
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i**************************************i

i ENGINEERS' GUIDE I ..
* * ~ i I to a

I ICES COGO I i
* * ~ ~
~ ~
~ ~
* * **

First Edition
August, 1967

R67-46

*

ENGINEERS I GUIDE

to

ICES COGO I

... l 1, , ... 'I'

First Edition

A.ugust, 1967

Civil Engineering System.s Laboratory

Massachusetts Institute of Technology

Cam.bridge, Mas sachusetts

Copyright @ I 967

by

Massachusetts Institute of Technology

All Rights Reserved

Printed in United States of America

The advances reported herein were developed at the M.1. T. Civil En

gineering Systems Laboratory (CESL), a research unit of the Department of

Civil Engineering dedicated to the advancement of the teaching and practice

of civil engineering.

This document is one of a series of publications resulting from the Inte

grated Civil Engineering System (ICES) Project, initiated and carried out

under the general direction of Professor C. L. Miller, Head of the Depart

merit. The ICES Project is a cooperative venture of government, industry,

and university groups interested in the development of a large-scale,

computer -based system which integrates advanced information system and

powerful problem-solving capabilities. An operational system has been

initially implemented on the IBM System/360.

Support for the ICES Project has been provided by a number of CESL

research sponsors. Special recognition is due the following: the IBM Cor

poration, the Massachusetts Department of Public Works in cooperation with

the U.S. Bureau of Public Roads, the Massachusetts Bay Transportation

A.uthority, the National Science Foundation, the McDonnell Automation Com

pany, the Wisconsin State Highway Commission, the Ford Foundation, and

the Union Pacific Railroad Foundation.

Additional information on the availability of the publications and compu

ter systems resulting from the ICES Project may be obtained from Professor

Daniel Roos, Director, Civil Engineering Systems Laboratory, Room 1-163,

Mas sachusetts Institute of Technology, Cambridge, Mas sachusetts, 02139.

i

CONTRIB UTORS

A number of people have participated in the development of ICES COGO I
at the M. I. T. Civil Engineering Systems Laboratory during the period 1964
to 1967. The principal contributors and their contributions include:

c. L. Miller
Formulated the over -all system and designed the language; developed
the external specifications and wrote the Engineers I Guide; provided
over -all supervision.

Steven B. Li pne r
Supervised the implementation of the system, including superVIsIon of
and responsibility for all programming development and system docu
mentation; programmed and optimized major portions of the system.

Betsy Schumacker
Programmed the complete Traverse subsystem and developed the file
save and restore capability; served as systems consultant to the systems
design and development staff.

Daniel Roos
Designed the internal data structure; formulated the internal design and
development of COGO in the ICES environment.

T. H. Kaalstad and E. E. Newman
Pe rformed testing and evaluation of completed commands; as sisted in
technical development, administration, and production of completed
system.

* * * * * * * * * *

Many CESL staff members have contributed to the programming of the
system. Special recognition is due to the following:

Thomas A .. Casey
Kerry B. Chesbro
Larry-Stuart Deutsch
Michael R. Dunlavey
Kenneth G. Follansbee
Lawrence A .. Hall
Carl J one s, III

iii

Marc R. Levin
Paul M. Martin
John C. Prokopy
Henry A. Radzikowski, II
Angel (7) Silva
Howard C. Stotland

ENGINEERS I GUIDE

to

ICES COGO I

* * * * * * * * * * * *

PART 1

GENERAL SPECIFICA TIONS

Civil Engineering System.s Laboratory

Massachusetts Institute of Technology

Cam.bridge, Massachusetts

TABLE OF CONTENTt}

INTRODUCTION 0 • • • • • • ••••

PROBLEM-SOLVING APPROACH ..
Information Processor
Geometric Objects and Data Tables
Commands
Command Processing and Execution
Example Problem . . .

DEFINITION OF OBJECTS
Object Definition
Absolute and Relative Objects
Deletion of Stored Objects

DATA TABLES. 0

Point Table
Line Table ..
Course Table
Curve Table .
Chain Table .
Profile Table
Scalar Table .
Text Table ..

OBJECT GEOMETRY AND NOMENCLATURE
Point
Curve Points
Directions
Line ..
Course.
Curve
Chain

INPUT /OUTPUT CONTROL .
System Settings
Check Mode .
Data Forms ...
Output Control . .

ERROR CHECKING
Command Errors
Undefined Objects
Geometric Errors .
Geometric Warnings ..

PROBLEMS, RUNS, and FILES .
Problem
Problem Data Tables
Run
Files

Page

1
3
3
4
5
6
9

13
13
13
13
15
15
15
15
15
16
16
16
16
18
18
18
19
19
21
21
23
24
24
24
25
26
28
28
28
28
29
31
31
31
31
31

INTRODUCTION

ICES COGO I is an information processor for the computer solution of

geometric problems in such areas as

Engineering surveying and mapping
Highway, railway, waterway, and airport design
Structural, bridge, and building design
Right-of-way and land acquisition
Construction layout and control
Subdivision design and layout
Utility surveying, mapping, and records
Cadastral surveys and property records
Urban planning and design geom.etrics
Military and aerospace installation design
Architectural design geom.etrics and site planning

The processor is m.ade up of a language, a set of processing routines,

and a set of information files. While the COGO (for COordinate GeOm.etry)

language is designed for the natural expression of geom.etric problem.s in the

above areas, the system. may be applied to a variety of geom.etric problems

in any area which involves points, lines, curves, and polygons in two or

three dim.ensional space.

ICES COGO I operates on geometric objects and variables which can be

identified, stored, retrieved, computed, printed, and m.anipulated by m.eans

of comm.ands issued by the Engineer- User. The purpose of this document is

to describe the external specifications of the processor as a guide to the

Engineer - User. Part 1 describes the general specifications for the proces

sor' and Part 2 describes the detailed specifications for the individual

com.m.ands.

1

PROBLEM-SOLVING APPROA.CH

Information Processor

The COGO information processor operates in the ICES environment and
include s the following components:

a) a command- structured, problem-oriented language which the
Engineer-user utilizes to compose commands which describe the
solution procedures, results, and data for problems in the area
of civil engineering geometrics;

b) a set of processing routines which are executed by the computer
to achieve the problem- solving actions specified by the commands;

c) a set of information files or data tables which provide for the stor
age and retrieval of geometric objects which are components of the
problems being solved.

The language provides the mechanism for the Engineer to communicate with
the problem-solving capabilities of the processing routines and with the in
formation files. Through commands the Engineer des cribes:

a) the known data for the variable s and problem components;

b) the relationships between the variables and problem components;

c) the information storage, retrieval, and processing to be performed;

d) the results to be recorded.

The language and the commands are intended to provide a natural, flexible,
and general way of providing such descriptions for geometric problems.

The language is machine independent; that is, it is independent of both
the hardware and software of the computer. The Engineer need not be aware
of the computer per se to use the language. He does not need to be proficient
in computer programming at lower language levels nor knowledgeable of com
puter hardware. The language isolates him from the need for such under
standing. Any such understanding he does have will give him insight as to
the functions of the computer but is not required for use of the subsystem.

3

The proces sing routines are machine dependent; that is, they Inust exist
as machine executable code for a particular computer system. The process
ing routines are the province of the computer facility to which the Engineer
submits his COGO problems for processing. The processing routines take
the form of software - -an organized set of programs, subprograms, and sub
routines in machine language which are executed by the hardware. Given the
existence of the processing routines at an available facility, the Engineer
need only concern himself with the language and local procedures for sub
mitting COGO problems to the facility.

The infornlation files are autonlatically generated by the proces sing
routines when cOnlnlands which define new geometric objects are executed.
The infornlation files are contained in the physical storage devices of the
cOnlputer- -the core nlenlory and, when needed, the secondary storage de
vices such as disks. The Engineer can save his infornlation files between
runs if he so specifies.

In order to use COGO, the Engineer nlust of course understand civil en
gineering geonletric problenl-solving and his particular problem. There is
nothing autonlatic about the systenl with respect to problenl fornlulation and
solution description. These are entirely the province of the Engineer. Like
writing a speech, knowing the language is not enough. One nlUst assemble
the words in nleaningful and effective ways to convey a nlessage. With
COGO, the Engineer is fully responsible for assenlbling the commands in
such a way that he achieves the desired solution to the problem which he for
mulate s. Writing COGO is an art, proficiency in which improves with prac
tice, but again like spee ch writing, requires that one know his subje ct.

Geometric Objects and Data Tables

Individual problems in civil engineering geometrics can be expressed as
a particular configuration of simple geometric objects and a particular com
bination of known and unknown values. Examples of objects include points,
lines, courses, curves, alignnlents, parcels, profiles, and so forth. Exam
ples of values include distances, angles, directions, coordinates, stations,
and so forth. The objective of the COGO language is to allow the Engineer to
specify the particular combination and configuration which describe and solve
his particular problem rather than being restricted in any way by a predeter
mined or programnled combination and configuration.

4

The geometric objects comprise the building blocks for formulating and
solving a geometric problem. Individual objects are identified, defined, and
stored in appropriate data tables via commands. Once stored, an object can
be referred to in subsequent commands and used to define other objects.
Examples of identified objects which might appear in commands include:

POINT 24
LINE IS
CURVE 78

COURSE 'B14'
PARCEL 'P23-A8'
TRAVERSE'T4'

ALIGNMENT 'RAMP-K'
BASELINE 'BS'
PROFILE 'RC/L'

Scalars or single value variables may also be identified, defined, stored,
and referred to in commands, such as

DISTANCE 'X2' AZIMUTH 'A8' ANGLE 'JACK'

The data tables store the information necessary to construct the object so
that it can be used in computations and information processing.

Commands

A command is a prescribed set of words, objects, and data items which
defines a new object or specifies some action requested by the Engineer.
Examples of commands include:

STORE POINT 17 N 1000. E 2000. STA S+OO Z 150.1S
LOCATE POINT 2 FROM POINT 4, DISTANCE 12S. 16, AZIMUTH

134 IS 2S
LOCATE POINT 8, INTERSECT CURVE 24 WITH LINE IS
PRINT ANGLE AT POINT 4 FROM POINT 2 TO POINT 4792
STORE ALIGNMENT 'K', 2, 7, CURVE IS, CURVE 38, COURSE 'A', 24
DESCRIBE PARCEL 'LOT/18'

The first word (such as STORE, LOCATE, PRINT) is the command name.
Subsequent words (such as POINT, DISTANCE, INTERSECT) are labels for
data items or objects or are command modifiers which specify the particular
combination of objects and data items and the processing action to be taken.

S

The design of the language and the allowable forITls for the cOITlITlands
are intended to provide the Engineer with a natural way to express the for
ITlulation and solution of his probleITl as a series of readable technical
phrases. However, when conciseness is preferred, abbreviated forms of
the cOrnITlands ITlay be used. ComITland words and modifiers ITlay be ab
breviated. Optional words which a110w for readability may be oITlitted. If
the data iteITls and objects are in the standard forITl and order, the labels
ITlay often be oITlitted. The following are two extremes of the saITle cOITlITland:

LOCATE POINT 4 FROM POINT 8, DISTANCE FROM POINT 7 TO
POINT 3, AZIMUTH 'AS' PLUS 90

LOC 4, 8, 7 TO 3, 'AS' P 90

Accordingly, the forITl of a cOITlITland can vary froITl a cOITlplete readable
technical phrase to a single abbreviated word followed by a string of data
values, or any combination in between.

COITlmand Processing and Execution

The commands written by the Engineer serve as the input to the COITlpU
ter and the COGO proces sing routines. In an off-line or batch mode of opera
tion, the Engineer writes his commands out on paper and then has theITl
punched onto cards. The deck of cards is then read into the compute r via a
local or remote card reader as the input device. Output is recorded via a
local or remote printer as the output device. In an on-line mode of operation
the Engineer may input his commands directly to the computer, working with
a typewriter type unit as the input and output device. The on-line mode has
significant advantages, particularly in an interactive computer environment
when the Engineer can inspect the results of each command before inputting
the next.

The commands are processed individually, one at a time, and in the
order in which they are received by the computer. Each command may be
thought of as a sma11 program which

a) is processed and executed independently of the commands which
precede and follow;

b) may make use of data stored in the Data Tables by the commands
which precede it; and

c) may store data in the Data Tables for use by the cOITlmands which
follow.

6

Accordingly, COGO use s an increITlental problem- solvIng approacn, eacn
cOITlITland adding an increITlent to the forITlulation and solution of the probleITl.
SITlall, siITlple problems require a sITlal1 nUITlber of cOITlITlands to build up a
solution. Large, complex probleITls require a large number of commands.
Since there is no practical restriction on the number of cOITlmands which
may be used in solving a problem, there is no practical restriction on the
size or complexity of problems which can be handled. A problem ITlay in
volve as few as 3 or 4 commands or as many as several thousand or ITlore
commands. The Engineer ITlay forITlulate his probleITl in as large or sITlall
terITlS as are ITlost convenient and natural. What constitutes a probleITl and
the cOITlITlands to build up the solution are under his full control.

The proces sing and execution of each cOITlITland is the work of the pro
ces sing routines. Consider the following command:

LOCATE POINT 4, INTERSECT CURVE 5 WITH LINE 6, PRINT

The action of the processing routines is roughly as follows:

1) An exe cutive routine deterITlines that the cOITlITland is a Locate
command and stores the inforITlation froITl the cOITlITland.

2) The data for Curve 5 is retrieved froITl the Curve Data Table, and
the data for Line 6 is retrieved frOITl the Line Table.

3) The subroutine for intersecting a curve with a line is retrieved and
executed to compute the coordinates of Point 4.

4) The coordinates of Point 4 are stored in the Point Table.

5) The coordinates of Point 4 are printed in the output report.

6) Control returns to the executive to read and proces s the next COITl
ITland (which ITlay refer to Point 4 since it is now stored in the
Point Table).

If for any reason the cOITlmand cannot be processed or executed (such as
cOITlmand improperly constructed, Curve 5 or Line 6 not stored, no inter
section, and so forth), appropriate llles sages are printed and corrective
action, if appropriate, taken. An extensive part of the work of the proces
sor is concerned with checking the validity of the command and in generating
diagnostics to guide the Engineer when trouble is encountered.

7

SIMPLIFIED DIAGRAM OF COGO COMMAND PROCESSING

COGO
COMMANDS

INPUT DEVICE

ENGINEER

COGO
OUTPUT

OUTPUT DEVICE

1,-------------------------l
I COMPUTER

I I
I OPERATING SYSTEM I
I AND I
I ICES EXECUTIVE I

I I
I I
I MACHINE INSTRUCTIONS USERS I
I COGO AN D COGO I

PROCESSING PROBLEM DATA INFORMATION
I ROUTINES FOR FILES I
: CURRENT COMMAND (DATA TABLES) I
L _______________________ ~

8

Example Problem

The problem-solving approach may be illustrated by a very simple
example problem. The problem sketch, Engineer's solution, listing of the
input commands, and listing of the output for the example problem are given
in the plates which follow. The explanation of commands in the Engineer's
solution is as follows:

1) The COGO Information Processor is specified.

2) The System is set for particular inputloutput conventions.

3) A comment is given.

4) The known coordinates of Point 4 are stored in the Point Table.

5) The coordinates of Point 8 are computed, using a numerical dis
tance and direction, and are stored in the Point Table.

6) Curve 3 is defined and stored in the Curve Table. One of many
possible ways of defining and storing a curve is used.

7) The distance from the PI of Curve 3 to Point 2 is assigned name
'Xl', computed as half the distance between Point 4 and PI of Curve
3, and is stored in the Distance Table. The value of the distance is
to be printed.

8) The coordinates of Point 2 are computed, using stored distance 'Xl'
and a computed direction between two stored points, and are stored
in the Point Table.

9) The coordinates of Point 7 are computed, by intersecting a line de
fined by a point and a computed direction with a course defined by
two stored points, and are stored in the Point Table.

10) Parcel 'LOT 118' is defined by a list of stored objects and is stored
in the Chain Table.

11) Values for distances between stored points are requested.

12) The value of an angle defined by stored points is requested.

13) A complete report describing all values associated with the stored
objects which define 'LOT 118' is requested. The coordinates of
points and curve points, curve elements, lengths and dire ctions of
all sides, area, and so forth, are to be printed.

14) The end of the computer run is specified.

While a very small subset of the total capabilities is illustrated in this
simple problem, the concept of incremental problem-solving and the building
up of a solution with a set of flexible commands is illustrated.

9

EXAMPLE PROBLEM

Problem Sketch

N 539284.175 }
E 172359.243 4

Engineer I s Solution (Long and Short ForITl)

(I)CO&O
(2) CT ~y.sTEN NE ~ SEARINOS
(.3).,f £07//8 IN .sU/VSHINE ..sV8PIVISIO/v
II) .5To,er POINT 4- .IV S3S2B4.17S £' /7235~.24.3
(d) LOCATE POINT a FItOM POINr 4 p/srANC£ s~/. 74 BEARING N4~ /$ 20E
(~) TOA!E" CtJlCVE J J P/I AT ~ DB lJ TO 4 hI?S jOJ TTL (;(;0. Ie 100. PA AT 4-
(7) TOA!E DISTANCE 'XI', PI..3 TO 4 PIYIOE'D /!IY 2.0 I P~/NT
(a) T£ 2 rltO"" PI..3, o/sr "xl' AZ P/ -..3 TO ~
(~J LOCI4r£ 7 INr6K:JECr ~VR.sC 4 TO B W/TN ~/NE TNK(/2 AT AI2 704- 1'47
(IOj TORE PARCEL ~OT" 18' 7, 8, Ct.JKVE..3, Z, 7
(1/] ~/NT DI.srAIVC£ 4 70 7, 4 70 2
(/2) PRINT ANG~F ~r 4 ,,r~OM 8 70 PT.3
(/3) 'G'SCA'/6£ PAArCEL ~OT//8'

ell COCiO
(2) THE, 8£A
(3) LOT/IS IN SUN.s~/NE SU~OIV/~/O/V
(4).5 4) .539211"'- /7.:F /72.3S,. Z43
a;) £DC 8 4 I .5~/. 74 N ~ /S ZO E
'6) oS CVIt! 3, P48, DII 8 TO 4 M 75". 5) TTL (,;(;0) Ie 100 I PA4
(7) 0 DIS ')(/' PI.3 TO 4- DIV 2, PRI
(8) Loc. Z, PI." 'x,' ,0/ ., TD 4-
(') D 7 IN~ ~/NI£ 7NRV 2, 2T""," p.,,,, Wl7N COIJ 4 ro 8
IIJI PAil ~or /' 18' 7, a, CVI(.3) 2, 1
(/I) P DIS 4 71:1 7 J -4 TO 2
fl. D ANt;, AT, ~ ~ PT.3
(/3aD63 PA~ LOT//S'

",I H

10

Listing at Uutput

c rGlI
'wtLC(l~l Te CJGC,Y(UP FRI tNI~LY Ci)C1RLJINtdt GElIMETR,(SYSTEM

SET SYSTEM NE,rEA~INGS

$ Lt J Til ct [,~ SUN SrI Nt.. S U Hi) I v I S I rm

LOCAlE PClt\,iT S FRU" p~JlrJT 4 ')ISTANCt 561. 7 /t HEARING N 45 15 20 [

<)TO~e CUKVC: 3, Pf t.T :3,Ofl TO 4 M 7'5 jJ, T r L 660., RIO O. P A AT 4

SHI:<E CISTANCt: 'XI',PI J Tll 4 DIVII..)[O '-W L.o, PRINT
DJ STANCE Xl 37->.r1'""'0

LLC/lTE 2 fRllM PI 3, [)IST ')11' AZ PI 3 TO 4

LUCATE 7 ItHEKSECT (CURS!:: 4 TO 8 WITH LlI\jE THRU 2 AT AZ 2 TG 4 P 47

SIOKE PAi<Cd 'LOTIlB' 7,H,CUPVE 3,2,7

PRINT OIST,\NCE 4 TU 7,4 TU 2
L)IST~NCf- f-RUI" 4 TU
OISTANCb FRC~ 4 fO

7
2

2'14.929
375.991

PR HJT 1\",j,;Lt A r 4 FK.O~' e T'J P T 3
A N G l f: A T 4 F K ur~ 8 T (j P T :3 58 10 4tl.58

Oi:.SC"IRl PARCEL 'LUT/IP'

iJlSCRIPTIUN UF Ch,\ I iii UJ TllS

CHAP, I:..L E,;,1 f-N 1 S

COUK Sf F RllH TO H LE NGTH 276.811
C(JLJi~ Sb FR ot-' H TO PC 3 LENGT H 426.231

CLJRV E 3 T YI-' f:: C ClJRVE ELt'1t'NTS

RA,)[US 1 1)0.000 DEGREE 57 17 44.81
U:f\GTH 2n.~16 DEl TI\ 111 40 48.58
rANGENT 233.7&9 HACK ') 3,) 14 40.00 E
EXTE~NAl 154.260 AHE!\[) N 76 33 51.42 \0;

LUNG ChOP 0 1'31. A 82
~I D. ORD. 60.670

C GUibE FkUI'1 PT 1 TLl 2 LE NG TH 142.228
C CU:{ Sf: f kl.~:~ L 1e 7 LE l'iGTH 331.040

(Hi\ I ''4 ~u IN T S

flUl NT 7 i~ ':>39434.7'>0 E 172561.615
f'd I NT N '53Q67g.f:J10 E 17275!3.2n

CUc<v E j T Yf' [C CU'-{Vr DI .. 11 ~J T S

Pll [i\JT CC .3 N ':> 3926 1.() 2b E 172886.'521
P!) H;T PC :~ N 53'nlL.3'-l5 E 172972.909
I'll I '\JT PT 3 ~i :;1'.)1 63. 7,.., os E 172863.235
PuINT PI 3 N 'J 3':! LOY. 4 l t6 E 173090.656

P] H;T ? 1\ ':>39l96.t)lO E 172724.950
POI NT 7 ~J :jj<j4i:<4.7':>') E 17£:'561.615

BEAK ING
REAR ING

BEAIUN(,
BEAkIl'iG

S ************
s ************

S **** *,)< ** ** **
:; ()+ 0.0
S 2+33.316
S 2+33.769

S ************
S ************

8049.163 SQUARE FEET

T [JL\L 41< tA L F L 1<, T 12?242.6~2 S~UARE FEET "'.BUb ACRES

FIN[SH

N 45
S 30

N 76
N 29

THt Ai)[VE l.CI;C PR'~ULF:'1 I~:CLU~)l::) 0 ERKORS WHICH REQUIKtO Cdl-lMA'W AHDKT.
UF TH[Se CU'-'c1A1\OS () li\iVflLV!:I) i\TTEMPTS TO RETRIEVe ·JNSlllREJ UdJECTS.

11

15 2U.OO E
14 4D .00 E

33 51.42 PI
33 51.42 PI

Z ***********
z ***********

I ***********
l ***********
I ***********

7 ***********
L ***********

DEFINITION OF OBJECTS

Object Definition

Each object to be stored in a data table is given a unique nam.e or identi
fication num.ber in the com.m.and which stores the object. When the com.m.and
is executed, entries which provide the values or inform.ation to define the ob
ject are m.ade in the data table. The entries stored in the data table remain
unchanged unless the object is redefined in a subsequent com.m.and. An ob
ject is redefined if the sam.e nam.e or num.ber is reused to store an object.
The new table entries then replace the old entries. When an object is rede
fined, a m.es sage is printed in the output to alert the Engineer in case the
redefinition was unintentional.

Once an object is defined (stored in the data table), it m.ay be referred
to or used as a data item. in subsequent com.m.ands. Use of an object as a
data item. does not affect the table entries. If the Engineer attem.pts to com.
pute with an undefined object, the com.mand containing the undefined object
will not be executed, an appropriate error m.essage being printed. The sys
tem. keeps count of the num.ber of com.mands with one or m.ore undefined ob
jects. When the num.ber of such com.m.ands exceeds a set lim.it, the execu
tion of com.m.ands is term.inated, the rem.aining com.m.ands being edited but
not processed.

Absolute and Relative Objects

An absolute object is one with table entries which are num.erical data
values. An absolute object is independent of other objects in other data
tables and is independent of the objects used as data item.s to define it when
it was stored. A point is an example of an absolute object, with num.erical
values for coordinates, station, and elevation as the table entries. A rela
tive object is one stored in term.s of other objects in other tables. A rela
tive object is dependent on the stored objects which define it. If they are
redefined, the relative object is redefined. A course is an example of a
relative object, being defined in the Course Table by the identification num.
bers of two points which are in turn stored in the Point or Curve Tables.

Deletion of Stored Objects

Stored objects m.ay be deleted from the data tables if desired by use of
the Delete com.m.and. Since the capacity of the system. is quite large com.
pared to usual problem. sizes, the need to delete objects to free storage
should be quite rare. However, som.e Engineers m.ay prefer to reuse blocks
of identification num.bers and names of convenient (sm.all) size in the sam.e
problem.. The Delete capability will be useful in such instances.

13

YES

NO REDEFINITIONS YES
ALLOWED YES

MESSAGE

NO

INCREMENT CHECK

TOTAL

ERROR
COUNT PRINT

BOTH
VALUES

NOTE: The above logic is applied to each coordinate of a point individually-thus if the Nand E coordinates
of a point have been stored but it has not been stationed, a command which stores the point's station
is not considered to redefine the point.

MACRO LOGIC FOR RETRIEVING AN OBJECT

FROM DATA TABLE

IS OBJECT STORED,?

YES

RETRIEVE
OBJECT

MESSAGE
OBJECT HAS
NOT BEEN

STORED

INCREMENT
TOTAL AND
"UNDEFINED"

ERROR COUNTS

UNDEFINED Y
ERRORS>
MAXIMUM

N

RETURN TO

INHIBIT
FURTHER

EXECUTION
FOR THE RUN

READ NEXT ~--.-I
COMMAND

14

VA TA TA13L~t)

The following data tables are maintained by the system:

Point Table

Each point to be stored is as signed an identification number which can
be any integer from 0 to 9999. The stored data for each point is the horizon
tal coordinates, station, elevation or any subset of the se items. A. point is
an absolute object. The Point Table has a capacity of 10, 000 points.

Line Table

Each line to be stored is assigned an identification number which can be
any integer from a to 999. A. line is defined by a stored point and a direction.
The stored data for each line is the point number and the direction magnitude.
The direction is absolute, but a line is a relative object which moves with
the point which defines it. The Line Table has a capacity of 1, 000 lines.

Course Table

Each course to be stored is assigned a name which can be any 1 to 4
characters enclosed in single quotes. A course is defined as the line seg
TI1.ent between two stored points. The stored data for each course is the
point nUTI1.bers for the beginning and end points. A course is a relative
object which moves with the points which define it.

Curve Table

Each horizontal curve to be stored is as signed an identification number
which can be any integer froTI1. 0 to 999. A curve is defined as a circular
curve segment with or without equal or unequal transition spirals. The
stored data for each curve includes the horizontal coordinates and station of
each curve point (PI, PC, PT, TS, ST, and so forth) and the elements of the
curve (radius, length, and so forth). A curve is an absolute object. The
Curve Table has a capacity of 1, 000 curves.

15

Chain Table

Horizontal alignIllents, traverses, parcels, raIllps, right-of-way lines,
baselines, and siIllilar kinds of horizontal geoIlletry objects are stored in
the Chain Table. Such objects are defined and stored as lists of other
stored objects, treated as "links" which when connected forIll the continuous
object or "chain." The list Illay include any cOIllbination of stored points,
courses, curves, and other chains. Each chain to be stored is assigned
a naIlle which can be any 1 to 8 characters enclosed in single quotes. The
stored data for each chain is the list of objects which define it. A chain is a
relative object which Illoves with the objects which define it.

Profile Table

Vertical alignIllents are stored in the Profile Table. Profiles are de
fined by the stored points at the VPI's and the sYIllIlletric or aSYIllIlletric
curve lengths. Each profile to be stored is assigned a naIlle which can be
any 1 to 8 characters enclosed in single quotes. The stored data for each
profile is a table of point nUIllbers and vertical curve lengths. The profile
is a relative object which Illoves with the points which define it.

Scalar Table s

Separate table s are Illaintained for distance s, angle s, and directions -
a Distance Table, Angle Table, and Direction Table. Each scalar to be
stored is given a naIlle which can be any 1 to 4 characters enclosed in single
quotes. The stored data for each scalar is its absolute nUIllerical value.

Text Table

Descriptive inforIllation associated with a stored chain Illay be stored in
the Text Table. Each set of text to be stored is as signed the saIlle naIlle as
that of the chain with which it is associated. The text is printed whenever
the chain is des cribed in an output report. The text feature allows non
geoIlletric inforIllation, such as ownership, value, buildings, land use, and
so forth, to be stored with objects such as parcels.

Objects stored in different tables Illay have the saIlle naIlle or nUIllber.
For exaIllple, POINT 4, LINE 4, CURVE 4 each refer to a different object.
DISTANCE 'A', AZIMUTH 'A', and ANGLE 'A' refer to different scalars.

16

Object
Label

Point
POINT

Distance
DISTANCE

Angle
ANGLE

Direction
AZIMUTH
BEARING

Line
LINE

Course
COURSE

Curve
CURVE

Chain
CHAIN
TRAVERSE
ALIGNMENT
PARCEL

Profile
PROFILE

,,~

'I'

Id. Number
or N arne ~:~~:<

Numeric
1 to 4 digits
o to 9999

Al phanume ric
1 to 4 characters

Al phanume ri c
1 to 4 characte rs

Al phanume ric
1 to 4 characters

Numeric
1 to 3 digits
o to 999

Al phanume ric
1 to 4 characters

Numeric
1 to 3 digits
o to 999

Al phanume ric
1 to 8 characters

Alphanumeric
1 to 8 characters

Table Table Absolute
Capacity Entries or Relative

10,000 Horizontal Coord. Absolute

Points Station
Elevation

Open>:< magnitude Absolute
(Absolute value)

Open>!< magnitude Absolute
(Absolute value)

Open>!< magnitude Absolute
{Absolute value}

1,000 Point Number Relative
Lines Direction Absolute

Open>!< Beginning and Relative
End Point Numbers

1,000 Coordinates and Absolute
Curves Station of all

Curve Points.
Curve Elements

Open~:< Chain List Relative

Open>!< VPI Points Relative
VC lengths Absolute

Capacity a function of hardware configuration but not a practical
constraint .

... 1 ' ... "
Alphanumeric names must be enclosed in single quotes.

17

OBJECT GEOMETRY AND NOMENCLATURE

Point

A point is defined geometrically by its horizontal coordinates, station,
and elevation or any subset thereof, such as horizontal coordinates only,
station and elevation only, horizontal coordinates and station, and so forth.
Points stored in the Point Table are termed integer points when it is neces
sary to distinguish them from curve points.

Externally, the coordinate system. being used may be X, Y or N, E (Y
followed by X), as determined by the system. setting. Internally, the system
is X, Y. A point is stored internally as the numerical values for the individ
ual data items which are defined (coordinates, elevation, station). If entries
are made in the Point Table for a point already stored, the new values for
the individual data items replace the old values, the old values being retained
for those data items unchanged. Thus selective entries can be made in the
Point Table, as illustrated in the following examples:

Commands

STORE POINT 2 X 100. Y 200.

STORE POINT 2 X 5+00.

STORE POINT 2 X 600. Y 300. Z 400.

Resulting Table Entrie s
!---

X Y Z S

100. 200. >~~<~<* ~< >!<>!< >!<

100. 200.r, , t.. , 500."" ... ,,'f'- f"o

600. 300. 400. 500.

X and Yare defined after the first com.m.and, and S is also defined after the
second. All data values are defined after the third command. The third
command redefines the point because defined table entries are changed.

When stored points are printed, the numerical values are printed for the
defined data items and a row of asterisks for those undefined.

Curve Points

Curve points of stored curves may be used as data items in many com
mands. The convention for referring to a curve point is to give the curve
point label followed by the stored curve member. For example:

PC 4
PI 8
SC 2

means the PC of Curve 4
means the PI of Curve 8
means the SC of Curve 2

18

The distance data item.

DISTANCE PT 3 TO TS 5

m.eans the distance from. the PT of Curve 3 to the TS of Curve 5.

Directions

Externally, directions m.ay be given as bearings or azim.uths, inter
changably. The azim.uths m.ay be m.easured from. North or from. South, as
determ.ined by the system. setting. Numerical directions and angles can be
input as

degrees, m.inutes, and decim.al seconds
degrees, m.inutes, and even seconds
degrees and decim.al m.inutes
degrees and even m.inutes
decim.al degrees
even degrees

Internally, the system. works with azim.uths from. north in decim.al radians
from. 0 to +2 rr.

Line

A line is defined geom.etrically by the horizontal coordinates of a stored
point on the line (the line point) and the direction of the line. A line has po
sition in space and a forward direction but has infinite length. In com.puting
with a line, the line is extended ahead and back from the line point.

A line is stored internally in the Line Table as the identification num.ber
of the line point (which m.ay be a curve point) and the num.erical value of the
direction of the line. In com.puting with a stored line, the horizontal
coordinates of the line point are autom.atical1y retrieved from. the Point
Table or Curve Tableo Accordingly, the horizontal coordinates of the line
point m.ust be stored. If the line point is redefined (coordinates changed),
the line is shifted (position changed) parallel to itself as the line direction is
not changed. Hence a line is a relative object with respect to the line point
but an absolute object with respect to its direction.

19

LINE OBJECT NOMENCLATURE

Course direction

Beginning Point

COURSE OBJECT NOMENCLATURE

20

Course

A course is defined geometrically as a line segment between two stored
points. A course has length and direction, a beginning point and an end
point. Its length is the distance between the two points, and its direction is
the direction of the line from the beginning point toward the end point.

A course is stored internally in the Course Table as the identification
numbers of the two points (which may be curve points) defining it. In com
puting with a stored course, the horizontal coordinates of the points which
define it are automatically retrieved from the Point Table or Curve Table.
Accordingly the horizontal coordinates of the points must be stored. A
stored course is a relative object. If one or both of the points which define
a stored course are redefined (coordinates changed), the course is moved
(position, length, and direction are changed).

In operations such as interse cting two objects, one or both of which is a
course, if the intersection does not occur on the course, the course is ex
tended and treated like a line, and the user is so notified by a message.

Curve

A curve is defined geometrically as a circular curve segment in the
horizontal plane, with or without spiral transitions of equal or unequal length.
A curve has specific end points (PC or TS and PT or ST) and absolute posi
tion in space. If a curve has transition spirals, the entire curve (circular
curve segment plus spirals) is stored and retrieved as a single curve with
a single identification number.

A curve is stored internally with numerical values which completely de
fine its geometry and position in space. The station and horizontal coordi
nates of each curve point are stored in the Curve Table, as are the basic curve
elements (radius, length, spiral lengths, and so forth). A curve is stored
as an absolute object. Once stored, it is independent of the points and values
initially used to define it. If any single curve point or curve element is to be
redefined, the entire curve is redefined.

In operations such as intersecting two objects, one or both of which is a
curve, if the intersection does not occur on the curve, the curve may be ex
tended. Internally, curves are extended by extending the back and ahead
tangents to the curve. Hence curve extensions are lines extending back from
the beginning of the curve (PC or TS) and ahead frOll1 the end of the curve (PT
or ST) 0 Projections onto curve extensions are always to the nearest tangent.

21

Beginning
of Curve

Chain List

PI

CURVE OBJECT NOMENCLATURE

CURVE
2

---- Chain Connector

A6 , // , . ,// /
'-, PC CURVE PT,/ I
.~

I
I

COURSE 'Al' I
~ I

/ I
/ "'-/ I

.......... ~3

4, CURVE 2, CURVE 5,6,3,8, COURSE 'A1', CURVE 7, 2, 4

EXAMPLE OF CHAIN OBJECT

22

Chain

A chain is defined geom.etrically as a continuous linear or curvilinear
obje ct in the horizontal plane which can be defined in term.s of stored points,
courses, curves, and other chains. Objects such as alignm.ents, traverses,
parcels, baselines, and so forth, are clas sified as a single general obj e ct
called a chain and are stored in the Chain Table. The term. chain is derived
from. the concept of the chain object as a series of connected links, each link
being a stored object which is to be connected with the previous object.
Chains are defined and stored in the Chain Table as an ordered list of the
links, the chain list.

A chain is a relative object, the chain list defining the topology of the
chain. When a chain is used for purposes of com.putation or plotting, the
geom.etry of chain is constructed from. the current num.erical values in the
Point and Curve Tables for the objects in the chain list. If an object in the
list is redefined (m.oved), the geom.etry of the chain will be different in sub
sequent references to it. Points in the list m.ay be thought of as thum.btacks,
and curves and courses m.ay be thought of as tem.plates with a thum.btack at
each end. If one or m.ore of the tacks are m.oved (coordinates changed), the
chain takes on a new shape and position for that portion affected.

In constructing the geom.etry of a chain from. the absolute values associ
ated with the objects in the chain list, the internal processing routines gen
erate a connector for each object in the list not preceded by the word GAP.
The connector takes the form. of a straight line segm.ent (a course) which
connects the object with the previous object in the list. The beginning point
of the connector course is the end point of the previous object, and the end
point of the connector course is the beginning point of the object. If, for
exam.ple, two curves are being connected, the connector would be the
course from. the PT (or ST) of the previous curve to the PC (or TS) of the
current curve. In chain com.putations, descriptions, and plots, the connec
tors are treated as courses which m.ake up the continuous chain. A gap m.ay
be included in the chain by using the work GAP in the list between the two
objects which are not to be connected. GAP m.eans no connector course is
to be generated.

No connector course is generated between the last object in the list and
the first. Hence a chain is assum.ed to be an open chain, a gap occuring be
tween the last and the first object. A closed chain can be obtained by m.aking
the end point of the last object coincide with the beginning point of the first
object. For exam.ple, if the last object in the list is a stored point and it is
the sam.e point as the first object in the list, the chain will be closed on itself.

23

INPUT/OUTPUT CONTROL

System Settings

Facility is provided to modify the system for local surveying and geo
metric conventions. The Set command is used to set switches which control
input/ output conventions such as

a) N, E or X, Y coordinate system
b) Azimuths or bearings as standard direction
c) Azimuths measured from North or from South
d) Two or three decimal places on distance and coordinate output
e) Even seconds of arc or decimal seconds on output

The Set command is also used to control the mode of operation and to store
constants.

There are standard settings which are fixed for a given installation.
The system is automatically initialized with the standard settings each time
the command COGO is executed. The Engineer can change the standard
settings for his individual run by use of the Set command. Once a setting
is made, it remains unchanged until another Set command is given which
changes the setting. The Set command can be given at any point in a COGO
problem.

The following are examples of the Set command:

SET SYSTEM NE, BEARINGS, NAZIMUTH, DEC3, ASEC
SET SYSTEM XY, AZIMUTHS, SAZIMUTH, DEC2, ADEC

Check Mode

The system operates in two modes: the Compute Mode, which is the
normal mode of operation, and the Check Mode, which is a special mode of
operation. When in the Compute Mode, entries are made in the data tables
when commands are executed. When in the Check Mode, when co:rnmands
are executed, the computed values for "redefined" points, scalars, and
curves are not stored but are cornpared with the values already stored. If
they do not compare within a specified tolerance, a NO CHECK message is
printed along with the computed and the stored values. The stored values
are left unchanged, and the system goes on to the next command.

24

rrl..,a C!-.rcd"a"YY'l ;Q Tmt ;-ntn thP rhPrk- l\A"nnp ;:ITIn t;:lk-PTI ()"t ()f thf> C:hprK M()df>
-~~- -J-------- .r-.... ----- ----

(put into the Compute Mode) by the Engineer by use of the Set Command.
The tolerance value is also specified by the Set command. The Check Mode
provides the Engineer with a capability for checking a COGO solution via
COGO commands. The Engineer can check his own solution or another En
gineer's solution. Since each COGO problem can usually be solved in a va
riety of different ways, the Check Mode capability provides a very flexible
and practical method of independent checking and verification.

Data Forms

Geometric variables such as distances, directions, and angles which
are used as input data items in many commands can be expressed in the
following basic forms:

a) Numerical Data Value

Examples:

b) Stored Data Value

Examples:

DISTANCE 125.16
BEARING N 27 15 24.39 W
A.NGLE 83 45

DISTANCE 'X4'
AZIMUTH 'A'
ANGLE 'B3'

c) Computed Data Value

Examples: DISTANCE POINT 4 TO POINT 8
BEARING PI 3 TO PC 5
ANGLE AT 4 FROM 6 TO 8

The computed form provides for rather extensive computations to be carried
out within commands, making rather simple commands quite powerful in
s cope of application. Computed forms are also provided for such standard
data items as station, offset, line, and course.

25

Output Control

Printed output is under cOlllllland control; that is, the Engineer specifies
the output he wants via cOllllllands. The Print cOlllllland and the Describe
cOlllllland are used to print the nUlllerical values associated with or COlllpUt
able frolll stored objects, such as the following exalllples:

PRINT POINTS 4, 8, 20 TO 60, 15, 400 TO 600
PRINT DISTANCES 4 TO 8, 5 TO 10 TO 8
PRINT ANGLE AT POINT 4 FROM 12 TO 16
DESCRIBE ALIGNMENT 'B3', PARCEL 'LOT/4', TRAVERSE 'T48'
PRINT ALL DISTANCES
PRINT ALL TABLES

Undefined objects in the print list are ignored when the cOlllllland is executed.
All output is under forlllat control and is fully labeled. Each cOlllllland is
reproduced in the printed output; that is, the input is reproduced in the out
put. Interlllediate output (output following the cOlllllland execution) is pro
vided for in lllany cOllllllands. Interlllediate output lllay be generated auto
lllatically through the Set cOlllllland or can be requested selectively as part
of the cOlllllland.

$

$ •••

.$ FXAMPLE<; OF 5TA~OARD OUPUT FORt.1HS

$ •••

SET SV<;T,:M NI-, BFI', NA7, f)Er~, AD"'C

PPt~H prJTNT 4
POI NT 4

PR tNT nT<;TANC[A TO PC '.4

N 'i40125.128

01STA~C[FROM ~ fO PC 24 51~7.1~4

P~INT BFARING 1 TO 2
R EA~ INr; FROM 1 TO

PR.INT 4\1';lf .I\T ~ FRO"! .? T) 4

E 101050.815

ANr;LF AT 8 rqqM ? TO 4 215 37 75.31

PRINT LINE v;
L r NF: "5 THP U

s

PRINT (lU~SF 'SlnF'
COUQ. SF SIDE FR OM 2 TO 1 LFNGTH 320Q4.123

PRINT CUQVF 24

ClIPVF 74 TVP" ses

TTi)

TH
TOTAL tFN

L.F NG T4
lON; T "N.
SHORT TAN.
LONG CHORD

CIRCULAR SfCT JON

RAl)llJS
LF NG Trl
TA t'lGI:NT
[l(TFRl\iAL
IONGCHnll.D
Min. ORO.

?131.f.IO
'2 fl~". R 12
3A~5.R3f!

7.')0.000
IB.352
"6. n8 tt

199.976

190q.~'i1

n~'i.fllf\

.?34 f'. Af\?
1111.1.?o
29'51.'541,
7)2.451

PFr. 10Q 4 30.47
r~ArK ~ 't9 51 40.49 "
AH~An ~ Sq 6 49.99 F

HJGLE 3 0 0.00
BACK ~I 49 57 40.49
AHfAD " 46 51 40.49
PHI C I) 59 5C}.92

nEG~rF 1 0 0.00
nElTA III 34 ~0.47

W
II

~AC(~ 4" '57 40.49 loll

ft~~AO ~ '54 36 49.99 E

26

XC
VC
P
K

lq') .q tt5
".ft9:1
1).813

qq.9ql

<; ... O.:l 3:?S9.Mfl

,,01 Rill ~HF Ar)

Lt-'~\l I" .,vv.tJvu 1l''4l)L t ~ 'V J .UlJ 1\'- £...,..,. OL":J

LJNG TAN. ?:)Q.065 flACK ~ <j~ ~6 49.99 F YC 7.1351
')WlqT TM~ • Dr).O 'it:} flH:=O ~ c:;q

'" 49.99 F P 1.96·~

l a~(, CHcr D nq.918 PHI - 1 29 59.12 K -14q.q~q
~

CURV[24 TYPf S~ S CURVE Pfl (~ TS

pnT~T CC 7 't N 5">614). P4 E 1 08~60. 528 S ************ ***********
pnl ~.IT TS 7 '. N 5'>4612.<)75 E 107107.898 S 2)6+85.862 !. >!<**********
P'llN T C::T 'lit N 551851.~14 E 108007.828 S 255+71.699 l ***********
PIJ) NT PI 24 N ':i56401.6"'-7 E 105576.739 S 244+69.472 ., ***********
Pfll NT S~ 24 N 554698.711 E 101605.802 S 218+19.214 Z ~**********
PrJ IN T SC 24 III 554744.2)3 E 101<;51.063 S 218+85.867 1 ***.********
POl NT CI 24 N 556341.121 E 105846.277 ') 242+26.541 , ***********
POI NT CS 24 N <;57697.111 E 107154.560 S 252+71.599 1 ***********
P"'NT SA 24 N 5'i7755.114 E 101836.135 S 253+71.158 Z ***********

DESCRI3E ALIGN~FNT 'QOA1/1 1

iJESn IPT InN nF CHi\) N RnAD/3

CHAl ELFMr" lilTS

COUR SF FR~M '. Tn 8 LENGTH 15448.697 3EARI N:; N 45 19 44.88 F
COUR '\[FRnM 8 TJ TS 74 LENG TH 5737.164 ~E A RI N:; N 49 57 40.49 W

CURV~ 24 TYPE SC5 CURVE FLF.'HNTS

TT~ n!.J3.f:.l0 Off. 109 4 30.41
TTA 2 RH. 812 BACK ~ 4::1 57 40.49 rI
TIJTAL LF N 3RQ'). ,qq I\HFAf) '4 '59 6 49.99 E

SPI~Al I1ACK

LE. NG TH ;?)o.r)QO ANGLE 1 0 0.00 XC 199.945
tnNG TAN. IB.3V 8ACK ~ 49 !i1 40.49 ti VC ~.49rJ

Sl-l'l~ T TAN. 6".684 l\HF~O 46 51 40.49 W P o. ~13
LJN':; CHnRD l Q 9.976 PHI C 0 59 '59.92 K 9c).991

r. I R.r.UL AR SHTWIII

RAOI"S 1<),)9.8'59 f)EG~H ~ 0 0.00
IF- Nf,TH -n'l5.838 ()EL TA Dl 34 30.41
Th~GENT 'l 340. 6'J2 RACI(~ 46 51 40.49 W
El(TEQ NAl 1111.17.6 AHFA() ~ 'i4 3b 49.99 E
Lr:JNG CH(,Pf) ?95Q.546
'11 n. nRO. 7')2.451

') f.>1 RAl AHF.AD

L~NGTH 300.001') hN(;L E 4 30 0.00 xr: 299.815
Lrl~G TAN. zao.065 "lACK 'l "4 36 49.99 F YC 7. R'H
SHORT TAN. l')O.O5<) AHfA) 'I 5<) 6 49.9Cl E P 1.'H3
LONG CHnR D z:J9.91JJ PHT - 1 29 '59.72 K -14:).969

~

CClUR SF FROM 5T 24 Tn 7 LENGTH 29261.311 c\EARIN:J N 'i9 S 49.Q9 E

CHA I "J P~11 NTS

POINT 't N 540125. V R f 101050.81'i c; 5+ 0.0 1 3259.640
POI NT q "4 5<;0972.175 E 112100.375 S 15::1+4JJ.697 7 ***********

CURVF 74 TYPE SCS CURVF J>:1IHS

pnPH C:C 74 N 5'56140. l? 4 E 1 OR8~O.') 28 ********* Z ******* •• **
Pot NT TS 24 N ,)'i4612.975 E 101701. R9R S n6+8 5. R 67 7 ***********
pn l NT ST 2'. III ')'l1R51.R14 E 108001.828 S 255+71.~99 ** ******
Pf)INT PI 74 N <;%403. fd 7 f 105')16.139 S 244+69.472 ***.*******=
pnTNT Sq 24 N 55469q.711 E 101605.807. S ?l8+19.214 ***********
Dr:1lNT SC 2 ft III <;'5't744.~?l E 101551.0"3 S ll"I+8'i.H6?' 7 ***********
PfllNT CI 74 N 5'i6341.7'> 1 E 105846.277 S 242+26.543 l ******** .. **
pnI~T C<; 2' .. N ,),)1&Q7.111 F 101154.56() S ?'57+71.69Q l ***********
1"'11 lilT SA 74 N ';57755.114 E 101836.1"5 C; 253+71.7'Hl l ***********

POINT 7 'II 'i17P7'l.1,19 E 133119.5n <; 54~+ D. 0 10 7 ***********

27

ERROR CHECKING

Each cornrnand is subjected to extensive checking by the proces sor.
Errors which are detected are reported by messages which appear in the
output. The following general cases may be identified:

Command Errors

Commands which are illegal, improperly constructed, incomplete, or in
any way fail to conform with the command specifications are detected and
reported. Such commands are not fully processed and are not executed.
Each command is scanned and processed from left to right. Once an illegal
condition is detected, processing ceases and the remaining (right hand) por
tion of the command is printed to assist in locating the illegal condition.
The system then goes on to the next command. Hence only one (the first one
detected) illegal condition is reported per command (there may be others in
the unproces sed portion).

Undefined Ob je cts

Cornrnands which reference (attempt to retrieve and compute with) an
undefined object (not stored in data table) are detected and reported. Such
commands are not fully executed and may not be fully processed. The first
undefined object in the command which the processor attempts to retrieve
inhibits further processing and execution of the command. The undefined
object is identified in the output. The undefined object reference counter is
updated by one, and the system goes on to the next command. Hence only
one (the first one detected) undefined object is reported per command (there
may be others in the unprocessed and unexecuted portions).

Geometric Errors

Commands which call for computations which are not geometrically pos
sible are detected and reported. An example would be an attempt to inter
sect two objects which do not intersect, even if extended, such as two con
centric curves. The error message which is printed identifies the invalid
condition. Further proces sing and execution of the cornrnand is inhibited,
and the system goes on to the next command.

28

GeoTIletric Warnings

COTIlTIlands which call for cOTIlputations which are possible but which re
quire assUTIlptions for execution are detected and reported. An example
would be an atteTIlpt to intersect two objects which do not intersect theTIl
selves but which do intersect if one or both is extended. Whenever a reason
able assuTIlption can be made which will result in a solution which TIlay be
acceptable to the Engineer, such action is taken. A warning mes sage is
printed which identifies the action taken. Such cOTIlTIlands are processed and
exe cuted as valid COTIlTIlands. It is the Engineer t s responsibility to review
the output and satisfy himself that the action taken was valid. If not, he
should resubmit the probleTIl with corrected cOTIlmands.

A careful study of the output froTIl a COGO run should be standard prac
tice. In addition to reviewing the error and warning TIlessages, the Engineer
should study the inforTIlation included in the output to assist hiTIl in verifying
whether or not his probleTIl was correctly stated. Each probleTIl should con
clude with a group of cOTIlTIlands under the Check Mode to help verify the
solution. A random traverse through the problem is an excellent way to
check the solution.

$.. '

$ fX.l\~4PLES (IF TYPICAL M[SS/\GFS

.$

$.. .

$

$: .. .

LOC~TE 50 FRn~ 4 rFfS[T 50. ANGLF 2n
* * ",< * J N PUT f q ,~ (J P 7. 1 - R ~ QUI R f 11 n". T A I S (v1 ISS I N G
**** HJPUT WARNTt-..IG 7.7 - I\I\J F8ROR WAS DI::TECTEf) WHILE PROCESSING T'115 COMMAND.
**** INPUT I·,:.H<~. ING 7.-" - C WIMA~m t'-lOT CiY1PL [TFl Y PROCr.:SSfD
***':: SY'~r)Dl S IF CCli-1'1,\i\)il PIPUT i'lUT YCT PRflCESSFI) FiJlLOW -

**~,*

$ •••

F;(1\~1f)l E DF ~ fi)E~lNED DRJECT Iv1ESSAGE

$

lCCATF 7 FRUM 4 OIST 200. Al 45
POINT 7 RFING PlUFF PJ[D

29

$ •••

EXAMPLE OF JNOfFINFO OBJECT ~ESSAGE

$ •••

LOCATE 60 FROM 4 nYST 4 T'l 15, AZ R HJ 20

***************************************~***************************************

ERROR. - POINT' 15 HAS NOT BEEN SHlREO.

***************************************~***************************************

ERROR EXIT FROM THIS COM~ANO

**** INPUT WAR"lING 7.11 - Cnl~MANf) NOT CO'1PLETElY PROCESSED
**** SY~BOLS OF CC'4MANO I\jPtJT NOT YET P~OCESSFD FOLLOW

****AZ 3 TO 20 ****

$ •••

$ EXAMPLE OF GEOMETR IC ERROR MESSAGE

$ ••••••••••••••••••••••••• ~ •••

LOCATE 70, INTFRSfCT LINE THRU 4 TO A WITH LINE THPLJ 4 4T 45 15 20

ERROR - NO INTEQSECTION.
ERROR EXIT FROM THIS COMMAND

$ •••

$ (X AMPLE OF GEOMETRIC WARNING MESSAGE

LOCATE 80, PROJECT 7 ON CURVE 3

WARNING. POINT 30 HAS ~fFN LOCAH!) ON EXHNDED TANGENT TO CU~VE.
TANGfNT HAS HEFN EXTENOED 413.5~5 FROM THE PT.

$ •••

$ EXAMPLE OF SET CHECK MODE

$ •••

SET SYSTEM CHECK

SET CONSTANT DTnL 0.01

LOCATE 8 FRf1M 4, DI<;T '5h1.74, A7 4') 15 ;)0
** CHECK**

LnCATE 8 FROM 4, DIST 561.0, Al 45
NO CHECK

CALCULATFD VALUeS
POINT q N 539680.%2

STOR-ED VALUES
POINT N 519679.610

30

E 172755. q 30 5 ************

177758.221 ************

PROBLEMS, RUNS, and FILES

Problelll

A GOGO problelll is defined as the IGES Systelll cOlllllland GOGO followed
by one or lllore GOGO cOllllllands. A problelll lllay have any nUlllber of GOGO
cOllllllands. A problelll is terminated by another comllland GOGO (initiating
the next GOGO problem) or by som.e other IGES Systelll cOlllmand such as
another subsystem name or the cOlllllland FINISH.

Problelll Data Tables

A new set of GOGO data tables is initialized each time the cOInrnand
GOGO is given. Accordingly, each problem. has its own set of data tables
which is built up by the GOGO cOInmands for the problem. Provision is pro
vided to save the problem data tables. If they are not saved, the problelll
data tables are automatically destroyed at the end of the problem.

Run

A GOGO run is defined as one or more COGO problems sublllitted at the
sallle tillle as a batch for processing on the cOlllputer. A run can have any
nUlllber of COGO problems, each starting with the cOlllllland GOGO. A run
is terminated by the ICES System command FINISH.

Files

Problelll data tables can be saved, restored, deleted, listed, and printed
with the FILE cOlllmand. Each set of problem data tables to be saved and re
stored is given a unique file nallle. The problelll data tables are stored as a
permanent file on a secondary storage device under the filenallle. When the
FILE SAVE command is given, the current contents of the problem data
tables are filed. When the FILE RESTORE cOlllmand is given, the problem
data tables which were saved are restored and becollle part of the problelll
data tables for the current problem. AIl defined objects in the restored data
tables are then available for use in the GOGO commands which follow. The
restored data tables are merged with the current data tables, the restored
objects taking precedence.

31

Usually, the FILE SAVE cOITlITland will be the last COGO cOITlITland in a
probleITl if the cOITlplete set of data tables is to be saved. However, it can
be given at any point if only the contents of the data tables up to that point
are to be saved. SiITlilarly, the FILE RESTORE cOITlITland will usually be
the first COGO comITland (following the cOITlITland COG 0) if the probleITl is to
start out with the previously saved tables. However, it can be given at any
point if the saved data tables are not needed until that point.

Through the use of the FILE cOInITland and the save and restore capabil
ity, the saITle Engineer can work on the saITle probleITl over a period of tiITle,
continuing work on the probleITl in different runs. Or different Enginee rs
can work on the same probleITl, each having access to the saITle probleITl data
tables through use of a COITlITlon filename.

$ $ $ $ $

$ RJ N I $ $

$ •••

t='RJKLH1 1

COGO $ DATA TABLES INITIALIZED H)R PROBLEM 1
Wf'LCUMt: FJ CllG(I,YCUR FP IENIlLY CC()ROINAH Gf:OMETRY SYSTEM

SET SYSfFM ~f BfA

STORE 25 N 3000 E leao ~ 5.00

LOCATt:: 1 FKCM 25 175.16 N 45 15 E OFFSFT PLUS 50

STOr~E CJ~VE 8 PH 1 1)'3 N 45 1'> [TL 123.28 DEG 2 30 P LfNGTH 30CO
STA UF PB STA OF 2~ PLUS 175.16

STORE BEARING 'A' PI 3 TU PI 8 PRINT
Bf:AR ING A S 59 45 0.00 [

LOCATE 12 F"<CM PT 8 256.38 'A'

STORE LINE 4 THkU 2"> AT N 45 15 E

LCCATt-' 2 INTERSECT CURVE 8 WITH LINE 4 DFrSfT PLUS 74

FILf '::>AVE 'PASSWURD' 'D,<'DflLEi>11'

PIHjF\U"I a A TA'3lf:S SAV!":;) IN FILE PROfllE"11

$ •••••••••••••••••• DATA TAdLES FRU1 PROBLEM 1 SAVED

$ •••••••••••••••••••••••••••• PR(J'3LF-M 2

i> •••

COGO DATA TABLES INITIALIZED FOR PROBLEM 2

WFLCUMf: TO COGO,YGUR FKIE~JLY C00RUIN~TE GEUMETRY SYSTEM

SET SYSfEi-1 Nt ~EA

STORf 4b N 2500 E 1000

D it! N 10()G f 350()

TKAVEkSE 'I':i'

dACK 46 T(1 ld

COURSF 4h TO 3? DIST UNJ<\j~nWN ANGLf MU,US 77 0

o 25 25(;0 M

32

7(\ 31')0 ANGL E U"lK'llJ loiN

[) 5h

18 M "17

AHtAO Id TJ 4b CA~~L~ MINUS 157 0 0

[1\0 CF TRAVICRSE
**

CVJSED TKO\VERSE
*****0******0*** •• *.**.******'*************************0****************

IjIJ~,'\jJWN A:~Gl[: I'\T PUINT 25 CLOCK\'l1 SE 125 0 0.00
UNPJ'JwN NLiI CCUNTHl A::; A MI')SIf'.:G PART

T we.., IS <; I NG 0 1ST hi\j C t s
i) 1ST A t~C t. I- I~ C H P l) I N T
OISTANCf FRL~ PUINT

10 POHH
TO PC IN T

32 2716.208
18 3485.710

******'***'*******'****'**

$ •••••••••••••••••••••••••••• PRO BL EM ·3

$ •••

(OGO

W[LCO~r. TU CUl~l1,Y(UR FRIE\jDLY COOf{OINATE GEOMETRY SYSTEM

Sfl SYSTEI4 "'IE REA

I-IL£ RtSTORE 'PROPLE"'Il'
**************************************.**************

HLE PRUBLEMI STOkED IN OATA TABLES

*********'***

$ •••••••••••••••••• DATA TAJLES rRO~1 PROHLEM 1 RESTORED

LOCATE PKOJECT 2 Or-. LINt: 4 OFFSeT P '>0

C 3 INTERSECT LlNE 4 UFFSET P 74 WITH LINE THRU PI 8 AT 'A'

o 4 PRUJECT 3 ON CUPVE H

o a INTE-RSECT CURVf: i3 Off P 24 WITH COURSE PC 8 TO 12

PRINT P:) IN T S 1 TO 30
PI) IN T 1 N 30tH. 806 E 2159.597
PCI NT 2 1\, 3 3C}O .444 E 2498.978
PO I "JT N 4400.14c} E 3517.532
PO INT 4 N 3H22. !dO E 3587.006
POI N T 5 N 3407.4813 E 2482.081
POINT 8 N 3177 .~bl E 2284.284
POIf\JT 12 N 3397.')80 E 5236.666
PO INT 25 N 3000.000 E 2000.000

PR INT CURVE 8

CUW E TYPE C CURVE !:'LEMENTS

RAOIUS 22'l1.831 DEGREE 2 30 0.00
LE NGTh 30JO.Ot)O DELTA 7'5 0 0.00
TANGE NT 1 758. 5b4 t-IACK \j 45 15 0.00 E
EXTlPNAL 596.959 AHE AD S 59 45 0.00 E
LUNG CHORD 2790.357
MID. URD. 473.599

CURVf: 8 TYPE C CUk.VE POI"l TS

POI NT CC b N 1546. ')7 '2 E 3860.631
PO I NT PC 8 N 3174.597 E 2247.148
POHn P! R N 3526.737 E 5015.196
PUINT PI f! N 4412.6&1> E 3496.069

FILE SAVE 'PASSWUFO' 'PKOf)LE~3'

PRni:lLEr~ OATIl TAr3LES SAVE:) IN FILf PR0'3LH13

DATA TA!3LFS Ff,U"1 PROBLEM 3 SAVED

THF "JUT C0'11'~AND SPECIFIES THE END OF RUN 1

$ $ $

F If~ ISH

33

S ************
S 11+30.405
S ************
5 23+14.161
S ************
S ************
5 ************
S 5+ 0.0

S **********.*
S 7+98.440
S 37+98.440
S 25+57.024

$ $

l ***********
l ***********
l ***********
l ***********
l ***********
l ***********
l ***********
z ***********

l ***********
I ***********
l ***********
l ***********

ENGINEERS' GUIDE

to

ICES COGO I

PART 2

COMMAND SPECIFICA TIONS

Civil Engineering Systems Laboratory

Massachusetts Institute of Technology

Cambridge, Massachusetts

SECTION DIRECTORY

Page

Command Conventions and Standard Data Items 1

Set Commands • • • • • • • 0 •

File Commands

Print and Delete Commands

Store Commands

Point Commands

Distance Commands

Angle Commands . .

Direction Commands

Line Commands

Course Commands

Curve Commands

Chain Commands

Text Commands

Station Commands

Profile Commands

Locate Commands

Alignment Command

Layout Command . .

Traverse Command

8

10

12

13

14

15

17

18

20

22

24

30

33

34

36

41

51

65

71

ALIGNMENT
POT
CURVE

AREA ...
DELETE
DESCRIBE
EQUATE
FILE
LAYOUT TIES

CURVE

COMMAND DIRECTORY

OFFSETS
A.LIGNMENT

LOCATE n FROM

ON
INTERSECT.
PROJECT ..
FORESECT .
TIE ..

MODIFY CURVE
PRINT ..
PROFILE

VPI .
SET ...
STATION
STORE

POINT
DISTANCE
ANGLE ..
AZIMUTH.
LINE .. .
COURSE
CURVE
CHAIN
TEXT.

TRANSPOSE CURVE
CHAIN

TRAVERSE ..
ADJUST
CLOSURE
BACK ...
COURSE
AHEAD ..

51
52
54
32
12
31
14
10
65
66
68
69
42
43
46
48
49
50
28
12
36
36

8
34
13
14
15
17
18
20
22
24
30
33
29
31
71

72
72
74
74
76

SUMMARY OF DATA TABLES

Object Id. NUITlber Table Table Absolute
Label o rN aIlle *~:~ Capacity Entries or Relative

Point Numeric 10,000 Horizontal Coord. Absolute
POINT 1 to 4 digits Points Station

o to 9999 Elevation

Distance Al phanume ri c Open* magnitude Absolute
DISTANCE 1 to 4 characters {Absolute value}

Angle Al phanume ri c Open* magnitude Absolute
ANGLE 1 to 4 characters {Absolute value}

Direction Alphanumeric Open* Illagni tude Absolute
AZIMUTH 1 to 4 characters (Absolute value)
BEARING

Line NUIlleric 1,000 Point Number Relative
LINE 1 to 3 digits Lines Direction Absolute

o to 999

Course Al phanuIlle ric Open* Beginning and Relative
COURSE 1 to 4 characters End Point Numbers

Curve Numeric 1,000 Coordinates and Absolute
CURVE 1 to 3 digits Curves Station of all

o to 999 Curve Points.
Curve EleIllents

Chain Alphanumeric Open* Chain List Relative
CHAIN 1 to 8 characters
TRAVERSE
ALIGNMENT --
PARCEL

Profile Alphanumeric Open~:~ VPI Points Relative
PROFILE 1 to 8 characters VC lengths Absolute

~:::

Capacity a function of hardware configuration but not a practical
constraint .

.... I l , ... "., ...

AlphanUITleric names IllUst be enclosed in single quotes.

iii

COMMAND CONVENTIONS and STANDARD DA TA ITEMS

Command Description Conventions

In order to describe the specifications for the com.m.ands in concise
~orm., a set of standard conventions, rules, sym.bo1s, and data item.s has
been adopted and is described herein. A typical com.m.and m.ight be specified
in the following sam.p1e form.:

LOCA TE n INTERSECT object with object (NEAR ~) print

In this sam.p1e com.m.and the conventions provide the following interpretations:

1) The word LOCATE, the first word, is the com.m.and nam.e. The
m.inim.um. abbreviation is LOC, the underscored portion.

2) The sym.bo1 ~ stands for the identification num.ber of an integer
point to be stored. Since it is underscored, it is required.

3) The word INTERSECT is a com.m.and m.odifier, i. e., it denotes
which m.ethod for point location is to be perform.ed. It is required
and the m.inim.a1 abbreviation is INT.

4) The lower case words "object" are data item.s which can take any of
the standard allowable form.s. Since they are underscored, they
are required. If the com.m.and were such that either or both were
not required, they would not be underscored.

5) The word "with" m.ay be included to m.ake the com.m.and m.ore read
able. It is one of a num.ber of words which, if they appear in a com.
m.and specification in lower case, are ignored in command process
ing. Such "ignorable words II m.ust be fully written, i. e., they
cannot be abbreviated.

6) The data item. (NEAR ~) is optional because it is enclosed in paren
theses. If, it is included, the word NEAR and the sym.bo1 ~ m.ust be
given. The sym.bo1 ~ stands for the identification num.ber of any
stored point (or curve point of any stored curve).

7) The word "print!' stands for an optional (because it is not under
scored) com.m.and m.odifier.

1

The following are actual com.mands which could follow from. the above
general form.:

LOCATE 4 INTERSECT LINE 1 WITH CURVE 5 NEA.R PC 5 PRINT
LOC 5 INT LINE THR U 4 AT AZI 45 LINE THR U 2 TO 7
LOC 10INT CUR 7 CUR 3 N PI 3 PRI

Even though upper case and lower case are used throughout the com.m.and
des criptions, they are so used only to differentiate between standard data
items, objects, command m.odifiers, and command nam.es. An actual com.
mand, when written and keypunched, m.ust have all characters in upper case
and must have one or m.ore blanks (or a com.m.a) separating all words, item.s,
and values within the actual com.m.and.

Comm.and Ditto

If the previous comm.and is to be repeated, the command word may be
replaced by a D (for ditto) followed by one or m.ore blanks. The ditto feature
is used for STORE in the following exam.ple com.m.ands:

STORE POINT 4 100 200
D DISTANCE IX' 525.16
D ANGLE 'AIr AT 4 FROM 6 TO 8

Comm.and Continuation

If a com.m.and requires m.ore than one line (card), it m.ay be continued on
the next line (card) by using a freestanding m.inus sign (one preceded and fol
lowed by one or m.ore blanks). There m.ay be up to 5 continuation lines
(cards), with the m.aximum length for a com.m.and being 400 characters
including blanks and com.m.ents.

Comm.ents

Com.ments ITlay be inserted by using the $ character (followed by one or
m.ore blanks) as the first character on the line (card). Com.m.ents m.ay not
be continued. If the COITlm.ent requires m.ore than one line (card), each com
m.ent line (card) should begin with the $ charactero

If a com.m.and or com.m.and continuation requires less than a full line
(card), the rem.aining unused portion m.ay be used for com.m.ent inform.ation,
the com.ment being separated from. the com.m.and by a freestanding $
character.

2

Comments are not processed, but they are duplicated in the output as
they are read. Liberal use of comments is encouraged.

Igno rable Words

In many instances in corn:rnands, simple words are allowed to make the
command more readable but are optional and are ignored by the proces sor.
The following is a list of such words:

on

to

from
at

of
thru

with

by

rule

When they are shown in a command specification in small letters , they are
optional and are ignored. If the Engineer includes them in a command, the
full word must be given, not an abbreviation. In some cases such words are
required words, modifiers, or data items label. In such cases the word is

given in caps and is unders cored.

Numerical Data Values (v, va, vb ...)

Where a numerical data value is called for in a command or data item,
the symbols v, va, vb ... are used. Decimal points may be omitted for
whole numb e r data value s, the following b eing equally ac ceptable :

200.0 200 200.

Decimal points should not be used for integer values such as point numbers.

In data items which include or are preceded by the PLUS/MINUS opera
tor, a negative numerical value must be indicated by the MINUS modifier,
not by a negative sign. With the exception of numerical coordinate and ele
vation values and other indicated exceptions, the system is based on numeri
cal data values always being positive.

When a numerical data value for a bearing is used, the system expects
natural quadrant labels such as in the following examples:

N 35 25 15 W S 45 E

When a numerical data value for a station is used, a plus sign may be
included, but it must be embedded in the numerical value; that is, not pre
ceded or followed by blanks. The following examples are acceptable:

5+00. 500 25+35.16 2535.16

3

A numerical angle or direction value can be given in anyone of the
following fo rms :

degrees, minutes, seconds examples: 35 15 25.16
328 10 20

degree s, minute s examples: 86 15.4
18 30

degrees example s : 45. 5
62

Algebraic Operations

Limited algebraic operations are permitted within some commands and
data items. They are indicated by the appearance of the following:

operator

The word PLUS or the word MINUS is to be given. If
p/m is optional and is not given, PLUS is assumed.

One of the following words is to be given to denote an
algebraic operation: PLUS, MINUS, MULTIPLY (BY),
or DIVIDED (B Y)

Standard Symbols for Object Identifiers

The standard symbols for object identifiers used in command descrip
tions and their meaning are as follows:

n,na,nb ...

pi, pj, pk ...

pa, pb, pc ...

i, j, k ...

a, b, c ...

Meaning

Identification number of an integer point to be star·2d in the
Point Table. The optional label (POINT) may precede the
point number.

Identification number of an integer point already stored in
the Point Table. The optional label (POINT) may precede
the point number.

Identification number of a stored integer point or a stored
curve point. The optional label (POINT) may precede an
integer point number.

Identification number of a line or curve, as determined by
the preceding LINE or CURVE label.

Name of a distance, angle, direction, course, chain, pro
file, or text, preceded by a required or optional label.
The name must always be enclosed in single quotes.

4

Standard Allowable E'orms tor bcalar Data items

Standard allowable forms for scalars (single valued quantities) appearing
as data items in commands are as follows:

Scalar Data Item Allowable Forms

distance numerical value: (DISTANCE) v
stored value (DISTANCE) ~
computed value: (DISTANCE) from ~ TO ~

angle numerical value: (ANGLE) v
stored value (ANGLE) a
computed value: (ANGLE) AT ~ from ~ to ~

(Clockwise angle from pb to pc is computed)

c/angle Apositive clockwise angle is to be given, directly or

direction

station

offset

indirectly. It may be given directly in the form
PLUS angle

or indirectly in one of the following forms
MINUS angle

The value of angle is subtracted from 3600 to
obtain the clockwise angle.

P/M DEFLECTION angle
If PL US, the value of angle is added to 1800 to
obtain the clo ckwis e angle.
If MINUS, the value of angle is subtracted from
1800 to obta,i-n the clockwise angle.

numerical value: (AZIMUTH) v, (P/M angle)
stored value (AZIMUTH)~, (P/M angle)
computed value: (AZIMUTH) ~ TO EE., (P /M angle)
line direction (AZIMUTH) of LINE i, (P /M angle)

The optional word (BEARING) may be used in place
of the optional word (AZIMUTH). If the optional data
item (P/M angle) is included, the given value is
modified by the value of angle to obtain the direction
to be used for the direction data item.

numerical value: (STA.TION) ~ (P/M distance)
stored value (STATION) OF ~ (P/M distance)

If the optional data item {P/M distance} is given, the
given value is modified by the value of distance to
obtain the station to be used for the station data item.

standard form: OFFSET P/M distance -- --
PL US means to the right in the forward sense im
plied by the cOITlmand in the horizontal plane or up
in the vertical plane. MINUS means to the left or
down.

5

Standard Allowable Form.s for Object Data Item.s

Standard allowable form.s for the following types of objects appearing as
data item.s in com.mands are as follows:

Object Data Item. Allowable Form.s

line

course

curve

chain

LINE i, offset (i is a stored line)
LINE THRU pa at direction, offset
LINE THRU ~ TOWARD EE., offset

COURSE~, offset (~is a stored course)
COURSE from. ~ TO~, offset

CURVE i, offset (i if a stored curve)

CHAIN~, offset (a is a stored chain)
TRAVERSE, ALIGNMENT, BASELINE, or
PARCEL may be used in place of the word CHAIN

In each case, if the optional data item offset is included, the object actually
used in the com.putations will be one parallel to and/ or concentric with the
given object at the offset distance.

Data Item

distance

angle

direction

Examples of Allowable Forms for Data Item.s

125.175
DISTANCE 1000
DIST 'A'
4 TO 8

Example

DIST FROM POINT 12 TO PC 5

90
42 15 55.93
A.NGLE 'A25'
fA25'
AT 4, 8, 3
ANGLE A T POINT 12 FROM 4 TO PC 5

90
N 25 15 30.6 E
AZIMUTH 'AZ4' PLUS ANGLE AT 5, 7, 2
14 TO 8 PLUS 90
AZ PC 5 TO PI 5 MINUS ANGLE 'A25 t

PC 5 TO PI 5 M 'A25 1

AZ OF LINE 28 M 90

6

Data IteITl

course

curve

chain

station

offset

line

Print Modifier

ExaITlple

COURSE'M'
COU 'C25', OFFSET PLUS 50
COURSE 'JACK', OFFSET MINUS DISTANCE FROM PC 3 TO

PT 8
COURSE FROM POINT 4 TO POINT 7
COU 4 TO 7, OFF P 25

CURVE 2
CUR 4, OFF PLUS DIST 6 to 3765

CHAIN 'F'
TRAVERSE 'J-W'
A.LIGN 'ROUTE-3', OFFSET MINUS DIST 20 TO 30
PARCEL 'JONES'
BASELINE 'B', OFFSET PLUS 125.

2+00
STA. 8+00.
STA 125+00 PLUS DIST FROM 4 TO 7
STA OF PC 5 MINUS 10.
STA OF POINT 4 PLUS PC 3 TO PI 3
STA OF 2

OFFSET PLUS 125.12
OFF M 100
OFFSET PLUS DIST FROM POINT 15 TO POINT 4
OFF M 3 TO 8

LINE 4
LINE 4, OFFSET PLUS 100.
LINE THRU 2 AT N 35 15 20 W, OFFSET MINUS PC 3 TO 18
LINE THRU 5 AT AZ 2 TO 7 PLUS ANGLE 'A4 f , OFF P

DIST 'X'
LINE THRU 2 AT 270
LINE THRU 8 TOWARD 20
LINE THRU 7 AT 3 TO 5 PLUS 90, OFFSET PLUS 100

The word print as an optional data iteITl at the end of a cOITlITland takes
the forITl PRINT. If the print ITlodifier is given, interITlediate output will be
printed, usually the data values for the object being stored by the cornrnand.
The Set cOITlITland can be used to autoITlatically insert a print ITlodifier
wherever it is allowed.

7

SET COMMANDS

Set System

SET (SYSTEM) specs

where specs is one or more of the following (for each pair, only one can be
given) :

NE or XY -- --
NAZIMUTH or SAZIMUTHS ---- ----
AZIMUTHS or BEARINGS
DEC3 or DEC2
ASEC or ADEC
COMPUTE MODE or CHECK MODE ----- ----
PRINT MODE or NOPRINT MODE
REDEFINE MODE or NORDEFINE MODE

The meaning of the settings is as follows:

NE
XY
NAZIMUTHS
SAZIMUTHS
AZIMUTHS
BEARINGS
DEC3

DEC2

ASEC
ADEC
COMPUTE
CHECK
PRINT

NOPRINT

REDEFINE

NORDEFINE

- On I/O, horizontal coordinates, North followed by East
- On I/O, horizontal coordinates, X followed by Y
- On I/O, all azimuth values measured from north
- On I/O, all azimuth values measured from south
- On output, directions printed as azimuths
- On output, directions printed as bearings
- On output, distance and coordinate values with 3

decimals
- On output, distance and coordinate values with 2

decimals
- On output, angle and direction values with even seconds
- On output, angle and direction values with 2 decimals
- Entrie s made in data table s

Comparisons made with data table entrie s
- Optional print modifier automatically inserted for

intermediate output after each command
- No intermediate output unles s requested by giving

optional print modifier in cOITlmand
- Redefinition of objects is perITlitted and is not to be

considered an error
- Redefinition of objects is not permitted, and if atteITlpted,

the cOITlrnand is considered in error and is not
executed.

8

Set Constants

SET (CONSTANT) values

where values is one or more of the following:

DTOLERANCE v
ATOLERANCE v
MAXIMUM (ERRORS) v

The meaning of the various values forms is described in the sections which

follow.

DTOLERANCE

The constant is for gIvIng the tolerance to be used when the system is
operating in the check mode when checking stored values for distances and
coordinates. The value for v is the tolerance. For example, the command

SET CONSTANT DTOL 0.01

would mean that distances, coordinates, stations, and so forth, which com
pare within.± 0.01 would be considered IICHECK. rr

ATOLERANCE

The constant is for gIvIng the tolerance to be used when the system is
operating in the check mode when checking stored values for angles and
directions. The value for v is the tolerance in seconds. For example, the
command

SET CONSTA.NT A.TOL 0.5

would mean that angles and directions which compare within + 0.5 seconds
would be considered IICHECK. II

MA.XIMUM ERRORS

The constant is for stating the maximum number of commands (except
Print commands) which reference one or more undefined objects allowed in
a single run before execution of further commands is inhibited. For exam
pIe, the command

SET CONSTANT MAXIMUM ERRORS 10

would mean that after 10 such commands have been detected in a run, the
commands which follow will not be executed.

9

FILE COMMANDS

File Save

FILE SAVE password filename

where pas sword is a 1- to 8-character password defined by the installation
in the INSTALLATION SET command and filename is a 1- to 8-character
name to be assigned to the file which is to be created. Both password and
filename must be enclosed in single quotes.

This command will cause the current contents of the COGO data tables
(i. e., all presently defined objects) to be stored as a permanent file on disk,
which file will have name filename.

The password prevents unauthorized users from creating files; i. e., if
the given password is not one of those specified by the installation in the IN
s TALLA TION SE T command, then the file will not be created and a me s sage
will be printed.

If a file with filename already exists, a message will be printed, the old
contents of the file destroyed, and the new contents stored in the file.

Example:

FILE SAVE 'USERA' 'PROBLEMl'

File Restore

FILE RESTORE filename

where filename is a 1- to 8-character name of the file whose contents are to
be stored in the COGO data tables. This command has no effect on the file
itself; i. e., the contents of the file will not be changed.

An automatic SET SYSTEM REDEFINE MODE command is executed in
ternally for all redefinition of objects. If objects having the same identifiers
appear both in the data tables and on the file, the value on the file will take
precedence and will replace the value in the data table. The over -all effect
of this command is to merge the file with the current contents of the. data
tables, the file taking precedence over the data tables.

10

If the systern is in the CHECK rnode when the FILE RESTORE cornrnand
is given, the precedence rule will be reversed for the types of objects which
are checked. The objects being read in frorn the file will be checked against
the stored objects. If they do not check, the file values and the stored values
are printed and the stored values are not changed.

Exarnple:

FILE RESTORE 'PROBLEMl'

File Delete

FILE DELETE password list
FILE DELETE password ALL

where password is a 1- to 8-character password defined by the installation
in the INSTALLATION SET comrnand, list is a list of 1 or rnore file narnes
which are 1 to 8 characters, and ALL specifies all files.

This cornrnand will cause the specified files to be deleted if the password
is valid. If it is not valid, a rnes sage will be printed.

Password and the filenarnes in list rnust be enclosed in single quotes.

Exarnples:

FILE DELETE 'USERA' 'PROBLEMl' 'PROBLEM2'
FILE DELETE 'USERB' ALL

File List

FILE LIST

This cornrnand will list the narnes of all currently defined files in the COGO
user data set.

File Print

FILE PRINT list ----- --
FILE PRINT ALL

where list and ALL are the same as in the file delete cornrnand. If the list
forrn is used, each file narne rnust be enclosed in single quotes.

11

This corrunand will print the names and/ or id's of all objects stored in
the specified file name or in all files if the ALL form is used. No values
will be printed, only the object identifiers.

Example:

FILE PRINT 'PROBLEMl' 'COG037'

PRINT AND DELETE COMMANDS

The Print cOITlITland provides for the printing of numerical data for
stored objects and the Delete command the deletion of stored obje cts from
the data tables. The general forms of the commands are

PRINT ~ list
PRINT ALL types
PRINT ALL TABLES

DELETE ~ list
DELETE ALL types
DELETE ALL TABLES

where ~ may be anyone of the following words, and types may be more
than one (TABLES is the equivalent of giving all types):

POINTS
LINES
CURVES

A,ZIMUTHS
BEARINGS
ANGLES

DISTANCES
COURSES
CHAINS

PROFILES
TEXTS

and where list is one or more object names (~, b, c ...) or identification
numbers (2.., j, k ...). If an object in the list is not a stored object, a
message will be printed to identify the undefined object, but it will not con
tribute to the error count. Further, the remaining objects in the list will be
proces sed and printed.

When ~ is POINTS, LINES, or CURVES, the items in the print list
can be of the form i TO ~ (meaning all stored objects in the identification
number range j to k):--When ~ is DISTANCES, AZIMUTHS, BEARINGS,
or COURSES, the items in the list can take the forITl ~ TO EE.., and in the
case of ANGLES, the form AT ~ from.FE: to~, the numerical output values
being computed using the stored point values.

More detailed information on the print commands, including a descrip
tion of the numerical values which are printed and special forms of the print
command, is given under the command specifications for each type object.

The PRINT corrunand word can also be abbreviated to the single letter P
followed by one or more blanks.

12

b '1 UK~ C 0Ivilvi.AI~:U5

The Store command provides for the defining of objects to be stored and
the storage in the data tables of numerical values associated with such ob
jects. The following is a summary list of such commands. They are defined
in detail in the command specifications for each type object.

Point
STORE (POINT) E. X~, Y ~, STA~, Z v
STORE (POINT) E. N~, E~, STA~, Z v

Distance
STORE DISTANCE a distance (operator, distance), print
STORE DISTANCE ~ RADIUS of CURVE i at station, print
STORE DISTANCE ~ STATION OF ~ MINUS STATION OF ~, print

Angle
STORE ANGLE ~ angle (operator, modifier), print

Azimuth or Bearing

Line

STORE AZIMUTH a direction, round, print
STORE AZIMUTH ~ TANGENT to CURVE i at station, print

STORE LINE i thru ~ at direction, print
STORE LINE i thru ~ TOWARD~, print
STORE LINE i thru E. PARALLEL to LINE 1, offset, print
STORE LINE i. thru E: TANGENT to CURVE j, at station, offset, print

Course
STORE COURSE ~ ~ to~, print
STORE COURSE ~ ~ to E., distance, direction, print
STORE COURSE ~ na to nb, PARALLEL to COURSE~, offset, print

Curve
STORE CURVE i, reference, b/spiral, element, a/spiral, a/tangent,

c / station
STORE CURVE i, CONCENTRIC with CURVE 1, offset, c/station
STORE CURVE i, PARALLEL to CURVE 1, offset, c/station

Chain

STORE CHAIN~, list

Text
STORE TEXT a n

The STORE command word can also be abbreviated to the single
letter §. followed by one or more blanks.

13

POINT COMMANDS

Store Point

STORE (POINT) E. X v, y ~, STA~, Z v
STORE (POINT) n N~, E~, STA~, Z v

where n is the identification number of the point to be stored. If the numer
ical data values (~rs) are in proper order, compatible with the system set
ting, the labels (X, Y, etc.) may be omitted. If one item has a label, all
those which follow must have a label. If all items are labeled, they may be
in any order. Assuming the system is set for X, Y, the following are exam
ples of consistent commands.

STORE POINT 4 X 1000 Y 2000 STA 15+00 Z 300
STORE POINT 4 1000 2000 15+00 300
STORE POINT 4 1000 2000 Z 300
STORE POINT 4 N 2000 E 2000 Z 300 STA 15+00
STORE POINT 4 STA, 15+00, Z 300
STORE POINT 4 1000 2000
STORE POINT 4 STA 15+00

Coordinates and elevation values may be entered with a negative sign.

Print Stored Points

PRINT POINTS Ei, pj, pk
PRINT POINTS Ei. TO pj, (E!s. TO .E!.),
PRINT ALL POINTS

The first two forms may be mixed. The values printed are the table entries
for the stored points. Undefined entrie s are printed as a row of asterisks.

Delete Stored Points

Same forms as for Print Stored points with use of word DELETE instead
of PRINT.

Equate Point

EQUA TE E. to~, print

where ~ is the identification number of a new point to be stored in the Point
Table with the same data values as in the Point Table for stored point ~.
The expected use of this command is for cases where a position in the hori
zontal plane has a number of different station and/or elevation values, de
pending on which alignment or profile it is as sociated with. Typically, this
command would be followed by appropriate commands to store the correct
station and elevation, preserving the horizontal coordinate values.

14

- __ - .. - __ __ - - - __ - .II. _ __

V1i:) 1.fi.1\1 \...,;~ \...,;UlVllVl.fi.l\lVi:)

Store Distance

STORE DISTANCE ~ distance, (operator, ITlodifier), print

where a is the naITle of the distance to be stored. If the optional data iteITls
operator, ITlodifier are included, the value of distance is ITlodified by the
value of ITlodifier to cOITlpute the value to be stored for a. If operator is
P/M, ITlodifier takes any of the standard forITls for distance; that is, facility
is provided to add or subtract two distances. If operator is MULTIPLY or
DIVIDE, ITlodifier ITlust be a nUITlerical data value (v) which is treated as a
scalar. For exaITlple,

STORE DISTANCE 'X' DIST 4 TO 8 PLUS 50.

The distance froITl point 4 to point 8 would be cOITlputed, 50. would be added
to it, and the SUITl stored for 'X'.

COITlpute Radius and Store Distance

STORE DISTANCE a RADIUS of CURVE i. at station, print

The radius to Curve i. at the value of station is cOITlputed and stored. If sta
tion is oITlitted and i is a circular curve or a circular curve with transition
spirals, the circular curve radius is stored. If station is oITlitted and i is a
spiral, the cOITlITland is considered to be an error and no value is stored. If
station is specified but is not on the curve, the cOITlITland is considered to be
in error and no value is stored. In each such case, a ITlessage in printed.

COITlpute Station Difference and Store Distance

STORE DISTANCE ~ STATION OF ~ MINUS STATION OF EE., print

The station of stored point ~ is subtracted froITl the station of stored point
~ and the difference (absolute value) is stored for~. A nUITlerical value for
station ITlay be inserted in place of the OF ~ and OF .EE.. data iteITls.

Print Stored Distance s

PRINT DISTANCES ~, b, c,
PRINT ALL DISTANCES

The value printed is the ITlagnitude of the distance.

15

Compute and Print Distance s

PRINT DISTANCES ~ TO'p!:, (~ TO ~),
PRINT DISTANCES ~ TO .EE. (TO ~ TO ~ .

The two forms can be combined, such as

PRINT DISTANCES 2 TO 4, 6 TO 8 TO 7, 3 TO 5, PC 2 TO 9 TO PT 3

Delete Stored Distances

DELETE DISTANCES a, b, c
DELETE ALL DISTANCES

Example Distance Commands

STORE DISTANCE 'A' POINT 8 TO POINT 5
STORE DISTANCE 'B35' PC 3 TO CC 3 DIVIDE BY 2. °
STORE DISTANCE '99' DIST 'A' MINUS DIST 'B'
STORE DISTANCE 'JA.CK' 4 TO 6 PLUS 8 TO 10, PRINT

STORE DISTANCE 'M' RADIUS OF CURVE 4 AT STA 5+25.17
S DIS 'M' RAD CUR 4 5+25.17

STO DIST 'BEN' STA OF PC 18 MINUS STA OF PT 15

PRINT DISTANCES 'A', 'B35', '99', 'JACK', 'M', 'BEN'
PRI DIST 2 TO 4 TO 6 TO 8, 5 TO 7

16

Al''JuLl!.. C01vilviA.l~:U5

Store Angle

STORE ANGLE a angle (operator, modifier), print

where a is the name of the angle to be stored. If the optional data items
operator, modifier are included, the value of angle is modified by the value
of modifier to compute the value to be stored for~. If operator is P/M,
modifier takes any of the standard allowable forms for angle; that is, facility
is provided to add or subtract two angles. If operator is MULTIPLY or
DIVIDE, modifier must be a numerical data value (v) which is treated as
a scalar. Examples:

STORE ANGLE 'A.l' ANGLE AT 2 FROM 4 TO 6 PLUS ANGLE 'B'
STORE ANGLE ICI ANGLE 'AI' DIVIDED BY 3.0

Printed Stored Angles

PRINT ANGLES~, b, c,
PRINT ALL ANGLES

The value printed is the magnitude of the angle in degrees, minutes, and
seconds.

Compute and Print Angles

PRINT ANGLE A T ~ from EE. to~, (A T Ei from ~ to E!),

Delete Stored Angles

DELETE ANGLES~, b, c
DELETE A.LL ANGLES

17

DIRECTION COMMANDS

In the command specifications which follow, the word BEARING may be
substituted wherever the word AZIMUTH appears.

Store Azimuth

STORE AZIMUTH a direction, round, print

where a is the name of the direction to be stored. If the optional data item
round is included, it takes one of the following forms:

ROUND to v MINUTES
ROUND to v SECONDS

The value of direction is rounded to the nearest even v minutes or seconds
before being stored.

Compute Tangent and Store Direction

STORE AZIMUTH ~ TANGENT to CURVE i at station, print

The direction of the tangent ahead at the value of station on curve i is com
puted and stored. If the station occurs before the beginning of the curve, the
back tangent direction is stored; if after the end of the curve, the ahead tan
gent direction is stored. Messages are printed in these cases.

AZIMUTH a

STORE AZIMUTH a TANGENT to CURVE i at station

18

Print Stored Direc;tions

PRINT AZIMUTHS~, b, c
PRINT ALL AZIMUTHS

The value printed is the magnitude of the direction in degrees, minutes, and
seconds.

Compute and Print Directions

PRINT AZIMUTHS ~ TO EE-' round
PRINT AZIMUTHS ~ TO~, (~TO Ei),
PRINT A.ZIMUTHS ~ TO pb (TO E TO pd

The second and third forms may be mixed. In the first form the optional
data item round is as described under Store Azimuth except that the rounding
occurs before printing instead of before storage.

Delete Sto red Dire ctions

DELETE AZIMUTHS~, b, c
DELETE ALL AZIMUTHS

Print Direction of Stored Line

PRINT AZIMUTH of LINE i

ExaITlple Direction COITlITlands

STORE AZIMUTH 'A.Zl' 275 15 23.17
STORE AZIMUTH '4' AZ 32 TO 56 PLUS 90
STORE AZIMUTH 'C3'
STORE BEARING 'B'

3 TO 7 PLUS ANGLE AT 15, 18, 20
5 TO 8 ROUND TO 30 SECONDS

STORE BEARING 'H' TANGENT TO CURVE 4 AT STA 10+50
PRINT AZIMUTHS 2 TO 4, 6 TO 8, 3 TO 5 TO 7

19

LINE COMMANDS

Store Line

STORE LINE i thru ~ at direction, print
STORE LINE i thru ~ TOWARD EE., print

where i is the identification number of the line to be stored, ~ is the stored
point on the line, and direction is the dire ction of the line. In the se cond
form, the direction of the line is computed as the direction from ~ to stored
point EE..

STORE LlNEJ. thru po at direction STORE LINE i thru ~ TOWARD ~

Compute and Store Parallel Line

STORE LINE i thru ~ PARALLEL to LINE 1, offset, print
STORE LINE i thru E. PARALLEL to line, offset, print

Point ~ is first located at the offset distance from the stored point on the
stored line j and the coordinates of ~ are stored in the Point Table. Line i.
will have the same direction as line 1. If the offset data item is omitted, the
two lines will coincide, an offset distance of zero being used. This command
stores both Line i. and Point n. In the second and more general form, the
equivalent of line j is determined from the line data item.

STORE LINE i thru !! PARALLEL to LINE it offset

20

Compute and Store Tangent Line

STORE LINE i thru ~ TANGENT to CURVE i at station, offset, print

Point ~ is first located on stored curve 1 at the value of station (if offset is
specified, ~ is actually located on the radial to the curve at the offset dis
tance) and the coordinate s of n are stored in the Point Table. The forward
direction of the tangent to the curve at the value of station is computed for
the direction of the line. This command stores both Line i and Point n.

CURVE

STORE LI NE i t hru n TANGENT to CURVE 1 at station, offset

Print Stored Lines

PRINT LINES i, J, k
PRINT LINES i TO 1, (k TO JJ,
PRINT ALL LINES

The first two forms can be mixed, such as in the following example:

PRINT LINES 14, 8, 50 TO 60, 35, 100 TO 200, 3, 5, 20 TO 30

For each line, the point number and direction are printed.

Delete Line s

To delete lines from the Line Table, the same forms as Print Lines
may be used with the command DELETE replacing the command PRINT.

21

COURSE COMMANDS

Store Course

STORE COURSE ~ ~ to~, print

where a is the name of the course to be stored, ~ is the beginning point,
and ~ is the end point.

Compute and Store Course

STORE COURSE a pa to n, distance, direction, print

The coordinates of ~ are computed at the values of distance and direction
from stored point~. Point n is stored in the Point Table and then serves
as pb in the Store Course command.

n

direction
CO\JRS€' a

po

STORE COURSE~, po to.!!., distance, direction

Print Stored Courses

PRINT COURSES~, b, c
PRINT ALL COURSES

The value printed is the length and dire ction of the course.

Compute and Print Courses

PRINT COURSES pa TO pb, (pc TO pd),

PRINT COURSES ~ TO ~ TO ~ (TO .E2! TO pe)

The two forms may be mixed, such as

PRINT COURSES 2 TO 4, 6 TO 8 TO 7, 3 TO 5, PC 2 TO 9 TO PT 3

22

L..ompute and. ~tore J;Jarallel L..ourse

STORE COURSE~, na to nb, PARALLEL to COURSE~, offset, print
STORE COURSE ~ na to nb, PARALLEL to course, print

Points na and nb are computed at the offset distance from the beginning and
end points, respectively, of stored course!::. Points na and nb are stored in
the Point Table and then serve as ~ and ~ in the Store Course command.
If offset is omitted, an offset distance of zero is used, and the two courses
will coincide. In the second and more general form, the equivalent of
course.§: and the offset are determined from any of the forms of the course
data item.

nb

STORE COURSE Q., no to nb, PARALLEL to COURSE b, offset

Delete Stored Courses

DELETE COURSES a, b, c
DELETE A.LL COURSES

Transpose Stored Courses

TRANSPOSE COURSES~, b, c

The order of the beginning point and the end point for course.§: is transposed
in the Course Table; that is, the beginning point becomes the end point, and
vice versa. The Station Course command should usually follow this com
mand to provide stationing in the new forward sense.

Station Stored Courses

STATION COURSE a station

See Station command for detailed specifications.

23

CURVE COMMANDS

Store Circular Curve

STORE CURVE i, reference, elelllent, a/tangent, c/station, print

where i is the identification nUlllber of the curve to be stored in the Curve
Table and the data itellls are as described below:

reference: allowable forllls - one of the following
PB at~, DB direction, TL distance
PB at~, DB dire ction, TTL distance
PC at~, DB direction
PI at pa, DB direction
PB at pa, PI at ~

elelllent: allowable forllls - one of the following
RADIUS distance
DEGREE angle
LENGTH
TANGENT
LCHORD
EXTERNAL
CC at~

distance
distance
distance
distance

a/tangent: allowable forms - one of the following
DA direction
p/m DEFLECTION angle
p/m DELTA angle
PA at ~ (only with 2nd, 4th, and 5th forlll of reference)
p/m s / element (only if elelllent is RADIUS or DEGREE)

where s / elelllent is one of the following
LENGTH distance
TANGENT distance
LCHORD distance
EXTERNAL distance

c/ station (optional)
STATION of label station

where label is any curve point label except CC. label lllay also
be PB.

If c / station is olllitted, PC (or TS) is assullled to have station value
of 0+00.

If reference is of the second or fifth form, then elelllent may be TL distance.

24

DEFLECTION

Circular CURVE Nomenclature and Data Items

Exarrlple Curve COrrlrrlands

STORE CURVE 1, PB AT 5, DB N 45 E, TL 125.16, R 2000, DA S 35 E
STORE CURVE 2, PC AT 7, DB 4 TO 6, DEG 3, PLUS DEF 78 15
STORE CURVE 3, PI AT 8, DB 270 15, R 3000, MINUS L 1000
STORE CURVE 4, PB AT 4, DB 45 0, CC A.T CC 2, PA. AT 7
STORE CURVE 5, PB AT PT 3, DB PI 3 TO PT 3, TL 0., T 1000, DA 45
STORE CURVE 6, PC AT 5, DB 'A', DEG 'B', P TAN 4 TO 8
STORE CURVE 7, PB 10, PI 12, R 3 TO 5, PA 20

STORE CURVE 8, PB 2, DB 45, TL 100. ,SLB 300, R 3000, SLA 200, DA 135
STORE CURVE 9, PI 4, DB 25, SLB 400, DEG 5, SAA 10, P DEF 60
STORE CURVE 10, TS 3, DB 'Z', SLB 500, R 5000, DA. 178 56 22
STORE CURVE 12, PB 5, PI 6, DEG 3 30, SL 400, PA A.T 44

MODIFY CURVE 2, DEG 2 30
MODIFY CURVE 3, R 3500
MODIFY CURVE 9, SLB 300

STORE CURVE 20, CONCENTRIC WITH CURVE 4, OFFSET P 50
STORE CURVE 22, CONCENTRIC WITH CURVE 6, OFF M 3 TO 5
STORE CURVE 24, PARALLEL TO CURVE 2, OFFSET M 24.
STORE CURVE 26, PARALLEL TO CURVE 24, OFF P 'X3'

PRINT CURVES 1 TO 15, 24, 50 TO 60, 98, 127

25

Store Circular Curve with Transition Spirals

STORE CURVE i, reference, b/spiral, element, a/spiral, a/tangent,
-- c/ station, Print

where i is the identification number of the curve to be stored in the Curve
Table and the data items are as described below:

reference
Allowable forms same as for store circular curve except that the
third form becomes

TS at~, DB direction

b / spiral (back spiral - spiral from TS) - allowable forms
SLB distance
SAB angle

element (of circular curve segment) - allowable forms
RADIUS distance
DEGREE angle

If a/tangent gives DELTA, then element may also be
LENGTH distance
TANGENT
LCHORD
EXTERNAL

distance
distance
distance

a/ spiral (ahead spiral - spiral to ST) - allowable forms
SLA distance
SAA angle

a/tangent: allowable forms - one of the following
DA dire ction
p/m DEFLECTION angle (deflection angle of total curve)

(delta angle of circular curve)
(only with 2nd, 4th, and 5th form of reference)

p/m DELTA angle
PA at~

c/ station (optional)
Same forms as for Store Circular Curve.

If the curve is to have equal length transition spirals at both ends, then
either b/ spiral or a/ spiral or both may take one of the following forms:

SL distance
SA angle

The same values will be used for both spirals, so in this case one or the
other of the data items may be omitted.

26

If the curve is to have a transition curve on only one end, the other
spiral TIlay be given as a zero length spiral (SLB O. or SLA O.) or TIlay be
oTIlitted.

DEFLECTION

Spiraled CURVE Nomenclature and Data Items

Type C-Circular Curve Type SCS-Spirals at Both Ends

Type SC - Spiral at Beginning Type CS - Spi ral at End

CURVE TYPES and CURVE POINT LABELS

27

Modify Stored Curve

MODIFY CUR VE i, b / spiral, elem.ent, a/ spiral, c/ station, print

Stored curve i is recom.puted and redefined using given new values for the
spirals and/o; element data items. The command is the equivalent of a
Store Curve command except that reference and a/tangent are not given be
cause the stored values which define them are held. The location of the PI
and the directions of the back and ahead tangents (DB and DA) are held fixed.

If the spiral data item.s are; not given, the stored values for spiral lengths
are held fixed. If the element data item is npt given, the stored value for
circular curve radius is held fixed. If c/ station data item is not given, the
stored value for the PI is held fixed in restationing the curve.

Store Concentric Curve

STORE CURVE i, CONCENTRIC with CURVE i, offset, c/station, print

A new curve i is generated which has the same center and tangent directions
as stored curve i. The tangents are shifted by the value of offset. This
command does not apply to spiral curves.

offset

CURVEi CONCENTRIC with CURVEl CURVE i PARALLEL to CURVE 1

Store Parallel Curve

STORE CURVE i, PARALLEL to CURVE 1, offset, c/station, print

A new curve i. is generated which has the same curve element values and
tangent directions as stored curve i. The tangents are shifted by the value
of offset.

28

Restation Stored Curve

STATION CURVE i, label station

where label is any curve point label except CG. The stored curve i is re
stationed with respect to label which is given by the value of station.

Print Stored Curves

PRINT CURVES i, j, k
PRINT CURVES i TO j, (k TO 1),
PRINT ALL CURVES

The first two forms can be mixed. The curve point values (coordinates and
station) and the curve element values (radius, length, and so forth) are
printed.

Delete Stored Curves

To delete curves from the Curve Table, the same forms as Print
Curves may be used with the command DELETE replacing the cornrnand
PRINT.

Transpos e Stored Curve

TRANSPOSE CURVE i

Curve i is transposed; that is, the old PT becomes the new PC. A clock
wise curve is converted to a counterclockwise curve, and vice versa. The
values of the curve elements are unchanged and the position of the curve in
space is unchanged (PI and CC unchanged).

A stored curve has a forward sense (PC toward PT) and curve direction
(clockwise or counterclockwise) which are defined at the tirne the curve is
stored. Situations can develop where the Engineer may want to reverse the
forward sense and curve direction of a stored curve in order to include it in
a chain list. The Transpose Curve comrnand facilitates coping with such
situations.

Alignment Curves

The Store Curve cornrnands provide for the definition and storage of in
dependent curves. The more comrnon way of defining and storing curves
will be via the Curve subcornrnands of the Alignrnent cornrnand, the proce
dure for which is defined in the Alignrnent specifications.

29

CHAIN COMMANDS

In the conunand specifications which follow, wherever the word CHAIN
is used, anyone of the following words may be substituted: TRAVERSE,
ALIGNMENT, PA.RCEL, BASELINE, CENTERLINE, LIST.

Store Chain

STORE CHAIN a, list

where ~ is the name of the chain to be stored, and list is the appropriate list
of stored objects which define the chain. Objects which may be included in
the list include:

Objects

Integer Points
Curve Points
Courses
Curves
Chains
Gaps

List: 2,8,4,7,5,2~

Form

(POINT) li
label i ---
COURSE a
CURVE i
CHAIN a
GAP

List: CURVE 7, CURVE 4, CURVE 8, CURVE 3,
CURVE 5, CURVE 9

/ '" / , 4
/ ']

2~ /

", /
~-----/. 5 7

List: 4, CURVE 8, CURVE 3,7 7,
/

/
/

/

List: 5, 2, 7, 4, 8, 3

1\8 \5 /'
\ 1\7 / \
\ / \ / \
\ / \ / \
\ / \ / \3
2V V4

EXAMPLES OF CHAIN OBJECTS AND LISTS

30

De scribe Stored Chain

DESCRIBE CHAIN a

A report is printed which describes the detailed geom.etry of the chain. The
report includes the as sociated text, coordinates of all points, the lengths and
directions of all sides, and the standard data for all curves. If the chain is
a clos ed figure (last point in the list is sam.e as first point in list), the area
is also printed.

Print Stored Chain List

PRINT CHAINS~, b, c
PRINT ALL CHAINS

The list stored in the Chain Table for each chain is printed.

Delete Stored Chains

DELETE CHAINS a, b, c
DELETE ALL CHAINS

The indicated chains are deleted from. the Chain Table.

Transpose Stored Chains

TRANSPOSE CHAIN a

The order of all objects in the list for chain ~ is transposed in the Chain
Table; that is, the last object becom.es the first, next to last the second, and
so forth. Each curve in the list is also transposed (see Transpose Curve
comm.and). The Station Chain com.m.and should usually follow this com.rnand
to provide continuous stationing in the new forward sense.

A chain has a forward sense (the forward order of the list) which is de
fined at the tim.e the chain is stored. Situations can develop where the user
may want to reverse or transpose the order. For exam.ple, the user may
wish to define an alignm.ent with a list that includes already stored chains
which are in opposite order to the forward sense of the alignm.ent. The
Transpose Chain com.m.and facilitates coping with such situations.

Station Stored Chains

STATION CHAIN a (FROM~) station (AHEAD to EE.)' (BACK to ~)

See Station com.m.and for detailed specifications.

31

Chain Area

AREA list

where list is the same as for Store Chain; that is, a list of objects which de
fines the chain which bounds the closed figure for which the area is to be
computed (i. e., list define s the perimeter of the figure). The beginning
point of the first object in the list should coincide (same point or same hori
zontal coordinates) with the end point of the last object in the list to define a
closed figure. If they do not coincide, a closing link or special connector is
generated to close the figure, and the Engineer is notified via a message.

The perimeter or boundary of the figure may include curves, segments
of which will be automatically added or subtracted to give the correct net
area enclosed by the curvilinear boundary. The area of each curve segment
is printed as it is computed. If a curve has spirals, separate segment areas
are computed for each spiral and the circular curve, with subchords from
the TS to SC to CS to ST.

The list should define a single figure; that is, the boundary should not
intersect itself. If it does cross itself, resulting in multiple closed figures,
the area computed will not have meaning.

To compute and print the area of a single stored chain, the com.mand
would be

AREA CHAIN a

and to compute and print the segment areas of a single stored curve, the
command would be

AREA CURVE i

Example Chain Commands

STORE PARCEL 'A' 4, 3, CURVE 8, 7, 5, 4
STORE ALIGNMENT 'RAMP-J' 12, CURVE 5, CURVE 10, 27
STORE TRAVERSE 'BOUND' 16, 20, 4, 10, 15, 94, 25
STORE ALIGN 'B', ALIGN 'A', ALIGN 'RAMP-J', ALI 'C'
STORE BASELINE 'B24-X', TRA '2', 18, TRA 'X12'
DESCRIBE PARCEL 'A'
DESCRIBE CHAINS 'RA.MP-J', 'BOUND', 'B24-X'
STATION ALIGN 'B' FROM PC 12 STA 5+00, AHEAD TO PT 4
STA TION ALIGN 'RAMP-J' 0+00
AREA PARCEL 'A'
AREA 2, 4, 6, 8, 5, CURVE 10, 2

32

T.t..:XT CUMMANlJ~

Store Text

STORE TEXT ~, n

where ~ is the name of the set of text and E:. is the number of lines (cards)
which follow the command and which contain the text. When the command is
executed, the next ~ cards are read and stored in the Text Table as Text a.
The text can contain any legal characters.

Text Output

Whenever the com.m.and DESCRIBE CHAIN ~ is executed, the Text Table
is checked. If there is a stored text with the same name, that set of text is
printed before the regular output report for the Describe command. The
text printout is a card image of the text which is stored.

Stored text may also be printed with the comTIlands:

PRINT TEXTS~, b, c ...
PRINT ALL TEXTS

and may be deleted with the commands:

DELETE TEXTS~, b, c
DELE TE ALL TEXTS

Example Store Text

STORE TEXT 'LOT/18', 7
PARCEL LOT/18 IS LOCATED IN SUNSHINE SUBDIVISION,
TOWN OF LEXINGTON, MIDDLESEX COUNTY, MASSACHUSETTS,
IN THE NOR THWEST QUADRANT OF THE INTERSECTION
OF OLD COLONY ROAD AND MINUTEMAN LANE.
OWNED BY SMITH REAL ESTATE CORPORATION.
OCCUPIED BY SERVICE STATION AND PARKING LOT.
ASSESSED VALUATION $376,500.

33

STATION COMMAND

Station Point

STATION .E.i station

Stored integer point E.i is given the value of station.

Station Points on Curve

STATION _O_N _C_U_RVE i, (POINTS) Ei, pj, pk ...

The stations of the stored integer points in the list are computed on stored
curve 2 and are stored in the Point Table. If a point is not on the curve
(±. 1), the station is computed for the radial projection of the point onto the
curve or nearest tangent to the curve, a message being printed. Stationing
is always computed with respect to the station of the beginning point of
the curve segment except when the point is projected onto the ahead tangent.
Then station is based on the station of the end (PT or ST) point of the curve.

Restation Stored Curve

STA,TION CURVE 2, label station

where label is any curve point label except CC. The stored curve i is re
stationed with respect to label which is given the value of station.

Station Points on Course

STATION ON COURSE a, (POINTS) Ei:., pj, pk

The stations of the stored integer points in the list are computed on stored
course ~ and are stored in the Point Table. If a point is not on the course
(±.1), the station is con'lputed for the projection of the point onto the course
or course extension, a message being printed. Stationing is always com
puted with respect to the beginning point of the course, and stationing is as
sumed to be increasing in the direction toward the end point, with one excep
tion. If the station of the end point is stored and is compatible with the
station of the beginning point (absolute value of difference in station equals
length of course) and indicates descending stationing, then the point will be
correctly stationed in the descending stationing.

34

Station or Restation Stored Course

STATION COURSE a station

The stored course ~ is stationed with respect to the beginning point. If both
points are integer points, the beginning point is given the value of station and
the end point is given the value of station plus the length of the course. If
the end point is a curve point, its station value is left unchanged and the be
ginning point is given the value of station. If the beginning point is a curve
point, its station value is left unchanged and the end point is given the value
of station plus the length of the course. If both points are curve points, no
stationing will be performed and the user will be so notified.

Station or Restation Stored Chain

STATION CHAIN a (FROM~) station (AHEAD to~) (BACK to~)

Stored chain ~ is stationed or restationed continuously, starting at point~,
which is assigned the value of station. Stationing is computed forward to
point pb and is backed up to point~. ~,.E!::, and ~ must be points in the
chain list for chain ~ (~ may be a PC or TS curve point; ~ may be a PT or
ST curve point; ~ may be a PC or TS curve point). Every point, course,
curve, and chain in the chain list from EE. to ~ is stationed or restationed,
the station values being stored in the data tables.

If pa is not given, it is taken to be the point at the beginning of the chain.
If pb is not given, it is taken to be the point at the end of the chain. If ~ is
not given, it is taken to be the same point as ~ (i. e., no back stationing).
For example, if chain fA' is stored as

STORE ALIGNMENT 'A' 2, 8, CURVE 5, CURVE 7, 4, 6

the command

STATION ALIGN rAt STA 5+00

will store 5+00 as the station of Point 2 and will station lA' continuously
from Point 2 to Point 6,

The command

STATION ALIGN tA' FROM PC 5, STA. 10+00, AHEAD TO 4,
BACK TO 8

will store 10+00 as the station of the PC of Curve 5, will back up the sta
tioning to Point 8, and will compute and store stationing ahead to Point 4.

35

PROFILE COMMANDS

Profile Command

The command calls a general purpose profile subprogram which pro
cesses a set of building block subcommands which define and store a vertical
alignment profile in the Profile Table. The general form of the com.mand
and the order of the sub commands is as follows:

PROFILE a
VPI subcommands (three or more)
END of PROFILE, print

where ~ is the name (1 to 8 characters enclosed in single quotes) of the pro
file and the VPI subcommands are as described in the section which follows.
If the optional print modifier is given with the required END command, a
Print Profile command is executed.

VPI Subcommand

VPI at.E.i, station, elevation, length

where Ei is the identification number of the integer point at the VPI. If sta
tion is not given, it is understood that the station of E..i is already stored in
the Point Table, and the stored value is used in the profile computations. If
elevation is not given, it is understood that the elevation of Ei is already
stored in the Point Table, and the stored value is used in the profile compu
tations. If length is not given, it means that no vertical curve is to be gen
e rated at the VPI. The fir s t (initial point) and last (te rminal point) VPI sub
commands should not include the length data item. When the data items are
given, they take the following forms:

Data Item

station

Allowable Forms

STATION v
where v is the station of .Ei

DISTANCE v
the station of Ei is computed by adding ~ to the station
of the previous VPI

36

Data Item

elevation

length

Allowable Yorms

ELEVATION v or Z v
where ~ is the elevation of Ei

ELEVA TION at station on (PROFILE) ~
where ~ is the name of a stored profile. The eleva
tion of Ei will be computed at the value of station on
profile ~.

GRADE p/m ~
where v is the grade in decimal percent of the tan
gent from the previous VPI to .Ei (PL US is assumed
if p/m is not given). The elevation of .Ei is com
puted using the grade value and the distance value.

GRADE at station on (PROFILE) ~
where 5:.. is the name of a stored profile. The grade
will be computed at the value of station on profile ~.
This grade value will then be used to compute the
elevation of E.i as in the previous form.

The AT forms are provided for us e in computing ramp
profiles and other conditions where the profile being
computed is constrained by another (stored) profile.

LENGTH v
where v is the length of the symmetric vertical curve
at the VPI.

LB vb, LA va
where vb is the length back and va is the length ahead
of an asymmetric vertical curve at the VPI.

DISTANCE

LENGTH

LB LA

STATION

PROFILE and VPI Nomenclature and Data Items

37

If the given length causes the vertical curve to overlap the previous ver
tical curve, an aSYlllllletric vertical curve length back which will elilllinate
the overlap is used and the Engineer is so notified.

Unknown Conditions in VPI Subcolllm.and

If in the elevation data item. the elevation and the grade are given; that
is, the cOlllllland is of the forlll:

VPI at .El station, elevation, grade, length

where elevation is either of the first two forms of the elevation data itelll and
grade is either of the second two forms of the elevation data item., the VPI
subcommand of this form may be preceded by one VPI subcom.mand of the
following forlll:

VPI at E. station, GRADE l.- length

or

VPI at n ~TATION l.-, grade, length

The unknown grade or station will be back com.puted from the VPI with sta
tion, elevation, and grade. The two VPI's can be separated by any number
of VPI subcommands of the form:

VPI at~, station, grade, length

There can be m.ore than one unknown condition in a profile so long as each
subcommand with an unknown (?) is followed by a subcom.m.and with both ele
vation and grade values in the elevation data item.

Note: The word UNKNOWN may be used in place of the sym.bol ? and
should be used when the problem is to be run at an installation
which does not have the? character on its printer chain.

Shift VPI

Since the VPI is defined by an integer point stored in the Point Table, it
may be shifted by changing the station and/ or elevation of that point by use of
the Store Point cornrnand or any other com.mand which changes these entries
in the Point Table. Since the Profile is a relative object and is dependent on
the entries in the Point Table, the Engineer m.ust be careful that he does not
unintentionally shift a Profile by changing a point station or elevation.

38

L;nange or ~tore verncal Curve Lengtn

MODIFY VC at (VPI) .Ii (ON) (PROFILE)~, length

The Profile Table entry for the vertical curve length of the vertical curve at
pj on stored Profile ~ is changed to the value of length, where length is as
described for the VPI subcommand. The new value of length replaces the
old value and will be used in generating the profile when it is referred to in
subsequent commands.

Print Stored Profile

PRINT PROFILES~, b, c
PRINT ALL PROFILES

A report is printed which describes the detailed geometry of each profile.
The report includes such standard information as the station and elevation of
the VPC, VPI, and VPT of each vertical curve, its length, grade back and
ahead, high or low point location, and so forth.

Print Elevations on Stored Profile

PRINT ELEVATIONS ON (PROFILE) ~ list

where each item in list can be a numerical station value or an item of the
form:

EVEN ~ (STA TIONS) va TO vb

Example:

PRINT ELEV ON PROFILE lp2 1
, 6+25,7+19, EVEN 50 10+00 TO 20+00,

15+76

Elevations will not be printed beyond the limits of the stored profile. If sta
tion values in the list are given in order of increasing magnitude, the speed
of proces sing is greatly increased.

Delete Stored Profiles

DELETE PROFILES~, b, c ...
DELETE ALL PROFILES

The indicated profile s are deleted from the Profile Table.

39

Constrained Vertical Curves

In the VPI subcommand (page 36-37), the length data item may take the
following special forms to fit a vertical curve to given constraints:

THRUpk
THRU STATION~, ELEVATION v
CLEAR ~ BY P/M ~
CLEAR STATION~, 1E.LEVATION v BY P/M ~
FIXED (GRADE) ~ AT (STA TION) ~

The length of a symmetrical vertical curve is computed internally to fit the
specified constraint. If LENGTH ~ is given and one of the above constraints,
then an asymmetrical vertical curve of total length v is computed internally
which fits the constraint.

Example Profile Commands

PROFILE 'MAIN'
VPI AT 27 S 0+00 Z 1000
V PI 30 S 10+00 G 2. 25 L 700
VPI AT 24 LB 800. LA 600.
V PI 43 S 5 6 + 1 7 Z 1256. 47 L 1200
VPI 15 STA?, G M 3.5, L 1000
V PI 25, S 1 79 + 25, G 1. 5, L 800
V PI 35, S 2 14 +0 0, Z 1 123., G M 2., L 1 500
VPI 7, DIST 2000., GAT 25+00 ON 'RAMP', L 1200
VPI 8, S 342+00, E 15+00 ON 'AX', LB 700 LA 800
V PI AT 45 S 400 +0 0 G ?, L 2000
VPI AT 50
END OF PROFILE, PRINT

PRINT ELEV ON 'MAIN', EVEN 20, 80+00 TO 300+00
STORE VPI 15 ON PROFILE 'MAIN', L 800
STORE 8 S 345+00
PRINT PROFILE 'MAIN'

40

LULA.'l~ LUMMA1\llJ

Introduction

The Locate com.m.and provides a variety of ways to locate (com.pute and
store the coordinates) of a point with respect to one or m.ore stored objects.
The basic cases and form.s of the com.m.and are as follows:

1) Lo cate From.

To locate a point at a given distance and direction from. a stored
point. The distances and directions can be given in a variety of ways. A
series of Locate From. com.m.ands is the equivalent of an open traverse.
The basic form. is

LOCATE E:. from. ~ distance, direction, offset, print

2) Locate On

To locate a point on a stored or defined object. The object m.ay be
a line, course, or curve. The location on the object can be given as a sta
tion or as a distance from. a stored point. The basic form. is

LOCATE E:. ON object p/m. distance from.~, offset, print

3) Locate Intersection

To locate a point at the intersection of two stored or defined objects.
The two objects can be any com.bination of lines, courses, and curves, with
or without offsets. The basic form. is

LOCATE E:., INTERSECT object (WITH) object, (NEAR~),
print

4) Locate Projection

To locate a point as the projection ofa stored point onto a stored
or defined object. The object m.ay be a line, course, or curve, with or
without an offset. The basic fa rm. is

LOCATE E., PROJECT ~ on object, print

Special form.s are also provided for locating points by fore section and by
distance and angle ties. The specifications for all form.s are described in
the sections which follow.

41

Locate From Point

LOCATE ~ from ~ p/m distance, direction, offset, print
LOCATE ~ from ~ p/m distance, p/m angle FROM EE., offset, print

Point ~ is located at the value of distance from ~ at the value of direction
(in the second form, the value of direction is computed as the direction from
pa to pb, PL US or MINUS the value of angle). A MINUS distance causes ~ to
be located in the opposite direction from the value of direction (PLUS is as
sumed if not given). If offset is given, ~ is actually located on a line paral
lel to that defined by ~ and direction and at the offset distance.

MINUS offset

pb" c/ongle

"-
"

LOCATE .!l from Q9 PI M distance

Example Locate From and On Commands

LOCATE 4 FROM 8 DIST 176.15 AZ 135 15 20
LOC 4 8 176.15 135 15 20
LOCATE 5 FROM 4 7 TO 15 N 75 25 W

\~
\~
\~
\
\
-'n

LOC 6 5 'X' AZ 4 TO 7 PLUS ANGLE AT 2, 8, 10
LOC 20 4, M 100, P 138 15 FROM 6, OFFSET P 24.

LOCA TE 12 ON LINE 5 100. FROM 2
LOCATE 14 ON CURVE 4 50 FROM PC 4
LOCATE 13 ON CURVE 8 AT STA 127+57.16
LOC 18 ON CURVE 8 24. FROM 13 OFF P 20.

42

Locate On Object

LOCATE ~ ON object p/m distance from~, offset, print
LOCATE ~ ON object at STATION station, offset, print

The object provides the direction along which distance is measured to locate
~. object can take any of the standard allowable forms for line, course, or
curve but without the object offset modifier. E lllust be a stored point on the
object. If it is not on (within ± 0.1), the command is considered to be in er
ror and is not executed. PLUS distance means!: is ahead of~, MINUS dis
tance that ~ is behind~. If necessary, the object will be extended to locate
n. If offset is given, ~ is located on the perpendicular or radial to the object
at the offset distance. If object is a curve and!: is located on the curve (not
on an offset), ~ is stationed on the curve. If object is a course and ~ is lo
cated on the course (not on an offset), !: is stationed on the course if the sta
tions of the end points are stored and are compatible.

The second form is processed the same as the first form with the fol
lowing prior action taken internally:

a) If object is a line, ~ is taken to be the line point. If object is a
course, ~ is taken to be the beginning point of the course. If ob
ject is a curve, ~ is taken to be the beginning point (PC or TS) of
the curve.

b) The value for distance is then computed by subtracting from the
given value of station, the stored station for the point taken to be pa.

MINUS

object
extension "..,
//"..,

object

'" object
,extension ,

"
LOCATE !l ON object P/M distance from~, offset

43

Locate On Tangent

LOCATE ~ _O_N __ C_U_R_VE i, sign, at TANGENT definition, offset, print

Point ~ is located and stationed on the curve at a point of tangency de
fined by definition, where definition can take one of the following forITls:

direction
The tangent to the curve at n will have the value of direction.

THRU pb
A line thru .EE.. will be tangent to the curve at n.

TO CUR VE j, sign
The tangent to Curve i will also be tangent to curve j.

The required data iteITl sign (which can appear in two places in the cOITlITland)
take s one of the following fo rITlS :

CL

CC

Clockwise continuation of the curve beyond E. in the saITle direction
as that of the tangent to the curve

Counterclockwise continuation

If the offset data iteITl is given, n is actually located on the radial to the
curve at the offset distance from the computed point of tangency. If the tan
gent point cannot be located on the curve, the command is considered to be
in error and the point is not located.

lOC 2 ON CURVE 1, Cl, TAN TO CURVE 6, CC

lOC 3 ON CURVE 1, Cl, TAN TO CURVE 6, Cl

lOC 4 ON CURVE 1, CC, TAN TO CURVE 6, Cl

lOC 5 ON CURVE 1, CC, TAN TO CURVE 6, CC

Examples of Use of Sign data item in Locate On Tangent

44

\
\

offset \

·n

n· \
\ offset
\

LOC !l ON CURVE 1 TANGENT direction, offset LOC!l ON CURVE 1 TANGENT THRU Q9,offse

Curve

LOCATE n ON CURVE i TANGENT to CURVE 1, offset

45

Locate Intersection

LOCATE n INTE'RSECT object with object (NEAR~), print

Point E: is located at the intersection of the first object with the second ob
ject. Each object can be any of the standard allowable forms for line,
course, or curve and either or both objects may have an offset. If offset is
given with the object, the intersection is computed on the offset to the speci
fied object.

The optional data item NEAR ~ may be used when two or more inter
sections are possible. The location assigned to ~ is the intersection nearest
to pat If multiple intersections are possible and the near point is not given,
an assumed near point is taken from the first of the two objects as follows:
If the first object is a line, ~ is taken to be the line point; if a course, the
beginning point of the course; if a curve, the beginning point of the curve.
One or both objects will be extended if necessary to achieve an intersection.

Point n is stationed as follows:

a} If the first object is a curve (without offset), and if the intersection
occurs on that curve (not on an extension), n will be stationed on the
curve.

b} If the first object is a course (without offset), and if the intersection
occurs on that course (not on an extension), and if the stations at
the end points are stored and are compatible, n will be stationed on
the course.

If neither of the above conditions is fully met', Point ~ will not be stationed.

When no intersection is possible even if the objects are extended, E. is
not located and an error message is printed. No intersection cases include
lines or courses which are parallel or nearly parallel, curves which are
concentric, and lines or courses which are outside of and miss curves.
Lines or courses are considered nearly parallel if the acute angle of inter
section is less than 0.1 degree. If the acute angle of intersection is less
than one degree, a warning message designating a weak solution is printed,
but the point is located.

46

.--------------------.----------- ---~-------- --- - -~~ ------ -~-

object ----

object ----
~--.......n offset _~~

~""object
./' '\ . e(_y:..\e~ extension

offset~ object

LOCATE n. INTERSECT object with object

ExaITlple Lo cate Inte r se ct COITlITlands

LOCATE 42 INTERSECT LINE 8 WITH LINE 4, PRINT
LOC 48 INT LINE THRU 3 AT N 15 W WITH COURSE 2 TO 5
LOC 35 INT CURVE 4 WITH LINE 6 NEAR PT 4
LOC 45 INT CURVE 2, OFFSET P 12. WITH CURVE 5, OFF M 10.
LOC 36 INT COURSE 'A8' WITH COURSE PC 5 TO PI 5
LOC 44 INT CURVE 3 WITH LINE THRU 5 AT 6 TO 8, NEA.R 14

47

Locate Projection

LOCATE n PROJECT ~ on object, print

Point ~ is located at the projection of ~ onto object. object can be any of
the standard allowable forms for line, course, or curve, with or without an
offset. If object is a line or course, the projection is perpendicular to the
object. If object is a curve, the projection is radial to the curve. If offset
is given with the object, ~ is located on the offset. The object will be ex
tended, if necessary, to achieve the projection. Point E. will be stationed on
the object if the object is a curve or a course without offset and if not extended.

po

" object extension

"
po ----~ /"

/~ 'n
'~I. •.. ~J" "
object ~~ (-z set

po object
extension

LOCATE n PROJECT Q.Q. on object

Example Locate Project Commands

LOCA.TE 55, PROJECT 8 ON CURVE 4
LOC 56, PROJ 10 ON COURSE 2 TO 7, OFFSET P 47.15
LOC 57, PROJ 12 ON LINE THRU 3 AT AZ 5 TO 6 P 90
LOC 58, PROJ 13 ON CURVE 5, OFF M DIST 'X', PRINT
LOC 59, PROJ 14 ON LINE 5, OFF P PI 7 TO PT 14

48

Locate Foresection

LOCATE ~ FORESECT ~ c/angle AND ~ c/angle, print

Point ~ is located at the intersection of the two lines defined by the points
and the computed directions (direction as a data item can be given in place of
either or both c/angle data items). The first c/angle is the angle at ~ from
.E!:: to~. The second c/angle is the angle at.E£ from ~ to~. This is a
special case of the intersection of two lines.

c/ongle __ ------ in ------ / --- --------- /

LOCATE .!l FORESECT .QQ, c/ongle AND Qb, c/ongle

Example Lo cate Fore se ct ComITlarids

LOCATE 70 FORESECT 5, P 305 04, AND 8, P 62 14 59
LOC 72 FOR 3, N 45 E, AND 6, N 37 W
LOC 74 FOR 10, M ANG AT 2 FROM 5 TO 7, AND 12, AZ 'A'
LOC 76 FOR PC 4, P tAl', AND PI 7, AZ 3 TO 5

49

Locate By Ties

LOCATE E. TIE ~ distance, TIE ~ DISTANCE distance, APPROX
direction, print

LOCATE E. TIE ~ distance, TIE EE... c/angle, (NEAR or FAR), print

The first forD} is the equivalent of intersecting two circles with centers
at pa and pb and with radii equal to the values of distance, respectively.
Since two intersections are possible, the approximate direction from ~ to E.
is required to determine which intersection to use for ~.

The second form is the equivalent of intersecting a circle with center ~
and radius distance with a line through ~ at a computed direction (direction
as a data item can be given in place of c/angle). c/angle is the angle atEE.
from pa to E.. Two solutions are pos sible. NEAR is given when ~ is the
solution nearest to~, FAR when it is the farthest solution. NEAR is as
sumed if neither is given.

pa

pb

LOCATE n TIE 22, distance, ~ .@,~T distance, ~ROX direction

LOCATE n, TIE pa, distance, TIE pb, c/angle, (NEAR or FAR)

Example Locate Ties Commands

LOCATE 4 TIE 2 156.43, TIE 8 DIST 3 TO 5, APPROX 45
LOC 20 TIE PC 5 IX', TIE PT 3 DIST 100, APPROX 4 TO 5
LOC 30 TIE 8 DIST 5 TO 7, TIE 7 PLUS ANG AT 7, 8, 5, NEAR
LOC 40 TIE 5 100 TIE 2 N 35 E, FAR, PRINT

50

ALIGNMENT COMMAND

Introduction

The AlignITlent cOITlITland and associated subcoITlITlands can be used to
solve a wide variety of horizontal alignITlent probleITls, ranging froTIl the
siTIlplest to the very cOTIlplex. Each subcoTIlITland defines a point (POT) or
curve in the alignTIlent and adds an object to the chain list for the alignTIlent.
The alignITlent is autoITlatically stored in the Chain Table for later retrieval.

Three basic types of alignTIlent probleITls are handled- -Open, IncoITlplete,
and Inverse. An Open AlignITlent is analogous to an open traverse; that is,
each curve or point is independent of those ahead. A,n IncoITlplete AlignITlent
is analogous to a closed traverse with ITlissing parts; that is, the alignITlent
ITlust be cOITlputed as a whole to deterITline the unknowns. An Inverse Align
ITlent is analogous to an inverse traverse; that is, the coordinates of each PI
and point are known but ITlay be subject to adjustment.

General ForITl

The general forITl of the cOITlITland and the order of the subcoITlITlands is
as follows:

ALIGNMENT ~, ~
Initial Point POT SubcoITlITland
Curve and POT SubcoITlITlands
TerITlinal Point POT SubcoITlITland
END of ALIGNMENT, (DESCRIBE)

where ~ is the naITle of the alignITlent. The alignment is stored in the Chain
Table. type is one of the following:

OPEN, INCOMPLETE, or INVERSE, round

If DESCRIBE is given, a DESCRIBE CHAIN ~ cOffiITland is executed after the
processing and execution of all subcoITlITlands.

The Initial Point, Curve, POT, and TerITlinal Point sub commands de
scribe, in order, the points and curves which define the alignITlent. Detailed
sub command specifications are given with the specifications for each type
alignITlent. General information applicable to all three types is given in the
sections which follow.

51

The END subc:oITlInand terminates the processing of the curve and point
subcornrnands. It must be included. The number of curve and point sub
cOITlITlands is liITlited only by the data table capacities - -1, 000 curves and
10, 000 points.

POT SubcoITlITlands - General InforITlation

A POT is a point which is used to define an alignITlent. It ITlight be any
of the following:

a) The initial or starting point of the alignITlent

b) An interITlediate point in the alignITlent which ITlay be a point on tan
gent, or an angle point (equivalent of a PI with no curve)

c) The terITlinal or ending point of the alignITlent

POT's are integer points and are stored in the Point Table with their coordi
nate values and their station on the alignITlent. Each POT is added to the
chain list for the alignITlent.

The POT subcoITlITland provides the inforITlation to deterITline the coordi
nates of the point; either directly as an independent object, or indirectly as a
dependent object located with respect to the previous curve or point.

POT

Previous POT or PT of previous cu rve

AI ignment POT Nomenclature and Data Items

52

AS an Independent Object, tne suocommana. -taKe::) l:ne genera..L .LU~-lll.

POT p/data (STA.TION station)

where p/ data takes one of the following forms:

a} n coord
where ~ is the point number assigned to the POT and coord is
the numerical values of the coordinates, such as

POT 4 X 1000. Y 2000.
POT 8 N 2500. E 3000.

b} E:.at~

c} at Ei

where ~ is the point number as signed to the POT and ~ is any
stored point. n is given the same coordinates as those for ~.
Examples

POT 6 AT PC 15
POT 9 AT POINT 3

the point number and the coordinates of stored integer point Ei
are assigned to the POT. Examples

POT AT 5 .
POT 2 ...

(Note --Ei will be stationed on the alignment, the old station, if
any, being lost.)

d} at IP
This form is used, in the case of the Incomplete Alignment, for
the Terminal Point POT subcommand when the terminal point
is the same point as the initial point.

When the independent form is used for an intermediate POT, the POT will
usually be an angle point (a PI without a curve).

As a dependent object, the subcommand takes the general form:

POT E:. pot/distance, pot/direction, (STATION station)

where ~ is the point number assigned to the POT, and the remaining data
items provide the information to locate ~ from the previous object as a given
distance and at a given, computed, or implied direction. It is the equivalent
of the Course Subcommand in Traverse. The specific forms which the sub
command can take are described in the specifications for the three types of
alignments.

53

If the station data item. is given, the value of station is assigned to the
POT. If it is om.itted, stationing is carried forward from. the previous
object.

Curve Sub com.m.and - Gene ral Info rm.a tion

The Curve subcom.m.and is used to define a horizontal curve in the align
m.ent. The Curve subcom.m.and is a subset of the Store Curve cOITlm.and with
certain of the data required to define the curve being autom.atically carried
forward from. the previous object as follows:

a) The curve reference point (PB) is always understood to be provided
by the previous object. If the previous object was a POT, then PB
is understood to be the POT. If the previous object was a curve and
,TL is given for distance, the PB is understood to be the PT of the
previous curve; if TTL is given, then PB is the PI.

b) The back tangent direction (DB) m.ay be carried forward from. the
previous object. If the previous object was a POT and DB is not
given, then DB is understood to be the sam.e direction as that used
to locate the POT. If the previous object was a curve and DB is not
given, then DB is understood to be the sam.e as the forward tangent
direction of the previous curve.

Because of the carry forward feature, the Curve subcom.m.and differs
from. the Store Curve com.m.and principally with respect to the reference data
item.. PB is never given and DB is only given if the im.plied reference point
is to be an angle point in the alignm.ent. In an Inverse Alignm.ent, the
a/tangent data itelll is also not given, being autom.atically provided by the
next object. In essence, Curve and Store Curve differ in that Curve obtains
som.e of the data necessary to define the curve .from. the adjacent objects.

The following are additional differences between the Store Curve com.
m.and and the Curve subcom.mand; in the subcom.m.and

a) If c/station is not given, stationing is autom.atically carried forward
from. the previous object.

b) The print modifier is not allowed, the printing of values for all
curves in the alignm.ent being initiated by the DESCRIBE modifier.

Each curve defined by a Curve subcom.m.and is stored in the Curve Table
for later retrieval.

The specific form.s for the Curve Subcom.mand are given in the specifi
cations for each type of alignm.ent.

54

\
\
\\ DB
\"
\' ,-'

DB

Previous POT or PT of Previous Curve

AI ignment CURVE Nomenclature and Data Items

55

OPEN ALIGNMENT

Introduction

In an open alignITlent, the data to define each curve and POT is available
(no ITlis sing parts and no adjustITlent required). Each curve and POT is in
dependent of those ahead of it. SubcoITlITlands are proces sed to cOrrlpletion,
increITlentally, in the order in which they are given. An open alignment is
analogous to an open traverse.

An open alignITlent can always be defined by a series of Store Point,
Store Curve, Locate FroITl, and Store Chain cOITlITlands. The Open Align
ITlent cOITlITland and subcoITlITlands provide a ITlore concise way of defining and
storing the alignITlent and the points and curves which define it.

General ForITl

The general forITl of the comITland and the order of the subcornrnands are
as follows:

ALIGNMENT ~, OPEN
Initial Point POT SubcoITlITland
Curve and POT SubcoITlITlands
TerITlinal Point POT SubcomITland
END of ALIGNMENT, (DESCRIBE)

Initial Point POT SubcoITlmand

POT p/data, STATION station

The subcommand is required.

InterITlediate Point POT SubcomITland

POT p/data, (STATION station)

(required)
(required)
(optional)
(optional)
(required)

POT ~ TL dista;;:Ze (TD direction or c/angle), (STATION station)
POT ~ TTL distance, (STATION station)

If the second form is used and neither TD direction nor c/angle is given, a
c/angle value of PLUS 180 is used. If the third form is used, the previous
subcomITland must have been a curve with no angle point at the PT (or ST).

56

Terminal .PoInt .PUT bub commanO

May take any of the forms for an intermediate point subcommand and is
optional. (An open alignment m.ay end with a curve.)

Curve Sub command

CURVE i, reference, b / spiral, elem.ent, a/ spiral, a/tangent, c/ station
CURVE i, STORED, c/station

where the data item.s are the same as for the Store Curve comm.and except
as follows:

a) the reference data item takes one of the following forms:

TL
TTL

distance
distance

DB direction, TL distance
DB c/angle, TL distance
PI at~

PI coord (the numerical values for the PI coordinates are
given)

If either of the first two forms is given, a c/angle of PLUS 180 is
assumed; that is, the DB direction is carried forward from. the
previous subcommand (these forms should not be used for a curve
immediately following the initial point POT subcomm.and).

b) element may be TL distance if reference gives PI and curve i does
not have spirals.

c) If c / station is not given, stationing is carried forward from. the
previous curve or POT.

In the second form of the command, the stored curve i is used in place
of a newly defined curve.

Example Open Alignm.ent

ALIGNMENT 'RT-3' OPEN
POT 2 N 5000, E 6000, STA 25+00
CURVE 10, DB N 45 15 20 E, TL 1256, RADIUS 4000, P DELTA 88 27
D 12, TL 200, DEG 2 00, M 92 15
D 14, TL 300, SLB 300, R 3000, SLA.400, P 90
POT 4 TL 1000.
END OF ALIGN, DESCRIBE

57

INCOMPLETE ALIGNMENT

Introduction

An incom.plete alignment is one with missing parts. The alignment must
be processed as a whole to determine the values of the missing parts before
the individual curves and POTTs can be fully defined, computed, and stored.
An incomplete alignment is analogous to an incomplete traverse with two
mis sing parts.

An incomplete alignment can always be formulated and solved as a tra
verse problem. In fact, the Traverse Subprogram is used to solve for the
mis sing parts in an incomplete alignment. The Incomplete Alignment com
mand and subcornrnands provide a concise and natural way to state the prob
lem and an automatic way of solving it.

General Form

The general form of the command and the order of the sub commands
a re as follows:

ALIGNMENT ~, INCOMPLETE
Initial Point POT Subcommand
Curve and POT Subcommands
Terminal Point POT Subcommand
END of ALIGNMENT, (DESCRIBE)

(required)
(required)
(required)
(required)
(required)

Stationing of POTT s and curves is carried forward from the given station of
the initial point.

Initial Point POT Subcommand

POT p/data, TD direction, STATION station

where TD direction gives the direction of the tangent from the initial point
to the POT or PI ahead.

Intermediate Point POT Subcommands

POT~, TL distance, c/angle

The data item c/angle is given if the previous POT or PT is an angle point.

58

TerITlinal Point POT SubcoITlITland

POT p/data, TL distance, c/angle, TD direction

where TD direction gives the direction of the tangent froITl the previous POT
or PT to the terITlinal point. The data iteITl c/angle is given if the previous
POT or PT is an angle point.

Curve Sub cOITlITland

CURVE i (DB c/angle), TL distance, b/spiral, eleITlent, a/spiral,
a/tangent

where the data iteITls are as follows:

spirals

SLA distance, SLB distance
SL distance

eleITlent

RADIUS distance or DEGREE angle or LENGTH distance

a/tangent

P/M DEFLECTION angle

The optional data iteITl DB c/angle is given if the previous POT or PT is an
angle point.

Mi s sing Parts

To specify ITlissing parts in an incoITlplete alignITlent, the following data
iteITls can take the following additional forITls:

TL distance

TL ?
TL ? APPROXIMA TE distance

c/angle

P/M? ---
P/M 2 APPROXIMA.TE angle

59

elell1ents

R ?
R ? APPROXIMATE distance

a/tangent

P/M DEFLECTION? ----
P/M DEFLECTION ? APPROXIMATE angle

TD di re ction

TD (AZIMUTH) ?
TD (AZIMUTH) ? APPROXIMATE direction

Each unknown distance (TL and R) counts as one ll1issing part. The
nUll1ber of ll1issing parts attributed to angle plus direction unknowns is one
les s than the nUll1ber of unknowns. Accordingly, the cOll1binations of un
knowns which can be handled is as follows:

a) Two unknown distances and one unknown angle or direction

b) One unknown distance and two angle plus direction unknowns

c) Three angle plus direction unknowns

The APPROXIMATE forll1 of the above data itell1s should be used in the
latter two cases (when one or both of the ll1issing parts is an angle or direc
tion) since two solutions are usually pos sible. The solution used is the one
with cOll1puted values closest to the approxill1ate value, with distance having
priority over angle or direction.

Exall1ple Incoll1plete Alignll1ent

ALIGNMENT 'RAMP-K' INCOMPLETE
POT 4 N O. E 0., TD N 40 W, STA. 0+00.
CURVE 15, TL ? DEG 4, SL 300, P DELTA 75
D 16, TL O. , R 800 , P DELTA 60
D 17, TL 200, DEG 5, P DEF 55
D 18, TL O. , DEG 3, SLA 400., P DEF ?
POT AT IP, TL ?, TD S 30 W
END OF ALIGN, DESCRIBE

60

INVERSE ALIGNMENT

Introduction

In an inverse alignment, each POT and each curve PI is at a stored
point or point of given coordinates. Directions and distances between the
points are computed internally by inversing. Facility is provided to adjust
the coordinates of the points to make the directions between them an even
value of minutes or seconds.

General Form

The general forlll of the command and the order of the subcornrnands is
as follows:

ALIGNMENT ~, INVERSE, round
PO T Sub comllland fa r Initial Point
Curve and POT Subcomlllands
POT Subcommand for Terlllinal Point
END of ALIGNMENT, (DESCRIBE)

(required)
(required)
(required)
(required)
(required)

The optional data item !!round" takes the following general forllls:

ROUND to v MINUTES -- ---
ROUND to v SECONDS

The use of the !'round" data item is explained under the section on Adjust
ment of Inverse Alignlllent.

POT SubcOlllmands

The general form for the POT Subcolllllland for the Initial Point, the
Terlllinal Point, and for interlllediate POT's is as follows:

POT p/data, (STATION station), (HOLD)

The first and last subcomlllands must be POT subcommands to define the
initial and terminal points respectively. The data item "station" is required
for the first (for the Initial Point). If "station" is not given for other POT's,
stationing is carried forward frolll the previous subcolllllland. The optional
data itelll HOLD is explained in the section on Adjustlllent of Inverse
Alignlllen t.

61

Curve Sub command

The general form for the CURVE subcommand is as follows:

CURVE i, PI coord, (HOLD), b/spiral, element, a/spiral, c/station

The spirals and element data items are as described for the STORE CURVE
command. The data item lie/station" is also the same except that if it is not
given, stationing is carried forward from the p~evious curve or POT. The
PI can also be given as PI at~. (element may be TL distance if curve i
does not have spirals.)

Adjustment of Inverse Alignment

If the "round lt data item is given with the ALIGNMENT command, the
POT's and PI's will be adjusted such that the directions of the tangents to
curves and the POT courses will be to the nearest even value specified by
the "round!! data item. The process will be explained by an example as
follows:

ALIGNMENT tAr INVERSE, ROUND TO 2 MINUTES
POT 1 AT PC 25, STA 0+00
POT 2 AT 8
CURVE 5, PI AT 4, R 2000.
CURVE 8, PI N 8500 E 18600, DEG 3.5
POT 3
POT 6, N 20000 E 30000 HOLD
END OF ALIGN

The internal action which is taken is as follows:

a) The coordinates of the PC of curve 25 are as signed to Point 1 and
are stored in the Point Table for 1, along with a station of 0+00.

b) The stored coordinates for 8 are assigned to 2. The distance and
direction from 1 to 2 are computed. The direction is rounded to the
nearest 2 minutes. Using the rounded direction and the computed
(inversed) distance, new coordinates are computed for 2 and are
stored in the Point Table for 2.

c) The stored coordinate s for 4 are as signed to PI 5. The distance
and direction from 2 to PI 5 are computed. The direction is
rounded to the nearest 2 minutes. Using the rounded direction and
computed distance, new coordinates are computed for PI 5 and are
stored in the Curve Table for PI 5.

62

d) The given coordinates for PI 8 are assigned to PI 8. The distance
and direction from PI 5 to PI 8 are computed. The direction is
rounded to the nearest 2 minutes. Using the rounded direction and
computed distance, new coordinates are computed for PI 8 and are
stored in the Curve Table for PI 8.

e) Curve 5 is computed. (Steps c and d are actually part of the pro
ces sing of Curve 5.)

f) The distance and dire ction from PI 8 to 3 are computed. The
direction is rounded to the nearest 2 minutes. Using the rounded
direction and computed distance, new coordinates are computed
for 3 and are stored in the Point Table for 3.

g) Curve 8 is computed. (Step f is actually part of the processing of
Curve 8.)

h) The given coordinates for Point 6 are stored in the Point Table for
6. The distance and direction from 3 to 6 are computed. The
presence of the data item HOLD on the subcommand for POT 6
means that the coordinates of Point 6 are to be held and not adjusted.
Accordingly, the dire ction is not rounded and the coordinates of 6
are not changed.

Attention is called to the fact that intermediate POT's (such as 2 and 3
in the above example) are adjusted and will become angle points if they are
not already. Accordingly, intermediate POT's should not be included in an
inve rs e alignment to be adjusted unle s s they are angle points.

63

LA YOUT COMMAND

Introduction

The Layout cornrnand is used to compute and print data for use in the
field stakeout, layout, or plotting of stored objects, particularly curves and
alignments.

Layout Ties

Provides layout data which ties stored points and curves to a stored
point and reference direction.

LA YOUT TIES, TRANSIT at~, (SIGHT on) E!::, TIE list
LAYOUT TIES, ~ TO list

where list takes the form of a list of stored points such as

POINTS 4, 6, PC 5, 8, PT 3, 2

or is a stored chain, such as

ALIGN 'A17/B'

When a chain is given for list, the chain list is used for the list of points
(each point in the chain list, the end points of each course, and the curve
point for each curve is tied).

pe pd
pe

pd
LAYOUT TIES ~ TO pb, pc, ___

LAYOUT TIES TRANSIT ot po, (SIGHT on) pb, TIE pc, pd, ___ -- -- -- --

65

The layout data which is printed for each point in the list includes the
following:

a) distance from ~ to the point

b) clockwise angle at ~ from EE.. to the point

c) counterclockwise angle at ~ from E!:: to the point

d) direction (azimuth or bearing) froITl ~ to the point

When the second forITl of the cOITlITland is given, only the distance and direc
tion are printed.

LAYOUT CURVE l(TRANSIT at) 12.9, (SIGHT on) I2b, (EVEN) y (STATIONS)

Layout Curves

Provides layout data for stored curves.

LA YOUT CURVE i, transit, even, off, plus
LAYOUT CURVES, ALIGNMENT~, ~, off
LAYOUT ALL CURVES, ~, off

where the data itell1s take the following forms:

da ta iteITl

transit
even
off
plus

fa rITl

(TRANSIT at)~, (SIGHT on) .EE.
(EVEN) ~ (STATIONS)
(OFFSETS)
PLUS STATION va, (STATION vb),
PL US pa, pb, pc

the two forITls
ITla y be ITlixe d

If transit is not given, ~ is taken to be the PC of curve i and EE- is taken to
be the PI of the curve (this will always be the case in the second two forITls).

66

Layout data is computed for each even station, each plus station and point,
and each curve point, the following being printed:

a) station of the point
b) clockwise angle at ~ from pb to the point
c) counterclockwise angle at ~ from E!:: to the point
d) deflection angle at ~ from EE. to the point
e) chord length from the previous point
f) distance from ~ to the point

If the optional word OFFSETS is given, three offset distances are also com
puted and printed for each even station as follows:

a) offset from the closest tangent
b) offset from the long chord
c) offset from the half chord (chord to circular curve midpoint)

If the curve has spirals, the back spiral, the circular curve portion,
and the ahead spiral are treated separately and layout data for each is pro
duced. If transit is not given, for the back spiral pa is taken to be the TS
and ~ the PI of the total curve; for the circular curve, ~ is taken to be the
SC and.E!: the PI of the circular curve; for the ahead spiral, pa is taken to
be the ST (backed in) and pb the PI of the total curve. Offsets are computed
for the spiral or circular curves on tangents and chords, not those of the
total curve.

In the second and third forms of the command, the layout data is printed
for all curves in A.lignment ~ and for all stored curves, respectively. The
layout report is preceded by a printout of the c~r_ve elements and curve
points for the curve (the equivalent of a PRINT CURVE i command). Ac
cordingly, the output is a rather complete report on the curve for sending
to the field for stakeout activity.

Chord

Circular Curve Offsets

Curve
Half
Chord

Spiral Offsets

Offsets Printed by LAYOUT CURVE .!. _ _ _ _ OFFSETS

67

Layout Offsets

Provides layout offsets from one stored chain (baseline) to another
stored chain (alignment) 0

LAYOUT OFFSETS, (BASELINE) a to (ALIGNMENT) 1::, list

where list is one or more of either of the following two forms or a mix of the
two:

(STA.TIONS) va, vb, vc,
EVEN ~ (STATIONS) va TO vb

The following is an example:

LAYOUT OFFSETS, BASELINE tA4t TO ALIGNMENT fR3 f, 6+25,
14+50, EVEN 50 STA 20+00 TO 30+00, 35+27.16, EVEN 100
40+00 TO 50+00, 68+23, 100+00

~ and 1:: are the name s of any stored chains (any of the chain labels may be
used in place of BASELINE and ALIGNMENT). The offset lines are perpen
dicular or radial to ~ and are computed for given stations and/or even sta
tions on a. The computed and printed values for each offset include:

a) station on a

b) offset distance from a to the intersection of the offset line with b
(minus if 1:: is to the left of ~)

c) station on b of the intersection

d) skew angle at the intersection

Offsets will not be computed beyond the limits of a or b. If a given sta
tion is not on~, a message is printed. If the station occurs more than once
(due to station equations), the offset will be computed for the first occur
rence of the station ahead of the previous given station. In the Even Station
form, if va is les s than the point at the beginning of a, the beginning point is
used for va. The increment is added repeatedly until either vb or the end
point of ~ or 1:: is reached. If ~ has station equations such that va and/or vb
can occur more than once, the first occurrence of va and the first occurrence
of vb ahead of va are us ed.

If the station values in list are given in order of increasing magnitude,
the speed of processing is greatly increased. There is one restriction on
the command. The proces sing routines as sume that each offset intersection
is ahead of the previous one. This will always be the case as long as the
center of no curve on a falls between a and b.

68

station
on al ign chain Q

skew angle

offset distance

stat ion on basel i ne

~OUT QffSETS, CHAIN a to CHAIN~, EVEN v (~TIONS), v, v, ...

Layout Coordinate s

The command is used to compute and print the coordinates at even sta
tions on a stored alignment.

LAYOUT ALIGNMENT~, COORDINA.TES at (EVEN) ~ (STATIONS)

In addition to the coordinates of each even station, the station and coordi
nate s of each point and curve point for each curve in the chain list for a are
printed.

Example Layout Commands

LAYOUT TIES, TRANSIT AT 4, SIGHT ON 8, TIE 3, 5, 7, 9
LAYOUT TIES, POINT 5 TO 8, 10, 12, 14, 13, 11
LAYOUT TIES, 28 TO ALIGN 'RAMP-J'
LAYOUT CURVE 18, TRANSIT AT 23, 25, 100 STA
LAYOUT CURVE 9, EVEN 10 STA, OFFSETS, PLUS STA. 15+76.15
LAYOUT CURVES, ALIGNMENT 'RT-3', EVEN 50, OFFSETS
LAYOUT OFFSETS, 'RT-3' TO 'RAMP-J', EVEN 100
LAYOUT ALIGN 'CL/8', COORD AT EVEN 20 STATIONS

69

TRA V.t.;Rt).t.; COMMAND

Introduction

The Traverse cornrnand and associated subcoIllITlands can be used to
sol ve a wide variety of traver s e problems, ranging from the ve ry simple to
the very complex. The traverse may be open or closed. If closed, it may
be complete or incomplete. If incomplete, it ITlay have any cOITlbination of
one or two missing parts. If closed with one or no ITlissing parts, the tra
verse will be adjusted, with a choice of adjustITlent rules. It may be an
angle traverse, direction traverse, or combination (mixed). Individual
courses may be held fixed during adjustment. The traverse is automatically
stored in the Chain Table for later retrieval, and each traverse point is
stored in the Point Table.

General Form

The general forITl of the cOITlmand and the normal order of the subcom
ITlands are as follows:

TRAVERSE a
Adjust Subcornrnand
Clo sure Sub cOITlITland
Back Subcommand
Course Subcommands (2 or
Ahead Sub command
END of TRAVERSE, (REPORT), (PRINT), (SKETCH)

(required)
(optional)
(optional)
(optional)

more required)
(optional)

(required)

where ~ is the name of the traverse for storage in the Chain Table. The
block of Course subcommands must be in the order of the courses, but the
other sub commands can be in any order as long as they corne after TRA
VERSE and before END. The optional subcomITlands are not required for
many types of problems, and in others, standard values are used if they
are not given.

If REPOR T is given, a complete corrections report is printed for ad
justed traverses which gives unadjusted, correction, and adjusted values for
all distances, directions, angles, latitudes, departures, and point coordi
nates. If PRINT is given, tables of adjusted course values (distances,
angles, and directions) and point coordinates are printed. If SKETCH is
given, a sketch of the traverse is plotted on the printer. The sketch is
useful to spot gros s mistakes in the traverse.

71

Adjust Sub command

ADJUST by rule

where rule is one of the following:

LINEAR rule
TRANSIT rule
COMPASS rule
CRANDALL rule
LEAST SQUARES, weight

and where "weight" is one of the following:

TAPE (WEIGHT) y..
DISTANCE (WEIGHT) y..

and ~ is the nUITlerical value of the weight to be assigned to each laO-foot
tape length (if TAPE is given) or each course length (if DISTANCE is given)
relative to unit angle weight. If "weight" is not given, DISTANCE WEIGHT 10
is used (distances and angles are given equal weight).

If the traverse requires adjustITlent but the Adjust subcoITlITland is not
given, the standard rule which is used is the equivalent of giving the following:

ADJUST BY LEAST SQUARES, DISTANCE WEIGHT 10

Closure Subcommand

CLOSURE plan, angular

where "planrf takes the forITl:
whe re "angular If take s the form:

ONE (PARTIN)~
PER (ANGLE) y.. (SECONDS)

The closure values are used as a specification which the actual closure
of a closed traverse is checked against. If the traverse does not close
within twice the specification, processing of the traverse continues but no
entries are made in the Data Tables 0 The "angular" specification is used in
the preliminary angle adjustment, and the "plan lf specification is used in the
general adjustment.

If the traverse requires adjustITlent but the Closure subcommand is not
given, the standard closure specification which is used is the equivalent of
giving the following:

CLOSURE ONE PAR T IN 2000, PER ANGLE 60 SECONDS

72

The meaning ot the command. 1S that the prel1m1nary angie acijustment per
angle must not exceed 60 seconds and the traverse must close within one
part in 2000 for the traverse to be within specifications 0 If it does not close
within twice these values (one part in 1000 and 120 seconds per angle), it is
assumed that there is a bust in the traverse and no entries should be made in
the Data Tables.

A complete report on the clo'sure of the traverse is printed o

:**
CLOSED TRAVF:.RSF:
c**
PRFLIMINARY ANGLf ADJUSTMt=NT

ANGULAQ ERROR flF CLnSIJPr RFPORT
ERROR oFR ANGI f 1 57 3n .0 0

TOTAL ERROR 7 50 o.no
WARNING-ANGLE CLOSURE EXCEFDS SPFCIFICATION
CLOSURE EXCEEDS TWICE SPFCTrICATION
WARNING-NO FNTRTfS WILL R[MAnE IN nAT' TAHLFS FOP THIS TRAVFRSF
'**
ONE MISSING OISTANCE IN TRAVERSE
UNAOJUS TEO VALUE FOL LOWS

DISTANCE FROM POYNT 6 Tn POTNT B 3735.87~

TRAVERSE WILL BE ADJIJSTEO
-*********.**

CLOSURE REPOR r - PLANI METRY C

ERROR IN X 54.887 TOTAL FRROR
FRROR IN Y201.911 (I.OSUPf. PATI]
DIRF(TJON OFClUSING LINK lq4 46

WAR N I ~G - C lOS tJR F Ex C t F ns 5 P FC I F I C AT I fl\l
(LOSURE EXCEFDS TWICE SPECIFICATION

215.01~ PERIMETER 11855.672
55.14 FIXED PERIM 0.~

1.45 TOTAL PERIM 11A55.672

PRnCFSSTNG CONTTNUES BUT NO ENTRIFS WIll RF MAOE IN DATA TABLES
~**

(O~PhSS RULE J\f)JUSTMFNT

en R P E (T T 0 t>-.J T A f3 L F S
UNADJfJSTEO

f) 1S T AN C F T./H3l E

OJ STANCF It TO 6 45?1 • 727
DISTANCE h Tn ~1 3735.R?5
DIS TANe E 8 Tn ? 359B.17(,

A7IMUTH TARt f-

A,lIMUTH BA(K 341 35 (:.OC
AlIMlt TtJ 4 Tn
~Tn

~' __ 7

73

C ORREC TI ON AOJ US Tff) VA lUF

-'8.742
-1.337

-48.970

4000. lt69
3734.489
3549. 149

30 50

Back Subcommand

BACK direction

The subcommand is used to give a backsight direction at the initial point of
the traverse for use in computing course directions from input angles and/or
to provide the basis for making a preliminary angle adjustment. The subcom
mand may be omitted if it is not needed for forward computation of course
dire ctions or if no preliminary angle adjustment is to be made. If the sub
command is not given, a Back direction of due North is assumed.

Course Subcommand

COURSE a (1 TO) E: (FIXED) c/ distance, c/ direction

If optional data item a, the name of the Course, is given, the Course will be
stored in the Course Table 0 If optional word FIXED is given, the length and
direction of the course will be held fixed and will not be changed during
general adjustment.

The data item i is the beginning point of the course and n is the end
pointo Point 1 must be the same as Point E: of the previous Course subcom
mando 1 may be omitted except for the first Course subcommand where it is
the initial point of the traverse 0 n of the last Course subcommand is the
terminal point of the traver se.

The c / distance data item take s anyone of the following forms:

distance {standard data item}
{DISTANCE}].. {APPROXIMA,TE distance}
(DISTANCE) SAME

The second form is used when the length of the course is unknown and is to
be treated as a missing part. The optional APPROXIMA TE data item is
used to provide an approximate value for the unknown distance in two solu
tion cases 0 The SAME form is used when the length of the course is to have
the same value as that of the previous unknown distance, the two to count as
a single unknown in a missing parts traverse.

74

The c / dire ction data item takes anyone of the following forms:

direction (standard data item)
(AZIMUTH) :!.. (APPROXIMA TE direction)
c/angle (standard data item)
ANGLE:i (APPROXIMATE P/M angle)

The first form is used when the direction of the course is given as input data,
the Se cond when the dire ction of the cours e is unknown. The third form is
used when the angle at j from the previous course to E: is given as input data,
the angle to be used internally to compute the course direction. The fourth
form is used when the c/angle is unknown. The optional APPROXIMATE
data item in the second and fourth forms is used to provide an approximate
value for the unknown for use in two solution cases.

The word UNKNOWN may be used in place of the symbol? in the
c/distance and c/direction data items and should be used whe;:- the problem
is to be run at an installation which does not have the? character on its
printer chain.

\
\
\
\
\
\ N

\

BACK direction

N

I nte rmed iote
Course

Initiol Point

N

AHEAD
direction

CANGLE c/ongle

\
\

\
\

\direction or c/ongle j
v

COUR SE 0 (1 TO)~, c/d i sto nce, c /d i rection

TRAVERSE DATA ITEMS AND NOMENCLATURE

75

Ahead Subcommand

AHEAD direction, CANGLE c/angle

The subcommand is used to give a foresight direction and closing angle at
the terminal point of the traverse for use in computing course directions
from input angles and/or to provide the basis for a preliminary angle adjust
mento The Ahead direction is held fixed in making the adjustment. The
c/angle data item is to give the closing angle at the terminal point from the
backsight {next to last point} to the foresight direction o It may take any of
the angle forms for the c/direction data item including the angle unknown
form. The subcommand may be omitted if it is not needed for back compu
tation of course directions or if no preliminary angle adjustment is to be
made. If the subcommand is not given, an Ahead direction of due North is
assumed, and the closing angle is treated as an unknown.

Closed Traverse

A traverse is processed as a closed traverse if both the initial point and
terminal point are defined points {stored in the Point Table}. They may be
the same point {traverse closed on itself}. If they are the same point but the
point is not defined, it is assigned O. ,0. coordinates and the traverse is pro
cessed as a closed traverse. A closed traverse may be an angle or a direc
tion traverse, and it may have no, one, or two missing parts. If it has no
or one, it is always adjustedo

Open Traverse

A traverse is processed as an open traverse if it is not closed. Either
the initial point or the terminal point should be a stored point. If neither
point is stored, the initial point is assigned 0., O. coordinates. An open tra
verse may be an angle or a direction traverse, but it cannot have missing
parts and no general adjustment is made {a preliminary angle adjustment is
pos sible} 0

Direction Processing

Due to the wide variety of ways in which course directions can be given,
the traverse is converted to a basic form for internal processing of angles
and directions and for computation of unknowns. The basic form works with
the initial angle (the angle at the initial point from due North to the first
course), the angle at each intermediate course point, and the terminal angle
(the angle at the terminal point from the last course to due North) 0

76

The basic form angles are determined by the tOllowlng stages 01

processing:

I) Starting with the given (or assumed) Back direction, directions are
carried forward, and all angles which can be computed by a differ
ence in directions are determined.

2) If all angles cannot be computed from forward computation, then
directions are carried backward from the Ahead direction, and all
angles which can be computed by a difference in directions are
dete rmined.

3) If all angles cannot be computed by a combination of forward and
back computation, then one or more angles constitute missing parts
in an incomplete closed traverse. The unknown angles and any un
known distance are computed.

After numerical values are determined for all of the basic form angles and
the preliminary angle adjustment made (if required), the unadjusted course
directions are computed, and traverse processing continues.

Initial
Angle

N

Initial
Point

Term inal
Angle

N

Terminal
Point

BASIC FORM OF TRAVERSE FOR INTERNAL PROCESSING

77

\
\

ANGLE TRAVERSE

DIRECTION TRAVERSE

MIXED TRAVERSE A

MIXED TRAVERSE B

78

/
/

/

/
/

/

/
/

/

/
/

/

l?reliITlinary Angle AUJustrnent

A preliITlinary angle adjustITlent will be ITlade when the Ahead subcOITl
ITland is given, the closing angle is given, and the closing angle can also be
cOITlputed by forward computation. The difference between the computed
value and the given value is treated as an angular error of closure. The
angular error of closure is checked against the angular closure specification,
and a preliITlinary angle adjustITlent report is printed. If the closure is
within twice the specification, the angular error of closure is linearly dis
tributed, each basic form angle receiving an equal correction. If there are
any FIXED courses in the traverse, their direction will be affected by the
preliITlinary angle adjustment but not by the general adjustITlent.

Unknowns

All geometrically solvable caseS of unknowns in a closed traverse are
autoITlatically handled. The Engineer does not have to identify the particular
case represented by the traverse as the internal logic determines the case.
Any solvable combination of one or two geometric missing parts can be han
dled. Since an unknown angle and, in some cases, an unknown direction can
be determined by forward and back computation, the number of geometric
mis sing parts can be les s than the nUITlber of unknowns (? forITl).

In terITlS of the basic form angles, the following cases of unknowns can
be handled internally:

a) One unknown angle
b) Two unknown angles
c) Three unknown angles
d) One unknown distance
e) Two unknown distances
f) One unknown angle and one unknown distance
g) One unknown angle and two unknown distances
h) Two unknown angles and one unknown distance

The cases are identified internally during direction processing as previously
des cribed o One unknown angle is usually eliminated as an unknown during
forward and back computation.

To assist in identifying the allowable cases externally, two typical types
of traverses, angle traverse and direction traverse, are defined. An angle
traVerse is one in 'which Back and Ahead are given, and all c/ direction data
iteITls are given in the c / angle or unknown angle form. The allowable cases

79

are the same as those described above for the basic formo A direction tra
verse is one in which the c/direction data items are given in the direction or
direction unknown form. The allowable cases are

a) One unknown direction
b) Two unknown dire ctions
c) One unknown distance
d) Two unknown distances
e) One unknown direction and one unknown distance

If the Ahead subconlnland is given, and if the closing angle is given as un
known, that unknown angle can be in addition to the above unknowns.

Most traverses will be of a nlixed type; that is, some of the c/direction
data itenls will be of an angle fornl, others of a direction fornl, and various
cOnlbinations of Ahead and Back being given or not given. The systenl ex
pects the nlixed type and converts all, including angle and direction, to the
basic form for internal processing.

Two Solution Cases

The computation of unknowns when there are two mis sing geonletric
parts is handled internally by formulating and solving the equivalent inter
section problenl. Two unknown distances are the equivalent of intersecting
two lines. If the lines are not parallel (no solution), a single intersection
(solution results). When one or both of the nlissing parts are an angle or
direction, two solutions can result as follows:

(l) Unknown Distance and Direction or Angles

The following cases are the equivalent of intersecting a line and
a circle:

1 unknown distance and 2 unknown angles
1 unknown distance and I unknown direction

The line will intersect the circle at two points (if it intersects at all), yield
ing two solutions for the unknowns.

An a pproxinlate value for the unknown distance should be given
in the distance data item. The solution closest to the approxim.ate value will
be used. If an approximate distance is not given, an approxim.ate value for
the unknown direction or one of the unknown angles should be given. If both
approxim.ate distance and approximate direction or angle are given, approxi
m.ate distance is used, the other approxim.ate values being ignored. If no ap
proximate value is given, the distance solution with the sm.alle st positive
value is used.

80

(2) Unknown Angles and/ or Directions

The following cases are the equivalent of intersecting two
circles:

3 unknown angle s
2 unknown directions
1 unknown angle and 1 unknown direction

The two circles will intersect at two points (if they intersect at all), yielding
two solutions for the unknowns.

An approxiITlate value for one of the unknown angles or direc
tions should be given in the c/ direction data iteITl. The solution closest to
the approxiITlate value will be used. If ITlore than one approxiITlate value is
given, the first one is the one used, the others being ignored. If no approxi
ITlate value is given, the solution with the circle intersection nearest to the
origin of coordinates is arbitrarily used.

If approxiITlate values are given in cases which do not have two
solutions, the approxiITlate values are ignored.

Unsolvable and Partially Solvable Cases of Unknowns

Certain geoITletric conditions in a closed traverse can result in situations
where the unknowns cannot be cOITlputed or can only be partially cOITlputed.
The systeITl checks for such conditions and notifies the Engineer via appro
priate ITlessages. The following are exaITlples of such conditions:

10 Unknown Distance Cases

a. Two unknown distances are parallel, having equal or oppo
site dire ctions.

b. SAME unknown distances cOITlbine with unknown distances
such that cOITlposite directions are parallel or canceL
(Partially solvable in SOITle case s)

2. Unknown Angles - Basic ForITl

a. Two unknown angles are for first course and closing angle
when traverse closes on itselL (Solved assuITling first
angle is 180 degrees)

b. Three unknown angles result in a no intersection case due
to ITlistakes in input data.

81

Generalized SAME

In the Course subcornrnand, the (DISTANCE) SAME form. of the
c/distance data item. can be used to define adjacent or separated unknown
distances which are to be solved as equal. Such a tlm.atched pair" is equiva
lent to one m.issing part. Thus two such m.atched pairs can be solved, or
one pair and another unknown distance, when two unknown distances are al
lowed o This feature is provided so that the radius (or tangent) of a circular
curve, appearing as an unknown in two courses, can be treated as a single
unknown.

The rule of order is that the first SAME is associated with the first un
known distance, the second SAME with the second unknown distance. If the
m.atched pair is separated by another unknown distance or another m.atched
pair, the rule of order can be reversed by the following expedient: if one or
both of the unknown distances are given in the form.

(DISTA.NCE) 2. APPROX .:.!..
that is, the approxim.ate distance value is a negative arbitrary value, the
rule of order is then reversed o The first SAME is then associated with the
second unknown distance, and the second SAME (if present) will be associ
ated with the first unknown distance. Any configuration of m.atched pairs
and unknown distances m.ay be specified by using or reversing the rule of
ordero

General Adjustm.ent

A general adjustm.ent is m.ade in the case of a closed traverse with no
unknowns or in the following case s of unknowns (single m.is sing part):

One angle unknown
One direction unknown
One distance unknown
Two angles unknown
One angle unknown and one distance unknown

The traverse is adjusted by the rule given in the Adjust subcom.m.and.

82

COGO
$ EXAMPLE PROBLEM Tl
$ OPEN TRAVERSE/BEGINNING POINT GIVEN
STORE 3 N 25763.17 E 43792.98
TRAVERSE • T I'
COUR SE 3 TO 8 4472.15 N 26 30 E
0 4 3162 • .35 S 18 20 E
0 6 3605. 84 N 33 20 E
D 2 4123.15 S 14 5 E
0 5 3163.42 N 18 25 E
END Of TRAV ,PR I NT

(OGO
$ EXAMPLE PROBL~M T2
$ OPEN TRAVERSE/TERMINAL POINT GIVEN
$ PH. t LIM I NA RY A NG LEAD JUS TN EN T
STORE 12 5000 8000
TRAVER SE • T2'
BACK S 44 23 W
C L CSU Ri: PE R. ANGL E 120 SECONDS
COURSE • At 25 TO 18 3125 ~i 116 30
o 'B' 15 3610 P 142 15
o • C' 15 TO 9 3580 M 23 28
o '0' 12 2190 M 84 17
AHEAD N 45 57 W, CANGLE M 72 33
END TRAVERSE,PRINl

CUGO
$ E XA MP Ll: PR OB LE r~ T 3
$ ClUSEO TRAVERSE
STORE 24 0 0
T RA V E: R SE' T 3 •
COURSE 24 TO 28 2816.87 N 43 28 E
D 17 411l.73 M 122
o 35 2237.15 M 131 29
o 99 FIXED 4123.76 S 76 08 W
o 24 3718.52 M 128 30 00
END TRAV,REPORT,SKETCH

COGO
$
$

$
STORE
o

EXA,""lPlE PRCBLE~1 T4
CLOSED TRAVERSE,ONE MISSING PART

PRELIM. ANGLE ADJUST. REQUIRED
4 N 1000 E: 2000
2 N 2000 E 5000

TRAVER Sf IT 4'
ADJUST BY COMPASS RULE
CLOSURE ONE IN 3000
BACK N 18 25 W
C OUK S E 4 TO 6 4521. 73 P 5 1 30
o 8 01 ST? D 257 15
o 2 3598.12 M 48 40
AHEAD 5 7210 E, CANG t'J. 306
END TRAV,REPCRT

83

CUGO
$ EXAMPLE PROBLEM T5
$ TWO MISSING DISTANCES, ONE UNKNOWN ANGLE
STORE 46 N 2500 E 1000
o 1 B N 1000 E 3 50 0
TRAVERSE 'TS'
bACK 46 TO 18
COURSE 46 TO 32 OIST UNKNOWN ANGLE MINUS 77 00
D 25 2500.
o 78 3150. A NG Uf'-.jKNOWN
o 52 3620
o 18 UNKNUwN
AHEAD 18 TO 46, CANGLE MINUS 157 0 0
E NO OF T Kl\ V E RS E , P R I NT, SK El C H
COGO
$ E XAMP LE PROBLE M T 6
$ THREE UNKNOWN ANGLES
STORE 4 N 1500 E 3000
D I.j N 1500 E 900 0
TRAVERSE -l6'
BACK N 2& 34 W

i'1
M

98

56
97

COURSE 4 TO 3 3612.51 ANGLE UNKNOWN APPROX P 60
o 3 TO 8 4121.37 ANG UNKNOWN AP PROX P 300
o 8 TO 2 3574.16 P 47 28 0
o 2 TO 5 2212.95 ANG UNKNOWN
END TRAV
COGO
$ EXAMP LE PRCBlE M T 7
$ COMPUTEe AND FIXED CUURSE
STORE 24 N 4000 E 5000
o 18 N 5COO E 2000
LOCATE 33 FROM 24 2215. P 135 FROM 18
TRAVf::RSE 'T7'
CO UK S [3 3 TO 27
D 38
o 21
o 35
U 35 TO 15
o 33
END OF TRAVERSE

4 150 • S 1 't- E
4130. N 76 W
3150. S 71 ~J
3135. N 18 E
FIXED 01 S T 18 TO 24,
OIST UNKNOWN N 45 E

PR I NT
PRINT COURSE 18 TU 24, 35 TO 15
COGO
$ EXAMPLE PROBlt:i"i TS

Al 18 TO 24

$ ILLUSTRATION Of USE OF SA~4E UNKNOWN DISTANCE CAPABILITY
STORE PUINT 5 N 5000 E 1000
o 2 N 4000 E 1100
o 12 N 2300 E 8000
T RA V E R Sf • T 8 I

COUKSE 2 TO 4 982.
o 7 01 51 UNK NU WN
o 3
o 6
) 8
) 10
) 12
:NO fRAV PR I. NT

SAME
720.
01 ST UNKNUW N
SAME
1315.

84

5 TO 12
PL US 90
i~INUS 112
PLUS 90
MI NUS 90
PLUS 11 5
M Ir'-4US 90

() 0

o 0

