT Subcommands

POT n, TL distance, c/angle

The data item c/angle is given if the previous POT or PT is an angle point.

58

Terminal Point POT Subcommand

POT p/data, TL distance, c/angle, TD direction

where TD direction gives the direction of the tangent from the previous POT
or PT to the terminal point. The data item c/angle is given if the previous
POT or PT is an angle point.

Curve Subcommand

CURVE i (DB c/angle), TL distance, b/spiral, element, a/spiral,
a/tangent

where the data items are as follows:

spirals

SL.A distance, SLB distance
SL distance

element

EADIUS distance or DEGREE angle or LENGTH distance

a/tangent
P/M DEFLECTION angle

The optional data item DB c/angle is given if the previous POT or PT is an
angle point.

Missing Parts

To specify missing parts in an incomplete alignment, the following data
items can take the following additional forms:

TL distance

IL?
TL ? APPROXIMATE distance

c/angle
P/M ?
P/M Z APPROXIMATE angle

59

elements

R ? APPROXIMATE distance

a/tangent

P/M DEFLECTION ?
P/M DEFLECTION ? APPROXIMATE angle

TD direction

ID (AZIMUTH) ?
TD (AZIMUTH) ? APPROXIMATE direction

Each unknown distance (TL and R) counts as one missing part. The
number of missing parts attributed to angle plus direction unknowns is one
less than the number of unknowns. Accordingly, the combinations of un-
knowns which can be handled is as follows:

a) Two unknown distances and one unknown angle or direction

b) One unknown distance and two angle plus direction unknowns

c) Three angle plus direction unknowns
The APPROXIMATE form of the above data items should be used in the
latter two cases (when one or both of the missing parts is an angle or direc-
tion) since two solutions are usually possible. The solution used is the one

with computed values closest to the approximate value, with distance having
priority over angle or direction.

Example Incomplete Alignment

ALIGNMENT 'RAMP-K' INCOMPLETE
POT4NO. E 0., TD N 40 W, STA 0+00.
CURVE 15, TL ? , DEG 4, SL 300, PDELTA 75

D 16, TL 0. , R 800, P DELTA 60
D 17, TL 200, DEG 5, P DEF 55
D 18, TL 0. , DEG 3, SLA 400., P DEF ?

POT ATIP, TL ?, TDS30 W
END OF ALIGN, DESCRIBE

60

\

INVERSE ALIGNMENT

Introduction

In an inverse alignment, each POT and each curve Pl is at a stored
point or point of given coordinates. Directions and distances between the
points are computed internally by inversing. Facility is provided to adjust
the coordinates of the points to make the directions between them an even
value of minutes or seconds.

General Form

The general form of the command and the order of the subcommands is
as follows:

ALIGNMENT a, INVERSE, round (required)
POT Subcommand for Initial Point (required)
Curve and POT Subcommands (required)
POT Subcommand for Terminal Point (required)
END of ALIGNMENT, (DESCRIBE) {(required)

The optional data item '"round' takes the following general forms:

ROUND to v MINUTES
ROUND to v SECONDS

The use of the '""round'" data item is explained under the section on Adjust-
ment of Inverse Alignment.

POT Subcommands

The general form for the POT Subcommand for the Initial Point, the
Terminal Point, and for intermediate POT's is as follows:

POT p/data, (STATION station), (HOLD)

The first and last subcommands must be POT subcommands to define the
initial and terminal points respectively. The data item ''station' is required
for the first (for the Initial Point). If ''station'' is not given for other POT's,
stationing is carried forward from the previous subcommand. The optional
data item HOLD is explained in the section on Adjustment of Inverse
Alignment.

61

Curve Subcommand

The general form for the CURVE subcommand is as follows:

CURVE i, PI coord, (HOLD), b/spiral, element, a/spiral, c/station

The spirals and element data items are as described for the STORE CURVE
command. The data item ''c/station'' is also the same except that if it is not
given, stationing is carried forward from the previous curve or POT. The
PI can also be given as PI at pa. (element may be TL distance if curve i
does not have spirals.)

Adjustment of Inverse Alignment

If the "round'' data item is given with the ALIGNMENT command, the
POT's and PI's will be adjusted such that the directions of the tangents to
curves and the POT courses will be to the nearest even value specified by
the '"round'" data item. The process will be explained by an example as
follows:

ALIGNMENT 'A' INVERSE, ROUND TO 2 MINUTES
POT 1 AT PC 25, STA 0400

POT 2 AT 8

CURVE 5, PI AT 4, R 2000.

CURVE 8, PI N 8500 E 18600, DEG 3.5

POT 3

POT 6, N 20000 E 30000 HOLD

END OF ALIGN

The internal action which is taken is as follows:

a) The coordinates of the PC of curve 25 are assigned to Point 1 and
are stored in the Point Table for 1, along with a station of 0+00.

b) The stored coordinates for 8 are assigned to 2. The distance and
direction from 1 to 2 are computed. The direction is rounded to the
nearest 2 minutes. Using the rounded direction and the computed
(inversed) distance, new coordinates are computed for 2 and are
stored in the Point Table for 2.

c) The stored coordinates for 4 are assigned to PI 5. The distance
and direction from 2 to PI 5 are computed. The direction is
rounded to the nearest 2 minutes. Using the rounded direction and
computed distance, new coordinates are computed for PI 5 and are
stored in the Curve Table for PI 5.

62

d) The given coordinates for PI 8 are assigned to PI 8. The distance
and direction from PI 5 to PI 8 are computed. The direction is
rounded to the nearest 2 minutes. Using the rounded direction and
computed distance, new coordinates are computed for PI 8 and are
stored in the Curve Table for PI 8.

e) Curve 5 is computed. (Steps c and d are actually part of the pro-
cessing of Curve 5.)

f) The distance and direction from PI 8 to 3 are computed. The
direction is rounded to the nearest 2 minutes. Using the rounded
direction and computed distance, new coordinates are computed
for 3 and are stored in the Point Table for 3.

g) Curve 8 is computed. (Step f is actually part of the processing of
Curve 8.)

h) The given coordinates for Point 6 are stored in the Point Table for
6. The distance and direction from 3 to 6 are computed. The
presence of the data item HOLD on the subcommand for POT 6
means that the coordinates of Point 6 are to be held and not adjusted.
Accordingly, the direction is not rounded and the coordinates of 6
are not changed.

Attention is called to the fact that intermediate POT's (such as 2 and 3
in the above example) are adjusted and will become angle points if they are
not already. Accordingly, intermediate POT's should not be included in an
inverse alignment to be adjusted unless they are angle points.

63

LAYOUT COMMAND

Introduction

The Layout command is used to compute and print data for use in the
field stakeout, layout, or plotting of stored objects, particularly curves and
alignments.

Layout Ties

Provides layout data which ties stored points and curves to a stored
point and reference direction.

LAYOUT TIES, TRANSIT at pa, (SIGHT on) pb, TIE list
LAYOUT TIES, pa TO list

where list takes the form of a list of stored points such as

POINTS 4, 6, PC 5, 8, PT 3, 2
or is a stored chain, such as
ALIGN 'A17/B'
When a chain is given for list, the chain list is used for the list of points

(each point in the chain list, the end points of each course, and the curve
point for each curve is tied).

pb pc
pb pc

Z:
() %Y

LAYOUT TIES pa TO pb, pc,---

)

U5

pd
pe pe

pd

LAYOUT TIES TRANSIT at pa, (SIGHT on) pb, TIE pc, pd,——-

65

The layout data which is printed for each point in the list includes the

following:

a) distance from pa to the point

b) clockwise angle at pa from pb to the point

c) counterclockwise angle at pa from pb to the point

d) direction (azimuth or bearing) from pa to the point

When the second form of the command is given, only the distance and direc-
tion are printed.

pb

pa

CURVE i

LAYOUT CURVE i (TRANSIT at) pa, (SIGHT on) pb, (EVEN) v (STATIONS)

Layout Curves

Provides layout data for stored curves.

LAYOUT CURVE i, transit, even, off, plus
LAYOUT CURVES, ALIGNMENT a, even, off

LAYOUT ALL CURVES, even, off

where the data items take the following forms:

data item

transit
even
off
plus

form

(TRANSIT at) pa, (SIGHT on) pb
(EVEN) v (STATIONS)

(OFFSETS)
PLUS STATION va, (STATION vb), the two forms
PLUS pa, pb, pc may be mixed

If transit is not given, pa is taken to be the PC of curve i and pb is taken to
be the PI of the curve (this will always be the case in the second two forms).

66

Layout data is computed for each even station, each plus station and point,
and each curve point, the following being printed:

a) station of the point

b) clockwise angle at pa from pb to the point

c) counterclockwise angle at pa from pb to the point
d) deflection angle at pa from pb to the point

e) chord length from the previous point

f) distance from pa to the point

If the optional word OFFSETS is given, three offset distances are also com-
puted and printed for each even station as follows:

a) offset from the closest tangent
b) offset from the long chord
c) offset from the half chord (chord to circular curve midpoint)

If the curve has spirals, the back spiral, the circular curve portion,
and the ahead spiral are treated separately and layout data for each is pro-
duced. If transit is not given, for the back spiral pa is taken to be the TS
and pb the PI of the total curve; for the circular cu—l:fe, pa is taken to be the
SC and pb the PI of the circular curve; for the ahead spiral, pa is taken to
be the ST (backed in) and pb the PI of the total curve. Offsets are computed
for the spiral or circular curves on tangents and chords, not those of the
total curve.

In the second and third forms of the command, the layout data is printed
for all curves in Alignment a and for all stored curves, respectively. The
layout report is preceded by a printout of the curve elements and curve
points for the curve (the equivalent of a PRINT CURVE i command). Ac-
cordingly, the output is a rather complete report on the curve for sending
to the field for stakeout activity.

Curve Chord

Circular Curve Offsets Spiral Offsets
Offsets Printed by LAYOUT CURVE i ._.__ OFFSETS

67

Layout Offsets

Provides layout offsets from one stored chain (baseline) to another
stored chain (alignment).

LAYOUT OFFSETS, (BASELINE) a to (ALIGNMENT) b, list

where list is one or more of either of the following two forms or a mix of the
two:

(STATIONS) va, vb, vc, . .
EVEN v (STATIONS) va TO Vb

The following is an example:

LAYOUT OFFSETS, BASELINE 'A4' TO ALIGNMENT 'R3', 6+25,
14+50, EVEN 50 STA 20400 TO 30+00, 35427.16, EVEN 100
40400 TO 50+00, 68+23, 100+00

a and b are the names of any stored chains (any of the chain labels may be
used in place of BASELINE and ALIGNMENT). The offset lines are perpen-
dicular or radial to z a and are computed for given stations and/or even sta- .
tions on a. The computed and printed values for each offset include:

a) station on a

b) offset distance from a to the intersection of the offset line with b
(minus if b is to the left of a)

c) station on b of the intersection

d) skew angle at the intersection

Offsets will not be computed beyond the limits of a or b. If a given sta-
tion is not on a, a message is printed. If the station occurs more than once
(due to station equations), the offset will be computed for the first occur-
rence of the station ahead of the previous given station. In the Even Station
form, if va is less than the point at the beginning of a, the beginning point is
used for va. The increment is added repeatedly until either vb or the end
point of a or b is reached. If a has station equations such that va and/or vb
can occur more than once, the first occurrence of va and the f1rst occurrence
of vb ahead of va are used.

If the station values in list are given in order of increasing magnitude,
the speed of processing is greatly increased. There is one restriction on
the command. The processing routines assume that each offset intersection
is ahead of the previous one. This will always be the case as long as the
center of no curve on a falls between a and b. '

68

station
on align

chain b
skew angle
offset distance

chain a

station on baseline

LAYOUT OFFSETS, CHAIN a to CHAIN b, EVEN v (STATIONS), v, v,...

Layout Coordinates

The command is used to compute and print the coordinates at even sta-

tions on a stored alignment.

LAYOUT ALIGNMENT a, COORDINATES at (EVEN) v (STATIONS)

In addition to the coordinates of each even station, the station and coordi-
nates of each point and curve point for each curve in the chain list for a are

printed.

Example Layout Commands

LAYOUT TIES, TRANSIT AT 4, SIGHT ON 8, TIE 3, 5, 7, 9
LAYOUT TIES, POINT 5 TO 8, 10, 12, 14, 13, 11

LAYOUT TIES, 28 TO ALIGN 'RAMP-7J!'

LAYOUT CURVE 18, TRANSIT AT 23, 25, 100 STA

LAYOUT CURVE 9, EVEN 10 STA, OFFSETS, PLUS STA 15+76.15
LAYOUT CURVES, ALIGNMENT 'RT-3', EVEN 50, OFFSETS
LAYOUT OFFSETS, 'RT-3' TO 'RAMP-J', EVEN 100

LAYOUT ALIGN 'CL/8', COORD AT EVEN 20 STATIONS

69

1TRAVERSE COMMAND

Introduction

The Traverse command and associated subcommands can be used to
solve a wide variety of traverse problems, ranging from the very simple to
the very complex. The traverse may be open or closed. If closed, it may
be complete or incomplete. If incomplete, it may have any combination of
one or two missing parts. If closed with one or no missing parts, the tra-
verse will be adjusted, with a choice of adjustment rules. It may be an
angle traverse, direction traverse, or combination (mixed). Individual
courses may be held fixed during adjustment. The traverse is automatically
stored in the Chain Table for later retrieval, and each traverse point is
stored in the Point Table.

General Form

The general form of the command and the normal order of the subcom-
mands are as follows:

TRAVERSE a (required)
Adjust Subcommand (optional)
Closure Subcommand (optional)
Back Subcommand (optional)
Course Subcommands ‘ (2 or more required)
Ahead Subcommand (optional)
END of TRAVERSE, (REPORT), (PRINT), (SKETCH) (required)

where a is the name of the traverse for storage in the Chain Table. The
block of Course subcommands must be in the order of the courses, but the
other subcommands can be in any order as long as they come after TRA-
VERSE and before END. The optional subcommands are not required for
many types of problems, and in others, standard values are used if they
are not given.

If REPORT is given, a complete corrections report is printed for ad-
justed traverses which gives unadjusted, correction, and adjusted values for
all distances, directions, angles, latitudes, departures, and point coordi-
nates. If PRINT is given, tables of adjusted course values (distances,
angles, and directions) and point coordinates are printed. If SKETCH is
given, a sketch of the traverse is plotted on the printer. The sketch is
useful to spot gross mistakes in the traverse.

71

Adjust Subcommand

ADJUST by rule
where rule is one of the following:

LINEAR rule
TRANSIT rule
COMPASS rule
CRANDALL rule
LEAST SQUARES, weight

and where "'weight' is one of the following:

TAPE (WEIGHT) v
DISTANCE (WEIGHT) v

and v is the numerical value of the weight to be assigned to each 100-foot
tape—iength (if TAPE is given) or each course length (if DISTANCE is given)
relative to unit angle weight. If '""weight' is not given, DISTANCE WEIGHT 1.
is used (distances and angles are given equal weight).

If the traverse requires adjustment but the Adjust subcommand is not
given, the standard rule which is used is the equivalent of giving the following:

ADJUST BY LEAST SQUARES, DISTANCE WEIGHT 1.

Closure Subcommand

CLOSURE plan, angular

where ''plan' takes the form: ONE (PART IN) v
where "angular' takes the form: PER (ANGLE) v (SECONDS)

The closure values are used as a specification which the actual closure
of a closed traverse is checked against. If the traverse does not close
within twice the specification, processing of the traverse continues but no
entries are made in the Data Tables. The ""angular' specification is used in
the preliminary angle adjustment, and the ''plan'' specification is used in the
general adjustment.

If the traverse requires adjustment but the Closure subcommand is not
given, the standard closure specification which is used is the equivalent of
giving the following:

CLOSURE ONE PART IN 2000, PER ANGLE 60 SECONDS
72

'I'he meaning ot the command 1s that the preliminary angle adjustment per
angle must not exceed 60 seconds and the traverse must close within one
part in 2000 for the traverse to be within specifications. If it does not close
within twice these values (one part in 1000 and 120 seconds per angle), it is
assumed that there is a bust in the traverse and no entries should be made in
the Data Tables.

A complete report on the closure of the traverse is printed.

e e o e o o e sl ke o o s o ok ok ko ok e o o Skl s sk e ol sk o ok e o kol sk sk ok oo o kot ol ok e ook ok Kok ok R R R R %

CLOSED TRAVERSE
e sk o et sk o ok e e ot o ool o g e sk sk ol ool ok ok ok sl olofe e oot oo o o oot oo o o ok ook e ol ok ek ook
PRFELIMINARY ANGLE ADJUSTMENT
ANGULAR ERRQOR 0NF CLNSUYRFE REPDRT
FRR{OR PFR ANGLE 1 57 37,00
TOTAL ERROR 7 50 0.0
WARNING—-ANGLE CLOSURE EXCFEFDS SPFCIFICATION
CLOSURE EXCFEFEDS TWICE SPECTIFICATION
WARNING-NO FNTRTFS WILL RT MADE IN DATA TABLFS FOPR THIS TRAVERSFE
oo ko o e o e ok oo e ke o o koo ok ot o ot e ook o g ek ook o e skl o kol ok Kok kofok ool ok K ok
ONE MISSIMG DISTANCE IN TRAVERSE
UNADJUSTED VALUE FOLLDWS
DISTANCE FROM POINT 6 TN POINT 8 3735,825
TRAVERSE WILL BE ADJUSTED
e ek % % Aok Fok e ok A e e Ak 46 ok B ok e o Ak e ok 2k o T ok ool e e ok sk ok ookl R okt Bk ok ok ok 4 ok Aok % e i koK R K

CLOSURE REPORT — PLANIMETRIC

ERRCR IN X 54,827 TOVAL FRRQOR 215,013 PERIMETER 11R£5,672
FRROR IN Y2177.911 CLOSURE RATID 55.14 FIXED PERIM TL.0
DIRFOLTION OF CLOSING LINK 194 45 3.45 TOTAL PERIM 11855.677

WARNING ~ CLOSURE EXCEFNS SPECIFICATINON

CLOSURE EXCEFDS TWICE SPECIFICATYON

PRNCFSS ING CONTINUES BUT NO ENTRIFS WILL 8F MADE IN DATA TABLES

K s o e o o o ool e o ot e ok ool otk o ok oo o ol R ok e et g ko kol ol kR g e ok sk ol okofok Aok Rtk ok

COMPASS RULE ADJUSTMENT

CORRECTION TABLFES
UNADJYSTED CORRECTION ADJUSTED VALUF

DISTANCE TABLE

DISTANCE 4 10 [4521 .,727 78,742 4602, 469
DISTANCE 6 TN 3 3735.875 -1.337 3734.489
DISTANCE 8 1n 2 35G98.12¢C -48. 970 3549,149

A7 IMUTH TABLE

AZIMUTH _BACK 341 35 r,0C
AZTMUTU. 4 T(6~ 7 30,00 /J;////ﬁ 30 50

73

Back Subcommand

BACK direction

The subcommand is used to give a backsight direction at the initial point of
the traverse for use in computing course directions from input angles and/or
to provide the basis for making a preliminary angle adjustment. The subcom-
mand may be omitted if it is not needed for forward computation of course
directions or if no preliminary angle adjustment is to be made. If the sub-
command is not given, a Back direction of due North is assumed.

: Course Subcommand

COURSE a (j TO) n (FIXED) c/distance, c/direction

If optional data item a, the name of the Course, is given, the Course will be
stored in the Course Table. If optional word FIXED is given, the length and
direction of the course will be held fixed and will not be changed during
general adjustment.

The data item j is the beginning point of the course and n is the end
point. Point j must be the same as Point n of the previous Course subcom-
mand. j may be omitted except for the first Course subcommand where it is
the initial point of the traverse. n of the last Course subcommand is the
terminal point of the traverse.

The c/distance data item takes any one of the following forms:

distance (standard data item)
(DISTANCE) ? (APPROXIMATE distance)
(DISTANCE) SAME

The second form is used when the length of the course is unknown and is to
be treated as a missing part. The optional APPROXIMATE data item is
used to provide an approximate value for the unknown distance in two solu-
tion cases. The SAME form is used when the length of the course is to have
the same value as that of the previous unknown distance, the two to count as
a single unknown in a missing parts traverse.

74

The c/direction data item takes any one of the following forms:

direction (standard data item)
(AZIMUTH) 2 (APPROXIMATE direction)
c/angle (standard data item)

ANGLE ? (APPROXIMATE P/M angle)

The first form is used when the direction of the course is given as input data,

the second when the direction of the course is unknown. The third form is

used when the angle at j from the previous course to n is given as input data,

the angle to be used internally to compute the course direction. The fourth
form is used when the c/angle is unknown. The optional APPROXIMATE
data item in the second and fourth forms is used to provide an approximate
value for the unknown for use in two solution cases.

The word UNKNOWN may be used in place of the symbol ? in the
c/distance and c/direction data items and should be used when the problem
is to be run at an installation which does not have the ? character on its
printer chain.

ter.m;ncl

poin

direction —A.HEA.‘D
direction

CANGLE c/angle

Intermediate
Course

Initial Point

(direction or c/angle,

COURSE a(j TO)n, c/distance, c/direction

BACK direction

TRAVERSE DATA ITEMS AND NOMENCLATURE

75

Ahead Subcommand

AHEAD direction, CANGLE c/angle

The subcommand is used to give a foresight direction and closing angle at
the terminal point of the traverse for use in computing course directions
from input angles and/or to provide the basis for a preliminary angle adjust-
ment, The Ahead direction is held fixed in making the adjustment. The
c/angle data item is to give the closing angle at the terminal point from the
backsight (next to last point) to the foresight direction. It may take any of
the angle forms for the c/direction data item including the angle unknown
form. The subcommand may be omitted if it is not needed for back compu-
tation of course directions or if no preliminary angle adjustment is to be
made. If the subcommand is not given, an Ahead direction of due North is
assumed, and the closing angle is treated as an unknown.

Closed Traverse

A traverse is processed as a closed traverse if both the initial point and
terminal point are defined points (stored in the Point Table). They may be
the same point (traverse closed on itself). If they are the same point but the
point is not defined, it is assigned 0., 0. coordinates and the traverse is pro-
cessed as a closed traverse. A closed traverse may be an angle or a direc-
tion traverse, and it may have no, one, or two missing parts. If it has no
or one, it is always adjusted.

Open Traverse

A traverse is processed as an open traverse if it is not closed. Either
the initial point or the terminal point should be a stored point. If neither
point is stored, the initial point is assigned 0., 0. coordinates. An open tra-
verse may be an angle or a direction traverse, but it cannot have missing
parts and no general adjustment is made (a preliminary angle adjustment is
possible).

Direction Processing

Due to the wide variety of ways in which course directions can be given,
the traverse is converted to a basic form for internal processing of angles
and directions and for computation of unknowns. The basic form works with
the initial angle (the angle at the initial point from due North to the first
course), the angle at each intermediate course point, and the terminal angle
(the angle at the terminal point from the last course to due North).

76

''he basic torm angles are determined by the tollowing stages oI
processing:

1) Starting with the given (or assumed) Back direction, directions are
carried forward, and all angles which can be computed by a differ-
ence in directions are determined.

2) If all angles cannot be computed from forward computation, then
directions are carried backward from the Ahead direction, and all
angles which can be computed by a difference in directions are
determined.

3) If all angles cannot be computed by a combination of forward and
back computation, then one or more angles constitute missing parts
in an incomplete closed traverse. The unknown angles and any un-
known distance are computed.

After numerical values are determined for all of the basic form angles and
the preliminary angle adjustment made (if required), the unadjusted course
directions are computed, and traverse processing continues.

Initial

Angle Terminal

Angle
N

N
Initial Terminal
Point i Point

BASIC FORM OF TRAVERSE FOR INTERNAL PROCESSING

77

ANGLE TRAVERSE

DIRECTION TRAVERSE

MIXED TRAVERSE A

MIXED TRAVERSE B

78

Preliminary Angle Adjustment

A preliminary angle adjustment will be made when the Ahead subcom-
mand is given, the closing angle is given, and the closing angle can also be
computed by forward computation. The difference between the computed
value and the given value is treated as an angular error of closure. The
angular error of closure is checked against the angular closure specification,
and a preliminary angle adjustment report is printed. If the closure is
within twice the specification, the angular error of closure is linearly dis-
tributed, each basic form angle receiving an equal correction. If there are
any FIXED courses in the traverse, their direction will be affected by the
preliminary angle adjustment but not by the general adjustment.

Unknowns

All geometrically solvable cases of unknowns in a closed traverse are
automatically handled. The Engineer does not have to identify the particular
case represented by the traverse as the internal logic determines the case.
Any solvable combination of one or two geometric missing parts can be han-
dled, Since an unknown angle and, in some cases, an unknown direction can
be determined by forward and back computation, the number of geometric
missing parts can be less than the number of unknowns (? form).

In terms of the basic form angles, the following cases of unknowns can
be handled internally:

a) One unknown angle

b) Two unknown angles

c) Three unknown angles

d) One unknown distance

e) Two unknown distances

f) One unknown angle and one unknown distance
g) One unknown angle and two unknown distances
h) Two unknown angles and one unknown distance

The cases are identified internally during direction processing as previously
described. One unknown angle is usually eliminated as an unknown during
forward and back computation.

To assist in identifying the allowable cases externally, two typical types
of traverses, angle traverse and direction traverse, are defined., An angle
traverse is one in which Back and Ahead are given, and all c/direction data
items are given in the c/angle or unknown angle form. The allowable cases

79

are the same as those described above for the basic form. A direction tra-
verse is one in which the c/direction data items are given in the direction or
direction unknown form. The allowable cases are

a) One unknown direction

b) Two unknown directions

c) One unknown distance

d) Two unknown distances

e) One unknown direction and one unknown distance

If the Ahead subcommand is given, and if the closing angle is given as un-
known, that unknown angle can be in addition to the above unknowns.

Most traverses will be of a mixed type; that is, some of the c/direction
data items will be of an angle form, others of a direction form, and various
combinations of Ahead and Back being given or not given. The system ex -
pects the mixed type and converts all, including angle and direction, to the
basic form for internal processing.

Two Solution Cases

The computation of unknowns when there are two missing geometric
parts is handled internally by formulating and solving the equivalent inter-
section problem. Two unknown distances are the equivalent of intersecting
two lines. If the lines are not parallel (no solution), a single intersection
(solution results). When one or both of the missing parts are an angle or
direction, two solutions can result as follows:

(1) Unknown Distance and Direction or Angles

The following cases are the equivalent of intersecting a line and
a circle:

1 unknown distance and 2 unknown angles
1 unknown distance and 1 unknown direction

The line will intersect the circle at two points (if it intersects at all), yield-
ing two solutions for the unknowns.

An approximate value for the unknown distance should be given
in the distance data item. The solution closest to the approximate value will
be used. If an approximate distance is not given, an approximate value for
the unknown direction or one of the unknown angles should be given. If both
approximate distance and approximate direction or angle are given, approxi-
mate distance is used, the other approximate values being ignored. If no ap-
proximate value is given, the distance solution with the smallest positive

value is used.
80

(2) Unknown Angles and/or Directions

The following cases are the equivalent of intersecting two
circles:

3 unknown angles
2 unknown directions
1 unknown angle and 1 unknown direction

The two circles will intersect at two points (if they intersect at all), yielding
two solutions for the unknowns.

An approximate value for one of the unknown angles or direc-
tions should be given in the c/direction data item. The solution closest to
the approximate value will be used. If more than one approximate value is
given, the first one is the one used, the others being ignored. If no approxi-
mate value is given, the solution with the circle intersection nearest to the
origin of coordinates is arbitrarily used.

If approximate values are given in cases which do not have two
solutions, the approximate values are ignored.

Unsolvable and Partially Solvable Cases of Unknowns

Certain geometric conditions in a closed traverse can result in situations
where the unknowns cannot be computed or can only be partially computed.
The system checks for such conditions and notifies the Engineer via appro-
priate messages. The following are examples of such conditions:

1. Unknown Distance Cases

a. Two unknown distances are parallel, having equal or oppo-
site directions.

b. SAME unknown distances combine with unknown distances
such that composite directions are parallel or cancel,

(Partially solvable in some cases)

2. Unknown Angles - Basic Form

a. Two unknown angles are for first course and closing angle
when traverse closes on itself. (Solved assuming first
angle is 180 degrees)

b. Three unknown angles result in a no intersection case due
to mistakes in input data.

81

Generalized SAME

In the Course subcommand, the (DISTANCE) SAME form of the
c/distance data item can be used to define adjacent or separated unknown
distances which are to be solved as equal. Such a '""matched pair'' is equiva-
lent to one missing part. Thus two such matched pairs can be solved, or
one pair and another unknown distance, when two unknown distances are al-
lowed. This feature is provided so that the radius (or tangent) of a circular
curve, appearing as an unknown in two courses, can be treated as a single
unknown.

The rule of order is that the first SAME is associated with the first un-
known distance, the second SAME with the second unknown distance. If the
matched pair is separated by another unknown distance or another matched
pair, the rule of order can be reversed by the following expedient: if one or
both of the unknown distances are given in the form

(DISTANCE) ? APPROX -1.

that is, the approximate distance value is a negative arbitrary value, the
rule of order is then reversed. The first SAME is then associated with the
second unknown distance, and the second SAME (if present) will be associ-
ated with the first unknown distance. Any configuration of matched pairs
and unknown distances may be specified by using or reversing the rule of
order,

General Adjustment

A general adjustment is made in the case of a closed traverse with no
unknowns or in the following cases of unknowns (single missing part):

One angle unknown

One direction unknown

One distance unknown

Two angles unknown

One angle unknown and one distance unknown

The traverse is adjusted by the rule given in the Adjust subcommand.

82

CoGo
$ EXAMPLE PROBLEM

T1

$ OPEN TRAVERSE/BEGINNING

STORE 3 N 25763.17 E 43792.98

TRAVERSE *T1¢

POINT GIVEN

COURSE 3 TGO 8 4472.15 N 26 30 E

D 4 3162.35 S 18 20 E

B 6 3605.84 N 33 20 ¢

D 2 4123.15 S 14 5 E

D 5 3163.42 N 18 25 E
END OF TRAV,PRINT

C OGO

b EXAMPLE PROBLEM T2

$ OPEN TRAVERSE/TERMINAL PO INT GIVEN
$ PRELIMINARY ANGLE ADJUSTMENT
STORE 12 5000 8000

TRAVERSE 72!

BACK S 44 23 W

CLCSURE PER ANGLE 120 SECONDS

COURSE *AY 25 TO 18 3125 M 116 30
D gy 15 3610 P 142 15

C - 1C* 15 TO 9 3580 M 23 28

D g 12 2190 M 84 17

AHEAD N 45 57 Wy CANGLE M 72 33

END TRAVERSE, PRINT

CuGo

$ EXAMPLE PRCBLEM T3

$ CLUSED TRAVERSE

STORE 24 0 O

TRAVERSE T3¢

COURSE 24 TO 28 2816.87 N 43 28 E

v 17 4112.73 M 122

D 35 2237.15 M 131 29

D 99 FIXED 4123.76 S 76 08 W
D 24 3718.52 M 123 30 00

END TRAV,REPCORT, SKETCH

COGO

$ EXAMPLE PRCBLEM T4

$ CLOSED TRAVERSE,ONE MISSING PART
$ PRELIMe ANGLE ADJUST. REQUIRED
STORE 4 N 1000 E 2000

D 2 N 2000 E 5000

TRAVERSE *T4¢

ADJUST B3Y COMPASS RULE

CLOSURE ONE IN 3000

BACK N 18 25 W

COURSE 4 TO 6 4521.73 P 51 30

D 8 DIST ? P 257 15

L Z 3598.12 M 48 40
AHEAC S 72 10 Ey CANG M 306

END TRAV,REPGRT

83

COGG

$ EXAMPLE PROBLEM T5

% TWO MISSING DISTANCES, ONE UNKNOWN ANGLE
STORKE 46 N 2500 E 1000

C 13 N 1060 E 3500

TRAVERSE 'T5°
BACK 46 TO 18
COURSE 46 TO 32 OIST UNKNOUWN ANGLE MINUS 77 00

D 25 2500. M 98
b 73 3150. ANG UNKNOWN

D 52 3620 M 56
iy 18 UNKNU®N M 97

AHEAD 13 T0 46, CANGLE MINUS 157 O O
END OF TRAVERSE,PRINT,SKETCH

CGGo

$ EXAMPLE PROBLEM T6
$ THREE UNKNOWN ANGLES
STORE 4 N 1500 E 3000
D]) N 1560 E 9000

TRAVERSE 1T6°
BACK N 26 34 W
COURSE 4 TO 3 3612.57 ANGLE UNKNOWN APPROX P 60

D 3 70 8 4121.37 ANG UNKNOWN APPRUGX P 300
D g8 10 2 3574.16 P47 28 0

D 2 TO 5 2212.95 ANG UNKNOWN

END TRAV

COGO

$ EXAMPLE PROBLEM T7

$ COMPUTEL AND FIXED COUURSE

STORE 24 N 4000 E 50060

D 18 N 5C00 E 2000

LOCATE 33 FROM 24 2215. P 135 FROM 18
TRAVERSE 1T7¢
COURSE 33 TG 27 4150. S 14 E

D 38 4130. N 76

D 21 3150, S 71 ¥

D 35 3135. N 18 E

] 35 T2 15 FIXED DIST 18 TG 24, AZ 18 TO 24
D 33 DIST UNKNOWMN N 45 E

END OF TRAVERSE PRINT
PRINT COURSE 18 TOU 24, 35 TG0 15

COGGO :

$ EXAMPLE PROBLEM T8

$ ILLUSTRATION DF USE OF SAME UNKNOWN DISTANCE CAPABILITY
STORE PUINT 5 N 5000 £ 1000

b 2 N 4000 E 1700

D 12 N 2300 E BOODO

TRAVERSE *'7T8°?

COURSE 2 TO 4 982. 5 T4 12

b 7 DIST UNKNOWN PLUS 90

D 3 SAMEC MINUS 112 0 O
B 6 720. PLUS 90

J 8 DIST UNKRUWN MINUS 90

) 10 SAME PLUS 115 0 O
) 12 1315. MINUS 90

ND TRAV PRINT

84

