CODING
for the
MIT-IBM 704 COMPUTER

F. Helwig, editor

Prepared at the MIT Computation' Center

by
D. Arden J. McCarthy
- S. Best A, Siegel
F, Corbato F. Verzuh
F. Helwig M. Watkins

M. Weinstein

The Technology Press
Massachusetts Institute of Technology
Cambridge 39, Mass,

Copyright (© 1957
Massachusetts Institute of Technology

October, 1957

TABLE OF CONTENTS

Preface

Errata

Introduction

I
IT
ITI

VI
VIT
VITI

XI
XIT

An Introduction to the 704
Floating-Point Arithmetic in the 704
The Control Instructions

Indexing: Counting and Address Modification
The SHARE Assembly Program

The MIT Post-Mortem Program
Subroutines

Fixed-Point Arithmetic in the 704
The Shifting Instructions

The Logical Instructions

Tnput and Output

Overflow, Underflow, and Miscellaneous Topies

Appendixes

Description of the SHARE Assembly Program for
the IBM 704 Computer

A User's Abstract of the Post-Mortem Program

‘The IBM-704% Instructions

Revised and Updated Index of Available SHARE
704 Subroutines

PRFFACE

This 1s a new and slightly revised edition of a set of
notes prepared by staff members of the M.I.T. Computation
Center specifically to serve as a basis for a two-week course
in coding for the IBM 704 given at the M.I.T. Computation
Center during August, 1957. The notes are a drastic revision
of a similar set of notes prepared by the staff for use during
August, 1956. They are being issued in their present (rather
unpolished) form as the result of a large demand for such
material at the Computation Center.

The notes are written for the novice and do not assume
any previous knowledge of digital computers. It is not in--
tended, however, that these notes replace the IBM 704 Manual
of Operation. Indeed certain topics, such as input and out-
put, are treated briefly in the notes, and the manual must be
referred to for complete descriptions.

Basically our topic is coding, and since there 1s more
to coding than description of a digital computer, we have
provided the reader with many illustrative examples of codes.
We have also included material describing the operational
systems presently available at the M.I.T. 704. This includes
a brief description of the SHARE organization; descrintions
of the SHARF. assembly program, which provides a common language
for 704 users; and a description of a post-mortem program
written at M.I.T. for SHARE distribution.

A listing of subroutines distributed by the SHARE organi-
zation 1s also included. This 1ist was reasonably complete
at the time of publication, but will certainly become incomplete
as new subroutines are developed by SHARE members.

In addition, the reader's attention is called to the
FORTRAN programming system which is already described in IBM
publications. These include the FORTRAN Programmer's Reference
Manual and the new FORTRAN Introductory Programmer's Manual,
which 1s to be published shortly.

Frank C. Helwig

17 October, 1957

ERRATA

Page , I - 8, line 8: should read "numerical addresses whenever,,."
instead of "numerical adress whenever,,."

II - 4, line 6: comment should read "x —C(MQ)."
line 7: comment should read "x — C(101)."

II - 9, line 7: comment should read "a/b —C(R),"
line 10: comment should read ""¢/d — C(MQ). "
line 12: comment should read "(a/b) (c/d) — C(R)."
II - 10, line8: comment should read "(a x+a,) x +a, —+C(R)."

II -11, line 1: replace "DVP" by "FDP."
line 3 from bottom: replace "DVP C" by "FDP C."

IV - 12, line 9: replace "-8190" by "-8191,"
line 10: replace ''-8191'" by "8192,"

V - 4, line 14: insert the following sentence: "Columns 8 to 10 make
up the operation field."

V - 5, line 9 from bottom: replace "assmelby' by "assembly, "
V - 8, line 6 from bottom: there should be no blanks after the
commas, so that it should read:

B DEC 23178195, -251 + 251, 48

'V - 13, line 9: delete the word "he."
line 15: replace "one" by "once, "

VI - 3, line 10: replace "location" by "variable, "
'VIII - 5, line 8 from bottom: replace "if'" by "it."
X - 1, line 16: comment should read "C(NUM)/C(DENOM)— C(MQ). "

XII - 17, line 12: should read "AMTST TQO* + 1" instead of
: "AMTST TQO +1."

XII - 10, last line: should read ''reenter the trapping mode again after
' the transfer." instead of '"reenter the trapping mode, "

Appendix B Page 1, line 4 from bottom: replace "is'" by "and is, "

ERRATA (Continued)

Appendix C Page 2, line 9: The following instruction should be inserted as
a new line between "Store Logical Word" (line 9)
and "Store Left-Half MQ'"

Instruction: Store Zero

“Mnemonic Code: S TZ o, B

Octal Value: +0600
AC : A'= A
MQ T M =M
IR B : I'=1

R : w'=0

(no comments)

Page 3, 7th entry in column headed "mnemonic code' should
be "CADa, B" instead of "CPA o, B"

14th entry in column headed "Octal Value" should be
+0761 instead of -0761

Page 3, line 18 from bottom: octal value for REW i should read
"40772,,, 200+, "

Page 3, line 17 from bottom: octal value for WEF i should read
"+0770, ., 200+, "

Page 3, line 16 from bottom: octal value for BST i should read
"+0764,.. 200+, "

Page 4, line 3 from bottom:

The following instruction should be inserted between
"Leave Trapping Mode'' and "Redundancy Tape Test"

Instruction: End of Tape Test
Mnemonic Code: ETT
Octal Value: -0760..,011

Comments: L' = L+2 if tape indicator is off,
tape must still be selected.

INTRODUCTION

The MIT Computation Center, which was established
in July, 1956, is an interdepartmental activity located in
the new Karl T. Compton Laboratory (Building 26). The
principal objective of the Center' is to increase the number
of students, staff members, and scientists qualified to use
modern computing machines to further their research efforts,

The Computation Center is an activity which has
many assets: qualified staff, modern computing equipment,
and a brand new physical plant. The participating
personnel in the Center program are located at MIT, IBM, or
one of the participating New England Colleges or Universities. |
Specifically, the Center represents a cooperative activity |
involving MIT, the IBM Corporation and, at present, 25 New
‘England Colleges and Universities.

Participating Colleges

; The following New England Colleges and Universities --
in addition to MIT -- are currently participating in this
program: '

Amherst College

Bates College

Bennington College

Boston College

Boston University

Bowdoin College

Brandels Unilversity

Brown University
Connecticut, University of
Dartmouth College

Harvard University

Maine, University of
Massachusetts, University of
Middlebury College

Mount Holyoke College

New Hampshilre, University of"

ii

Participating Colleges (Continued)

Northeastern University

Rhode Island, University of
Tufts University

Vermont, University of
Wellesley College

Wesleyan College

Williams College

Worcester Polytechnic Institute
Yale University

An active participating by the staffs of the New
England Colleges in the Computation Center program was
initiated by the appointment of 24 Research Assistants and
Associates at these institutions during the academic year
1956-1957. These appointees provide active liaison between
the staff at the Center and the students and staff at their
individual institutions. Appointments of this type will be
made each year -- to insure a wldespread and dynamic
participating program.

Physical Plant

The physical plant of the MIT Computation Center
consists of 18,000 square feet located in the recently-
erected Karl T. Compton Laboratory. Specifically, the Center
occupies part of the basement, the entire first floor, and
part of the second floor of the Compton Laboratory. In
addition, a two-story annex is used to house the IBM Type
704 Electronic Data Processing Machine (EDPM) and the
associated Electric Accounting Machine (EAM) equipment,

The first floor contains adequate space for the
headquarters staff, the operations staff (analysts, pro-
grammers, machine operators, etc,), IBM Institutional
Representatives, New England University Research Assistants
and Associates, MIT Research Assistants and Associates,
classroom and seminar room, as well as the 704 computer.

The basement provides space for the EAM machines, the systems

iii

research laboratory, dark room facilities, the electrical
power plant, and the air conditloning equipment. The second
floor provides space for the programming research staff, the
visiting professors, and the library and document room.

All thils area has been furnished in a first-class
manner to facilitate the progress of research at the Center,

The 704 Computer and Associated Equipment

The computational facilities in the Center are

- supported in large measure by the IBM Corporation. Specifically,
IBM is providing the 704 computer, the associated EAM equip-
ment, and the associated maintenance personnel on a gratis

basis, The followlng machine complement 1s available 1in the
Center: |

MACHINE COMPLEMENT IN THE MIT COMPUTATION CENTER

Quantity Type Description
1 TOU Analytical Control Unit
1 711 Punched Card Reader
1 716 Alphabetic Printer
1 V721 APunched Card Recorder
1 733 Magnetic Drum Unit (8192 words)
1 736 Power Frame No. 1
2 737 Magnetic Core Storags (8192 words)
1 740 CRT Output Recorder
1 741 Power Frame No. 2
1 746 Power Distribution Unit
1 753) Magnetic Tape'Control Unit
10 727 Magnetic Tape Units

-

780 CRT Display Unit

Quantity

1

R S S\ QN S

e S S R S ARG R G, ye

714
71T
722
TeT
757
758
759

o024
026
056
066
068
077
082
Lot
519
552

iv

Off-Line Equipment

Type

Auxiliary

Description

Card Reader

Alphabetic Printer

Card Punch

Magnetic Tape Units
Printer Control Unit
Punch Control Unit

Card Reader Control Unit

Machines

Key Punch

Key Punches

Verifiers

Printing Card Unit)Data Transceiver
Telephone Signal Unit)and Receiver
Collator |

Sorter

Accounting Machine

Reproducer ' ‘
Interpreter

The actual location of the machines in the 704 Room is
shown on the attached physical layout sheet.

Sta{rway

Glass -
736 746 741 RE
Customer
Engineering
26-160
' X
75515 |4l |3 2] 2 721 /
Tape ~ - 716
J
PR
6
‘€ . RD|711 Reception
S Room
%_8 <i::::> 26-152
‘/—: TOh4 ‘
~ 9
I
9] 10
| 78 X
135
722
-
PCH Ta27|[r27| 74O - T37
PCH 758 PRl Ll Dispatéh Schedule
7
714 &’
RD|
;?{-9 757
PR OFFICE

Glass

vi

Additional Description of 704 Components

The Type 66-68 IBM Transceiver equipment will permit
rgmote programming for the Type 704 computer. Specifically,
the Type 66 Printing Card Unit will receive approximately
14 card columns of information per second over telephone
lines., The received information is simultaneously printed
along the top of the card while 1t 1s being punched into
the same card. At this transmission speed an average of ten
(10) fully-punched 8-column cards may be received each
minute -- more if fewer than 30 columns are punched in each

card.

Four independent transmissions can be made simul-
taneously over the same teiephone wires, provided each
independent transmitter;has its own transceiver at each
end of the line. Simultaneous transmission 1is accomplished
by use of the following four channel frequencies: 800, 1300,
1800, and 2300 cycles per second.

Initially, the MIT Computation Center will use only
one transceiver operating at 1300 cycles per second on a
bowire signal unit. The initial telephone circult will
connect the 704 Computer installation at Poughkeepsie,
New York to the Center in Cambridge, E@ssachusetts,

Use of Dual-Purpose Equipment

There are only 12 magnetip tape units at the Center
and ten (10) of these are directly connected to the main
frame and are available to the programmer. Since there
are three (3) additional sets of peripheral or off-line
equipment, namely:

| 1. Magnetic tape-to-punched card converter,
2., Magnetic tape-to-printer converter,
3. Punched,card-to—magnetic tape converter,

there 1s need for dual use cf one of the magnetic tape units.

vii

Accordingly, the physical layout of the equipment and cables
has been designed to permit use of tape unit No. 10 on a
dual basis, either as on-line tape unit No., 10, or as an
off-line unit with the off-line card punch Type 722. (The
change from on-line to off-line usage is effected by
manually changing the signal cable connector on tape unit
No, 10.)

Personnel at the Center

The personnel of the Computation Center may be
roughly classified into the following groups:

» Administrative and Supervisory Staff,

. Members of the Teaching Staff,

. Members of the Operations Unit,

. Members of the Programming Research Unit,

5. Members of the IBM Research and Associate,Pngram.

= O N

The core of the above groups was obtained by selecting key
individuals from the staff of the 0ffice of Statistical
Services and the staff of the Scientific and Engineering
Calculation Group at the Digital Computer Laboratory.

The compositlion of the IBM Research Assistant and
Assoclate program will naturally vary from time to time,
since these appointments are made on an annual basis. Some
of these appointments are renewed for a second year; however,
the principal purpose of the appointment -- that of indoc-
trination in computer application and programming -- is
accomplished the first year. At the end of the first
year, these men are well-qualified to transmit their
knowledge to other students and staff at their respective
universities,

CHAPTER T
AN INTRODUCTION TO THE 7Ok

The modern computer 1s really a large, but element-
ary device -- at least in principle. An undérstanding of
g computer 1s perhaps best given.by 1isting the majdr
components of a particular'computer,'the IBM 704, and then
describing how these components interact with each other,
Br;efly, these components are: '

1. A large, fast-access memory or information
storage device

2. An arithmetic element

3. An eléctronic control element

I, Input and output equipment

5. AuXiliary memory deviées to supplement

items.l and 4,

The first 1tem; a large memory un;t, is.a device
capable of storing (although not necessarily all at once)
all the Information required té perform a computatioh.

' This information is stored in convenient units by words.
’Thus in the IBM TO4 computer at MIT theré is an 8192 word
high-speed magnetiq'core memory. Although it need not
unduly concern the user at present eaéh wofd consists of
36 binary digits (bits), each bit cépable of having a

value of one or zero. Finally each of the oneeword storage

I-2

locations in the memory unit, (often called a register or
cell), has an arbitrary numerical address from O to 8191
which is permanently wired into the machine. In effect
then the memory unit of the computer is a collection of
labelled pigeon holes which will hold all the numerical
values of a problem before, during, and after computation.

The second item, the Arithmetic Element, consists of
- several speclal registers: the Accumulator Register (AC)
the Multiplier-Quotient Register (MQ) and a Storage Register
(SR). Each of these registers can contain one word and will
respond to signals from the Control Element, described
shortly. Usually the SR will contain a word which is to
be combined in some definite manner with a word in the AC
or the MQ according to signals sent frbm the Control
Element. For example the simple addition of two numbers,
one in the AC and the other in the SR, will result in the
sum being left in the AC.

The third item, the Control Element,is analogous to
a "central nervous system" in the computer. An important
part of this system is two registers: the Instruction
Location Counter (ILC) and the Instruction Register (IR).

Having established in this way the more important
terms, it 1s now possible to clarify'theircmeaning_by con-
sidering the process of computer operation. The most
basic operation consists, in genérél, of information being

brought from memory to the arithmetic unit, processed'by |

I-3

means of a standard operation and the resultant infor-
mation perhaps belng stored in the memory; to accomplish

this operation an instruction (i.e. a number code for the

process desired) is glven to the Control Element which
then selects ffom the memory the specified informatlon
and places it in the SR, 1mpu1seé the Arithmetic_Elemént
to performvthe operation and then stores the result when-
ever the Instruction so specifles. |

Now clearly 1f instructions were to be given to
the Contr§1 Element by a human machine operator, the
execution of a sequence of instructions could be no
faster than the human operator. A possible solution
would be to prepare the sequence of instructlions in a
loop of perforated coded paper tape, but this too would
be limited by‘the speed of mechanical rotation and reading
of the tape; (some of the earlier computers did Just this).
An ingenious solutlion to this problem is to place the
sequence of number-coﬁed instructions in the memory unit
of the computer itself, for then the execution of the
instruétions is only limited by the speed of the electronic
clrcuitry and suffers from neither mechanical nor human
intervention. This latter concept, often called that of
the stored-program, 1s one of the important distinctions
of the modern high-speed digital computer. A second
distinction and a very important feaﬁure of a stored

program computer 1s that since both the instructlons and

T4

data are stored in the same memory unit, it is quite
possible for sequences of instructions to actually
modify themselves. The ramifications of this second
distinction will be explored in later chapters.

Let us consider as an example the execution of an
elementary sequence of instructions arbitrarily located
in memory locations 127, 128, etec.

Address

Location Operation (of word to be operated on)

127 CLA 199 '

128 ADD 198

129 STO 200

130 TRA 353

198 (Contains value of x)

199 (Contains value of y)

200 (Contains value of sum)

As implied here, the 704 computer is a single-
address computer so that each instruction consists of an
operation, (usually abbreviated by 3 letters) and an
address referring to one word in the memory. (Many other
computers for reasons of design efficiency use multi-
address instructions). A second implication in the
example shown is that the Control Element performs the
instructions in the éequence of their location in memory.
There are a few instructions, which cause exceptions to
this rule, but these discrepancies are considered part of

the instruction definition. 1In fact these exceptional

I-5

ipstructions which cause Jjumps in the instruction
execution sequence will be seen 1n later chapters to

play a vital role 1n the decision and repetition capab11:
ities of the computer.

Returning to the example given. the computer
operation now will be traced to ensure that the basic
concepts are established. The zssumption made is that
the Control Element is manually started with the Instruc;
tion Location Counter (ILC) preset to the value 127.

The firzt step the Control Element performs is to copy
the instruction in memory location 127 into the instruc;
tion register (IR). Examination by the Control Element
of the addresé section of the IR reveals that the word
located at address 199 is to be operated on so this word
iz copied into the Storage Register (SR). DNext the
Control Element carries out the operaﬁion indiéated by
that section of the instruction in ths IR. In the
particular example here, CLA means "clear and add (to
the AC)" so the effect of the operation is to copy the
contents of the SR into the AC., The final step performed
by the Controi Element is to increase the ILC by one (to
128 in this case), and then repeat the pattern described
by placing the instruction located in 128 in the IR,
placing the word stored at location 198 in the SR and so
forth. It should be clear from this description that the

computer can operate at high speeds in a fully automatic

I-6

fashion. It should also be clear that all sequences of

instructions were pre-arranged inside the computer. The
practical use of a computer hinges on this latter accom-
plishment which is called programming if it involves the
totality of computer operation or coding if it concerns

only the sequences of instructions,

Having completed the basic opefating description
of a computer it 1s now possible to finish discussing the
ma jor computer components. The fourth item listed
previously, input-and-output equipment, serves to transmilt
information to-and-from the outside world and the memory
unit. Thus for input devices on the 704 computer there
are a card-reader or magnetic tape units. Similarly for
output equipmént there is a printer, a card punch, mag-
netic tape units and a photographing oscilloscope. It is
an important feature that éll the input and output devices
can be actuated and controlled whenever special instruc-
tions are executed in the computer; thus the devices are
said to be under "program control."

The auxiliary storage devices mentioned previously
as item five are of two types. The first is the use of
magnetic tape also as a supplement to the storage capacity
of the memory unit. The second device is a rotating
magnetic drum. The drum units on the MIT 704 offer ancther
8192 words of storage, any word of which may be brought

into the main core memory unit in a time bounded by that

I-7

of one drum rotation. Thus for some purposes the drum as
a storage device is inferior to core memory but superior
to magnetic tape where the time required to bring a word
into core memory depends on the position of the word on
the tape.

This concludes the broad brush-stroke description
of a computer. The remaining chapters will discuss various
aspects of the éssential details. As a general introduc-
tion,though,a quick survey will be made of some of the
conventions involving computer words.

It was already noted earlier that there were two
broad categories of words used in the 7O4. These were
instructions and data words, each composed of 36 binary
bits and_indistinguishable except by usage. However there
are several convenient word usage conventions which are
strongly favored by the instruction codes available on the
704. Thus the binary bits of an instruction are divided
into standard sections. In most of the instructions, the
first 18 bits give the operation code, the next 3 bits
the tag value (the use of this is described under the
chapter on indexing), and the last 15 bits give the
address section of the word that the instruction refers
to. In a few instructions the first 18 bits of the
operation section are further divided into a 3 bit prefix
and a 15 bit decrement section, again described in the

chapter on indexing.

I-8

No attempt has been made to describe in ahy detail
the binary nature of the computer because in practice
there are standard "translation" procedures always
available. Hence when a person writes down CLA as an
instruction, this when read into the computer is trans;‘
lated into an 18 bit operation code. An additional and

similar convenience is to be able to avoid the use of
- .

fnaty

numericalLaéé%éés~whenever writing down sequences of
instructions. This 1s done by using what are known as

symbolic locations or more generally symbols. These are

merely arbitrary 5-character (or less) names for specific
locations or addresses, Thus the previous example of

coding might have been written as:

Location Instruction Address
START CLA Y
ADD X
STO ARG
TRA NEXT
X (Contains value of x)
Y (Contains value of y)
ARG (Contains value of sum)

It is important to realize that this algebra-like .
convenience produces exactly the same numerical values for
instructions and locations inside the computer as the
previous numerical example; all that has changed is the

convention for describing these instructions and locations.

I-9

The other major category of words used in the
704 is that of words used to represent arithmetic quantites.
There are two major types, those for fixed-point numbers
and those for floating-point numbers. Again it should be
emphasized that these conventions are only useful because
there are explicit 704 instructions which manipulate words
according to these conventions. In fixed-point words, the
first bit 1s used to describe the sign (0 is positive,
1 is negative) and the remaining 35 bits give the magnitude
of the significant figures. Inasmuch as the binary point
is not a tangible thing inside the computer, a fixed-
point number can either be an integer or a fraction
depending on whether one interprets the binary point as
being at the left-hand end or the right-hand end of the‘
magnitude.

In a similar way, floating-point numbers, that
is, numbers which are represented by a fraction multiplied
by 2 raised to a power, are represented in the following |
way: 'The first bit is the sign of the fraction, the next

8 bits are the always-positive characteristic (by

definition, the exponent plus 128), and the remaining 27
bits are the magnitude of the fraction.

Just as in the instructions, where the convenient
abbreviations and symbols are translated.whenever instruc-
tions are placed in the computer, there are convenient

ways of writing fixed-and floating-point numbers in normal

I-10

decimal form for the computer. For example, simply
writing down the pseudo-instruction DEC -5, will trans-
late (because there is no decimal point) into the
computer as the fixed-point integer minué five, _
Similarly DEC -5,translates (because there is a decimal
point) into a floating-point minus five, and DEC -.5B
translates (because there is a B) into the fixed-point
fraction minus one-half. Further discussion of this
translation process (often misleadingly called assembly)
and the translation syntax or rules are given in the
chapter describing the SHARE Assembly Program.

The foregoing chapter briefly describes the
basic word structure used in the 704 computer. For
clarification of details and definitions the IBM 704
manual will be found useful as a reference.. In particu-
lar binary arithmetic and conversion aré described in an

Appendix.

IT-1

CHAPTER IT
FLOATING POINT ARITHMETIC IN THE 704

In this chapter we will show how the TO4 can be
made to evaluate simple numerical expressions, as for
example (a + b)c.

Some Conventions

The reader already knows that in order to have
the computer do any computations a program must be

written in terms of the elementary instructions which

the machine can obey. When we write programs down on
paper, we represent the instructions by three letter
abbreviations which are derived from the name of the

instruction. Clear and add is represented by the abbre-

viation CLA. Such abbreviations we call operation codes.

In general, the instruction will have an address.

Usually the address determines which storage location the
instruction refers to, and accordingly it may be the
integer number of that storage location. For example:
CLA 100 refers tao storage 1ocatibn 100.

We will more often want to write some symbol
instead of an integer with the undersﬁanding that the
symbol represents an integer. Fbr example:

CLA A
where A stands for a permissible integer.

Furthermore it is often corvenient to write

IT-2

comments on the same 1line wlth the instruction to
‘explain its purpose or define it, like this:

CLA. A This is a 704 instruction

When composing a program, we arrange the
instructions in a vertical column and imagine that the

computer obeys them in sequence reading down. Thus:

CLA A First this one

STO B then this one

CLA C then this one
D

STO ete.

Conventions Used in Comments and Definitions

The two mqst important registers in the arith-
metic element, the accumulator and the multiplier;quotient
registers, we will abbreviate by (AC) and (MQ) respec-
tively. ' ‘

Often we will want to talk about the contents of
a certaln storage location. We will write

c(100)

for "the contents of storage location 100," and

c(a) , c(ac)
for "the contents of storage location A" and "the contents
of the accumulator" respectively. Also we will use the
symbol "==>" to mean "replaces." Thus

c(a) =—>c(ac)
will mean "the contents of storage location A replaces

the contents of the accumulator."

IT~3

Now we are ready to -begin.

The Administrative Instructions

First we will consider some instructions, which
do no computing, but are very important. They are used
to transmit words between storage and arithmetic element.

We call them administrative instructions. They are:

Definition

1. Clear and Add

CTA A C(A)=—»C(AC)
2. Load Mé

LDQ A c(a)—>c(M)
3. Store

STO A C(AC)=>C(A)
4. Store MQ |

STQ A C(MQ)=>C(A)

Some Simple Examples of Programs

We will write the following computer instruction
at the end of sample programs which we exhibit:

5. Halt and Proceed

HPR causes computer to halt;
it will proceed to the
next instruction if then
started manually.

Example I: If C(100) = x, then either of the
following programs may be used to place x in location

101.

II-4

OPER Address Comments
CLA 100 x =—>C(AC)
STO 101 x —>C(101)
HPR HALT
or
LDQ 100 x—>C(MQ)
sTQ| 101 x —> €(101)
HPR HALT

In both cases C(100) remains undisturbed so that

x ends up In both locations 100 and 101.
Example II: Suppose it is desired to exchange
C(A) and C(B), Let:
C(a) =x ; C(B) =y

IDQ | A x —»C(MQ)

CLA| B y —>»C(AC)

STO A y —>C(A)

STQ B X == C(B)

HPR halt, x and y are inter-
changed

Next, we '‘shall consider how the administrative

instructions can be combined with arithmetic instruc-

tions to do simple calculations; but first we will
briefly discuss a kind of number that the 704 is designed

to deal with.

Floating Point Numbers

In many of the computational problems that

L4

arise in the sclences and engineering one encounters

II-5

numbers that vary greatly in magnitude. To save
writing and to save paper such numbers are usually

written, for example, in this way:

5.213 x 1000, 3.213 x 10°
rather than in the equivalent forms:
.000005213 s 32130000000.

The first way of writing these numbers is an

example of what we shall call floating point notation.

As a convenience for doing calculations where the
magnitudes of the numbers do vary widely, the 704 has
instructions which do arithmetic with numbers of a
Ssimilar form. We call numbers of this kind floating

point numbers. Since the 704 is a binary machine, these

numbers are of the form

N = x.2%

(rather than X-1oij. The integer 1 is called the
exponent and is restricted to lie in the range
-128¢1i & + 127
and x is called the fraction and is restricted to lie
in the range
-l&4xK1.

If x also satisfies either of the two conditions

-.32"-$|x|<1 or x=0

then we say that N = x-zi is a normalized floating

point number. In what follows, we shall assume that

'II-6

all floating point numbers are normalized unless a specific
statement to the contrary is made.

The fraction, x, 1s not a.continuous variable but
can assume only integral multiples of the ngmber 2-27. This
fact we usually express by éaying that x (and therefore N)
has a precision of 27 binary digits. This is a precision
slightly greater than 8 decimal digits.

How Floating Point Numbers are Written When Programming

When we are writing a program, we may write floating
point numbers in ordinary decimal notation since there is
an assembly program which can translate this notation into
the internal binary floating point numbers of the TOL.

To be specific, if we wanted to have the number

.51 x 1012

stored as a floating point number, we would
write on our coding sheet:

|pEc] s1.
(The decimal point is essential because we wish to reserve
the notation
|pEC| 51

to mean something quite different). However, we may also

write:

|pEc] .51E+2 notice E+2 means 10°

Now it may be helpful to restate two properties of
the 704's floating point numbers in decimal notation.

1. The absolute value of a floating point
number must either be O or must lie between

IT=-7

the approximate limits (1073°, 10738),

2. The maximum precision of a floating point
number is slightly more than 8 decimal digits.

Thus we see from (1) that the number 5.0 x 10'41
cannot be stored as a floating point number because its
magnitude is too small; and from (2) we see that it would

be silly to write

JpEc| -1.234567890123E+2
because nothing beyond the 9th significant. digit -could

possibly affect the stored result.

The Floating Arithmetic Instructions

We are now ready to introduce the four basic
floating arithmetic instructions. In every case, if the
operands are normalized floating point numbers, the
results will be alsd* |

1. Floating Add

FAD B C(AC) + C(B) — C(AC)

2. Floating Subtract

FSB B c(ac) - c(B)-—§ C(AC)

*‘The 704 also has some floating-point instructions which
do not produce normalized results. In practice these
instructions (UFA,UFS,and UFM) are used only rarely and in
rather tricky and obscure ways. The interestéd reader may

consult the IBM 704 Manual under the topic of "Fixing a

Floating-Point Number." We advise him to first study the

704 fixed point instructions, however.

I1-8

%, Floating Multiply

FMP B ' c(MQy%C(B) —> C(AC)
4, Floating Divide or Proceed
FDP B if C(B) #0; C(AC)/Cc(B)—>C(MQ)

The instructions FAD, FSB, and FMP do not leave the
MQ undisturbed. In fact) these instructions leave a value

"in the MQ such that the number

C(AC) + c(MQ)
is a better approximation to the true result than C(AC) is.
In "single precision" work, however, the C(MQ) is' ignored.
The instruction FDP leaves the remainder in the

AC. This is also usually ignored.

Examples of Programs Using the Floating Arithmetic Instructlions

Example IITI: . If

C(A) = a and C(B) = b

then the following program cbmputes
%a :2b .

and stores the result in location C:
ClA| - A
FAD
FAD

A 3a —> C(AC)
A
B
C

L
~

. |rsB 3a - 2b —>¢(C)
STO

HPR

A

II-9

_ Example IV: If locations A,B,C, and D contain the
“numbers a,b,c, and d respectively, then the following pro-

gram computes

(a/b)(c/d)

and stores 1t in location R:
CLA| A] o -
FDP| B a/b—> C(R)
sTQf RJ'
cral ¢l |
FDP D). c¢/a—> c(MQ)
FMP| R | |
'Isto}] RJ (a/v)(e/d) —>C(R)
HPR - | -

The following equivalent program requiring fewer

instructions can also°bé used:

cLa] - A] |

|roP| B a/b —» C(MQ)

FMP| - C (a/p)c —> C(AC)
;[FDPf D | |
o] R] ((a/b)c)/d~=b C(R)

HPR ‘

,EXAmglé<X: Suppose that
c(A3) =a
c(A2) = a

3

c(A1) f=‘a1

_c(A0) = a

.:Q
TR). = x

then the following progrgm evaluates‘the polynomial

PR T - _ :
83X” + 8,X° + 8% + &, = ((a3x + az) X + al)x + a,

IT-10

and stores it in location R:

IDQ| A3
FMP| X

FAD| A2

sTo| R | azx + a, ~—> C(R)

IDQ| R

FMP| X

FAD| Al (33x + a2) X + al-—j>C(R)

STO| R

el R T

FMP| X ((a3x + az)x + al)x + a, —> C(R)
FAD| AO ‘
STo| R

HPR -

Underflow, Overflow, and Division by Zero

If during the course of a floating point calculation
an attempt is made to compute a result whose magnitude is
too large or too small i.e. lies outside the approximate

range

(1038 10738y

b

then a very wrong answer will result!-
In this chapter, we have been and will continue to
ignore this complication. .We only remark that there are

two lights on the 704 cansole, the AC Overflow light and

the MQ Overflow light, which are turned on by an overflow

(or underflow) in. the AC or MQ, and that there are TO4
instructions which can be used to determine whether these

lights are on.

03
#
k-]

IT-11

Alsq, 1f division by zero is'attempted,'the;gVP'

instruction turns on the Divide Checkvlight and goes on to

the next instruction leaving C‘(AC')‘unchangedo

We will have more to say about these things later.

Some Instructions with only One Operand

The arithmetic instructions that we have Just been

considgring each had two operands. That is, they combined
two numbers by an arithmetlc process to obtain a result,
Now we wish to consider a few instructions which have only
one operand.
1. Clear and.Subtraét
CLS A -C(A) —> c(AC)

2. Change Sign
CHS -C(AC) —>C(AC)

3. Set Sign Plus

ssp +|c(Ac)|i-—> c(AC)
4y, Set Sign Minus
SSM -lC(AC)I-#C(AC)

Notice that CHS, SSP, and SSM do not have addresséso

Example: If locations A and C contain the numbers

a and ¢, then the following program computes

-a/c
and stores the result 1n R
CLS A -a = C(AC)
- FbP "
e C -a/c =3C(R)
- STQ R

HPR

ITI-1

CHAPTER III
THE CONTROL INSTRUCTIONS

If the 704 could execute only the instructions which
we considered in the last chapter, it would not be any more
useful than a desk calculator. For if we”had“only*the'arithe
metlc and-administrative instructions, there would be no ﬁay
We cou1d“cause:the computer'tq-execute'the“same“instructions
more than once, Thus for every addition, subtractiona mul-
tiplication or division we might wish the'computer to per-
form, we would have to write one or more instructilons; and it
probably takes more time to write down a TO4 instruction than
it does to do a multiplication on a desk calculator. In
this chapter we will introduce some of the instructions with
ﬁhich we can cause the 704 to profitably execute the same
instructions many ﬁimes and with which we cgn program the

computer to make decisions. We will call them control in-

structlons.

Normal Sequence in Which the 704 Obeys Insﬁfuctions .

| Let us first review briefly some basic facts about
the computer. Bothﬁthe;numbers with which 1t computes and the
instructions which it executes are stored invthe memory. The
ihstructions are stored one to a storage-location. When the
¢omputer has Jﬁsﬁ finished executing an instruction in a
¢érta;n storage location, say location N, it normally pro-
éeedskto,next exeéute the instruction in thg.next storage

ibcation, il.e.y 1o¢ation-N+1°

ITI-2

As a matter of fact, there is a special register in
the control mechanism of the 704 which always contains the

location of the next instruction to be executed. This regis-

ter 1s called the instruction location counter, abbreviated

(ILC). Now what we just saild about the normal sequence in

which instructions are executed can be illustrated by this

diagram:

Execute instruction
contained in C(ILC)

e
C(ILC)+1=3C(ILC)

Normal Sequencing

The Control Instructions

Any instruction which can cause the 704 to seiect
some instruction for exécﬁtion.ggggg than the one in the
next storage location following the instruction it last
executed, that is, any instruction which can change the

normal sequence of execution Jjust described, we will call a

éontrol 1nstructipn, The control instructions are of two

types: unconditional control instructions and condltional

cbntrol instructions

The Transfer Instructfions .

(1) Transfer
TRA A
15 an unconditional control instruction. The next instruc-
tion the"computer will obey after obeying this one is the
instruction in‘location A. That is, the TRA instruction

ITI-3

affects the contents of the instructionvlocation counter,
We summarize this as follows:
TRA A A—C(ILC)

There are several conditional transfer instructions.
“Each of these has associated with it a condition which, if
satisfied, causes the computer to take the next instruction
from é specifled storage location; If the condition 1s not
satisfied, the computer takes the next instruction from the

next storage location in normal sequence.

(2) Transfer on Minus
TMI A
causes the computer to take 1its next'instructionffrom 1oca—

tion A if the contents of the accumulator is negative and

otherwise to execute the next instruction in normal sequence.

We can summarize this as follows:

™I A ’ if (C(AC) negative) then
A—>C(ILC)

Some other conditional transfer instructions are:

(3) Transfer on Plus

TPL A 1f (4C(AC) positive) then
A—>C(ILC)

(4) Transfer on MQ Plus

TQP A 1 (c(MQ) positive) then
A=>C(ILC)

(5) Transfer on Low MQ

TLQ A if ((¢(MQ)< C(AC)) then
A=—>C(ILC)

ITT-4

If the C(AC) = O or C(MQ) = O, the behavior of these
conditional transfer instructions is indeterminantzlE For
the case where C(AC) = 0, we have the following conditional
transfer instructions:

(6) Transfer on Zero

TZE A if (C(AC)= zero) then A=) C(ILC)

(7) Transfer on No Zero

TNZ A if (C(AC) % zero) then A~» C(ILC)
None of the control instructions affect C(AC) or C(MQ).

Origin Pseudo-Instructions; Symbolic Locations

Up until now we have not worried about where in memory
our little example programs were to be stored. We now adopt
the convention that writing the operation code ORG with an
integer address, say A, at the top of a program means that
that program 1s to be stored in locations A,VA+1,...; For
example, if we wrote

ORG 50 Put this program in 50, etc.
1DQ A |

CLA B

STO A

STQ B

HPR

X This arises ‘because there are two representations of zero
in the 704, +0 and -0, which have zero magnitude but differ
in sign. Either zero may be obtained as a result'of arith-
metic computations. The usual rule of signs holds for results
obtalned by multiplication or division, but a zero obtained
by addition or subtraction has the same sign .as the origilnal
contents of the accumulator. The reader should also note

that the computer considers +0 to be larger than -O whenever
the question arises,

ITII=5

we would mean that our little interchange program was to be

_stored in locations 50 through 54, The ORG i1s not a 704 in- .-

struction; we call 1t the origin pseudo-instructilon.

Example 1:

Suppose C(A) = a
b

I

c(B)
then the following program computes
| min(a,b)
and stores it in R:
ORG 50
IDQ A
a=>»C(R)
STQ R
CIA B
TIQ 55—~ ,
STO R if b<a then b=C(R)
HPR
Noticelthat our program 1s dependent upon where it 1is
stored. It obviously wouldn't work if we changed the ofigin
instruction to ORG 109. The frouble is that the TLQ has an
absolute integer for aﬁ address. Let us instead use a symbol:
ORG 50
IDQ A
STQ R
CLA B
TLQ STOP ==t
STO R
STOP HPR et

III-6

We call the symbol, STOP, written to left of the HPR

a symbollc location, and it serves to indicate that we are

letting the symbol, STOP, represent the -storage.addressg:. -
at i which the HPR is stored. With this understanding, our

program will work wherever we choose to put it. For example:

ORG 1000
IDQ A This program will work!
STQ R
CIA B
TLQ STOP
STO R
STOP HPR

A here 1s.a

B here 1s b

R here will be min(a,b)

Here we have 1ndicated that a,b, and the result are to be in

the 3 storage locations following the HFPR.

Example 2:
Suppose we desire to compute
+1.0/C(A) if ¢(a) $ 0.0
and +1.0x1078 1f C(A) = 0.0

and store the result in ANSWER

CIA A c(A)—>C(AC)
TZE 7Z if ¢(AC)=0, then Z—=>C(ILC)
CLA ONE '

FDP A 1.0/C(A)=—>C(MQ)

ITI-T7

TRA STOR
Z 1DQ LARG 1078 —5c(mq)
STOR STQ R c(MQ)=>C(R)
HPR
ONE DEC 1.0 constants

LARG DEC 1.0E38
A here is the argument.

R here is the result.

The Skipping Type Control Instructions

Some of the conditional control instructions do not
transfer control to an arbitrarily specified location under
certailn conditions, but rather they skip one or more instruc-
tions under certain conditions. We wlll introduce one of
them here and others will come up during a discussion of

input-output and élsewhere.

(8) Compare Accumulator with Storage

CAS A i1f C(AC)> C(A), go to the next
! : instruction

~if C(AC) = C(A), skip one instruction™
if C(AC)< C(A), skip two instructions
For convenience, we also will introduce this instruction:

(9) No Operation

NOP Do nothing; go to the next instruction

The NOP instruction has an address but it 1s i1gnored.

*’Rgcall the previous footnote concerning +0 and -0.

III-8
Example 3:
Let us write another little program to compute

min (C(A), C(B))
and put 1t in R:

CLA A c(A)—=>cC(AC)
CAS B |
CIA B if ¢(B)<¢ c(AC) then C(B)=»C(AC)
NOP they are equal
STO R store the. minimum
HPR
A
Arguments
B
R Result

Other Control Instructions

We shall meet other control instructions in the next
chapter on indexing instructions; others will be discussed
under miscellaneous topics and one or two may ﬁot get dis-

cussed at all., For these, consult the 704 Manual.

Iv-1
| CHAPTER IV
INDEXING: COUNTING, ADDRESS MODIFICATION

The instructions which we shall consider in this Chap-
ter are called indexing instructions and are extremely useful
for coding repetitive computations, They help 1n two ways:
first, they help in address modification, that 1is, they help
in making a sequence of instructions operate on different
numbers each time they are executed. Secondly, they help in
counting. A typical example of a computation Wheré the in-
dexing instructilons are useful would be the formation of the
scalar product of ﬁwo vectors. - We will use this as an

'example latéfo |

Index Registers

The 704 has three registers in its control element
each of which is capabie of storing any of the inﬁegers
O, 1, 2, «cey S=1 where S is the nﬁmber'of storage locations
in ‘the memoryf* These régisters are referred to as index

registers 1, é, and 4; or for short, IR1l, IR2, and IR4.

Tag; Effective Address

To see how the indexfregistérs_can-help us 1in address
modification, we mustiCOnsidér tagged instructions. Every
704 instruction mayﬁbe;taéééd; and by this we mean that it

may have appended to it, as a sort of second.address, the

% This number varies from one 704 to another, but is always
one of the powers of two: 512 213, 214, 215, At present

at MIT it is 213 = 8192, but it may be increased later.

V-2
number of one of the three index registers., The following
instruction is an example of an instruction with a tag of &4:

CLA A4 C(A-C(IR4))-%?C(AC)
The comment shows symbolically what the effect of the tag is.
The contents of the index register with which the instruction
1s tagged 1s subtracted from the address of the instruction
before the instruction 1s executed. Thus the instruction
acts as 1f. 1t . had. an address of- .

A - C(IR4)
This value we call the effective address, All the instruc-

tions that we have considered in the last two chapters and

whichlhave addresses behave 1n the same way. Such instruc=

tions are called indexable instructions.

It 1s now easy to see that 1f ﬁe change the contents
of an index register, we at the same time change the effec-
tive address of every instruction tagged with that index
registéra This would then provide us with the promised ad-
dress modification facility.

Decrements

Before we can describe the indexing instructibns, it
is(hecessary,to explain what a decrement is, Some of the
indexing instructiéns have what amounts to still another
address which we write separated from the tag by a comma,

For example:
. TXI A,2,100 o
Here A is the address, 2 1is the tag énd 100 is the decrement.

In the decrement of such an instructlon, we can store any

V-3

integer that could be stored in an address; that is, any of
0,1,2,..05 32767. The decrement 1s‘used“to change or test
the value contained 1in an"indgx register, and does not nof-
mally refer to a storage -location.

" When we are writing a brogram; we will often find it
necessary to have constants with integer values in the ad-
~dresses and decrements. For this we use the plus zero
operation code. For example:

PZE 1000, O, 10
represents a 704 word with 1000 in the addresé and 10 in the
decrement.

The Administrative InStructions for Index Regilsters

‘We have described a group of‘instructions which we

called the administrative instructions and which did nothing
more than move numbers in and out of the AC and the MQ.
Now we are going to discuss some instructions which move‘inteé
gers in and out of the index registers., We will let K stand
for any of 1, 2, or 4,

There are two instructions which;move Integers from

storage locations to index registers:

(1) Load Index from Address
| LXA ALK .
This instruction loads into index register K the in-
teger found in the address of storage location A. We can
sSymbolize this as follows:

~

C(address of A)=~=»C(IRK)

(2) Load Index from Decrement

LXD A,K C(decrement of A)—%)C(IRK)

There Is+ only one instruction which moves an integer
from an index register'to ‘a storage 1ocation-

(3) Store Index in Decrement

SXD A,K C(IRK)-%?C(decrement of A)
Only the decremenf“of A is disturbed by this instruc-
tion; the rest of the word 1s unchanged.-
There:ismé@similarbset‘of three instructions for
moving integers between thé'édcumulétor and the index
4 registers: |

(1) Place: Address in Index

PAX 0, K C(address of AC)=3»C(IRK)

(5) Place Decrement . in Index
 PDX .0,K S C(decrement of Ac)_,c(IRK)

(6) Place Index in Decrement

PXD 0,K c Clear the AC; then
C(IRK)-A»C(decrement of AC)

This last instruction has the 1nteresting property
that if it has no tag (1.e., 1f. K 1is zero) then it clears
the AC; that is: o 'A

o PXD o ”&é%s?c(fAC_)

In these three "place" instrﬁctions the address is
ignored.- | |

It may be well to note. that the palr of instructions

ocmaa c(A)—a»c(Ac) .
> _?gx.o,l | L C(address of AC)—> C(IR1)

V-5

puts the same number into IRl that this single instruction

does:
IXA A,1 C(address of A)=—»C(IR1)

Counting With the TIX Instruction

We saild that the index registers would be a help in
counting. To prove our point, we now introduce the most
| popular indexing instruction which 1s used to count. It both
changes (subtracts from) the contents of the index register
and acts as a conditional transfer. Here it is:

(7) Transfer on Index

TIX A,K,N
| The action of this instruction depends upon C(IRK).
If C(IRK)>N, then it decrements IRK by N and transfers con-
trol to A, Symbolically$ if C(IRK)D> N, then C(IRK)-N—> C(IRK)
and A-»C(ILC). However, if C(IRK)EN, it does not change
C(IRK) and it does not transfer control; it goes on to the
next instruction in éequence withoot changing anything.

- Example 1:

As an example, suppose we wish to write a pro-.
gram to evaluate the soélar product ofvtﬁo 3-dimensional vec-
tors: A .B=A B1+A2B2+A

1 373"
in storage locations VESTA, VECTA+1 VEGTA+2, and B

Suppose Al,Az,A3 are stored

Bps By

are stored in VECTB and following locationso Then the fol=

T

lowing,program will compute the scalar product and leave the

result in ANSWER:

LXA COUNT,1- . +3«»C(IR1)
LOOP IDQ VECTA+3,1-
FMP VECTB+3,1

FAD ANSWER
STO ANSWER
TIX LOOP,1,1 . Count to 3
I HPR
COUNT PZE 3 , a constant
ANSWER | Originally contains O.
Instructions . , ,
Executed ~ IR1 Effective Address
LXA COUNT, 1 3
1DQ VECTA+3,1 ' VECTA+3-3 = VECTA
FMP VECTB+3,1 : VECTB+3-3 = VECTB
FAD ANSWER '
STO ANSWER
TIX LOOP,1,1 2 (since 3>1, we index and
: go back)
IDQ VECTA+3,1 | VECTA+%-2 = VECTA+1
FMP VECTB+3%,1 ‘ VECTB+3%-2 = VECTB+1
FAD ANSWER . ' :
STO ANSWER
TIX LOOP,1,1 1 (since 2>1, we index and
' " go back)
IDQ VECTA+3,1 .~ VECTA+3%-1 = VECTA+2
FMP VECTB+3,1) VECTB+3-1 = VECTB+2
FAD ANSWER - ' .)
STO ANSWER |
TIX LOOP,1,1 1 (since 1 = 1, we do not
. index; we proceed)
. HPR : o 1. stop . .
GURE IV-1

V-7

Figure IV-1l shows a stepeby;step*history of this
brog’ram° Notice‘how'the effective address changes with the
contents of the in&eX'register; The instructions themselves,
of coﬁrse,Mremaiﬁ“unchangedo.eThis simple program 1llustrates
several points worth remembering about such "TIX loops |

(a) The index register 1s set to the number of
elements.to be processed,

(b)_;The tegéed instructions have an address equal
to the sum of the location of the first element‘in the. blockl
to which they refer and the number of elements in the block.

(¢) The effective address moves forward through

.the block.

‘(d)”xThe instructions themselves don't change; only

o

their effective addresses ehange.

The TIX 1nstructionhm;s a backward twin which acts
exectly like the TIX except that it goes to the next instruc-'
tion where the TIX would transfer and transfers .control
.where the TIX would go to the next instruction:

(8) Transfer on No Index

TNX A,K,N
If. C(IRK)>N then C(IRK)»N-’»C(IRK) and go to next

instruction
anel Q—Cﬁuc.)4! = (z

If C(IRK)EN, then it leaves ERK alone and A-»c(ILc)

Exa mgle 20

We can contrive -to use the TNX instruction in

our previous example.

Iv-8

ILXA COUNT,1 +4 —>C(IR1)
LOOP TNX STOP,1,1< count

IDQ VECTA+3,1

FMP VECTB43, 1

FAD ANSWER

STO ANSWER

"TRA LOOP
STOP HPR

COUNT PZE U
ANSWER

The reader should note that in this example the in-
dex register 1is set to one plus the number of elements to be
processed., Another characteristic of this progrém is that
counting and testing are done before the loop 1s entered..

The above example is somewhat forced; however, TNX
does have some valld applications. In more complicated pro-
grams the number of times a loop 1s executed may be a variable
computed by the program. If zero 1s an admissible value for
this variable it may be possible to write neater loops using
TNX than can be written uslng TIX. _

In such program dependent 166ps, however, further
complications arise‘invqonnection with the addresses of tagged
Instructions., In example 1'we noted that a tagged instruc-
tion must have an address equal to the sum of the location of

the first element in the block and the number of elements in

Iv-9

the block. For a program dependent lobp this means that the
addresses of all tagged instructions must be altered before
| execution. The physical modification of 704 instructions is .
possible (wé"do not know how to do it yet) but can be avoided
in this case by an artiface: namely, instead of assigning a
symbol to the location of the first element of the block we
assign a symbol to the location of the last element of the
block (or better still to this location plus 1). |
Thus if we store Al, AZ’ and A3 in VECTA-3%,VECTA-2
VECTA-1, respectively, and we store Bl’BZ’ and B3 in VECTB-3,
VECTB-2 and VECTB-1, regpectively, then scalar multiplication
could be performed by the following variation on example 1:
Example 3
LXA COUNT,1 , +3->»C(IR1)
LOOP IDQ VECTA,1
FMP VECTB, 1 .)
FAD ANSWER
STO ANSWER
TIX LOOP,1,1 Count
HPR
COUNT PZE 3
ANSWER | |
It 1s suggested that the reader devise a.similar
variation on example 2. ;
There are two other conditional transfer instruc-

tions involving index reglsters:

IV-10.

(9) Tranéfer;onrlndexlﬁigh
. TXH A,K,N '- 1f (C(IRK)> N) ,then A=>C(ILC)
(10) Transfer on Index Low or Equal

TXL A,K,N if. (C(IRK)-(N)’then A-->c(ILc)
These two iﬁstﬁudtions act exactly like TIX and TNX

respectively except that they dbnlt change ﬁhe,index reglster.
One further unconditionél-transfer instruction will

| round out the: pieturen

{11). Transfer w1th Index Increased
' TXT ALK, N c(IRK)+N—->c(IRK) and A—>C(ILC)

Some Remarks About Notation

The reader - may have noticed that-
a) All the indexing 1nstructions have an X in their
' 3-letter operation codes. . .
b) Transmission ofrinformation from storage to
| the index registers is designated by ‘an initial L,.(Load)
We have LXA and LXD. ‘ '
c) .Transmiséion.offinfdrmation_gggg the index
registers to ‘storage 1s designated by an initial S. (Store).,

We have SXD but not SXA.

d) Transmission of information in either directién
between the AC and indexiregisters is designated by an initial
P. (Place) Ve have PXD, PDX PAX, but not PXA .

e) Transfer of control‘is designated as usual by‘
an initidl T. We havd?fodfiddnd;ﬁ}onal transfers involving
index_registers,;TIX, TNX?.TXHédand'TXL; and one uncondi-
tional transfer, TXI®- |

% One more, T8X, will be discussed "underisubject of subroutines.

Iv-11

‘Arithmetic in the Index Registers and Machine Size

Since the index registers can only hold positive inte=
gers less than S, the number of words in the memory; and since
S.may be less.thén the largest integer,whiCh can be stdred.in‘
the address or decrement of an instruction, the following pair
of instructions might change the integer in the decrementlof '
A

LXD - A, 1

SXD A, 1

In fact our description of the instructions, which
move integers into the index registers, was not quite correct.
For example, the description of LXD ought to have been:

 Load Index from Decrement _
IXD A, K C(decrement of A)(mod S)-—3C(IRK)

where S is the number of words in the memory, sometimes called

the machine slze, and

X (mod S)
means the remainder obtained after dividing X by S.

A1so, our description of the conditional transfer in-
structions suffer from the same defect° A precise description
of TXH would be: '

~ Transfer on Index High
TXH " A, K, N 1f (C(IRK) YN (mod S)),
I then A-}C(ILC) |

There 1s a common convention according to which a ne-
gative integer, say -N, written in the address or decrement of
an instruction is taken as. an abbreviation for the positive
integer:

215 N = 32768-N
For the case, N<(C(IR1), this can be’ Justified by the following
equation° i :
' [(215 - N) + C(IRlﬂ (mod S) = C(IR1l) - N
which holds because S 1s always a factor of 215, It follows
that the instruction: ' ' -
TXI A, 1, =N .

Iv-12
acts as if it'were adding a negative number to index register
1. |

The address spectrum for the 8192 word machine is 11~
lustrated belows

Blnary Decimal
llqoqoooooll . 8191 or =1
11;000090010 : 8190 or -2
ooogoooooooo ! ooooooooooo'z'ql
OoooooooogOI 1 =]

| or Eﬁ%§§~
Ooaooooooooo ' O or -

For example, if C(IR1)>1, then the instruction

TXI A, 1, -1 '

acts exactly as the following Instruction would
TIX A, 1, 1 ‘

‘ Our convention for negative numbers leads us to a rather
peculiar algebra, however, in connection with the TXH and TXL
instructions. The usual algebra applies when we are comparing
" two numbers of like sign, however, if numbers of unlike sign
are beilng compared we éee from the table that negatlive numbers
are frequently larger than positive numbers. '

Thus, for example, the Instructions:
. TXL A, 1, ~1 and TMX 4, 1, -1
would be unconditionaldcontrol instructions. :
Example 4, We rewrite example 1 to 1llustrate these

points.
ILXA COUNT, 1
LOOP ILDQ VECTA +3, 1
FMP VECTA +3, 1
FAD ANSWER
STO ANSWER .
T¥I TEST, 1, -1 Decrease C(IR1) by 1
TEST TXH LOOP, 1, O
HPR

COUNT PZE 3
ANSWER

TV-T3

Example 5. We again rewrite example 1 to 1llustrate

a powerful technique for writing program dependent loops.

IXA

LOOP 1DQ

FMP

FAD

STO

TXI

TEST TXH

HPR

COUNT PZE
ANSWER

The next

trates the fact

Example 6.

COUNT, 1
VECTA, 1

- VECTB, 1
ANSWER
ANSWER

TEST, 1, =1
. LOoP, 1, -3

0]

example may take some study, but 1t 1illus-
that coding loops in terms of the TXI and TXL
or TXH instructions may be more convenient than using the TIX.

tions A + 1, A + 2, ..., A + 10,
complicated routine will sort these numbers in order of in-

It does 1t by the so-called interchange method.
First it scans through the 1list interchanging adjacent numbers

creasing size,

if they are out

the largest element is in last place.,
cess for the other 9 numbers, etc.

LXA
LXD
SXD
LbQ
CLA
TLQ
STO
STQ
SKIP TXI
TEST TXH
Q TXI
TXL
HPR
PZE

Pass

NEXT

CONST

of order.

CONST, 2
SKIP, 1
TEST, 2

A, 1

A+ 1,1
SKIP

A, 1
A+1,1
SKIP + 1, 1, -1
NEXT, 1, -
Q+ 1, 2, 1
PASS, 2, -2
- 10

Suppose we have 10 numbers stored in loca-

Then the following rather

When it gets to the end of the list,

Then it repeats the pro-

Set count of no. of passes
Consider 1lst pair
Set test for end of pass.

is -the pair out-of-order?
yes, interchange them

Consider next pair

go to NEXT if not end of pass
Prepare for next pass |

Go back for next pass, or
stop

Address has 2%°-10 = 32758

IV-14
Some Pathological Points about the Index Regilsters
Any of the indexing instructions may be written without
a tag. If this occurs the instruction behaves as if there were
an 1lmaginary indéx register, numbered O by convention, whose

contents is always O. An application for

PXD 0,0
has already been described., Another useful case 1s the in-
structilon

TXL A,O
which now becomes an unconditional control instruction and
can almost always be used in place of TRA. The advantage 1n
doing so is that TXL can have a decrement and decrements are
useful for storing integers needed in the program. (What 1is
the point in ever using TRA?)

An indexable instruction may also (in a certain sense)
refer to more than a single index register. For an explanation
of this the reader is referred to pll of the 704 manual and to
the definition of SXD as given on p26. Such multiple reference -
15 indeed tricky and nust be done with care. The following two
examples 1lllustrate some uses for reference to multiple index
registers. The reader may, 1f he wishes,defér study of these
examples until he has a better feel for the binary nature of
the machine.

Example 8. Here we multiply two n by n matrices

A= (ai'j) 1, 3= 1500451

B - (bij) 1, J = lpooc,n
to obtain the matrix

C = (Gij) ig ,j = 1’ooogn

We assume that the matrices are stored in "row by row" form,
ioeo
is 1in register MATA + (i-1l)n + (J-1)

a
1J

by 4 1s in register MATB + (1-1)n +-(3-1)

cij‘appearés in register MATC + (i-1)n + (Jj-1)

The rule for matrix muitiplication is
: n

°13 = Z) 21"k
1% . A

Iv-15
The program follows:

LXA SETUP, 7 n®—> C(IR1), C(IR2), C(IR4)
1 LOOP PXD . |
STO .~ MATCHN#N,) N#N means N2
LOOP IDQ MATA+NkN,1 | . ;
FMP MATB+NAN, 2
FAD MATC+NKN, 4 Form C

STO- MATC+N#N, 4
TXI NEXT,1,-1

NEXT. TIX LOOP,2,N |
TNX STOP,4,1] Stop when finished
TNX 2 LOOP,2,17] Count within row
TXI 1 NEXT,1,N Same row

1 NEXT TXI 1 LOOP,2,N4N-N

2 LOOP TXI 1 LOOP,2,N%N-1] New Row

STOP HPR

SETUP PZE NN

An interesting exercise for the reader would be to
extend this program to handle arbitrary conformable matrices.

Example 9, Here we sort n numbers
ao, Ay5c0e38 7
which are stored in registers DATA, DATA +l,..., DATA +n-1
respectively into ascending order. We do this by a variation 5
of the interchange method as follows: First we compare_C(DATA)
with C(DATA+1l), C(DATA+2), etc. and place the smallest number
in DATA, Next we compare C(DATA+1) with C(DATA+2), C(DATA+3)
etc., and place the next smallest number in DATA +1. We re-
peat the process n-2 more times. and sort the numbers.
ILXA COUNT, 3
LOOP CLA DATA +n,2 Exchange if necessary
IDQ DATA +n,1
TLQ SKIP
STQ DATA +n,2
N STO DATA +n,l1 |
SKIP TXI NEXT, 2, -1 Count one pass through data
NEXT TXH LO0OP, 2, 0| data

IV-16
TIX LOOP, 3, 1 Count passes.
HPR
COUNT PZE n

CHAPTER V

The SHARE Assembly Program (SAP).

This introduction contalns enough information to en-
able one to write programs in the SAP language that will be
correctly translated by SAP., Not all of the features of SAP
are described since some of them are useful mainly to the
experienced programmer, but the more important features are

described more fully than in the main writeup.
It is assumed that the reader has been introduced tc

most of the 7Ok inétructions and also to the basic 1idea of
coding with symbolic addresses.

V-2

The Purpose of SAP

' The purpose of the SHARE assembly program is to translate
programs written in the SHARE symbolic language to a binary form
which can be obeyed by the IBM 704. This symbolic language 1s
standard for T7O4's throughout the country, and programs exchanged
between 704 computing centers will usually be in this form.

SAP was wrltten by Roy Nutt of the United Aircraft

Corporation to the specifications of the SHARE organization
and became available around the beginning of 1956. A revised
version has been written at United Aircraft and will replace
the original version although all programs written for the ori-
ginal will be correctly translated by the new version., A
complete description of the new program is not yet available
so this introduction is mainly based on the older version which
contains all the most important features of the language. We
shall mention some features of the new SAP, and when we do so
will indicate that they belong to the new SAP.

What SAP Does

SAP takes a program written in the language to be des-
cribed and punched onto cards and does the following things
to it:

1. Starting at a register specified by the programmer in
the program it assigns numerical addresses to the symbolic
addresses written by the programmer.

2. It translates the mnemonic operation codes (like CILA)
written by the programmer lnto the blnary code which can be
obeyed by the 704, '

3. It translates numbers written in decimal form by the
programmer into binary fixed or floating point numbers.

4, It incorporates into the program routines taken from
the library tape.

5. It does not run the pngram it translates.

6. It punches a deck of absolute binary cards with
22vinstructions per card. (The original language is written

_one instruction per card.)

V-3

This deck can be loaded into the 704 if prefixed with a
loading program (furnished by the machine operator). The last
binary card punched by SAP gives the address of the first in-
struction to be obeyed in the program. There are other optional
forms of output which we will not discuss in this introduction.

T. It provides an aSsembly listing which describes the
translation performed in printed form. This listing also tells
about any mistakes in your program which SAP has detected.

8. It also punches a symbol table giving the numbers
assigned to symbols. This is useful for making additions to
the program,

How to Use SAP

1. Write your program4;n the SAP language and punch it
on cards. The deck of cards produced is called the symbolic
deck,

2. Give the symbolic deck to the scheduler with a
performance request form asking for SAP assembly.

You will get back the bilnary deck, the assembly listing
and the symbol table.

3. Examine the listing to see 1f SAP has found any
errors in your program. If there are errors correct them in
ways to be described later. This may or may not require a new
assembly., |

4, Give the corrected binary deck to the scheduler with
a performance request asking that the problem be run.

5. Look at the answers.

(When the MIT operator program is available there will
be some changes in this procedure.)

The SAP Language*e

In order to be translatable by SAP a program must be
punched on cards in a particular form. To facilitate punching

¥ This language is not used’in the 704 manual which was
written before SAP. In the back of the manual another assembly
program (NYAP1l) is described which is not in general use.

V-4
it is usual to write the program on a "SHARE symbolic coding
form", pads of which are available in the computing center.

After cards have been punched a printed listing may be
made on the 407 accounting machine. This is useful for
checking the key punching.

Each line of the coding form 1s punched onto a single
card and represents either 704 words or an instruction to SAP
on how to make the assembly.

Each time a key on the punch is struck certain holes are
punched in one of the 80 columns of the card and the punch
aces to the next column. The set of columns of the card is
divided into fields for the purposes of this language. Co-
lumns 1 to 6 make up the location field (column 1 has an
additional special significance). Columns 7 and 1l are not
used, Columns 12 to 72 make up the variable field. Finally,

columns 73 to 80 make up the identification fleld which has no [

Colennrmve gta o oo o Y

programming significance.

The way a card is interpreted by the compiler is de-
termined by the 3 letter operation field. Now we describe
the meaning of the various 3 letter codes in the operation
field.)

REM (Remarks) '
If the operation code 1s REM the assembly program lgnores
the card except that the contents of the variable field of such
a card appears in the assembly listing. It is a good 1idea to
put an REM card with one's name on it at the beginning of the
symbollic deck so that the operator will deliver the listing
to the right person. Otherwise REM cards are used to label
sections of program and should be used liberally as aids to
one's memory in re-reading the program. The letters REM

themselves are suppressed in the assembly listing. ,

ORG (Origin) .
This card is used at the beginning of every program to
specify the register at which the program begins. This

V-5
number must be large emough so that there is room at the be-
ginning of memory for the loading program which brings the bi-
nary cards into the machine, The space required varies from
about 30 reglsters to several hundred depending on the feature
of the loader but if the programmer 1s not pressed for memory
space 512 = 1000g 1s-a good register to start in. The earlier
_registers: can be used for insermediate results since 1t does
not matter if they overlay the loader after 1t has served
its purpose.

The address at which the program 1s to start 1is written
(as a decimal integer) starting in column 12.

An ORG card can also occur in the middle of the program.
In this case one writes an expression starting in column 12
each symbol of which must have previously been defined.
(This last sentence will be clear when we describe what symbols
and expressions are and what it means for the symbols of an
expression to be defined.)

704 Instructions
~ a, Operation field: A 704 instruction is written with

the 3 letter SHARE nmemonic code (e.g. CLA) in the operation
field. The 3 letter SHARE codes include those of the 704 manual
but some additional ways are provided for writing input-
output selection and sense instructlons that place less bur-
aen on, the memory of the programmer,

b. Location field: If the instruction 1s not referred to
by other instructions the location field should be left
blank to save assmebly time. If the instruction is to be
referred to a symbol should be written in the location field.

Symbols ;. A symbol -may be any:combinatlon of 6 or fewer

Hollerith characters none of which are the special characters:
o+ =%/, 8
and not all of which are digits. The Hollerith characters
are: the capital letters, the digits O thru 9, and the
- following special characters

+"'*/:$°

V-6
There are two - signs on the keypunch, and‘the one on the key
also marked SKIP (which gives rise to an 11 punch) is used
in SAP. The one on the same key with the = sign is not used.
The above list does not agree with that given in the 704
manual which gives the characters used for commercial purposes.
Examples of legal symbols are A, AB, COMMON, START,
DONE, 3.4, A40, The symbols ELEPHANT, A+B, 17, are illegal.
If the symbol has fewer than 6 characiers 1t nuy be placec
anywhere in the locatilon field, |
¢, The variable field: If the instructlon has an address,
tag, and decrement these are written in that order starting
in column 12 and separated by commas with no intervening
blaﬁks. Examples of the way 704 instructions are written
are the following:
B CLA A
AB CLA A,1
4,1 CLA 382

TIX B,1,1
PAX 0,1
TXL, A

TXL A,1,1
TXL A,0,1
HPR

Notice that if the instruction has no decrement part no-
thing need be written for it. This is the reason why SAP
instructions are written with the address, tag and decrement
in a different order from the order of these parts in a 704
word. The first blank after column 12 signals the end of
the instruction to SAP. Anything beyond this blank is i1gnored
in the translation but i1s reproduced verbatim in the listing
so it is usual to put comments about the instruction after
the blank. It is recommended that the program be liberally
sprinkled with comments,

V-7

Expressions

In the address, tag, and decrement fields one can write
not only integers and stbols, but certain arithmetic com-
binations of integers and symbols called expressions, In
these expressions the characters +, -,%, and / stand for ad-
dition, subtraction, multiplication and division respectively.
Examples of expressions are A+3, A+B, A+B¥ C, 391AB+A¥ B,
-A and MkB + AXC + AD. No parentheses are allowed., The ari-
thmetic involved is integer modulo 215 so that, for example, -1
is the same as 32767 and 32769 1s the same as 1., This arithmetic
1s more fully described in the SAP writeup but the information
in the above paragraph should be sufficient for most purposes.

It is important to note that the arithmetic involved has
to do with the addresses and ﬁbt with their contents (in contrast
with FORTRAN). Thus if register 900 1s assigned to the symbol
A, the expression A+9 refers to register 909.

-The new SAP provides the additional feature that the
symbol 3. can be used to refer to the location of the current
instruction. Thus TXIH#+ 1, 1, -1 refers to a TXI to the
register following the TXI instruction. It turns out that no
ambigulty results from using the same character for a multipli-
catlion sigh-and'also to refer to the current location. ‘

Rata Storage
’ If one wants to reserve a register for an intermediate
, or final result, one merely writes a symbol to name the register
in the location field and leaves the operation and.variable:
fields blank, |

END (End of Program)

The last card in any program has END as 1its operation
part., This is very important because 1f the END card ié omitted
'~ your assembly may be mixed up with the next man's and he is
unlikely to be grateful. | ,

The variable field of an END card contéins an expression
which tells the.asSémbly program the address from.whigh the

V-8
first instruction is to be taken, when the program is run.
SAP uses this information to punch as the last card in your
program a transfer card which tells the loader ‘s ..
the register to which it should transfer control when it has
finlished loading the program into memory.

Data Numbers _

If a program is to be run with only one set of data or
1f certain data are to be included with all runs of a program
it is simplest to assemble the data into the program. SAP
is capable of converting various kinds of data into the binary
form used by the 704,

DEC (Decimal Data)

This pseudo operatlon causes the decimal numbers in the
variable field to be converted to binary and stored in re-
gisters starting &t the point in: ‘the program. where Sthe. DEC ncard
appears, The first data word may be referred to by putting
a symbol in the location field of the card,

The numbers to be converted are written starting in co-
lumn 12 separated by commas and with no blanks. Whether the
conversion is to fixed or floating binary depends on the_way
the numbers are written., We now describe these ways:)

a. Integers: If a positive or negative decimal integer
1s written with no .decimal point, it is converted to a binary
integer. The + sign 1s optional with positive integers. Of

course, the absolute value of the integer must be less than
25
277,

Examples .of..decimal: cards.with integers are:
A DEC 17
B DEC 23178195, =251, +251, 48
The number of integers that can be put on a card depends on
their size but they must not extend‘beyond colnmn T2 ‘
ba,Floating'Point Numbers: If a decimal number like
3,481, -2,0 or even -2, is'written, it is converted to floating
binary. ‘ '

V-9

Numbers can also be wriltten in a floating decimal
notation: 3.4E10 is equivalent to 3°4x1010 and =-3.4E-10 is
equivalent to -3.4x107'0, These numbers are converted to
floating binary and must of course be of a size that allows
them to be represented as normalized floating binary numbers,

c. There is another notation for producing fixed point
numbers which is described in the main SAP writup. The first

blank (as usuwal) indicates that all punching to the right is
‘a remark. i
JCT (Octal Data) _

For some purposes, in particular for describing masks
to be used in logical operations, it.may be convenient for the
‘programmer to think of his data in binary form. However,
since it is hard to copy even 36 consecutive bilnary bits
without error it 1is customary to write binary data in octal.
(Each % bits are summarized into one octal digit.)

If OCT appears in the operation field then the octal
numbers written on the card starting in column 12 and separa-
ted by commas are converted to binary integers. If the word
has 12 digits the first blt may be regarded either as a sign
or as part of the leftmost digit so that -0 = 4, -1 =5, -2 =6
and -3 = 7, Either form may be used.

' The first blank to the right of column 12 indicates that
all punching to the rigpt is to be considered a remark.
BCD: (Hollerith Data or:Binary-Coded-Decimal)

The 60 columns, i3-72, are regarded as consisting. of
10 six-character words. If column 12 contains a digit
V (04 V£9), the first V words are converted to binary and
assigned to V successive registers. If column 12 is blank or
contains some other character, 10 words are converted. The
words converted may contain blanks.,

Data Having the Format of an Instruction ,

Tt is often desirable to include in a program words
for which the address, tag, decrement, and prefix are de-
scribed. (The prefix is the first three bits.) This is done

V-10

as follows: the address, tag, and decrement are written as
in 704 instructions and may be expressions. If the operation
field 1s left blank the prefix will be zero, To give it .
another value one writes one of the following operation codes,

Code Name First 3 bits
MZE Minus zero 100 or -Q0
MON Minus one 101 or -01
MTW Minus two 110 or -10
MTH Minus three 111 or -11
PZE Plus zero - 000 or +00
PON. Plus one 001 or +01
PTW Plus two 010 or +10
PTH _ Plus three 011 or +11
FOR Four 100 or -00
FVE Five 101 or -01
SIX Six 110 or -10
'SUN Seven 111 or =11

BSS (Block Started by Symbol) and BES (Block Ended by Symbol
It is frequently necessary to reserve a block of cone-
secutive storage registers for an array of intermediate or
final results. This can be done by either the BSS or BES
nperatibnuthhtanxhﬂdr6§3wgiﬁingjthe;nuﬁbEﬂﬁoﬁAregIé~r:;§‘4
ters to be reserved. The difference is that if the pseudo-
operation is BSS, the symbol in the location field refers to
the first of the regilsters reserved while if BES 1s the
pseudo-operation, the symBol refers to the register right
after the last of the reserved block,
For exampie, if we have a program'beginning
ORG 1000
COMMON BSS 60
START CLA COMMON+5
the symbol COMMON 1s assigned the value 1000 and START i;
assigned the value 1060,

v-11

On the other hand in the program
’ ORG 1000 ’
COMMON BES 60
START CLA COMMON=-60
both COMMON and START are assigned the value 1060.

When the program is loaded nothing is stored in the v
block of registers reserved by BSS or BES. Thus these regis-
ters will contain whatever was in them previously.

If we write, BSS O, a symbol. is assigned but no regis-
ter 1s reserved. » | '

One can write symbolic expressions as well as constants
in the variable field of a BSS or BES instruction. The symbols
occurring in such an expression must have previously been de-
fined, (We discuss this in connection\with the next section.)
SYN (Synonym) and EQU (Equals)

A symbol (placed in the location field) may be assigned
the value of an expression (placed in the variable field) by
using either of the pseudo-operations SYN or EQU. The symbols
occurring in the expression must have been previously defined,

Thus
N EQU 20
assigns N the value .20 and
~ ORG 1000
A BSS O
B SYN A

assigns B the wvalue 1000,

The distinction.between SYN and EQU is somewhat diffi-
cult to describe, It arises oniy when a coder requests SAP
‘to punch out a very special type of binary card (called relo-
catable binary) ﬁhich-is described in the SAP write-up in-
cluded as an appéndix° The casual coder need not concern
himself with this distinction. |

V=12
When A Symbol Is Defined
In order to understand this question it 1s necessary to

know something about how the assembly program works. It goes
over the program twlce. The first time is for the single
purpose of assigning values to symbols. It séts a location
counter equal to the value of the first ORG card and increases
the counter by one for each instruction read. Every time it
encounters a symbol in the location field of an instruction'
1t makes an entry in the symbol'table which assigns the cur-
rent value of the locatlon counter to the symbol. Naturally,
the location i1s increased for DEC, OCT, and BCD cards by an
amount equal to the number of words on the card and for BSS
and BES cards by the value of the expression in the variable
field. A SYN or EQU pseudo-operation also causes an entry
to be made in)the symbol table. In order for this to be
possible the éymbols in the expreséion in the variable field
must already be in the symbol table, or, to use the customary
terminology, must have been previously defined. This will be
the case only if the. symbol has previously appeared in-a lo-
cation field;g The symbols appearing'in the variable field
expression of an ORG, BES, or BSS pseudo-operation must have
been previously defined so the assembler can change the lo-

cation counter properly. 'If’such a symbol 1is undefined

when the asseﬁblerlencounters it, it is-taken to have the |
value zero although if it 1s later defined subsequent uses

of it wlll have the correct value. In the second pass over
the program the assembler evaluates. the expressions occurring
in the variable field of 704 instructions translates the
operation codes, punchés the binary cards and prints the
listing.

LIB (Library Search) A o _

A 1list of the subroutines which are on the-library
tape is avallable in the computing center. To incorporate
one of these subroutines ‘it is only necessary to include a
card in the program with the operation code LIB and the

i

v-13

name of the subroutine in the location fleld. This name must
be written and placed in the location field exactly as it
appears in the 1list of availlable routines. |

The routine willl appear in the program wherever the
LIB card occurs,

Additional Pseudo-Operations

The above are not all the pseudo-operations available
with SAP. However, the programmer who has had some experilence
with the use of those so far defined he will probably prefer
the condensed style of the regular writeup to the wordiness
of this introduction.

Error Detection and Correction

The assembly prégram generally detects certain errors
and misprints. First of all it prints at the head of each
program any symbol that i1s defined more thanogggz Secondly,
whenever a symbol or operation code is undefined it leaves a
blank in the octal translation. Finally it prints at the
end of the program a list of the undefined symbols. The new
SAP has additional error detection features.

There are four main ways of correcting errors detected
at assembly time. Which one should be used depends on the
extent of the error.

1. Replace incorrect decimal cards and re-assemble,
If the errors are very extensive this is desirable.

2. Make binary correction cards and Include them
before the transfer card when the program is loaded. Method
3 is preferred to this.

5. Make octal correction cards as follows:

The octal equivalents of the symbolic addresses 1in the
SAP language program can be obtained from the assembly listing.
The octal correction cards are placed after the program to be
corrected and before the transfer card. The loader first loads

the uncorrected program and then puts the numbers from the

V-14

correction cards in the registers specified, replacing the
erroneous instructions. A correction card may have up to
four corrections on it which are punched in the following

format:
Columns ’
1-5 location where first correction is to

be stored

6-17 corrected word (12 octal digits) _
19-23 location of second correction (if any)
24-35 second correction (1f any)
37-41 location of third correction (if any)
h2-53 " third correction (if any)
56=59 location of fourth correction (1f any)
60-71 fourth correction (if any)

Leave all other columns blank except that 73-80 are
ignored., If there are fewer than four corrections, fields
can be left blank except that the first field cannot be left
blank or else the whole card wlll be ignored by the loader.

The loader which loads absolute binary cards and octal
correction cards is NYBOLl, It is described in SHARE
distribution 215, ‘ , ’

4, Tt is also possible to assemble corrections by
using the symbol table of..the’orfginal assembly.:

VI-1

CHAPTER VI

THE MIT POST-MORTEM PROGRAM

Program Debugging

The first time that é program 1s tried on the computer,
it will probably fail, It can fall in any of the following ways:

(1) It can stop on a computer alarm, |

(2) It can stop on an improper halt instruction (i.e. not
the halt instruction on which the coder planned to stop).

(3) It can stop on the proper halt instruction and yield
wrong answers., |
Cases (1) and (2) can be recognized by the computer operator and
~he will (as a matter of course) copy whatever information about
the fallure can be obtained from the console lights, This will
include the location of the instruction on which the machine stop-
ped; the contents of: the AC, MQ'and index registers; and the con-
dition of the various alarm lights. In some cases the error can
be deduced from this information.

If the coder cannot deduce his error from the console
lights he must then resort to more powerful diagnostic ftechniques.
Perhaps the simplest of these 1s'the post-mortem program. A post-
mortem program prints the contents of specified storage registers
after the program failure has occured. By examining such records
the codef'can almost always find his errors. The coder 1is urged
to restrict his post-mortem requirements whenever possible since
computer time is used to produce the post-mortem results,

In certain cases however,-the-codér may not be able to de-
duce his error from post-mortems obtained after the failure. He
may then have to modify his program to store certain'oritical re-
sults (which he can obtain via post-mortems after failure) or
insert instructioﬁs (called blocking instructions) at intermediate
points in his program (so that he can obtain intermediate results

VI-2

via post-mortems). The clever coder will try to anticipate
errors and will builld such features into his program when he
writes it originally. Such error anticilpation features can
be removed when the program is finally debugged.

For the latter (most difficult) case the coder also has a-
vailable a class of programs (called tracing programs) which
can be used to print out quantities (e.g. contents of storage
registers, C(AC), etc.,) during the time that his program is opera-
ting. ~Such programs may be selective (1.e. print out information
only at selected instructions in the program called break points)
or non-selective (i.e. print out information for every instruc-
tion executed). Tracing programs (particularly non-selective
ones) use a lot of computer time and should be used only as a
last resort. Several tracing programs have been written by mem-
bers of SHARE and are described in the SHARE distribution ma-
terial,

A final word of wérning: too much information can be
almost as bad as too little information. The coder is urged to
be selective in obtaining data for diagnostic purposes.

The MIT Post-Mortem Program

The MIT post-mortem program allows the coder to print
arbiltrary ranges of storage in specifled forms. The forms allowed
as output are exactly those forms allowed as input in SAP lan-
guage (i.e. instructions, floating-point numbers, fixed-point
numbers, integers, octal numbers and BCD).

For each range of storage required the coder must prepare
a request card. The deck of request cards should be prepared be-
fore the program is run and submitted to the operator'along with
the main program deck. The coder should tell the operator on the
performance request that a post-mortem deck is included since
the operator must set up certain magnetic tape units which are
used by the post-mortem program.

The output of the post-mortem program looks exactly like
SAP language., Thus if a coder understands SAP language he underf
stands post-mortem results.

VI-3

. The coder may request that post-mortem results be recorded
directly on the printer, directly on the punch or on a magnetic
tape unit for printing or punching later on. (We shall have more
to say about such off-line operation), In all cases the output
obtained 1s the same (i,e° if punched output is printed on an ac-
counting machine it looks exactly like output printed directly).

Request Cards

Every memory range requires a request card which has the
‘same format as a SAP card and 1s 1dentified by the letters, PMR
(Post-Mortem Request), in the operation field. The ;aegééégaLz
field must contain four expressions separated by commas with no
intervening blank columns. ‘

- The first two expressions define the initial and final
addfésses of the range in memory to be recorded, Any legal SAP
expressions are allowed here and symbols may be used if required.

The last two expressions designate the mode in which words
are to be recorded (instructions, etc.) and the output device to
be used (printer, etc.). These are designated by certain mnemonic
3 letter abbreviations defined in an appendixs

Some examples of request cards are:

PMR 150, 200, FLO, NER
which means "record the contents of registers 150 to 200 (in-
clusive) as floating-point numbers on the printer which is directly
connected to the computer" and:

PMR Al, Bl + 5, SYM, NPU
which means "record the contents of registers Al to Bl + 5 as in-
structions with symbolic addresses on the punch which is directly
connected to the computer,

Any characters punched in the variable field following
the terminating blank column are not considered part of the re-
quest but are instead recorded as a remark preceding the request.
In addition, special request cards (identified by the letters,
REM, in their operation field) may be used to associate remarks

VI-L

(punched in their variablebfield) with PMR requests. The REM
card must immediately precede the PMR card. |

The end of a request deck is signaled by a termination
card. A suitable termination card would be one having the 704
instruction, HTR, punched in 1ts operation field. Some others
are mentioned in the appendix.,

An example of a complete post-mortem request deck is the
following: ‘ ‘)
REM THIS BELONGS TO JONES
PMR Al, Al +5, FLO, NPR FIRST REQUEST
PMR 100, Cl, FLO, NPR SECOND REQUEST
HTR

Symbollic Requests

'The coder may use symbols in specifylng core memory ranges
and he may also request that the words in a range be recorded as
instructions with symbolic addresses, In either case a symbol
table must be made availlable to the post-mortem program. This
can be done by preceding the request deck with tﬁe binary symbol
table produced by SAP during its assembly of the main program
deck, Since both the symbol table and the request deck are read
into the computer by the post-mortem program they should‘ggg be
preceded by a binary loader.

The Machine Conditions
The post-mortem will record the contents of the various

registers and alarm lights.in the arithmetic element as remarks
preceding the first post-mortem request. The program cannot how-
ever record C(MQ) and C(ILC) since these and storage registers 0-4
are/used in loading the post-mortem program itself,

CHAPTER VII .

SUBROUTINES

It often happens in a large program that a particular
computation must be done many times. For example, the
square root function or sin function must be evaluated
several times or the scelar product of two vectors must
be calculated repeatedlya‘ In such cases 1t is clearly
desirable to pfogram and code the routine for such a
computation only once. It is also usually but ‘not always
advantageous to have the instructilons which perform‘the
computation stored in the memory‘only'once. Such a group
of instructions which are used repeatedlyuby'a given
- progrem or perhaps by any'particular'program only once but
in many distinct programs, is called a subroutine. In fact
a skilled programmer very often designs his program so that
it is built out . of Subreutines by breaking the problem up
into units which occur repeatedly or may-in subsequent
revisions of the program be used repeatedly.

Closed Subroutines

As a part of a larger program we may wish to tabulate
the following function

f(x) = sin x + cos (sin x)

for a set of values of the iﬁdependent variable, x, If some-
how we have written programs for evaluating sin x and cos X
we can evaluate f(x) by the following sequence of steps.

1., Compute z = sin x
2. Compute y = cos z
%, Compute f(x) =z + ¥y

)

VII-2

The functions, sin X and cos x, are required only once
in this sequence.

A slightly different function, say
g(x) = sin x + sin (cos x)
would, however, give rise to the sequence

sin x

il

1, Compute z
2. Compute y = cos X
3, Compute w = s8in y
4, Compute g(x) =z + w

in which the function, sin x, is required at two different
places,

Since programs for evaluating sin x and sin y will
differ only slightly we can reduce our storage requirements
by writing one program to do both Jobs. Whenever we wish to
compute a sine'we will transfer control to this program. We
must, however, convey two pieces of information to the sine

program, namely

l. The location of the argument whose sine is to be

evaluated,
2. The location in the main program to which control
'should be returned once the sine has been evaluated.

This can be done in many ways, the most convenient
of which uses the following indexing instruction:

TSX x, t : Transfer and Set Index

The instruction, TSX x, t, copies =C(ILC) into index register
t* and then transfers control to register x.

TSX X, t : =C(ILC)=C(IRt), x->C(ILC).

Let us suppose now that we have written a program
(beginning in register SIN) which forms sin C(AC)

SIN sin C(AC) —> C(AC)

X More precisely, TSX copies 32768 - C(ILC) modulo machine
slze into index register t. ‘

: VII-3
If we agree to enter this program by the instruction

MAIN TSX SIN,U

then we can make it a closed subroutine merely by terminating
the program with the instruction

TRA 1,4

which returns control to register MAIN +1 with the required
Sine in the AC.

The program for computing sin x is called a closed
subroutine since it 1is stored separate from the main
sequence of control, but is entered from the main séquence
and returns to the main sequence. The argument of the
subroutine (C(AC) in this case) differs from use to use of the
subroutine and is called a program parameter.

The program parameter and the TSX instruction
required to link the subroutine to the main program are
referred to as a calling sequence for the subroutine.

Closed Subroutines having Many Program Parameters

If a closed subroutine has only one program parameter
it can be stored in the AC (or even the MQ). If a closed
subroutine has more than two-program parameters the AC and
MQ no longer suffice. The most convenient solution in this
case 1is to store the program parameters in the registers
following the TSX instructions used to enter the subroutine.
Within the subroutine we can refer tb these registers by
instructions of the form: |

CLA 1,4
CLA 2,4 etc.

Before giving an example let us introduce two new 7Ok
instructions which will be useful in interpreting calling
sequences.,

VII-4

The reader 1s already aware of an indexing
instruction, PDX, which copies the decrement of the AC into
an index register. There also exist 704 instrgctions which
copy the address and decrement of the AC to storage registers,
namely

STA x : Store address
STD x : Store decrement

The instruction, STA x, coples the address of
the AC into the address of storage register x.

STA x : C(address of AC)->C(address of Xx)

The instruction, STD x, coples the decrement of
the AC into the decrement of storage register x.

STD x : C(decrement of AC)—>C(decrement of x)

The reader should note that STA (STD) affects
only the address (decrement) of x and does not disturb any
other part of C(x) or C(AC).

Thus, for example, the sequence

PXD O,k
STD X

has the same effect on C(X) as the single instruction
SXD X,k

An example of a subroutine requiring more than
-one program parameter, is the following subroutine which
forms the scalar product of two vectors. The program para-
meters required are the locatlon of the vectors in question
and the number of components. The result is stored in the
. AC. It is most convenient to identify the location of the
| vectors by specifying the addresses of the registers
immediately following the last component of each vector.

This routine can be entered by the calling

VII-5
sequence

SXD TEMP, 4 Save C(IRA)
TSX ENTRY,4 Enter Subroutine

o~

PZ@ Al ‘Addresses of vectors
PZE A2 ;
PZE N Number of components.

LXD TEMP,4 The subroutine returns control
to here and we restore C(IR4)

The program parametefs (A1, A2 and N) are stored in
the addresses of the registers 1mmediately following the
TSX instruction. | |

The subroutine itself is giveﬁ below.

ENTRY CIA 1,4 Set addresses of vectors.

STA 1DQ
CLA 2,4
STA FMP
SXD SAVE,1 Save C(IR1)
CLA 3,4 Set to count in IR1
PAX 0,1
PXD Set C(PROD) to zero
STO PROD

DQ IpQ 0,1 Form scalar product. |

FMP FMP 0,1 |
FAD PROD
STO PROD :
TIX 1DQ,1,1 |
LXD SAVE,1 Restore C(IR1) -

TRA 4,4 Return to program - + /.Z7 PR
PROD PZE ,
SAVE PZE

An Example of a Subroutine Using an Interlude

It often occurs in practical routines that some program

VII-6

parameters are changed infrequently while others differ for
every entry to the subroutine. For example, in the scalar
product subroutine it is usually true that the number of
components changes infrequently while at least one vector
location changes wlth every reference to the subroutine. In
this case, it 1is wasteful to include the final program
parameter in the calling sequence every time the routine is
entered,

| Situations of this type are often handled by inter-
~ludes. For example the calling sequence would be

SXD TEMP,U Save C(IRA4)

TSX ORDER,U4 Enter interlude

PZE Al ‘Addresses of vectors.

PZE A2

ILXD TEMP,4 Return here and restore C(IRk)

At ORDER would be stored the interlude

ORDER TRA ENTRY Enter subroutine
PZE N Number of components

The subroutine would then be modified to

ENTRY SXD SAVE,1 Save C(IR1)
CLA O,k Obtain number of components
STA CLA from interlude and set to count

LXA SAVE,1
CLA CLA 0,1

PAX 0,1

CLA 1,4' Set addresses of vectors.
STA LDQ

CLA 2,4

STA FMP

PXD Set C(PROD) to zero

STO PROD

VII-T

1IDQ ILDQ 0,1 Form scalar product
FMP FMP 0,1

FAD PROD

STO PROD

TIX 1LDQ,1,1

LXD SAVE,1 Restore C(IR1)

TRA 3,4 Return to program.
PROD PZE
SAVE PZE -1

, The SHARE Library of Subroutines

The nicest feature about using subroutines is that
they may have been written (and debugged) by someone else.
Having this in mind every computer instaliation begins
immediately to assemble a collection of pre-tested programs
into a subroutine library. Among TO4 owners the SHARE
organization serves as a collection and distribution agency
for 704 subroutines.

A very important feature of a library subroutine is a
detalled write-up describing exactly how to use it. Also
very important to the library is the adoption of a certain
- set of conventions to prevent coders from working at cross-
purposes. There follows a partial list of SHARE subroutine
conventlons which has been abstracted from the SHARE reference

manual:

1. Subroutines shall always be entered by a calling
* sequence using IR4 as linkage.

2. The point transferred to shall always be the
first instruction in the subroutine.

3. 1Index registers and sense lights when used by a
subroutine shall always be restored to their original contents
within the subroutine before exiting.

4, The six letter symbol, COMMON, is reserved for
subroutines to represent temporary storage (i.e. a block

VII-8

of registers used during operation of the subroutine but
whose initial values do not matter to the subroutine.)

5. All other symbols used in the subroutine
normally contain 5 or fewer characters (so that they can
be headed).

Conventlons having been established the SHARE
organization has proceeded to generate an extensive library
of subroutines which is described in the SHARE distribution
material. This material should be consulted by the coder
before he begins coding. To aid in this we have enclosed
(as an appendex) an index to this material. If a coder
finds a useful subroutine he can include the symbolic
cards in his deck by requesting these at the Computation

Center.

A certain small number of very useful subroutines
have been recorded on a magnetic tape unit and can be
automatically included in a program during assembly by
using the (previously defined) LIB pseudo-operation,

The list of subroutines-available in this fashion will of
course vary from installation to installation and even

from time to time.

A word of warning: subroutines as submitted_to
SHARE can be as fully general in their symbol structure as
- programs. In using a subroutine a coder~must carefully
check what symbols are assigned within it and avoid con-
flicts (i.e. duplicate symbols). If he wishes the coder
may avoid trouble by placing a unique heading character
in front of each subroutine he uses,

In order to further clarify the above concepts we
shall now describe in detail a particular SHARE subroutine,
UABDC1, which can be used for printing floating-point and
fixed-point numbers.

VII-9

704 Generalized Print Program, UABDC1

UABDC1l is a subroutine which converts floating binary
or integral binary numbers to binary-coded-decimal numbers
arranged in a rather arbitrary format. It is described in
SHARE distribution No. 72. |

Using UABDC1 the coder may speclfy that a block of
numbers (whose initialland final addresses may be specified)
be printed according to a rather arbitrary format. Both
these addresses and the format are program parameters of
the subroutine. A format statement consists of a string
of BCD characters formed according to certain rules which
we shall omit here since they are exactly the same as the
rules for forming FORMAT statements in FORTRAN language
(see page 26 of the FORTRAN programmers reference manual).

To program a format specification using UABDC1l the
coder must write an interlude of the form

SYMBOL TRA BLOCK
BCD VF

where F denotes an arbitrary format statement ending in
at least one blank, V is the word count required by the
BCD pseudo-operation, BLOCK is a particulaf.symbol
assigned at the beginning of UABDC1l and SYMBOL denotes
an arbitrary symbol assigned by the coder.

A format specification interlude can be referred
to from the main program by a calling sequence of the
form

MAIN TSX SYMBOL, 4
PZE A,0,B

» where A and B are the initial and final addresses of the
words to be printed.

UABDC1 occupies 405 storége registers and requires

VII-10

60 or more additional registers of COMMON storage (i.e. a
block of registers tagged at the beginning by the symbol,

© COMMON). If a column width, W) 30, appears in a format
specification then W-30 additional registers of COMMON storage
must be provided in the locations COMMON-1, COMMON-2...,

COMMON -. W+30,
UABDC1 1s not complete in itself and requires a

satellite subroutine (i.e. a subroutine which it uses) for
actual printing. Two compatable subroutines are available:

1. UASTH1 : which records for off-line printing.
2. UASPH1l : which records for on-line printing.

Both of these subroutines are descrilbed in SHARE
distribution No. 72. They are linked to UABDCl by a symbol
(namely WOT), which is used in UABDC1l and assigned in
UASTH1 or UASPH1.

UASTH1 occupies 15 storage registers and requires

no COMMON storage. UASPH1 occupies 109 storage registers
and requires 33 registers of COMMON storage.

Since UABDC1l defines many symbols internally it is
recommended that it and its satellite be prefixed by a heading

card.

VIII-1

CHAPTER VIII

FIXED-POINT ARITHMETIC IN THE 704"

Introduction _

- In the preceding chapters we have been describing
704 instructions which perform computations on floating-

5 point numbers. These numbers are extremely convenlent for
solving most scientific problems. However, 1in many problems
one encounters data which cannot convenilently be expressed
in this form. Indeéa this situatlon arises in almost every
problem since, as we shall see, coding for the input-output
devices connected to the computer cannot be done in terms of

floating-point numbers,. .

In the next three chapters we shall describe some
704 instructions which are not designed for dealing with
floating-point numbers. It should be emphasized, however,
that all 704 instructions deal indiscrimanently with %6 bi-
nary digit words and have no way of telling what the coder
means by these digits. Thus any of the instructions we are
about to describe can operate formally on floating-point
numbers, however the results obtained are difficulf to des-
cribe in terms of such numbers. Such usage of these intruc-
tions 1is mosﬁ often an error but may, in rare cases, be an
ingenious move on the coder's part. '

VIII-2

Fixed-Point Numbers h

‘ The 704 instructions defined in this chapter deal
primarily with fixed-point numbers. In such numbers the entire
36 digits of the storage word are used to represent a single .
binary number. The 'sign digit is used to designate the sign- .
of the'ngmber (with the convention that O denotes +) and the
remaining 35 binary digits are used to represent‘thé\magni?
tude of the number. As we shall seé, the binary péint can be
construed to lie anywhere within the number, however, for pur-
poses of describing the instructions it is most convenlent to
assume that the binary point lies to the left of digit 1
(fixed-point fractions). Some examples of fixed-point frac-
tions are given below:

s 1 2 34 35
0 1 Ousepersvevse.d 0 | 427t =1,
T 0 losevesesesid 0] -2°% =1
1) 0 O vuosnesennesd (D | -27° -
1 0 0 0veevevennsacd 0 | 40
"1 O Ouvieesepecasd O | =0

The reader should again note the existance of two
zeros which differ only in the sign digit. Fixed-point frac-
tions are available in the 704 register for expressing all
integral multiples of 2722 in the range:

1+ 270 2 xeql - 2730) |

‘The Fixed-Point Accumulator
In describing the fixed-point instructions, it 1s
no longer convenient to gloss over the binary nature of the
machine., The reader is already familiar with the fact that
704 registers can be used to store %6 digit binary numbers,
We shall label these digits from:left to right by the symbols:
S, 1, 2,400,535
For convenience we introduce the notation:

VIII-3

c(x),

to denote the "contents of digit i1 in register x". For example:
C(x)S

An obvious extension of this notation is:
C(X)l’2:5“7

to denote the contents of digits 1, 2 and 5 through 7 of re-

gister x. _

The MQ register in the 704 is exactly like a storage
register.

The AC, however, contains two extra digits which
are important to the fixed—ﬁoint instructions. These are
called the Q bit and the P bit. The ordering of bits in the
AC 1s as follows: '

S’ Qs P, 1:°°°:35
The Q and P bits are cleared by CLA and CLS. They are not
transmitted to storage by STO. They may be affected by the
floating-point arithmetic instructions but this need not
concern us for the present.

The Ambidextrous Instructions v

Certain of the instructions already introduced can
be used in dealing with éither fixed-point numbers or floating-
.point numbers. Proving this assertion requires a knowledge
of exactly how floating-point numbers are stored in the T704.
The reader 1is urged to acquire this knowledge from the 704
manual (p8).

For the sake of completeness these instructions
are redefined below in terms of the notation of the preceding
section.

Administrative Instructions:
(1)_ CIA x C(x)“?C(AC)s,1-35? o—=rc<(.t\.c)(;2’P
(2)_/ IDQ x : C(x)=»Cc(M])

(3) STO x : C(AC)g 1 _35~2C(x)

VIII-U

(4) sSTqQ x : c(MQ)—=>C(x)
Control Instructilons:
(1) TRA x : x=2>C(ILC)
(2) TMI x C(AC)S = 1=22x—2>C(ILC)
(3) TPL x : C(AC)g = 0=x—C(ILC)
(4) TNZ x C(AC)Q,P,1-35 # 0=px-»C(ILC)
(5) TZE x d C(AC)Q,P,1-55 = 0=yx~>C(ILC)
(6) TQP x : C(MQ)S = 0=px=»C(ILC)
(7) TLQ x : c(MQ) < C(AC)=>x—»C(ILC).
(8) cAS x : cC(AC)>C(x)=»C(ILC) +1->C(ILC)

C(AC) = C(x)=»C(ILC) +2—>C(ILC)
C(AC)< Cc(x)=>¢(ILC) +3—=>C(ILC)
Arithmetic Instructions: ’

(1) cLs x : c(x)1_35—)c(Ac,)l_35, mTS~>c(Ac)S,
| o—;\c(Ac)Q,P*

(2) ssP : 0->C(AC)q

(3) SsM : 1->C(AC)q

(4) cHS : C(AC)g=>C(AC)g

If we consider the effect of the instruction, CLAX
where reglster x contains a fixed-point fraction we sec
that we must construe the binary point of the AC to lie between
digits P and 1. The AC can thus.be used to store any in-
teger multiple of 225 4n the range:
o 270 xg+ b - 2790

¥ The notation, C(x);, is defined by the equations:
O=1and T =0

VIII-5
Fixed-Point Addition and Subtraction
The following instructlons can be used to add and
subtract fixed-point fractions:

(1) ADD x : Add

(2) ADM x : Add Magnitude

(3) SUB x : Subtract ‘

(4) SBM x : Subtract Magnitude

(1) The instruction, ADD x, algebraically adds
C(x) to C(AC) and places the sum in the AC:
ADD x : C(AC) + Cc(x)—>C(AC) _
(2) The instructions, ADM x, algebraically adds
the magnitude of C(x) to C(AC) and places the sum.in the AC,
ADM x : C(AC) + |C(x)|—>C(AC)
The magnitude of a number stored in the sign-magnitude conven-
tion may be obtained by setting its sign digit to O.
(3) The instruction, SUB x, algebraically subtracts
C(x) from C(AC) and places the difference in the AC,
SUB x : C(AC) - C(x)—>C(AC) |
(4) The instruction, SBM x, subtracts the magni-
tude of C(x) from C(AC) and places the difference in the AC.
~ SBM x : C(AC) - | C(x)[—> C(AC) |
None of the above instructions disturbs C(x).
If a sum or difference obtained using the above
instructions is zero, its sign is the same as the sign of
the original contents of the AC.

Overflows _

The sum or difference of tﬁ? fixed-point fractions.
may exceed unity., When this occurs £ cannot be represented
by 36 digits and thus cannot be placed in a storage register
by the instruction: ‘

STO x _
which does not transmit the P and Q bits. Such a situation
is called an overflow and the coder may have to know that it
has occured to correctly interpret his results.. The detec-
tion of overflows by the 704 1is simplified by}the"presence

VIII-6

- of an AC overflow light which is turned on (by certain in-
structions) whenever a digit, 1, passes between digits 1 and
P of the AC. In fixed-point addition and subtraction this 1is
caused by carries and borrows,

The AC overflow light can be sensed and turned off
by either of the following conditional control instructions:

(1) TOV x : Transfer on Overflow '
(2) TNO x : Transfer on No Overflow

(1) The instruction, TOV x, directs the computer
to turn off the AC overflow light and to take its next in-
struction from register x if the AC overflow light was on.

TOV x : ACOV on=3x->C(ILC) and ACOV off.

(2) The instruction, TNO x, directs the computer
to turn off the AC overflow light and to take its next in-
struction from register x if the AC overflow light was off.

TNO x : ACOV off@x—>C(ILC) and ACOV off

The instructions, TOV and TNO, are the only means
by which a program can turn off the AC overflow light; Thus
if a coder wishes to detect that an overflow occured in a
particular instruction he must turn off the overflow light
immedlately before executing the instruction and sense the
overflow light immediately after executing the instruction
(or at least before executing any other instruction which might
turn the overflow light on).

In performing fixed-point additions and subtractions
carries (borrows) can also occur between bits P and Q of the
AC or out of bit Q. Such carries do not affect the status
of the AC overflow light. Indeed carries out of the Q bit are
simply lost to the computer so that numerical results obtained
in such a case must be carefully interpreted.

Fixed-Point Multiplication
’ The following instructions can be used to multiply
-fixed-point fractions:
(1) MPY x : Multiply
(2) MPR x : Multiply and Round

VIII-T7

(1) The instruction, MPY x, multiplies C(x) by
C(MQ) and stores the result (a 70 digit exact product) in the
AC and MQ. The 35 most significant digits of the product
appear in ACl-35 and the 35 least significant digits of the
product appear in MQ1_35. The sign digit of the product ap-
pears both in ACS and MQS. ACQ and'ACP are set to zero.

The MPY instruction does not affect the status of
the AC over flow light (since the product of two fractions is
a fraction).

MPY x: C(MQ) + C(x)=>C(ACHMQ)
c(ac)g = C(MR)g

0—>C(AC)q p

Before describing the instruction, MPR x, we intro-

duce the following instruction: ,
RND: Round -
which cannot have an address section.

The instruction, RND, increases the magnitude of the
fixed-point number in the AC by 2727 provided that C(MQ), = 1.
If C(MQ)l = 0 nothing happens. In neither case is C(MQ) or
C(AC)S affected by the instruction. The Instruction can thus
be used to round off a 72 digit number in the AC and MQ to a
37 digit number in the AC.,

RND: C(MQ); = 1=>C(AC)g p 1 55 + 2'35-—>C(AC)Q,P,1_35.

The reader should verify that in certain cases the
RND instruction will turn on the AC overflow light.
(2) The instruction, MPR x, 1s equivalent to the
following sequence of instructions ’
MPY x
RND
The reader should verify that the MPR instruction
cannot affect the status of the AC overflow light.

I

VIII-8

Fixed-Polnt Division
The following instructions can be used to divide fixed-

point fractions:
(1) DVH x : Divide or Halt
(2) DVP x : Divide or Proceed
(1) The instruction, DVH x, considers C(AC) and c(MQ)l_35

to be a 72 digit signed dividend (C(MQ)S-is ignored) and C(x)
to be a 35 digit signed divisor, .

If |c(ac)] = |c(x)| then division does not occur since the
gquotient in this case is not a fraction® The computer turns on
a light called the divide-check light and stops. The dividend
remains undisturbed in the AC and MQ.

If |c(AC)| < Ic(x)l the quotient is a fraction and division
occurs, The instruction forms a 35 digit signed quotient, g,
which replaces C(MQ) and a 35 digit signed remainder, r, which re-
places C(AC)S,1_35 (recall that c(Ac)P = c(Ac)Q =0)., gand r
are fractions having the following properties: ‘

(a) The following equation holds exactly

C(AC+MQ) = q * C(x) + » 272° 0¢ |rle o(x)

(b) The s.gn of the remainder, r, 1is the same as the
sign of the dividend, C(AC+MQ).

The reader should verify property (b) guarantees that the
magnitude of g 1s less than or equal to the magnitude of the true
quotient. This means that 35 additional digits of the true
quotient can be obtained if one divides r by C(x).

(2) The instruction, DVP x, executes a division as Just
described if |C(AC)| ¢ (c(x)|. If [c(AC)|2 [c(x)| the divide-
check light is turned on and the computer proceeds to the next
instruction without disturbing C(AC) and C(MQ).

The divide-check light can be sensed and turned off by
the followlng conditional control instruction:

¥ The reader should note that this automatically occurs unless
C(AC) = C(AC), = O so that descrlbing the dividend as a 72-
diglt number 15 fiction.

VIII-9

DCT : Divide-Check Test
which cannot have an address section. :

The instruction, DCT, directs the computer to turn off
the divide-check light and to skip one instruction if the
divide-check light was off,.

DCT : DVCK off = C(ILC)+2 —>C(ILC) and DVCK off.

The DCT instruction is the only means by which a program
can turn off the divide-check light.

CHAPTER IX-

THE SHIFTING INSTRUCTIONS

Introduction

The shifting instructions are used to move the digits
in the AC and MQ to the right or left of their original positions,
They can be split into two classes: the numerical shifting instruc-
tions and the logical shifting instructions.

In the numerical shifting instructions the sign digits are
not shifted and zeros are brought into digit positions whichk are
vacated by shifting. Thus in most cases these instructions can
be interpreted as multiplication or division by a power of two
when the AC and MQ contain fixed-point fractions.

~ In the logical shifting instructions the sign digit may
be shifted along with the numerical digits. A numerical inter-
pretation in thls case becomes difficult and the best viewpoint
would seem to be that which regards the contents of a register
as an array of binary digits. We shall have more to say of this
later on.

The address section of a shifting instruction does not
refer to a register in storage but instead specifies the number
of positions that digits are to be shifted. The upper limit,

255, 1s placed on the number of positions that digits can be shif-
ted but since the combined length of the AC and MQ is T4 digits
this 1s more than adequate. We can state precisely what happens
as follows; if n denotes the address of a shifting instruction,
then the number of digit shifts implied by the instruction is n
mod 256 (i.e. the remainder obtained when n is divided by 256.)

IX-2

The Numerical Shifting Instructlons
There are four numerical shifting instructions:
(1) ALS n : AC Left Shift '
(2) ARS n : AC Right Shift
(3) LLS n : Long Left Shift
(4) LRS n : Long Right Shift
(1) The instruction, ALS n, shifts C(Ac)Q,P,l_35 to
the left n mod 256 positions. Digits shifted from the Q blt
are lost and zeros are introduced into digit 35 to fill digit
positions vacated by shifting. C(AC)S énd c(MQ) are unaffected,

S

QlP|1ll2 35
l - Zeros

The AC overflow light will be turned on if a 1 is shifted into
or through the P bit.)
ALS n : C(AC) * 2 —> C(AC)
(2) The instruction, ARS n, shifts C(AC)Q’P,1_35 to
the right n mod 256 positions. Digits shifted from digit 35
are lost and zeros are introduced into the Q@ bit to fill digit
positions vacated by shifting. C(AC)S and C(MQ) are unaffected.

QlP{1]2 35
Zeros

ARS n : C(AC) - 2=(mmod 256) 5 (pc)

n mod 256

(3) The instruction, LLS n, copies C(MQ)S into ACq and
shifts C(AC)Q’P,1_35 and c(MQ)l_35 to the left n mod 256 posi-
tions. Digits shifted from ACQ are lost and zeros are intro-
duced into MQ 5 to f£1l11 digit positions vacated by shifting.
c(MQ)g is unaffected.

IX-3

A EHIERREE - B NEE
lj- AC MQ Zeros

The AC overflow light will be turned on if a 1 is.shifted into
or through the P bit.
ILS n : C(AC + MQ) .+ 2P ™4 256 _io(nc 4+ Mq)
c(Ma)g —> C(AC)g

(4) The instruction, LRS n, copies C(AC)q into MQq and
shifts c(Ac)Q P, 1-35 and C(MQ)1 35 to the right n mod 256 posi-
tions. Digits shifted from MQ 5 are lost and zeros are intro-
duced into the Q bit to fill digit positions vacated by shifting.
C(AC)S is unaffected.

S : S
Q| Ppf1 351 1 35

Zeros AC MQ .

IRS n : C(AC + MQ) -+ 2 -(n mod 256) _5¢(pc 4 M)
c(ac)g—>c(M)g

The reader is urged to consider the effects of these in—A

\

structions for the case n mod 256 = O,

The Logical Shifting Instructions
There are two logical shifting instructions:
(1) LGL n : Logical Left
(2) RQL n : Rotate MQ Left
(1) The instruction, LGL n, shifts C(Ac)Q P,1-35 and
C(MQ)S 1-35 to the left n mod 256 positions. Digits shifted
from the Q bit are lost and zeros are introduced into MQ 5 to
£ill digit positions vacated by shifting. (AC)S’is unaffected.
This instruction differs from LLS since MQS is shifted like any
of the numerical digits, 1i.e. digits shifted from MQl enter MQS

and digits shifted from MQS enter AC35

S IX-4
ol PT1] Iz5kHs] 1I"_|55J(—|
AC MQ Zeros

The AC overflow light will be turned on if a 1 i1s shifted
into or through the P bilt,. ‘

(2) The instruction, RQL n, rotates C(MQ)S,1—35 to
the left n mod 256 positions, i.e., digits shifted from MQ,
enter MQS and digits shifted from MQS enter MQ350

WsTa Tl
MQ
Integer Arithmetic

The restricting of fixed-point numbers to be fractions 1is
largely artificial and was adopted to simplify the explanation
of the fixed-point instructions. As far as addition and sub-
traction are concerned, any consistent assumption for the loca-
tion of the binary point yields correct results (provided, of
course, the binary point of the result is construed to be in
the same location). In cases where the binary points of the
operands are not consistent they can easlly be made consistent
by using a shifting instruction. The coder must be careful,
however, not to lose significant digits in the process.

In multiplication and division the locations of the
binary points of the operands neqd not be consistent. The
coder, however, must memorize ceftain rules for determining the
location of the binary point in the result. These rules are
easily derived.,

(1) Multiplication: Consider a fixed-point number, A,
having n digits to the left of its binary point and a fixed-
point number,B, héving m digits to the left of its binary
point. This means that |

As 2" ana B 2"
are fractions which if multiplied using MPY yield the fraction

p'= AB ¢ (M)
Since the true product is

the product has n+m digits to the left of 1ts binary point.
(2) Division: If the above fractions are divided
using DVH or DVP we obtain a quotient, q, and a remainder, r,

where A s 27D - q+ - ‘,-2-35
B 270 Be 20

IX-H
Since the true quotient and remainder are

n
A n-m r e« 2, 5,-35

B B

the quotient has n-m digits to the left of 1ts binary point and
the remainder has n digits to the left of its binary point,

For integer multiplicatlon we let n=m=35. The binary
point of the product is thus located at the right-hand end of
the MQ,e.g.,

LDQ X

MPY Y

STQ PROD c(X) » c(Y)=> C(PROD)
suffices provided that C(X) s C(Y) can be expressed as a 35-
diglt integer.,

For integer division we let n=70 and m=35 and obtain an
integer quotient and remainder. The integer dividend must be
placed in the MQ; however, in doing so the coder must guarantee
that the AC contalns a zero having the sign of the dividend
(since C(MQ)S is ignored in division). The following program
would suffice

CIA X
LRS 35

DVP Y X/Y

STO REM .. r —»C (REM)
STQ QUOT q —5C(QUOT)

How Fixed-Point Numbers Are Written When Programming

The Share Assembly Program provides a fairly general
notation for writing fixed-point numbers. Their most general
form is the following

DEC NEelOBe2

where N denotes any mixed_number (+ signs and decimal points
are optional), €0 denotes any integer and
e2 =0,1,2,...,35

The notation NEelOBe2 stands for the fractional part of the

e
N 10 0. 2

number
..-e2

IX-6

rounded off to 35 binary digits.

The decimal scale-factor, EelO’ 1s optional and may be
omitted. The binary scale-factor, Bez, must, however, always
appear so that these numbers can be distinguished from floating-
point numbers. If e2=O, however, it may be omitted ylelding

DEC NEelOB
Thus the fraction, 1/10, may be written in any of the following
forms
.1B = 1E-1B = 10E-2B
If e2=35 1s used we obtain integers

DEC 1B35 = 1 » 2799

DEC 2B35 = 2 » 2700

DEC 1E1B35 = 10 » 2707
Since integers occur frequently they have been made a specilal
case by SAP which allows integers to be denoted by simply
writing their integer value.

DEC 1
DEC 2
DEC 10

Integers are characterized by the fact that neither E nor B
nor a decimal point appears in'their definition.

The binary{scale~factor, ey, may also be interpreted
as specifying the number of binary places between the left-
hand end of the register and the binary point of the fixed-
point number,

CHAPTER X

THE LOGICAL INSTRUCTIONS

The Logical Word

The logical word in some ways 1s the simplest of
words since all of its digits are treated the same. In
storage (of course) the logical word occupiles digits S and
1-35. In the AC the loglcal word will normally occupy digits
P and 1-35,

S
o | P[] "]BF]

—
Logical AC

Thus the CILA instruction will not suffice for copying a
logical word from storage to the logical AC.

Logical words are of great importénce in problems which
are primarily non-numerical. The casual coder may, however,
have little use fof them except in programming for the input-
output units (a job most often handled by library subroutines).

The Logical Administrative Instructions

The logical administrative instructions are the
following:

(1) cCAL x Clear and Add Logical
(2) SIW x : Store Logical Word
(3) STP x Store Prefix

(¥) ST x Store Decrement

(5) STA x : Store Address

(1) The instruction, CAL x, copies C(x) into the logical
AC., C(x)S is copied into ACp. Zeros are copied into C(AC)S Q
: ,Q.
C(x) is unaffected.

CAL x : c(x)——ec(Ac)P 1-35

0 —> C(AC)S’Q

(2) The instruction, SLW x, copies the logical AC into
register x. C(AC)p is copied into c(x)s. C(AC) is unaffected.
SILW x C(AC)P,l_BB—ﬁ?C(x)
(3) The instruction, STP x, copies C(AC)P 1.p into
F Bt |
C(X)s,1,2° C(AC) and C(x)3_35 are unaffected.

STP x : c(Ac)P,l’2 “>C(x)s,1,2

(4) The instruction, STD x, copies C(AC)3_17 into

C(x)3_17. C(AC) and C(X)S,1,2,18—35 are unaffected.
STD x : C(AC)3_17-—?C(X)3_17
(5) The instruction, STA x, copies c(Ac)21_35 into
C(x)21_35. c(ac) and‘C(x)S’l_zo are unaffected.
STA x : C(AC)21_35->C(X)21_35

The Loglcal Arithmetic Instructions

The logical arithmetic instructions are the following:

(1) ANA x And to AC

(2) ANS x And to Storage

(3) ORA x Or to AC

(4) ORS x Or to Storage

(5) com : Complement Magnitude
(6) cLM : Clear Magnitude

(7T) ACL x : Add and Carry Logical

(1) The instruction, ANA x, compares each digit in
the logical AC with the corresponding digit in C(x). If both
of these digits are 1, then a 1 replaces the corresponding digit

_ X-3
in the AC, otherwise a 0 is placed in this digit. c(Ac)S Q
H

are cleared,

ANA x : C(AC)i/\ c(x)i-—vc(Ac)i 1 = P(s),1—35
O——?C(AC)S,Q

The table of combinations for the "and" function is given below:

0 1 (dx)
oo 0
(dyn)
AC 1 |o 1

(2) The instruction, ANS x, is like ANA except that
C(AC) is undisturbed and register x gets the result which ANA
would have placed in the logical AC.

ANS x : c(ac)y Ac(x)>c(x), 1 = P(S),1-35

(3) The instruction, ORA x, compares each digit in the
logical AC with the corresponding digit in C(x). If either or
both of these digits are 1, then a 1 replaces the corresponding
- digit in the AC, otherwlise a O 1s placed in this digit. C(AC)S’Q
are unaffected.

ORA x : C(AC)i\J C(x);—>C(AC); 1 = P(8),1-35

The table of combinations for the "or" function is given below.

(dyn)
SR T S T

(4) The instruction, ORS x, is like ORA except that
C(AC) is undisturbed and register x gets the result which ORA
would have placed in the logical AC,

X-4
ORS x : C(Ac),V C(x); —>C(x); 1= P(8),1-35

(5) The instruction, COM, cannot have an address
section and affects only C(AC) as follows: every O in
A
o C)Q,P,l-35 is replaced by a 1 and every 1 in C(AC)Q,P,1—35
is replaced by a O. C(AC)S is unaffected.

coMm C(AC)i——?C(AC)i i1=1.Q,P,1-35

(6) The instruction, CLM, cannot have an address
section. It affects only C(AC) and places zeros in

C(AC)Q,P,I-BS' C(AC)S is unaffected.

1M i 0-3C(AC)y p i_35

(7) The instruction, ACL x, adds C(x) to the
contents of the logical AC (C(x)S is added to C(AC)P like
any other numerical digit.) A carry out of the P bit does
not, however, get added into the Q bit. Instead 1t is added
into A035. C(AC)S’Q are unaffected. ’

A use for the ACL instruction will be described in
the chapter on input-output equipment.

The Logical Control Instructilons

The logical control instructions are the following

1) PBT P Bit Test
(2) ILBT : Low Bit Test

(1) The instruction, PBT, causes the computer to skip
the next instruction in sequence if C(AC)P = 1,

X-5
PBT : C(AC)P = 1= C(ILC) + 2—C(ILC)

The PBT instruction cannot have an address section.

(2) The instruction, IBT, causes the computer to
skip the next instruction in sequence if C(AC)35 =1,

LBT : c(Ac)35 = 1= C(ILC) + 2->C(ILC)

Octal Numbers

The logical word is frequently interpreted as an
array of binary dlgits. For this reason a SAP ﬁotation
has been brovided by means of which a coder can write binary
numbers in his program. Since the binary notation would be’
cumbersome (36 digits required per word) SAP provided a means
for writiﬁg octal (base 8) numbers instead.

The conversion between binary and octal is trivial
and 1s based entirely on the following table which can
easlly be memorized:

Octal Binary
0 000
001
010
011
100
101
110
111

~N OOUl F o N

To make the conversion from binary to octal the coder breaks
up the 36 digit binary word into 12 groups of 3 digits and
writes down the octal digits corresponding in the table.

The notation used for octal numbers is the.

following
OCT N

X-6

where N denotes a 12 digit octal integer. The coder may
also write octal integers with algebraic signs and drop
insignificant zeros. In this case the integer can contain
at most 12 digits, If it contains exactly 12 digits then
the leading digit should be 0,1,2 or 3 since one binary
digit is used up by the algebraic sign, |

Instruction Arithmetic

A significant feature (probably the significant
feature) of the digital computer is the fact that instruc-
tlons are placed in the storage element and can be
operated on by the computer., The importance of being able
to change effective addresses with index registers has
already been made clear. By using the fixed-point and
logical instructions the coder may perform arbitrary arith-
metic on his program. To do so however he should know
exactly how instructions appear in the storage register
(see page 7 of the 704 manual).

The significant point involved is that an instructilon
will be considered to be a positive or negative number
according to a rather arbitrary array of digits which define
its operation section. As an example of a possible dif-
ficulty suppose that register INST contains an instruction
and register INT contains an integer, and that we wish to
increase the address of C(INST) by C(INT). We may be
tempted to use the sequence

CIA INST
ADD INT
STO INST

This would work as long as C(INST) were an instruction with

a O sign digit (e.g., CLA). If, however, it had a 1 in the
sign digit (e.g. MPR) we would decrease (rather than increase)
the address by C(INT)., This i1s a consequence of the sign-
magnitude convention used by the 704,

The above difficulty could have been avoided by:
using the sequence

" CAL INST
ADD INT
SLW INST
or the sequence
. CLA INC
ADM INST
STA INST

Some Examples Using the Logical Instructions

Example 1: An integer division can be performed
using the followlng program

IDQ NUM Place O in AC having same

CLM ' sign as C(NUM)

N

LIS O
DVH DENOM GCAMMp—Aehig) ¢ (NVUm)/e demom)s clmy

Example 2: The "or" function formed by ORA and
ORS 1s called an inclusive or. An equally important
function is the exclusive or which produces 1 in the AC
whenever C(AC), = 1 and C(X)i = 1 but not both. This can
be done by the following program |

SLW TEMP1
ANA X
CoM ;
SLW TEMP2
CAL TEMP1
CORA X
ANA TEMP2

' Readers familiar with Boolean algebra will recognize the

Ax_g

function, (A + X) (AX)'. An easy way to check the program
however 1is to try it out for the four possible cases.

Example 3: The following program inverts the
digits of the binary number in register BIN, 1.e.
il.e. , C(BIN)BS——?C(BIN)S, C(BIN)54—4§C(BIN)1~,
c(BIN)35¢4?c(BIN)2, ete,

LXA COUNT, 1

LDQ BIN
RQL 1
LOOP - RQL 34 |1 Loop forms inverted
Len 1 word one digit at a time
TIX LOOP, 1,1 in the AC.
SLW BIN '

COUNT HPR 36

Example 4: The "and" instructions can be used to
extract a group of digits from a logical word. This is
done by "anding" together the logical word and a special
constant (sometimes called a mask) which contains 1l's in
the digit positions corresponding to the group and O's
elsewhere. For example, if we desire to know 1f digits
30-35 of register BIN contain the binary number

101101

we can write the following program

CAL BIN ‘ Extract required digits
ANA MASK] to AC

CAS NUM

XL NO Exit to YES if

TXL YES

XL NO C(BIN)30_35 = 101101

MASK ocT 77
NUM OCT 55
BIN .

X-9

Care must be exercised in mixing arithmetic
instructions (like CAS) with logical instructions. Suppose,
for example, the coder desired to ask the above question
about digits S, 1-5 of register BIN. He might be tempted
to repeat the above program with

C(MASK) = OCT 770000000000
and
C(NUM) = OCT 550000000000

but this would not work. (Can you say why and can you
correct the program?)

"or" instructions can be

Example 5: The "and" and
used to store a binary number in a selected group of digilts
of a register without disturbing the other digits of the
register. For example, if we desire to store the binary
number

101101

in digits 30-35 of register BIN we could write the following
program

CAL NMASK

ANS BIN

CAL NUM

ORS BIN

HPR
MASK OCT -377777777700
NUM OCT 55

BIN
or alternatively
CAL MASK
ANA BIN
ADD NUM
SLW MASK

HPR

X-10
Example 6: In an earlier chapter it was mentioned
that the integer, -n, when 1t occurred in an address was a
shorthand notation for the positive integer, 32768 - n = 215-n°

It may occur 1n a program that given n, we must compute -n.
If n is in IRl we could do this with the following program

PXD 0,1
COM

ADD DECR
PDX 0,1
HPR

DECR PZE 0,0,1

This program works since when a 15 digit integér is comple-
mented and then added to its original value, the result

is a 15 digit number consisting entirely of 1's, i.e. the
number, 215 - 1. If index registers are involved the

above holds modulo machine size.

Two equivalent alternative programs follow:

TXI A,1,-1 PXD 0,1
A PXD 0,1 COM
COM PDX 0,1
PDX 0,1 TXI A,l1,1
HPR A HPR

The simplest program obtainable, however, is the
following

PXD 0,1
SUB A
PDX 0,1
HPR

A PON

CHAPTER XTI

INPUT AND OUTPUT

In the following chapter we shall briefly describe the
Input and output devices associated with the computer. We
‘shall not go into many of the details of codingffor these
devices. The reader can consult the.704 manual for these,
In many cases the coder will be able to‘compietely avoid
contact with these devices by using subroutinesg.

The Input-Output: Devices

. The main frame of the computer ‘consists of the arith-
metic and control elements and the high—speed“memory, All
communication between the main frame and the rest of the
universe comes under in-out (IO). IO therefore includes
input, output, and auxiliary storage (the preservation of.
binary computer words outside the main frame)' IO equipment
1s classified as on-line if it is under the direct control
of the main frame. 0ff-line or peripheral equipment way be
operated independently. . | | |

At the Computation Center there are a cathode ray tube

(CRT) unit, a magnetic drum unit, a card reader, a punch, a
printer, and up to ten magnetic tape units on line. A card
reader, a punch, and a printer comprise the off 1line eomple—

XI-1

ment. Xach of these peripheral units has a‘magnetic tape unit

assoclated with it, but the tape unit for the off-1line punch

may be connected on-line as a tenth unit The console li%htu

and switches, although part of I0, are ‘not covered here.

I0 Programming _ .

(I0 programming has two parts. One, obviously, consists
of the actual transfer of daté oetween the main frame and
the desifed unit. The other is the manipulation of the

data before output or after input,.sinoe meaningful words

XI-2

inside the main frame are not readily intelligible by
human beings or the electrical accounting machines (EAM).
Even to use the CRT properly some manipulation is necessary
to prepare the data for display.

The basic IO instructions are

1) RDS n : Read Select
2) WRS n : Write Select
3) CPY x : Copy

RDS selects the on-line unit whose identifying number is n
in the input mode. WRS selects a unit in the output mode.
A table of identifying numbers appears on page 27 of the
704 manual. The coder, howéver, need not remember these
numbers since SAP provides mnemonic pseudo-operations for
each unit. Both RDS and WRS can have tags but rarely do.
All the words transferred between one select instruction
and the next comprise a record. A collection of recprds
terminated in a special way is called a file. "

A CPY instruction usually transfers one word between
core memory at the location effectively addressed and the
unit currently selected. The word passes through the MQ,
which is used as'a buffer for IO0O. If no unit is: currently
selected, the 704 stops with the Read-Write Check Light on.
There is no instruction which deselects a unit; a unit is
automatically disconnected if a certaln time has elepsed
since the last CPY or if the maximum number of CPY instruc-
tions for the record have already been executed.

When reading magnetic tape or from the card reader,
records and files are well-defined. If a CPY is gilven
after the last word of a record has been read, core memory
1s unchanged and control is transferred to the third
instruction beyond the CPY. This feature facilitates
reading records whose lengths are not known or records
of known length without having to count words. When an

XI-3

end-of-file condition has been established, the first CPY given
after an RDS causes the ILC to be increased by two, skipping
one instruction-and transferring control to the instruction'
two registers beyond the CPY,

It is often desirable to compute and record check-sums
with auxiliary storage records so that when the record is read
a new check-sum can be formed and compared with the recorded
one. This process if facilitated by the instruction

CAD x ¢+ Copy and Add

which does everything CPY does and in addition logically adds™
the word being transferred and C(AC). It is thus possible to
transfer data and form a check-sum simultaneously. CAD is

not described in the 70k manual. '

Every unit but the card reader has some special instructions.
associated with it. These will be described with the unit.

Coding for the Cathode Ray Tube
The complete CRT unit has two oscilloscopes, a large

scope for visual display and a 7-inch CRT optically connected
to a 35 mm. camera for'perméhent recording. on £ilm. For most
programmers the display CRT is just a check that information
is being recorded on film. The CRT has a theoretical raster
size of 1024 by 1024, However spot size and the limitations
of the system reduce this to an effective size of 256 by 256.

The CRT 1s selected by the SAP instruction

WTV

~ Note: all of the SAP WRS pseudo-instructions begin with W and
all of the RDS.pseudo-instructioﬂs begin with R. The CRT is’
unique in that 1t has no timing problem. It remains selected
until some other IO unit is selected no matter when the CPY
instructions are given. There.is a minimum time between CPY's

| + See the description of the instruction, ACL.

XI-4

but if this time is not used in computing the'TOM will wait
until the CRT is ready to accept more information.

The SAP instruction

CFF : Change Film Frame
advances the film and exposes a new frame. This should always
be done before displaying points on the CRT. After CFF is
given a half-second must elapse before the next CPY to "the CRT
can be executed. | ‘

The point to be displayed on the CRT is determined by
the word transferred by the CPY., The x-c¢oordlnate 1s specified
by the rightwost 10 digits of the decrement, The y-coordinate
is specified by the rightmost 10 digits of the address. The
digits of the prefixv(ys, Yy yz) have the following meanings:

¥y =Y, =0 display point at (x,y)
Vg = 0 display with normal intensity
Vg =1 display with high intensity

¥y,= 1, ¥, = 0 display horizontal axis through (x,y)
¥1= 0,y, = 1 display vertical axis through (x,57)

For example, the following program displays a point in
the center of the CRT

WTV

CPY COORD

HPR ’
COORD PZE 512,0,512

The CRT 1s normally used to plot curves. Alphanumeric'
information may be written on film (by plottihg it point. by
point) but it is preferable to use the off-line printer for
large amounts of alphanumeric- information.

XI-5
Coding for the Magnetic Drum |

The MIT 704 has four logical drums each capable of
storing 2048 words. These are purely auxiliary storage

devices.

While the access time for the first word transferred
averages 12 ms, the rate at which subsequent words are trans-
ferred is 96 4 s per word. To attain this speed CPY instruc-
tions must not be more than 36u s apart. If aloopof the
form ' ’

Z CPY Y, 1
TIX Z, 1, 1

is used, then the TIX instruction uses 24 of the allowable
56/LS so that no other instructions can be done 1in the copy

lcop.

The drum is selected for reading and writing by the SAP

instructions

WDR n : Write Drum
RDR n : Read Drum

where n = 1,2,3 or 4 specifies the ﬁumber of the logilcal drum
being selected. The instruction

IDA x, t

is used (following the WDR or RDR) to select the register on
the drum to which the first CPY will refer.. This address is
specified by the right most 11 digits of the word effectively
addressed by the LDA (and not by the address section of the
LDA itself). If drum address zero 1s desired the LDA may be
omittéd., The drum remains selected indefinitely after WDR or
RDR waiting for an IDA. Once the LDA is given, however, a CPY
must follow within 36/{8. If more than 36/gs elapses without
a CPY being given the drum deselects. ‘

The CAD instruction is usually used in drum copy lcops
since the drum has no internal checking devices, Thus check-sums

XI-6

should be formed by the coder to guard against errors. In

the following example we write 100 words on a drum. The filrst
99 words are data words and the last word 15 a check sum. The
reader should note that the final data word must be handled
separately from the main copy loop to avoid deselecting the

drum.

DA

CAD

N
TEMP

WDR
PXD
LDA

"LXA

CAD
TIX
CAD
SLW
CPY
PZE
PZE

1
200

DA
'N,1°
DATA, 1
CAD,1,1
DATA
TEMD
TEMP
‘o5

Select drum-1

Prepare to form check-sum
Select 1ocatidn 200

Set for 98 cycles
¢(DATA-98), ..., C(DATA-1)

C (DATA)

Record check-sum on drum’

The block of data can be read back into Lhé'computer and

checked by the following program

‘DA

CAD

RDR
PXD

_IDA

LXA

-CAD

TIX
CPY
SLW
CLA
CAS

HTR

HTR
HTR

N PZE

TEMP

PZE

TEMP1 PZE

1 _
200
DA
N,1

Select drum 1

Prepare to. form check sum
Select locdtion ‘200

Set for 99 cycles

DATA+1,1 C(DATA-98),...,C(DATA)
CAD, 1,1 ' o

TEMP
TEMP1
TEMP1
TEMP
ERROR
GOOD.
ERROR

99

Check-sum from drum
Compare it with computed check-sum

XI-7

Coding for the Card Reader
The card reader is selected by the SAP instruction
RCD

It provides a natural introduction to the card image (see
fig. 24 on page 40 of the 704 manual). Like all units which
process card ilmage type data it has a plug board, The SHARE
organizatlon has adopted a standard plugboard with which the
first 72 columns of a card may be read, by half-rows, into
the computer. The last 8 columns of the card may not be

read.

Since each half-row can be construed as a 36 digit binary
number it is convenient to read binary cards with the card-
reader, If Hollerith (BCD) data 1is punched on the card,
however, the characters appear in the columns of the card.

If these are read by the card reader the coder 1is presented
with a tremendous unscrambling problem. Fortunately there
are subroutines for doing this and moreover - 1t can be ‘done
during the time that the card is belng read by the computer.

A record for the card reader is a single-card., A new RCD
is needed for each card to be read. If an RCD is_ followed by
25 CPY instructions the 25th CPY produces an end-of-record
skip (skipping two instructions after the CPY). An end-of-
file condition can also be produced in the card reader by
letting the card hopper empty. If this occurs the computer
stops (still selecting the card reader). Pressing the start
button on the reader at this time causes the qomputer'to
read the remaining cards in the reader. After the last card
has been read the next RCD sets up an end-of-file condition
and the first CPY following produces an end-of-file skip.

The card reader will deselect if the coder walts too
long between CPY instructions or between the last CPY instruc-
tion required for a card and the RCD required for the new
card. The timing is given in the manual.

XI-8

Coding for the Card Punch
The card punch 1s essentially the Inverse of the card
reader. It is selected by the SAP instructilion

WPU

The following SAP instructions

SPU n : Signal Punch Hub n = 1,2

produce pulses at the plugboard but the SHARE standard
board for the punch has not been wired to use these pulses,

If more than 24 CPY instruétions follow a WPU a read-
write check stop occurs in the 704. A WPU instruction is
required for eaéh card to be punched. If too much time
elapses between CPY instructlions the punch will deselect.

The following program reads a card from the card reader
and punches it on the card punch.

LXA HTR, 1 0->C(IR1)
RCD : Read Card
CPYl CPY CARDIM,1
. TXI CPY1, 1,-1 .
HTR HTR End-of-file skip
WPU ' End-of-record skip
CPY2 CPY CARDIM-24,1 Punch Card
TXI NEXT,1,-1 '
NEXT TXH CPY2,1,-48
HTR

Coding for the Prinfer
The printer. can be selected by either of the SAP
instructions '

WPR
RPR

The latter on is less often used and selects the printer
with echo checking. In this mode 24 CPY's provide a card

XI-9

image as for WPR or WPU but there are also an additional

22 CPY's which read back into memory the echo pulses from
the print wheels. A printer card image must consist of
Hollerith characters unlike the reader and puhch which
accept binary card images. There are standard subroutines
for translating BCD characters into card image form.

The following special instructions are assoclated
with the printer

SPR n : Signal Printer Hub 1 n 10
SPT Sense Printer Test

The SPR instruction causes a pulse to aﬁpear at the specified
exit hub of the printer plug board. The SPT instruction~
causes the computer to skip one instruction if a pulse is
being applied to the sense entry hub of the printer plug
board. In SHARE standard board 2 the SPR instructions have
the following meaning:

SPR 1: skib to channel 1, i.e. restore the paper form
to the top of a page.

SPR 2: skip to channel 2
SPR 3%: extra space (after printing)
SPR 4: double space’ '

SPR 5: suppress spacing before printing
SPR 7: send pulse to be testéd by SPT for board check.
SPR 8: suppress overflow, used with SPR9 to print 120

characters per line., Thls sense exit must always
be pulsed during the first print cycle for a line,

SPR 9: suppress spacing and set so that next 1lmage
goes into columns 73-120 from 1-48 with 49-72
in place, so as to be able to print 120 characters

per line.

‘The following program will print a 120 character line with
double spacing. We assume 72 characters in card image form in
registers LEFT-24,...,LEFT-1 and 48 characters in card image
form in RIGHT-24,...,RIGHT-1 (thus bits 12 through 35 of
RIGHT-23, RIGHT-21,...must be O).

XI-10

LXA HTR,3 24> C(IR1) and C(IR2)
WPR Select for left side'
SPR '8 Prevent overflow skip.

CPY1l CPY LEFT,1 Left side image
TIX CPYL1,1,1
SPR ¢ Prepare to print on right
WPR Select for right side
CPY2 CPY RGHT,2 Right side 1mage
TIX CPY 2,2,1
SPR 4 . Double space
HTR HTR 24 T '

Coding for the Magnetic Tape Units

In using magnetic tépe a new difficulty is presented:
the MQ may:not be used between CPY instructions and for a time
after the last CPY. This restriction also applled to the
drum but in that casé the tlme between CPY‘s'was#so short that
the MQ could hardly have been used anyway. There are at most
28 machine cycles available for computation between CPY's while
writing and 24 while reading. 42 cycles after the last
effective CPY the MQ becomes available., The SAP instruction

IOD : In-Out Delay‘
if given after the last effective CPY will delay the computer
long enough to make the MQ availlable.

For auxiliary storage the tape is used in the binary mode.
The. instructions for using tape are:

RTB n Read Tape Binary
WTB n Write Tape Binary
REW n- Rewind-

BST n Back space Tape

RTT : Redundancy Tape Test
ETT . ¢ End of Tape Test"

Here 1€ n =10 Selects one of the teﬁ logical tape addresses,

XI-11

An ETT instruction must be given while a tape is selected.
The end-of-tape indicator which it tests can be turned on only
during writing operations with the tape and may be turned off
by a REW or BST. T

The RTT instruction tests a light which is turned on
whenever a line of tape is read which has a wrong lateral
redundancy bit or whenever a record from tape is read which has
a wrong longitudinal redundancy bit. RTT may be given after
the tape unit has been deselected. A delay must be inserted
between the last effective CPY and the RTT in order to
give the tape unit time to compute the longitudingl redundancy
bits. The coder may provide this delay if he wishes by giving
the RTT immediately after the next RTB. 1In this case, however,
he will require two BST's to return to the.erroﬁeou5~block.

The tape units are also used for lnput and output in
connection with the off-line equipment. The following
instructions are provided for this mode

RTD n : Read Tape Decimal
WID n : Write Tape Decimal

The off-line card reader with the stéhdard SHARE plug-
board reads all 80 columns of a card and produces 14 BCD
words, the last four characters of the last word being
blanks. Each card produces a record on tape. An end-of-file
gap can be written at the end of the deck. A decimal tape
of this type may be used to punch cards with the ofoline card
punch. The off-line printer can be used to print records up
to 20 words long (containing'lzo characters), A switch sets
the printer to single or double space, or to program control.
In the latter case the first character is not printed but is
used to control spacing on the printer.

XI-12

Subroutines for Input and Output

Coding for the input and output devices is undoubtedly
the most difficult aspect of 704 coding. Many subroutines
for handling input and output are described in the SHARE
distribuﬁion literature. The coder is urged to use them

whenever possible.

CHAPTER XIT
OVERFLOW, UNDERFLOW, AND MISCELLANEOUS TOPICS
Overflow, Underflow and You '

It 1s an important feature of the 704 computer that a
program normally halts only when either of" two explicit
instructions (HTR or HPR) is executed. There are three

exceptions, however.

The first exception is the "dynamic stop." (An
extreme example of the dynamic stop is an unconditional
transfer instruction which has its own location as an
effective address.)

The second exception 1s that the computer may stop
on a read-write check. This occurs when a program iﬁstructs ‘
input or output equlpment to read or write at improper times. '

The third exception 1s the fixed-and floating-polint
divide-or-halt instructions (DVH and FDH) which stop the
" computer whenever the dividend and divisor do not satisfy
certain conditions (e.g. the divisor must not be zero).

The divide-or-halt instructions adequately proteét the
programmer from making an incorrect or meaningless division,

Instructions, like DVH and FDH, whlch contain a pro-
tective (alarm) stop provide examples of what arithmetic
instructions in most older computers were like. Thus in
many computers a fixed-point addition yielding too large
a result caused a computer stop (called an overflow alarm).
Clearly this type of 1nstruction might be desirable if
absolutely no overflow should ever occur in a problem}

Alternatively there are programs in which overflOws‘
can be ignored or in Which, when overflows occur, an
alternative procedure can be provided. In thils case an
alarm stop is Just what the programmer does not want. The
704 allows the coder this more general facility through the
mechanism of the overflow lights and the transfer-on-overflow

XII-2
instructions. In doing so, however, it shifts a heavy
burden of responsibility from itself-to the coder. The
computer can compute wrong answers at a very rapld rate.

If all coders were to follow every 704 arithmetic
instruction by an alarm test Instruction then clearly no
undetected erroneous arithmetic could be done by the TO4.

But to begin with, this is inefficient and besides, experience
has shown that coders dislike to use two instructions when
they suspect that one will do. Moreover, the nairze coder will
argue that no tests are needed for unexpected alarms since

any overslghts will turn up in checking-out the program.
Unfortunately nothing could be further from the truth, for
unlike the usual coding mistake which produces an easily
noticeable discrepancy in nearly all of the results, an
undetected overflow condition may only occur sporadically

and perhaps not at all for the chosen test cases. Thus if

the coder neglects to query the computer about alarm con-
ditions his later results can be completely wrong. In fact
one would wonder why he went to so much trouble, took so

much time, and used such an expensive machine only to get

some meaningless numbers. Needless to say the situation

1s aggravated if the numerical results are used as the basis
of an article in a research journal.

As 1t may have been suspected, the purpose of the
preceding paragraph has been to thoroughly Jjolt the reader
into realizing that the non-stop instructions of the 70k
create serious coding complications. However by clear
thinking and orderly procedures, which wlll be described in
~the remainder of this section, it will-be seen that these -
problems can be minimized. :

The fundamental phillosophy which every good coder must
follow is not togamble needlessly with the computer. This 1s
not to say that using a computer does not involve many risks

XII-3
but the goal should be to keep all risks calculated and
limlited. In particular, the calculated risks are: the
rellability of the computer instructions performing as
specified; the reliability of card readers, tape units, drum
units, punches and printers; the possiblity of a mistake in
programming (i1.e. method); the possibility of a mistake in
coding. The important thing to note is that in all of these
risks, the probabilities can be estimated and can always be
kept within desired bounds by a multitude of strategems.
(Normally these probabilities are not explicitly discussed by
coders but instead are replaced by descriptions of the various
double-checks and tests which the careful worker uses to
convince himself and his audience that he 1s doing a correct
calculation.,) Thus the role of the good coder bears an
analogy to that of the good laboratory experimehter who must
similarly suspect his own equipment until he convinces himself
of 1ts worth.

Having spent so much time exposing the problems of
undetected arithmetic mistakes, it is now pertinent to discuss
the techniques of dealing with these problems on the 704,
Treating first the fixed-point instructions, there are only
two possible arithmetic mistakes, both of which have already
been casually mentioned. These are the overflow and the
divide-error conditions which are associated with the AC
overflow light and the divide-check light, rgspeCtively.}
These indicators may be queried and turned off by means of
the test instructions TOV,” TNO and DCT.

Every fixed point calculation éah be decomposed into
sequences of instructions which correspond to three cases:

1) Alarm conditions are not meaningful and should
be ignored.

2) Alarm conditions may occur and require specilal
treatment. |

%) Alarm conditions should ‘never occur but if they do,
the program should be stopped.

XII-4

The first case 1is trivial in that nothing need be doﬁé.
In the second and third cases the pertinent indlcator lights
Should be turned off before the sequence of instructions in
question and after the sequence the indicators should be
queried so that appropriate action is taken if alarm conditions
occured. Thus the treatment of alarm conditions with fixed-
point instructions is straightforward. It is worthy of
note that there is only one fixed-point divide instruction
which turns on the divide-check indicator (and does not
stop the computer), DVP, and there are only 8 fixed-point
instructions which can turn on the AC overflow indicator:

ADD, ADM, SUB, SBM, RND, ALS, LLS, LGL.

We finally consider the alarm conditions assoclated with
the floating-point instructions. These are more difficult to
deal with. The electronics of the 704 are so arranged that
it is not possible for the fractional part of a floating-
point result to overflow since the exponent is always adjusted
to prevent this; however the characteristic (i.e. the
exponent of 2 plus 128) has only 8 bits allotted to it and
thus has a limited range. 1In particular, a characteristilc
which 1s too large (»255) is called an- overflow and one which
is. too small (€0) is called an underflow. Inasmuch as all of
the 8 floating-point instructions produce a double-register
result, it is possible to get a wide variety of possibilities.
The indications of these possibilities are left in an extra-
ordinarily clumsy form in the arithmetic element and the
..situation represents a major weakness in the 7Ok design.

(The situation is usually referred to as fthé underflow-~
overflow problem" and has been a topic of:protracted dis-

- cussion among TO4 users.)

The alarm indicators which are turned on by floating-
point instructions are three: the divide-check light, the
~AC overflow light and the MQ overflow light., - The divide-
check light works as it did for the fixed-point instructions.

XII-5
The AC and MQ overflow lights indicate that the AC or MQ -
The

exact conditions are given by the following two charts. It
1s assumed that all indicators were off before each instruction

register, respectively contain an incorrect result.

and that on and off are signified by one and zero, respectively.

Instructions FAD, UFA, FSB, UFS, FMBR, UFM

Condition of:
AC Indicator MQ Indicator Q bit in AC AC MQ
0 o) 0 ok ok

0 1 0 ok underflow
1 0 0 overflow ok

1 1 0] overflow overflow

1 1 1 underflow underflow

Instructions: FDH, FDP
Range of Condition of':
AC Indicator MQ Indicator| Characteristicf AC - MQ
in MQ

0 0 0 - 255 ok ok
1 0 0 - 154 underflow ok

1 1 129 - 255 . underflow underflow

0 1 129 - 255 ok - underflow

0 1 0 - 128 ok overflow

The remainder of this section will deal with three pro-
cedureé for utilizing the information in the above tables,
The first procedure and by far the simplest is to consider
all floating-point overflows and underflows to be cause for
stopping the program. In this case, the program need only be
analyzed into sections where the sequence of floating-point
instructions is uninterrupted by any of the 8 fixed-point
instructions which might turn on the AC indicator. Then for
‘each sequence, 1t 1s only necessary to be sure thatboth the

XII-6

AC and MQ indicators are off before the sequence and that the
program 1s stopped if either indicator 1s on after the
sequence. This 1s done with. the instructions TOV, TNO and
TQO. . : :

It is to be emphasized that the above procedure 1s the
minimum that should be done for an& floating-point program.
Unfortunately the procedure is often inadequate for the
following reason. Most problems are described 1ln a way which
biases the exponents of the intermediate results. Thus a
power serles which converges well for all x less than a fixed
value, will for small x contain terms which are extemely small..
For exampie, in the polynomial

2 3 b
X X X X
fx) =1+ Iy + a7+ 37+ 737
-11 -46
for x = 10 , the last term 1is approximately 10 . In

computing the lqst term an underflow would be obtained, so
that it is clear that the appropriaté corrective procedure
(1f the calculation were done this way) is to set the last
term to zero. (It is tempting to ignore the meaningless
underflowed term but because of the way the TO4 was designed,
an underflowed register when stored becomes a very large
number which yields a gross error.) With this bias in mind,
the most frequently desired case is single-register precision
(1.e. the result is in the MQ after FDH or FDP and in the AC
for all other floatiné-point instructions) where if overflow
occurs, the program is stopped, and if underflow occurs,

the result is replaced by zero. This prescription forms the
basis of the next corrective procedure.

Again one analyses the program lnto sequences of
instructions that contain no fixed-point instructions which
might turn on the AC overflow light. At the beginning of
each sequence both the AC and MQ overflow 1ights are turned
off, for example, by the instruction TSX RESET, &4, where the
subroutine RESET is: '

XII-7

RESET TQO x +1

TOV =& +1

TRA 1,4
(Here the asterisk in an instruction address designates the
location of the instruction itself.) After every floating-
point division instruction, (i.e. FDH, FDP).one uses the
instruction, TSX DVTST, 4; similarly after every other
floating-point instruection, (i.e. FAD, UFA, FSB, UFS, FMP, UFM),
one uses the instruction, TSX AMTST,4. Two subroutines suit-
able for single-register precision arithmetic are the
following: ‘

L4

AMTST TQO H+1

TNO 1,4 Normal return
ARS 1
PBT
TRA ALARM Overflow
PXD 0,0
_ TRA 1,& Underflow return
DVTST TQO DV1 .
TNO 1,4 Normal return
TRA 1,4 MQ ok return
DV1 TOV. Ve ‘
PXD 0,0
LLS 8 .
SSP
SUB DV3
TMI ATARM Overflow
DV2 LDQ DV4 |
TRA 1,4 " Underflow return
DV3 PZE 129 Integer 129

DV4 PZE Zero

-

ATARM HTR - ALARM Overflow stop

XI1I-8

There are several features to be noted about the above
procedure. First, the two indicators are;automati%al}y turned
off after each floating—péint operation in anticipation of
the next instruction. Second, the normal case of neither
underflow nor overflow requlres three operating instructilons
which raises the minimum floating-point opefation times
from 7, 17, and 18 to 13, 23, and 24 machine'cycles. Third,
the above procedure uses a valuable index register which
may require further siowing‘doWn of the program}

The third and final overflow-underflow procedure
accomplishes the same corrective action as the second pro-
cedure Jjust deScribed. However by a cle&ér use of ‘the
trapping mode, the use of an index register is eliminated
and the normal overflow-underflow test time is reduced
from 6 to 2 machine cycles.

The 704 trapping mode is a specilal state of the
computer (entered and left by the instructions ETM and LTM,
respectiveiy) in which all instructions perform as usual’
except fqr the trgnsfer part of all transfer instructions.
In the latter case; the location of the transfer instruction
is set into the address section of location O and the computer
control 1s transferred to locatlon 1. (One transfer instruc-
. tion, TTR, 1s immune to the trapping mode.) The usual use
of the trapping mode is to trace the flow of control by
means of diagnostic programs for trouble-shooting incorrect
programs. In the present application, however, the trapping
mode serves as a device to save the return point when control
i1s transferred due to the AC or MQ overflow lights belng on
after a floating-point instruction. |

The procedure agaln consists of first analysing the
instructions into sequences where the indicators are not
turned on except by floating-point instructlons. Somewhere
before the first sequence, a brief initializing program must
be given. '

XII-9

This is
CLA WORD
STO 1 Inltialize analysis transfer
where ')
WORD TTR TEST

Now it is not necessary to turn off both the indicators before
entry into each sequence. This follows from the fact that

- for single-register precision the condition of the MQ indi-
cator and the characteristic of the MQ are sufficient for
testing the result of'division, whereas the AC indicator and
the Q blt are sufficient for testing the non-division instruc-
tions. Thus all that is required is that before every run of
non-division floating-point instructions (i.e. no intervening
divisions) the AC indicator is turned off and similarly before
a run of division instructions the MQ indicatorvis turned off.
This is done, of course, by either TOVx+1 or TQOx+1.
'Finally after every floating point division,one gives the
instruction, TQO TSTDV, and correspondingly after the non-
division instructions, TOV TSTAM, where both instructions
should be executed in the trapping mode. Inasmuch as these
instructions will not trap unless there was an underflow or
overflow, the increase in time of normal floating point
operations is only 2 machine cycles. In addition one places
somewhere in the program the following analysis subroutine:

TEST STO T5 ~ Save AC

ARS 1

SLW T6 Save Q bit

CAL O ‘ :

STA Tl , Set pick-up

ACL TO9

STA T4 Set return ‘
T1 CAL Pick-up transfer instruction

STA T2

CLA T5 Restore AC less P,Q bits

T2 TTR Execute analysis or transfer

XII-10
The subroutines for alarm testing are the following:

TSTAM LTM
' CLA T6 Q bit in S bit position
TPL ALARM Overflow o

PXDb 0,0 Clear AC

"TRA T3 To return
TSTDV LTM
" PXD 0,0
LS 8
SSP
'SUB T7
TM1 ALARM Overflow
) IDQ T8
T3 ETM
T4 TTR— ﬁnderfIOW‘return
T5 PZE AC Store
‘T6 PZE 1 Q bit store
T7 PZE 129 Integer 129
T8 PZE Zero
T9 PZE 1 Integer'l

ALARM HTR ALARM Overflow stop

Inspeétion of the above analysis routine reveals that
any transfer insﬁruction encountered while in the trapping
mode will be interpreted correctly (except an indexed trans-
fer, e.g. TRA1l,4) although its execution time will be
multiplied by a factor of 13. (The P and Q bits will also
be cleared but this usually does not affect anything.)
Consequently any conditional transfer instruction which is-
unlikely to meet the conditions of transfer may, if it 1s
convenient, be executed in the trapping mode without any
great loss in program operating speed; otherwise, 1t 1s
desirable to leave the trapping mode before a probable
transfer/?nd reenter thé'trapp;ng mOdeC%?LLLMJ 07%22¢»;J£%2,

7 Lk o /d-«'?// i
_/ [

XII-11
Finally the following sample program is given to
1llustrate the fechnique of the last procedure. Here 1t 1is
assumed ‘that DATA1l through DATA7 are the initial addreéesses of
data blocks which along with the analysis subroutines Just
' described are available elsewhere in the program. The sequence’
of control transfers will be left as an exercise for the reader

START CLA WORD Initialize in location 1

STO 1 ggigiggansfer to analysis
TRA WORD+1

WORD TTR TEST
LXA COUNT, 1

LOOP CLA DATA1+100,1
TOV %+1 Turrwoff probably-on AC
FAD DATA2+100,1 indicator
ETM ' Enter trapping mode for test
TOV TSTAM Trap 1f underflow or overflow
FSB DATA3+100,1
TOV TSTAM Trap if underflow or overflow
LT™ Leave trapping mode for

probable transfer
TMI SKIP
ETM Enter trapping mode for test
TQO »+1 Turn-off probably-off MQ
FDH DATA4+100, 1 indicator
TQO TSTDV Trap 1f underflow or overflow
TOV %+1 Turn-off probably-off AC
indicator

SKIP ETM Enter trapping mode in case came
FMP DATA5+100, 1 from TML
TOV TSTAM Trap if underflow or overflow
TQO ¥+1 Turn-off probably-off MQ
FDH DATA6+100, 1 indiecator
TQO TSTDV Trap 1f underflow or overflow
LT™™M Leave trappling mode for
STQ DATAT7+100,1 probable transfer

TIX LOOP,1,1
END HTR END
COUNT PZE 100

£y

XII-12

A subroutine for dealing with floating-point overflows
and underflows (CLOUD1l) has been distributed by SHARE
(distribution No. 248).

The Sense Switches

‘ There are ‘six switches on the operator!s console
(numbered from left to right by the digits 1 to 6) whose
positions (either up or down) can be sensed by using the
instructions |

SWT n: Sense Switch Test n=1,...,6

Sense switches can be used'by the computer operator
to modify the efféct of a program whilevit.is running.
~ Both the SHARE Assembly Progfam and the MIT Post-Mortem
Program use sense switches. For example, SAP wlll read-
in the symbolic deck from the card reader if sense switch 1
is down but will read it in from a magnetic tape unit if
sense switch 1 1is up. ‘

The Sense: Lights .

"~ There are four ‘lights (numbered from left to right
by the digits 1 to 4) on the operator's console which can
be turned on and off, or tested, by means of the following

instructions: : .

.1) SLN n: Sense Light On n = 1,2,3,4
'2) SLF : Sense Lights Off

'3) SLT n: Sense Light Test n = 1,2,3,4

1) The instructions, SLN n, turns on the sense light
numbered n. . '

2) [The instruction, SLF, turns off all of the
sense lights. o

%) Thé instruction, .SLT n, turns off the sense
light numbered n and skips one instruction if it was on.

SLT n: Sense light off and
' Sense light n on=C(ILC) +2—>C(ILC).

XII-13

The sense lights can be used as a visible means to
convey information to the operator about the state of the
program. The MIT;Post—Mprtem Program uses a sense light as
follows: By using certain sense switches an operator can
stop the post-mortem program and insert manual post-mortem
requests into the MQ register which the program will then
execute. If, howéver, the'operator inserts an illegal
request the program will detect this iliegality and return
to the original stopping point with a sense light on.

Example: The following example considers the four
sense lights to be a four digit binary counter (with the
convention that a sense light being on denotes a 1). The
example is a subroutine which increases the contents of
this counter by 1 each time it is entered. ’

COUNTR SLT 4

TRA FOUR
SLT 3
TRA THREE
SLT 2
TRA TWO
SLT 1
TRA ONE
TRA 1,4
ONE SIN 1
TRA 1,4
T™WO SLN 2
TRA . 1,4
THREE SILN 3
' TRA 1,4
'FOUR SLN &4
TRA 1,4

A Quick Look at the Console
The operator's console on the 704 contains an assort-
ment of switches, buttons and lights most of which rarely

XII-1k

concern the coder., A detalled description of the console may
be found in the 704 manual on pp. 13-15. A few of the buttons
are important to the coder, however and are briefly described

below.

The Clear Button: When a binary deck is loaded into
the 704 words are placed in registers specified by the coder.
If the coder does not specify the contents of a register it
will not be changed (and will contain whatever the previous
user left in it). It is thus important that a coder fill all
registers whose initial values affect his program.

The clear button (if pressed by the operatof before
loading begins) enables the coder to start with memory in a
known state (namely all zeros). This button also resets
all of the registers and alarm lights in the arithmetic
dement;+ It 1s recommended that the coder clear memory when-
ever possilble since thls will make simpler the interpretation
of post-mortem results.

The Start Button: The start button can be pushed by
the operator after the computer has stopped on one of the
following instructions

HPR, HTR, DVH, FDH

Wlth HPR, DVH, and FDH its effect to start the computer on
the next -instruction in seduence. An exception is provided
by the instruction

HTR x : Ha;t and Transfer

This instruction stops the computer in such a way that if the
start button is‘subsequently pressed then the computer begins
with the instruction in register x.

+ Another button, the reset button, clears the arithmetic
element but does not change memory.

XII-15

The Load Buttons: There are three buttons; called
the load tape button, the load card button and the load
drum button; which are used to initially bring information

into core memory (e.g. after core memory has been cleared).
These (when pushed by the operator) start the computer and
cause it to 1nitially execute one of the following sequences
of instructions:

Load Tape Load Card Load Drum
RTB 1. R\([D /RDR 1
CPY 1

TTR O

The sequence thus places words (from the outside world) into
registers 0 and 1 and transfers control to the first of these.
This simple sequence suffices to bring in more,complicated
loaders which can read binary cards into memory. In the

next section we describe one such loader.

A Binary Loader :
| The binary cards produced By SAP during asembly can
be described as follows :
1. Data Cards
a)' The decrement of the 9 left row contains

the number of words on the card (call this n).

b) The address of the 9 left row contains the

" the location of the first word (call this x)

c) The 9 right row contains the check sum (which
is the logical sum %f all other words on the
card). ' -

d) Rows 8 left, 8 right, ...contain the n words
to be stored in 1ocations X,x+1,...Xx+n.

XII-16

2. Transfer Cards
"a) Transfer cards are characterized by the
fact that the decrement of the 9 left row
is zero.
b) The address of the 9 left row contains the
starting address of the program.

Many more or less complicated loaders have been
written by SHARE members and are described in the SHARE
distribution material. The one listed below (NYBL1) is a
relatively simple one which consists of a single card.

ORG O
LXA O,k These words are copied to O and 1 by
A CPY 2,4 the load card sequence ‘

O9R TXI A,4,-I] This copy loop brings the rest of the
card to core memory and terminates on
the end-of-record skip
9L PZE Used to store 9 left row.
LTM We leave the trapping mode (Jjust in case)
| and enter the loader proper. The TXI in
\L register QR is right in any case,

B

RCD RCD -] Read binary card
CPY 9L 1 x and n to 9L and MQ
LLS 17 1 n from MQ to AC
PAX O,4 7 n to IRk
ADD 9L
STA TRA l X + n to TRA, CPY and ACL
STA CPY
STA ACL
TRA TXL 0,4 J exit to x 1if transfer card
CPY 9R 1 Check sum to OR
CAL 9L '1

Words to x, x+1,...,%xn-1
CPY CPY 0,k

ACL ACL 0,4
TIX CPY,4,}!

. Form a new check sum

SLW
CLA
SUB
TZE
HTR
END

9L.] New check sum to 9L

9L
9R

"RCD

RCD

Stop 1f checks sums disagree

XII-17

M.I.T. Computation Center
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

Sub ject: DESCRIPTION OF THE SHARE ASSEMBLY PROGRAM
FOR THE I.B.M. 704 COMPUTER

To: Prof. Philip M. Morse, Director
From Dr. Fernando J. Corbatd
Date: April 15, 1957

PREFACE

The following memorandum is a description of the
standard coding language and corresponding translation (i.e.,
assembly) program agreed upon by all members of the SHARE
organization, an organization consisting of most of the
users of the I.B.M. 704 computer. The memorandum is basi-
cally a copy of one written by Roy Nutt of the United Air-
craft Corporation, dated March 22, 1956, which may be found
in the appendix section of the SHARE Reference Manual. How-
ever, in the present version several minor clarifications
and corrections have been added as well as a major revision
made of the section on arithmetic expressions. In addition,
an introduction has been added for those not familiar with
the purpose of an assembly program. For convenience, a list
of the acceptable instruction codes is included since some
of the allowable input-output instruction abbreviations (as
well as the CAC and STZ instructions) are not yet given in
the current I.B.M. 704 manuals. Finally, a description is
included of the format used for the absolute and relocatable
binary cards which are produced as output by the assembly

fwj. P

Fernando J. Corbatd

Page 2 of 25

INTRODUCTION

The SHARE Assembly Program (SAP) is a program which en-
ables one to use the I.B.M. TO4 computer as a special-purpose
translation machine. This translation process conslsts of
transforming ordinary 704 computer programs from a convenient
coding language to the explicit binary number language that
the 704 computer truly uses. It is the exact form and rules-
of this coding language that will be described in the follow-
ing sections. The binary number conventions and nomenclature
that are to be used are those described in the I, B M. 704
Manual of Operation.

The manner in which SAP is used 1s the following: The
programmer first prepares his program in symbolic cards
using an I.B.M. key punch (with the special characters re-
quired by the-704 system), and the conventions described in
this memo. This symbolic program is then processed on a
704 computer using SAP. The resultant output of this
processing consists-of binary cards which (at the discretion
of the programmer) essentially may be of two possible forms:
absolute or relocatable. The binary cards may then be read
into a 704 computer very simply by means of any one of several
binary card loader programs.

An absolute binary card loader program can normally be
assumed to be available at the computer so that the loader
program need not concern the programmer except in that it
will occupy in the order of the first 100 cells of core
memory storage. Thus, as a normal practice a programmer should
never attempt to place a program in the first few hundred cells’
of core memory storage.

Relocatable binary cards, which are similar to absolute
binary cards, are used whenever there are several applications
for a program (or a portion of a program), and it is desired
to locate the program (or portion) at different storage lo-
cations in the different applications without translating more
than once. The most frequent case is that of subroutines which
may be used in many different programs. It should be pointed
out that it is not necessary ever to use relocatable binary
cards as long as one always translates an entire program from
symbolic cards to absolute binary cards. In other words, relo-
catable binary cards merely offer a short cut, the efficiency
of which depends on the manner in which a given 704 instal-
lation is normally operated.

The coding language which SAP accepts consists of three-
letter instruction abbreviations with references (i.e.,
addresses, tags and decrements), which are arithmetic ex-
pressions composed of symbols and/or decimal integers. The
exact instruction abbreviations are those agreed upon by SHARE
(usually the same as those of the I.B.M. 70} Manual) and are

Page 3 of 25

given in the appendix.

The symbols, which are used in making references, are
integer quantities, essentially arbitrarily labelled by the
programmer by means of combinations of letters and numbers
which must be uniquely defined at some place in a gilven
program. Symbols are usually used for two purposes:

1) to designate the location of a particular instruction

in a program to which reference is to be made; and 2) to
flexibly designate a frequently-referred-to parameter which
is unchanged during the operation of a program but which may
change with different applications of a program (e.g., the
order of a matrix in a matrix multiplication program, or the
number of an index register in the tag section of an in-
struction). In the parameter usage of symbols, of course, a
new translation (i.e., assembly) has to be made in order to
change the values of the parameters involved.

Page 4 of 25

The SHARE‘Assembler

Consisting of Programs: TUA SAP 1 and UA SAP 2

by

Roy Nutt
United Aircraft Corporation

with minor revisions by

F.J. Corbatd
M.I.T. Computation Center

704 instructions to be assembled by this program are
written with references expressed as arithmetic combinations
of symbols and/br decimal integers. A variable field format
is used in which thg parts of the instruction are given in
the order: address,{ tag and decrement. 1In addition to in-
structions, data in decimal octal or Hollerith (BCD) form
may be assembled, and 1ibrary routines written in the same
symbolic form may be conveniently incorporated into the
program beling assembled.

A program to compute

N i+ J=N
PN (-X-)y) =Z Z aijxi yj
B J:O i=0
A ,

i1s used as an example of the use of this assembler and of the
printed program listing which is an output of the assewbler.
(See page 18.)

In order to describe the use of this assembly program,
let us consider first a simplified explanation of symbolic

assembly operation.

The assembly procedure 1s divided into two parts; 1in the
first, the UA SAP 1 program examines the particular program
to be assembled in order to define each symbol used in writing
the program. In the second part, the UA SAP 2 program pre-
pares the actual machine language program, punches it in
binary form on cards and produces a printed copy of the

Page 5'of 25

program in symbolic form together with the corresponding
printed octal machine language program.,

During the first part, a counter is used to specify the
absolute location of each word in the program. Call this lo-
cation counter L. L is set initially to an integer supplied
to the assembly program by the program being assembled; hence-
forth L is increased by one for each word to be used by the
program.

Simultaneously with this counting procedure a table is
constructed. Each entry in this table defines a symbol used
in the program as being equivalent to some integer. Entries
to the table are made in two ways:

1. A symbol appears as the "symbolic location" of a
word in the program being assembled and is assigned the value
of L.

2. A symbol is defined by a pseudo operation. (All
symbol values are taken modulo 215, 1If a symbol is defined
as a negative value, the 2%s complement, modulo 215 will re-
sult, e.g., if N is defined as -6, a value of N=215-6 will
be used in assembly.)

It 1s important to note that the order of the absolute
Instructions produced by symbolic assembly 1s determined
solely by the order in which the symbolic instructions are
read by the assembly program (i.e., by the physical order of
the symbolic cards).

During the second part of the assembly process, L is
computed in exactly the same manner as it was during the first
part. 1In addition, all symbols in the symbolic program are
replaced by the integer equivalences given in the table formed
during the first part, thus producing an absolute program.

Note that this operation requires ‘that each symbol be
uniquely defined.

For use in the assembly program, the following defi-
nitions are made:

Symbol: Any combination of not more than 6 (but
usually not more than 5) Hollerith
characters, none of which is.+ =%/, $ and
at least one of which is non-numeric.
(Note: For this purpose, any character
without a zone punch is numeric. Thus
the = (8-3 punch) and the - (8-4 punch)
are numeric.) o :

Integer: (with respect to instructions)
Any decimal integer less than 1,000,000.

Page 6 of 25

The operation part of each instruction is specified by
the standard "SHARE" abbreviation of 3 alphabetic characters.

Ordinarily a storage cell location should be identified
by a symbol ("symbolic location") if and only if it is neces-
sary to refer to this location in the program.

The address, tag and decrement parts of symbolic in-:
structions are given in that order. 1In some cases the decre-
ment, tag or address parts are not necessary; therefore the
following combinations where OP represents the instruction
abbreviation are permissible:

oP

OP Address

oP Address, Tag

OP Address, Tag, Decrement

Examples of the last three types occur in the illustrative
problem at P3, P3+2, and P3+3, respectively.

Note that the tag, if present, must be separated from
the address by a comma and, similarly, the decrement, if
present, must be separated from the tag by a comma. For
the few instructions which require a tag but no address,
the address zero should be used; for example:

PDX O,4

Similarly, where a decrement 1s requilred with no tag, a zero
tag should be used, as in

TYI, A,0,B

Thé following card format is used by the assembly
program:

Columns Contents

1-6 Symbol or blank

4 Blank

8-10 Abbreviated operation or blank
11 Blank

12-72 Variable field

73-80 Not used

Expressions defining the address, tag and decrement are
punched without blanks from column 12 on. The first blank
to the right of column 12 defines the end of “the instruction.
All punching to the right of such a blank.is considered to
be a remark made by the programmer for his personal con-
venience and has no effect on the assembly process.

Page 7 of 25

If an instruction requires a symbolic location, the
symbol used is punched in column 1-06.

Arithmetic expressions

As stated before, the references which may be used in in-
structions can consist of arithmetic expressions of symbols
and/or decimal integers. The arithmetic operations allowed
in these expressions are addition, subtraction, multipli-
cation, and division designated by + (12 punch), - (11 punch),
#* , and /, respectively. However, no parentheses are

allowed, so that it is necessary to specify how the evalu-
ation of an expression is done.

A1l of the arithmetic operations are_done with 35 binary
place integral arithmetic (i.e., modulo 255). 1In the case of
Givision, only the integral quotient is retained, and the
non-integral remainder (of the same sign as the quotient) is
discarded. The evaluation of an arithmetic expression then
proceeds as follows: Each segment of the expression where
a segment 1s that portion of the expression from a + or -
sign (or the beginning of the expression) to the next + or
- sign (or the end of the expression) is separately evalu-
ated from left to right with the consecutive multiplications
and divisions being performed as specified; as each segment
of the expression is evaluated,they are combined from left-
to-right as indicated by the connective + and - signs.

As an example of the above procedure, the expression
A+200/15/6% 15-B/C* D

is taken to have a meaning of

j229] [@]
A+ 6|x15 - |C|xD

where the brackets denote the integer division described a-
bove.

Finally, if the result of an expression 1s to be ex-
pressed in n binary places, its magnitude 1s computed modulo
21, This quantity is taken to be the result unless the ex-
pression 1s negative, in which case the 2's complement is
taken as the result.

Hence, if v is the value of an expression, r is the
result used and

m = ’ v ’ mod 2n
m v =20

then 27 - m v £ 0

Page 8 of 25

For example, the instruction at location P3+3 in the
illustration has a decrement part of -1. Here wm=1l, v=-1,
n=15, so that
15_1

r=2

Consider also the tag part of instruction P4-1 where

v=J+K=1+4=5
m=5: n=3
so that r=5

The decimal integers which are allowed in constructing
expressions are limited to values less than 1,000,000. The
sgmbol values which are allowed are those integers less than

all larger values being taken modulo 21

If symbol is given a negative value, 1t is '"negative"
in the sense that the 2's complement (modulo 215) is taken
of the magnitude of the value. For example, if one states
that N= -6,_then the value that SAP will use for the symbol
N will be 215-6.

PSEUDO-OPERATIONS

In the following descriptions, a pre-defined expression
is an arithmetic expression in which all the symbols used
must have been previously defined, i.e., appeared in the
symbol field, columns 1-6, of some preceding instruction or
pseudo-instruction card.

Origin specification: ORG

The location counter L is set to the value of the pre-
defined expression appearing in the variable field.

If no origin specification is given for a program, the
initial value of L will be =zero.

Origin specification instructions may be used at will.

Equals: EQU

The symbol appearing in 1-6 is assigned the integer
value given by the pre-defined expression appearing in the
variable field.

Note that the pseudo operation EQU is to be used only
in those cases where the symbol appearing in columns 1-6
specifles a preset parameter such as the order of a matrix,
the degree of a polynomial, the number of items in a group,
or any other quantity which is invariant with respect to

Page 9 of 25

the location of the program in storage. If the symbol
specifies the location of a plece of data or an instructilon,
the pseudo operation SYN should be used. The reason for
this distinction is that symbols must be distinguishable

as non-relocatable and relocatable whenever relocatable
binary cards are produced as an output by the assembler.

Synonym: SYN

The symbol appearing in columns 1-6 1s assigned the
integer value given by the pre-defined expression appearing
in the variable field.

Note that the pseudo operation SYN is to be used only
in those cases where the symbol appearing in columns 1-6
specifies the location of a plece of data, the location of
an instruction, or any other quantity whose value depends
upon the location of the program in storage. If the symbol
specifies a preset parameter, the pseudo operation EQU
should be used.

Decimal data: DEC

The decimal data beginning in column 12 is converted
to binary and assigned to consecutive locations L, 1+1, ...

Successive words of data on a card are separated by
commas, and the first blank to the right of column 12
indicates that all punching to the right of this blank is
a remark. ,

Signs are indicated by + or - (12 or 11 punch) pre-
ceding the number, the exponent or the binary scale factor.
However, it is not necessary to use the + sign.

The symbol or absolute location appearing in columns
1-6 specifies the location of the first decimal data word
on the card; the remaining data words are located consecu-
tively after the first data word. If no symbol or abso-
lute location appears in columns 1-6, the data words are
located consecutively after the previous word of the program.
(Note: the current version of SAP makes a mistake if an
‘absolute locatilon 1s used in, columns 1-6 on a multiple word
card. This mistake will be rectified.) '

Briefly, binary integers (i.e.., binary point Jjust to
the right of the %5th bit) may be denoted by just the
integer values. For example: +7, -3, 7. Binary fractions
with the binary point between the sign and the 1lst bit are
given in the form: +.23B, -.34B, .45B. Floating point
numbers may be denoted by just writing the number in the
ordinary way but with a decimal point as in the examples:
+8., -9., 10. Since the exact rules for decimal numbers
used by the assembler allow greater generallty, they are

Page 10 of 25

now given.

If none of the characters . E or B appear in a decimal
data word, the word is converted as a binary integer with the
binary point at the right-hand end of the word.

If either of the characters E or . or both appear in a
decimal data word and the character B does not appear, the
word is converted to a TO4 type floating binary quantity.
The decimal exponent used in this conversion is the number
which follows immediately after the character E. If the
character E does not appear, the exponent 1s assumed to be
zero. If the decimal point does not appear, it is assumed
to be at the right-hand end. For example, 12.345, +12.345,
1.2345E1, 1234 ,5E-2, and 12345E-3 are all equivalent repre-
sentations of the same floating point word.

If the character B appears 1in a decimal data word, the
word is converted as a fixed point binary quantity. The
binary scale factor used in this conversion is the number
which follows immediately after the character B; this number
being the number of binary places between the left-hand end
of the storage cell and the binary point of the fixed point
binary result. If the decimal point does not appear in the
decimal data word, it is assumed to be at the right-hand end.
The decimal exponent used in this conversion is the number
which follows immediately after the character E. The order of
B and E is not significant. For example, 12.345B4, +1.2345E1Bk,
and 12345B4E-3 are all equivalent representations of the same
fixed point quantity.

It should be noted that in all cases decimal input which
1s too small and out-of-range (e.g., 1E-50) 1is replaced by
zero: However, there 1s currently a mistake in SAP for ex~
ponents of ten from E-42 to E-49. This mlstake will be fixed.

Octal data: OCT

The octal data beginning in column 12 1ls taken in binary
Integer form, the binary point considered to be on the right-
hand end of a 704 word, and assigned to consecutlve storage
locations L, I+1, ... '

Successive words are separated by commas and the first
blank to the right of column 12 indicates that all punching
to the right is to be considered a remark.

The symbol or absolute location appearing in columns 1-6
specifies the location of the first octal data word on the
card; the remaining data words are located consecutively
after the first data word. If no:symbol or absolute lo-
cation appears in column 1-6, the data words are located
consecutively after the previous word of the program. (Note:
the current version of SAP makes a mistake 1f an absolute lo-
cation is used in columns 1-6 on a multiple word card. This

Page 11 of 25

mistake will be rectified.)

In the case of 12 digit octal numbers, the following
equivalences exist with respect to the high order digit:

| 0= 4 -1 =5 -2 =6 -2 =7
i
Either form wmay be used in coding for the assembly.

Hollerith data: BCD

Normally the 10 six-character words of Hollerith infor-
mation from columns 13-72 are read and assigned to locations
L, I+l, ..., IL+9. If however, less than 10 BCD words are
desired, a word count v (0 & v £ 9) 1is punched in column 12,
in which case v words are read and assigned to locations I,
I+1, ..., Lév-1.

The symbol or absolute location appearing in columns 1~-6
specifies the location of the first Hollerith word on the
card; the remaining words are located consecutively after the
first word. If no symbol or absolute location appears in
columns 1-6, the words are located consecutively after the
previous word of the program. (Note: the current version of
SAP makes a mistake if an absolute location is used in columns
1-6 on a multiple word card. This mistake will be rectified.
In addition, a BCD card of zero words currently creates a
mistak? during assembly. These SAP mistakes will be elimi-
nated.

Block started by symbol: BSS

The block of storage extending from L to I+4+N-1, where N
is the value of the pre-defined expression beginning in column
12, is reserved by this pseudo operation.

If a symbol is punched in columns 1-6, it is assigned the
value L, corresponding to the first word of the block re-
served.

Finally, L is replaced by L+N.
Block ended by symbol: BES

.This pseudo operation is exactly the same as BSS, except
that the value assigned to any symbol appearing ,in columns
1-6 is I+N, corresponding to the location of the first word
following the block reserved.

Repeat: REP

Two pre-defined expressions, the first beginning in
column 12 and separated from the second by a comma, define
two integers M and N. The block of instructions and/or data
preceding the REP operation in locations L, I+41,...,L+M-1 is

Page 12 of 25

repeated N times, the repeated information being assigned to
locations I+M, I+M+1l,...,L+M* N+M-1l. For example, if N is
1, then one obtains two identical blocks, the original block
and the repeated block. Only one word of information may
appear on each card which is part of a repeated block.

Library search: LIB

The library routine identified by the symbol in
columns 1-6 1s obtained from a library tape and inserted in
the program being assembled. If the library routine required
k words of storage, it will occupy locations L, I+1,....
I#+k-1. The identification symbol 1s not entered in the table
of symbols, but any symbols appearing in the library routine
are entered and properly defined.

The first set of information on the library tape 1is an
ordered l1list of the subroutines which are on the tape. The
assembly program always keeps track of the position of the
library tape and makes use of the information in the ordered
list of subroutines in order to directly pick up the subroutines
In the sequence that they are requested by a program. (The
library tape is not rewound between library requests.)

Tape searching time may be minimized both by recording
the most frequently used subroutines at the beginning of the
tape and by specifying that the subroutines to be incorpo-
rated into any particular program are called for in the order
in which they appear on the tape.

Heading: HED

It is often convenient to combine several programs into
one program. Two difficulties immediately arise. First, the
symbollc references to data common to the several programs may
differ in the individual programs. This can be easlily cor-
rected by the use of synonyms which equate the proper symbols.

Second, it may be that two or more of the individual
programs use the same symbols for references which should be
unique. In order to restore uniqueness, it is necessary to
change the symbols in each program in some way. The headlng
pseudo operatlon accomplishes this result in the following

manner.

: The headilng card supplies to the assembly program a single
character (punched in column 1 of the HED card). Any Hollerith
character is permissible except zero, comma, plus, minus,
asterisk, slash, or dollar sign. Each symbol in the program
following the HED pseudo operation is prefixed by this charac-
ter except when a special indication to cancel the prefixing
operation is given. A new heading pseudo operation card will
replace the prefix character. Thus several programs having
non-unique symbols may be combined by giving the heading

Page 1% of 25

pseudo operation with a unique character before each program.
If a numerical heading is used, then some non-numeric charac-
ter must be punched in 2-6 of the heading card. (Note:
Currently SAP does not function properly if the heading
character is a numerical digit. This mistake will be fixed.)

It is, however, sometimes necessary to make cross-
references between the individual programs. To accomplish
this, such references must be written in the following way.
Let H be a heading character and K be the symbol in the
block headed by H to which reference is to be made. To refer
to K (i.e., to use the value represented by K in an address,
tag or decrement) in a part of the program not headed by H
but by, say, J, write

"H$ K

The special character $v1ndicates to the assembly program that
K is to be prefixed by H instead of by the prefix J given on
the last heading card.

It is important to note that if use is to be made of the
heading feature, all symbols used throughout the program will
usually be restricted to five or fewer characters. If any
six-character symbols (such as the erasable storage desig-
nation COMMON) are used, these symbols will not be headed.

Some additional remarks are that:
1) A $ B is not the same as AB.
2) A $ BCDEF is the same as ABCDEF.

%) OOOCA, where 0 is zero, is the same as OA is the same
as A.

4) A symbol in an unheaded portion of a program cannot
be referred to from a headed portion of the program
by the $ notation. Hence, in general the rule:
head everything or nothing.

Define: DEF

If there exlst in the program symbols not defined in
accordance with the normal rules, such symbols may be defined
in a different manner by use of the pseudo operation DEF.

This pseudo operation causes the first such symbol encountered
in an address, tag or decrement to be assigned the value given
by the expression (which need not be pre-defined) beginning in
column 12 of the DEF card. Successive undefined symbols are
then given successive values until either a new DEF is given
(in which case a new assignment is begun) or until the capacity
of the symbol table is exceeded. A common application of

this pseudo instruction is to reserve temporary storage lo-
cations in an automatic manner without having to explicitly

Page 14 of 25

assign each location. However, when this pseudo operation
is used, the symbols so defined will still be included in

the list of "undefined symbols" given by the assembler at

the end of the program listing output.

Note that the pseudo operation DEF cannot be used to de-
fine an otherwise undefined symbol if this symbol occurs in
the address, tag or decrement of an instruction which pre-
cedes the DEF card. The pseudo operation DEF defines only
those otherwise undefined symbols which are first encountered
after the DEF card itself has been encountered.

Similarly, if two DEF cards are used, and if an other-
wise undefined symbol occurs both in instructions which ap-
pear between the two DEF cards as well as 1n instructions
which follow the second DEF card, then the definition which
will be used throughout is the one established by the first
DEF card. The second DEF card has in such a case no effect
on the already-established definition.

Remarks: REM

Any Hollerith punching in columns 12-72 will be re-
produced in the printed listing of the assembly without other-
wise affecting the assembly in any way. This is a useful
feature for labeling and describing blocks of program since as
many REM cards can be used as desired.

End of program: END

This pseudo operation must be the last read by the
assembly program. The value of the expression beginning in
column 12 1is punched as the transfer address in a TO4 binary
correction transfer card.

Operation Code

Among the standard 3-letter operation codes adopted by
SHARE, this assembly program recognizes the following codes
which may be used to assign arbitrary values to the prefix
and sign of calling sequence words:

Alphabetic Code Name - Octal Code
MZE , Minus zero -0000
MON ‘ Minus one -1000
MTW Minus two -2000
MTH Minus three ~-3000
PZE Plus zero +0000
PON Plus one +1000
PTW Plus two +2000
PTH Plus three +3000
FOR Four , -0000
FVE . Five , —=1000
SIX Six -2000

SVN Seven -3000

L:; R

b S

Page 15 of

In coding symbolic instructions which have CFF, CHS,
cLM, CcoMm, DCT, ETM, IOD, LTM, LBT, PBT, RCD, RPR, RTT, RND,
SLF, SPT, SSM, SSP, WIV, WPR, or WPU as their operation part,
the address part should be blank or zero, since the assembly
program automatically introduces the correct address.

In coding symbolic instructions which have BST, RDR, RTB,
RTD, REW, SLN, SLT, SPR, SPU, SWT, WDR, WEF, WTB, WTD, or WTS
as their operation part, the address part should be the unit
number (in decimal). For instance, BST 2 1lmplies Back Space
‘Tape No., 2, SPR 9 implies Sense Printer Exit No. 9, WDR 3
implies Write Drum No. 3, and so on. The assembly program
automatically computes the correct octal address (222, 371,
and 303, respectively, in the foregoing examples)

Locatlion counter

If an absolute decimal location (i.e.,: one containing
no non-numeric characters) is punched in columns 1-6 of any
card in the assembly, the location counter L will be set to
that value. The effect of absolute decimal punching in these
columns 1s therefore 1dentically the same as 1f the card in
question were to be placed immediately behind an ORG card
having the exact same absolute decimal location punched in its
variable field.

Operational features

As an aid to the programmer this assembly program gives
some indications of erroneously prepared programs.

If a symbol used in the program is not defined, address,
tag or decrement parts contalning this symbol are left blank
in the printed assembly, and zero is used for the corresponding
address, tag or decrement parts in the binary instruction deck.
In the case of pseudo operations involving undefined symbols,
any expressions containing such symbols are evaluated using
zero as the value of the undefined symbol. A 1list of all un-
defined symbols will be printed at the end of the assembly.
(Included in this 1list will also be any symbols which have been
defined by means of the pseudo operation DEF.) Lo

If a non-existent operation code is used, the'préfix part
of the corresponding instruction is left blank in the printed
assembly, and zero 1s used as the operation code in the binary
deck. _ L

A 1list of duplicated symbols is printed prior“foﬁthe
printing of the program. This list gives the symbol duplicated
and the integer values assigned to it.)

Other convenient features are:

Printing of the entire program listing mayfbeYSuppressed

Page 16 of 25

or printing of the subroutines copied from the library
may be suppressed.

Single or double spacing of the program listing is
optional.

Assembly may be made from either a BCD tape (i.e.,
off-line operation) or from cards (i.e., on-line oper-

ation).

Binary punching 1s available in either absolute or relo-
catable format. (Currently there are several mistakes
in SAP concerning the creation of relocatable binary
cards. These mistakes, which are included in the
appendix and were described in a United Aircraft Corpor-
ation memo of December 6, 1956, distributed at the
December 1956 SHARE meeting, will be fixed.)

Capacity of the symbol table

Sufficient space has been set aside in a 4096-word core
storage in order to permit the assembler to construct a symbol
table containing 1097 entries. 1In cases where the program to
be assembled makes use of the library tape, however, the maxi-
mum number of symbols which the assembler can handle is some-
what reduced. This follows from the fact that the entire -
ordered list of subroutines which forms the first set of infor-
mation on the library tape is copied into the upper end of the
symbol table area at the time that the first LIB card is en-
countered. Hence, if the library tape 1s used during an as-
sembly, the effective symbol table size becomes 1097 minus
the number of library subroutines on the tape.

In connection with the capacity of the symbol table, it
gshould also be noted that any unassigned symbols are also
© recorded in this symbol table area preparatory to printing the
list of unassigned symbols at the end of the assembly. Hence,
if a case arises where the number of asslgned symbols plus
the number of subroutines in the tape library (if used) plus
the number of unassigned symbols should total more than 1097,
then the list of unassigned symbols printed at the end of the
assembly will include only enough symbols to make up the 1097
total. The rest of the unassigned symbols can only be de-
tected by noting blank addresses, tags or decrements in the
printed output.

Reassembly features

Additions to a program which has been assembled are easlly
accomplished if the table of symbols which was punched during
the initial assembly process has been saved. It is then neces-
sary only to reload this table and assemble the new parts of
the program. The original program need not be reloaded.

Furthermore, any change to the original program which

Page 17 of 25

does not involve relocation of any part of the program, or
any reassignment of symbols, may be made by assembly of only
-those parts of the program which are to be changed.

Enlarged core storage

The assembler has been so written as to permit it to be
used, without change, in 704's with enlarged core storage.

For each additional two words of core storage beyond
the minimum of 4096, the assembler automatically provides for
one additional symbol in the symbol table. (Note: Currently
when SAP is used in a 4096-word machine, it produces a symbol
table which cannot be used for correct reassembly in a 8192-
word machine. This incompatability will be removed.)

04000

04001
04002
04003
04004
04005
04006
-04007
04010
04011
oko12
04013
o401k
04015
04016

okolT
04020

04046
okou7
04050
04051

-0

-0
0
1

|
N

O O O O N + O O O

-3

o O O O

Page 18 of 25

Example of a Program Listing Obtalned from SAP

53400

63100
50000
Ty
00001
76500
26000
30000
TreTT
00001
60100
56000
26000
30000

TT754

60100
00000

00000
00000
00000
00000

un

H O O O O FF r+H H O O +F - - &=

=~ O

© O O O

04000
04011

‘04020

04022
oLooh
04017
00043
04046
04022
oko11
04005
04051
04050
okout
04051,

04050
04001
00005
00052
04021
00000
00000

00000

00000
00001
00004
04000
00000

P4

P6
P3

Pl

g d
N Ut

Ny N M=

ORG
LXD

EQU
EQU
END

ouT

2048
P1l,J+K

P2,K
A+1,J
P6,J,-1
P5,K,1
35

N&N+3%N+-2

R/2

1

INITIALIZE INDEX
REGISTERS

STORE K
OBTAIN FIRST ELEMENT
X

X |

FORM POLYNOMIAL

IN X

X

STEP COEFFICIENT
TEST REDUCED K
STORE PARTIAL SUM
FORM POLYNOMIAL

IN Y |

X

X

X
X

Note that the aij's
are stored in the
order a05, aqys gy
a23, a13, aOB""’
aOO from location A

on.

Page 19 of

Iy
i

APPENDIX

The following 1is essentially an abstract from the SHARE

Reference Manual, Section 03%.1, Programming Standards.

B. Card formats

1.

A1l cards (on-line or off-line) which contain 72
columns of information and 8 columns of identification
are to be punched with the information in columns

1-72 and the identification in columns 73--80.

Relocatable binary information format

For convenience, we shall use an abbreviated desig-
nation for various parts of the card. For example,
the 13th blt position of the word in the left half of
the 6th row would be denoted by 6L1%. The decrement
fleld of the same word would be 6LD. P, T and A
stand, respectively, for prefix, tag and address.

The sign bit is denoted by S.

The 9L word 1s always the control word and the OR
word 1is always the 36 bit ACL check sum (denoted by
CKS). The following list contains the various types
of binary cards used.

a Absolute Data
b Relocatable Data
c

Correction and/or Transfer
d) Origin Table

Detalled descriptions of these card types follow:

a) Absolute Data

Bits 9L13 to 9L17 contain the word count V.

OL21 to 9L35 contain the initial location R. All
other positions in 9L are ordinarily blank. 8L,
8R, 7L, TR,... contain the absolute data. The
maximum word count is 22. If 9L2 is punched, the
CKS is meant to be ignored, and no check 1is to

be made against it. This applies also to a com-
pletely blank CKS.

b) Relocatable Data

9L1 1is punched. GL13 to 9L1T contain the word
count V. 9L21 to 9L35 contain the nominal ini-
tial location R. All other positions in 9L are
ordinarily blank. If 9L2 is punched, the CKS
1s to be i1gnored,as in the case of a completely
blank CKS. The indicator bits are in the 8th

Page 20 of 25

row, starting from the left. The following one-
and two-bit codes are used to indicate the type
of field:

0 apsolute field '
10 relocatable direct field
11 relocatable complemented field

"Direct" here means uncomplemented. The string
of these codes starts at 8LS and proceeds con-
tinuously to the right until it terminates.

7L, TR, 6L, 6R,... contain the relocatable data
words.

Let us, for illustration, suppose that 7LD is
absolute, 7TLA is relocatable direct, T7RD is
absolute, TRA is relocatable and complemented,
6LD 1s relocatable direct, 6LA is absolute,

6RD 1s absolute, and 6RA 1s relocatable comple-
mented. Then the 1Indicator bit pattern would
be:

0 10 0 11 10 0 0 11
This may be condensed into:
010011100011

and this pattern is to be punched into the 8th
row beginning with 8LS.

c) Correction and/or Transfer

(1) Correction

Rows 8 through 12 contain corrections which
are entered in the following manner: The
nominal location 1s punched in the LA field
and the correction word itself in the right-
hand word of the same row. If the location
is to be adjusted by an increment (i.e.,
“the correction word is to be relocated),
then the L1 bit is punched. (Note that the
L1l bit always indicates relocation). If a
row is completely blank, it is ignored.

The indicator bits for the decrement and
address fields of the correction word are
punched in the L3 to L5 bit positions,
using the indicator scheme outlined in.
section (b). The sequence of correction
entries 1s assumed to be from the 8th row
upwards. If the L20 bit (LT3) is punched,
then the nominal location is assumed to

be 1 more than the preceding one. Hence,

Page 21 of 25

it is not necessary to punch every nominal lo-
cation in a consecutive block, If this punch
(L20) appears in the 8th row, however, i1t means
that the nominal location is the one actually
punched in 8LA. Hence, it is possible to load
absolute zero at location zero.

If 9L2 is punched, the CKS 1s 1gnored. No
punches at all need appear in the 9L word, or
in the 9R word i1f there 1s to be no CKS com-
parison.

(2) Transfer

The contents of the 9LA field are taken to be
the location to which control is to be trans-
ferred after all corrections have been loaded.
If 9L1 is punched, then this nominal location
i1s to be relocated in the usual manner.

d) Origin Table

Bit 9L12 is punched. If 9L2 is punched, the CKS

1s ignored as usual. Starting with the 8th row,
the card contains a table of origins in the follow-
ing format:

In each row, the nominal location which begins a
region 1s punched in the LA field. The operating
location (1.e., the final location of an in-
struction when it is actually to be executed) is
punched in the RA field. If there is a loading
location distinct from the operating location,
this is punched in the RD field. If there is no
loading location, then the operating location is
used in place of it. The entries need not be
punched in order of ascending nominal locations.
If a row 1s completely blank, or if the L2 bit is
punched in a row, then that row will be ignored.
If L20 1s punched in an otherwise blank row, then
nominal zero will be set to absolute zero.

A general binary loader which fulfills these
specifications if PKCSB4.

3. Symbolic instruction card - See main body of this memo-
randum or SAP description in appendix of SHARE Reference
Manual (Section 10.03).

Page 22 of 25

C. SHARE mnemonic operation codes

ACL Add and Carry Logilcal Word 0631
ADD Add 0400
ADM Add Magnitude 0401
ALS Accumulator Left Shift o767
ANA And to Accumulator -0320
ANS And to Storage 0320
ARS Accumulator Right Shift 0771
BST Backspace Tape o764
¥ CAC Copy Add and Carry -0700
CAD " 1" n " -0700
CAL Clear and Add Logical Word -0500
- CAS Compare Accumulator with Storage 0340
CHS Change Sign 0760, 002
CLA Clear and Add 0500
CLM Clear Magnitude 0760, 000
CLS Clear and Subtract 0502
COM Complement Magnitude 0760, 006
CPY Copy or Skip 0700
DCT Divide Check Test 0760,012
DVH Divide or Halt 0220
DVP Divide or Proceed 0221
ETM Enter Trapping Mode 0760, 007
¥ ETT End of Tape Test -0760,011
FAD Floating Add _ 0300
FDH Floating Divide or Halt 0240
FDP Floating Divide or Proceed o241
FMP Floating Multiply 0260
FSB Floating Subtract 0302
HPR Halt and Proceed ' 0420
HTR Halt and Transfer 0000
. LBT Low Order Bit Test 0760, 001
IDA Locate Drum Address o460
I.DQ Load MQ 0560
LGL Loglcal Left -0763
LLS Long Left Shift - 0763
LRS Long Right Shift 0765
LTM Leave Trapping Mode -0760,007
LXA Load Index from Address 0534
1XD Load Index from Decrement -053%4
MPR Multiply and Round -0200
MPY Multiply 0200
MSE Minus Sense -0760
NOP No Operation 0761
ORA Or to Accumulator ~-0501
ORS Or to Storage -0602
PAX Place Address in Index o734
PBT P Bit Test -0760,001
PDX Place Decrement in Index -0734

* Not accepted by current version of SAP; SAP will be
corrected to do so.

Page 2% of 25

PSE Plus Sense 0760
PXD Place Index in Decrement -0754
RDS Read Select 0762
REW Rewind 0772
RND Round 0760,010
RQL Rotate MQ Left -077>
RTT Redundancy Tape Test -0760,012
SBM Subtract Magnitude ~-0400
SIQ Store Left-Half MQ -0620
SLW Store Logical Word 0602
SSM Set Sign Minus -0760,003
SSP Set Sign Plus . 0760, 003
STA Store Address 0621
STD Store Decrement 0622
STO Store 0601
STP Store Prefix 0630
STQ Store MQ -0600
X STZ Store Zero 0600
SUB Subtract 0402
SXD Store Index in Decrement : -0634
TIX Transfer on Index ' 2000
TLQ Transfer on Low MQ 0040
TMI Transfer on Minus ‘ -0120
TNO Transfer on No Overflow -0140
TNX Transfer on No Index -2000
TNZ Transfer on No Zero -0100
TOV Transfer on Overflow 0140
TPL Transfer on Plus 0120
TQO Transfer on MQ Overflow 0161
TQP Transfer on MQ Plus 0162
TRA Transfer 0020
TSX Transfer and Set Index 0074
TTR Trap Transfer ' 0021
TXH Transfer on Index High 3000
TXTI Transfer with Index Incremented 1000
TXL Transfer on Index Low or Equal . =3000
TZE Transfer on Zero 0100
UFA Unnormalized Floating Add -0300
UFM Unnormalized Floating Multiply -0260
UFS Unnormalized Floating Subtract -03%02
WEF Write End of File : o770
WRS Write Select 0766

¥ Not accepted by current version of SAP; SAP will be
corrected to do so.

READ

RCD
RDR
RPR
RTB
RTD

WRITE

WDR
WPR
WPU
WTB
WTD
WTS
WIV

SENSE

SLF
SLN
SLT
SPR
SPT
SPU
SWT

OTHER

CFF
I0D

Extended Operations List

Read Card Reader
Read Drum

Read Printer

Read Tape - Bilnary
Read Tape - Decimal

Write
Write
Write
Write
Write
Write
Write

Sense
Sense
Sense
Sense
Sense
Sense
Sense

Drum

Printer

Punch

Tape - Binary
Tape - Decimal
Tapes - Simultaneously
CRT

Lights Off
Light On

Light Test
Printer
Printer Test
Punch

Switeh Test

Change Film Frame

Input-

Output Delay

Page 24 of 25

0762,321
0762,301-310
0762,361
0762,221-232
0762,201-212

0766,301-310
0766, 361
0766, 341
0766,221-232
0766,201-212
0766,321-325
0766, 030

0760, 140
0760,141-144
~0760,141-141
0760,361-372
0760, 360
0760,341-342
0760,161-166

0760, 030
0766,333

Page 25 of 25

The following paragraphs concerning mistakes made by SAP
in producing relocatable binary cards are abstracted from the
United Aircraft Corporation memorandum dated December 6, 1956,
which was distributed at the December 1956 SHARE meeting:

The transfer card produced at the end of a relo-
catable binary deck lacks the necessary relo-
catable control punch. This will be fizxed.

In computing the value of a compound address such

as Y-3, where Y is relocatable and its equivalence
happens to be 2, the Assembler indicates that the
result (the complement of one) is to be relocated

in complement fashion. Correspondinglyy 3-Y comes
out as one, relocatable direct. This is, of course,
not correct. This error arises because the As-
sember uses the sign of the computed value of the
compound address to determine whether relocatability
is direct or complement. And, in general, this
usually leads to a correct determination. There

1s already available to the Assembler, however, a
quantity whose sign always correctly indicates whether
relocatability should be direct or complement.

This is the test quantity (RBITS) which is computed
in order to determine whether the compound address
in question is of such form as to permit of relo-
cation at all. If this test quantity turns out to
be +1, the address is relocatable direct; 1if -1,

it is relocatable complement; if any other value,
relocation 1is impossible. The Assembler will be
changed to take advantage of this fact. As a result,
in the above example, Y-3 will come out as the
complement of one, relocatable direct, and 3-Y will
come out as one, relocatable complement.

In assembling onto relocatable cards, instructions
referring to sense switches are not correctly
tested for relocatability. Instead, they are in
each case gilven the same relocatable bits as the
instruction which they follow. This will be fixed.

At present it is not possible to obtain a correct
relocatable binary deck for a program whose origin
is at location zero, unless an ORG O card 1is used.
This will be changed in such manner that the ORG O
card will not be necessary, although 1t will of
course cause no trouble if it is included.

CC-%3-1 ‘ 1

COMPUTATION CENTER
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

TO: 704 Users
FROM: F. C. Helwig
DATE: July 2%, 1957

SUBJECT: A USERS' ABSTRACT OF THE POST-MORTEM PROGRAM

Introduction

The MIT post-mortem program is a selective memory
print-out or punch-out routine. The core memory ranges to
be recorded and the word-forms to be produced are specified
using either symbolic request cards or the computer console.

This memo describes only request cards,t

The post-mortem program is recorded on the systems
magnetic tape unit (MT1) and is entered by the load tape
button or by a programmed load tape sequence:

(REW 1)
RTB 1
CPY O
CPY 1
TTR O

This initiates a self-loading sequence which brings the post-
mortem program to memory and which saves (on MT5) the previous
contents of the memory regiéters required for the post-mortem
program. C(MQ), C(ILC) and the contents of memory registers
0-4 are destroyed by this process. ’

The deck of request cards to be processed must have
been placed in the on-line card reader is read in by the
post-mortem program.

+ Control of the program from the computer console 1s
described in CC-23.

2
" (1) MT2 is required if results for off-line printing
are produced.

(2) MT3 is required if results for off-line punching
are produced.

The post-mortem program does not rewind MT2 or MT3 so
that post-mortem results can be ganged with other output
from a users!' program.

Reqﬁest Cards

The SHARE card format is used for request cards which
are identified by the letters, PMR, in their operation fileld.
The variable field of the card must contain four expressilons
separated by commas and terminated by a blank column.

The first two expressions give the initial and final
addresses of the range in memory to be printed or punched.
These can consist of any legal SAP expressions and may
include symbols.,+ The user may also specify octal integers

in such expressions by immediately preceding the integer
with a division sign, e.g., '

\

/1000 = 1000g = 512,

The user should note that this facillty does not exist in SAP
language.

The third expression designates the mode in which words
are to be recorded and must be one of the following abbrevia-
tions

FLO Floating-point numbers.

FIX Fixed-point numbers.

INT Integers (decimal).,

SYM Instructions with symbolic addresses.,
ABS Instructlons with absolute addresses.

+ The symbol,* , which in the new SAP may stand for the
current locatlon msy not be usad (In that sense).

ocT Octal numbers
BCD Binary-coded-decimal.,
BIN Absolute blnary cards.

The output format implied by these various modes 1s
identical to the input language used by the SHARE Assembly

Program.

The fourth expression specifies the output device to
be used in recording the words and must be one of the following

wbbreviations

NPR On-line printer
NPY On-line punch
FPR Off-line printer
FPU Off-line punch

The output produced on these devices’will be identical in the
sense that punched output will, if printed on an accounting
machine, be identical to printed output.

If binary cards (BIN) are requested, they may, of course,
be produced only by the on-line punch (NPU).

Scaling Fixed-Point Numbers

If fixed-point numbers (FIX) are requested the)user
may specify (if he wishes) a decimal scale-factor, x, and a
binary scale-factor, y, where 0= y=35, by writing
FIXExBy
to designate the mode. 1In this case the post-mortem program
multiplies each number by
107* . 2¥

before recording it and appends a suitable correction factor
which in SHARE notation would be

ExBy

Thus the fraction, F, appears in the form
(F . 107* . 2Y) Ex By
The special case
2 X=0and y = 35
is detected by the program and such numbers appear as SAP integers.

Remarks Cards

Any information following the terminating blank column
An the varlable fileld of a PMR card 1s cornsidered to be a |
remark and will appear as such immedilately preceding the first
line of output resulting from the request. ~\

The user may also insert remarks cards (specified by
the letters, REM, in the operation field) before PMR cards in
the request deck., Each REM card is recorded just preceding
the first line of output from the next PMR card in the request
deck.

Remarks cards can be used to label results.

Terminatlion Cards

Request decks must be terminated by a termination card
consisting of one of the SAP instructions

TRA X x25

TTR x x25
HTR x

where x denotes any legal SAP expression.+

These cards cause the post-mortem program to restore
core memory and the machine registers to their original contents
(except for the MQ register, the ILC, and registers 0-4 of core
memory) and to execute the designated transfer instruction.

+ See previous footnote.

Symbol Tables

If symbolic request cards are used or if instructions
with symbolic addresses (SYM) are requested, a symbol table
. must be made available to the post-mortem program. This 1is
~~done by precéding the request deck with the binary symbol
table-produced by SAP. Since these cards are réad in by the
post-mortem program they should not be preceded by a loader.

The Machine Condltions

The contents of the registers and indicators of the
arithmetic element (except for the MQ and ILC) are recorded
(as remarks cards) immediately preceding the first line of
output assoclated with the first PMR request executed. If no
PMR request is executed’they are recorded on the on-line printer.

Error Detection

If an error occurs in a request card the post-mortem
program produces a remark describing the nature of the error.
In certain cases this causes the program to stop reading
request cards and to execute only those requests already trans-
lated.

THE IBM-704 INSTRUCTIONS

Notation: 15
AC = Accumulator A = Initial contents of AC; A' = final contents 0=a =2""-1=32767
MQ = Multiplier-Quotient Register M = Initial contents of MQ; M' = final contents 0=8=< 23-1 =7
ILC = Instruction Location Counter L = Initial contents of ILC; L' = {inal contents 0=y =< 215.1 = 32767
IRB = Index Register 8 1 = Initial contents of IRB; I' = final contents
R = Register o-I or Register o w = Initial contents of R; w' = final contents
P =P-bitof AC = Ao Y; =ithbitof WordY,0< is 35;forY xA,Y, =signbit; A, =P, A, =Q
Q =Q-bitof AC = A_1 Yi-j = Bits i through j inclusive of Word Y Yi =0if Yi =1; Yi =1ifY, =0 (Complement)
For Floating Point Numbers: Yc = Y1-8 = Characteristic YF = Y9_35 = Fraction Y.s = gign
F s 3 . = = i = Si
'or Fixed Point Numbers: Ym Y 1-35 Magnitude Ys Sign
For Instructions: Yp = Y0-2 = Prefix YD = Y3-17 = Decrement YT = Y18-20 = Tag YA = Y21_35 = Address
In General: L' = a+1 R = Register a-1 Execution time is 2 cycles = 24 usec. If otherwise, such will be stated.

If B=0, I=0. If B=1, 2 or 4 a single Index Register is selected. If B=3, 5, 6, or 7 more than one Index Register is selected and I is
formed by a Boolean "OR" of the contents of these registers. If the operation loads the Index, then the same number is placed in each index
selected,

The first 5 instructions have decrements. All other instructions do not.

Mnemonic
Instruction Code Octal Value Ac MQ IR8 R Comments
Transfer with Index Incremented TXla,B v +1000 A'=A M'=M I'=It+ y w'=w *L! = a, I + v taken mod 215
Transfer on Index TIXe,B v +2000 A=A M'=M §'=I-'y} w'=w (*L' =a 1-4>0
'=1 L'=L+1 I-4=<0
Transfer on No Index TNXea,B v -2000 A'=A M'=M g'=l w'=w L' =« I-y<o0
'=I-y, Lt =L+1 I-+4>0
Transfer on Index High TXHa,B v +3000 A'= M'= I'=1 w'=w *L' e a ifI>y
Transfer on Index Low TXLa,B ;y -3000 A'=A M'= =1 w'=w *L! = a ifI<y
Halt and Transfer HTRae,B, +0000 A'= M'=M I'=1 w'=w Computer Stops *L!' =a-1
Transfer TRA«,B +0020 A= M'= I'=1 w'=w *Lt =a-1
Trap Transfer TTRa,B - +0021 A=A’ - | M'=M I'=1 w'=w L' =a-1
Transfer on Low MQ TLQa,B +0040 A'= M'=M =1 w'=w ¥V =a-1 ifA>M
Transfer and Set Index TSXa,B +0074 A= M'=M 1'=215-L w'=w *I! = a
‘Transfer on Zero AC TZEa,B +0100 A'= M'=M I'=1 [FAETAN AL =a-1 ifAL=0
Transfer on Non-zero AC TNZa,B -0100 A'=A M'=-M I'=1 w'=w ¥t =a-1 if A 0
Transfer on AC Plus TPLa,B +0120 A'=A M'= I'=1 w'=w %[=a-1 {fA =0 (4
Transfer on AC Minus TMlq B -0120 At= M'= I'=1 w'=u ' =a-1 AT =1 ()
Transfer on AC Overflow TOVe,f +0140 A'=A M'=M I'=1 w'=w *L! =a -1 if ACoverflow light on **
Transfer on No AC Overflow TNOq,B -0140 A'=A M'=M I'=1 w'sw *L' =a-1 if ACoverflow light off **
Transfer on MQ Overflow TQOg B +0161 A'=A M'= I'=1 w'=w *L' =a-1 if MQoverflow light on **
Transfer on MQ Plus TQPa,8 +0162 A'=A M'= I'=1 w'=w ¥t =a-1 ifM =0
Compare AC with Storage CASa,B +0340 Ar=A M'=M Ir=I w'=w ’ L' =L+2ifA=0’L' =L +3 ifA¢w 3cycles
*If in trapping mode L'= 1 and L replaces the address part of register O. **Light is turned off if it was on before test.

THE IBM-704 INSTRUCTIONS (Continued)

Mnemonic
Instruction Code Octal Value AC M IRS R Commentg
Clear and Add CLAq,B +0500 A'=p,Q'=P'=0 M'=M| I'=1 w'=w A' =w means A' = v A'l_35 = a0
Clear and Add Logical Word CALaq,B -0500 A'g_357wp-35, A§=Q'=0 | M'=M| I'=I w'=w s
Clear and Subtract CLSa,B +0502 At =-p, Q'=P'=0 M'=M]| I'=I w'=w A' = -y means A'1-35 = 01_35 A's = Es
Load MQ LDQa B +0560 A=A M'=w | I'=1 w'=w
Load Index from Address LXAaq,B +0534 A'=A M!'=M| I'-w w'=w R is Register a
Load Index from Decrement LXDa,B -0534 A=A M'=M I'=uD w'=w R is Register a
Store MQ STQa,B -0600 A=, M'=-M| I'=I w'=M
Store AC STQa,B +0601 A'= M'=M| I'=I w'=A w' = A means w' = A Wi_ag = Al-35
Store Logical Word SLWa,B +0602 A= M'=M| 1=l ul_35=A, a5 s 8
Store Left-Half MQ SLQa,B -0620 A= M'=M| I'=L "’%)-l'f o-17|)The restof v is wig-35 = W18-35
Store Address STAqB +0621 Al'= M'=M| I'=l wA=Ap unchanged in wh_20 =Wo-20
Store Decrement STDq,B +0622 A= M'=M| I'=I w'p=Ap each of these Wh =Wp Wig .35 “Yg.35
Store Prefix STPa 8 +0630 A=A M'=M| I'=I w'p=Ap instructions Wy _35 “W3_35
- - 1= LS 1= L) = t = i
Store Index in Decrement SXDa,B 0634 A M'=M| I'=] w'p Up =Up Wig a5 *Ug go R is register @ 3 cycles
Place Address in Index PAXa,B +0734 A= M'=M| I'=A w=w
Place Decrement in Index PDXa,B -0734 A'= M'=M| I'=Ap w'=w
Place Index in Decrement PXDa,B -0754 A'=0but Ap =1 M'=M| I'=1 W=w PXD with B'= 0 clears AC
Halt and Proceed HPRa,B +0420 A'=A M'=M| I'=1 W= Computer Stops
OR to AC ORAg, 8 -0501 AY=Aj (+)w; M'=M | I'=1 w=w A_and Q unchanged 0 = i <35
OR to Storage ORSe, -0602 A'=A M'=M| I'=] o] =A; (+ho; Af (€7) w; =1 unless Ai =w; =0 when A, [E3) w =0
AND to AC ANAcq B -0320 Aj=Ajx)wy M'=M| I'=1 w=w ALy =Q' =0 3cycles } 0€i235 Aj(Xwi=0
AND to Storage ANSa B +0320 A'=A M'=M.| I'=] wi' =Ag (x)w; Ay =Ag; Q =Q 4cycles unless A{ =wj =1 when Aj (x) wj = 1
Add ADDa,B +0400 A'=Atw M'=M | I'=l Wl'=w Overflow possible if there is a carry into P,
Subtract SUBa, B +0402 A'=A-w M'=M| I'=I w'=w w]-35 added to A1-35. A zero result
Add Magnitude ADMqg, B +0401 A'=A+lw] M'=M | I'=I w'=w has the sign of A
Subtract Magnitude SBMaq, 8 -0400 A'=A-|w] Mi=M | I'=I wl'=w Carry out of Q is lost, Fixed Point operation,
Add and Carry Logical ACLa,B +0361 A'=A+w, Q =0 M'=M | I'=I w'=w No overflow light possible. w added to Ay 5. A
= = = 10-35 ; -35 0-35
carry out of P added to Ags. Carry from Q lost.
Multiply MPYea,B +0200 A'+2-3-5M'=U-M I'=1 wl=w AL =My Fixed point operation
Multiply and Round MPRa,8 -0200 © | A'=AT+M) prr=3a| 111 W= A +2°35M't 2w M J 20 cycles
Divide or Halt DVHG B8 +0220 M'awtAt=A+2 750 (M| 1= W Stops Computer on Divide Check | Mg ignored. AL = Ag 20 cycles
Divide or Proceed DVPa,B T 40221 M" w+A'=A+239 M| I'=1 w'=w Does Nothing on Divide Check A' = 2735, A in order of magnitude
Divide Check if AM SUM, A' = A, M' = M on Divide Check
Floating Add FADa,8 +0300 A'tM'=A+w I=1 v I Ak %0, Ab -27 = Mb, 1> Ai;. >1/2; if AR =0,
Floating Subtract FSBa,B +0302 AM+M'=A-w I'=1 W= §Ab = Mp = 0'and A} = Ag if Ag S ug, otherwise A}
= #wg; AC overflow light only means overflow, MQ
light means underflow 7 cycles min, 35 cycles max
Unnormalized Floating Add UFAaB -0300 A'+M'=A+w It=1 W=w Ap = Max (Ac, uc) +tc c=[A
Unnormalized Floating Subtract UFSaq B8 -0302 A4M'=A-w =1 =0 AL may be < 1/2 and AL =0, AL X0 possible. Overflow

indications are the same as FAD and FSB but AC
underflow is impossible (MQ and AC lights both on).

T cycles min 28 cycles max

THE IBM-704 INSTRUCTIONS (Continued)

Mnemonic
Instruction Code Octal Value AC MQ IRB R Comments
Floating Multiply FMPe, 8 +0260 A4M'=M-w =l w=w Ap -27=Mp if Ap X0, Ap> 1/2,if Mp-up2 1/4
i if AL, =0, Al =ML =0 Ay =My I AC

Unnormalized Floating Multiply UFMaq,B -0260 A'tM'=M.0 I'=1 w'=w Ap-2T =My AR2>1/2 if Mp-uwpy overflow light only
overflow; MQ light only, underflow; both lights on,
Q' =0 means overflow, Q' =1 means underflow. 17 cycles

Floating Divide or Halt FDHa,B +0240 M'w+A'=A I'=I Cw'sw Computer stops on Divide Check | Divide Check if Ap 2 2up,

Floating Divide or Proceed FDPe,B +0241 M'w+A'=A 1'=1 w'=w Does nothing on Divide Check } Ay =Ag Mp2 1/2 if 4AF >wF
IfAF =0, A' =M =0, 3 cycles;Ap % 0, 18 cycles AL +26 S Ac
AC overflow light means underflow, MQ light only is
overflow if Mg ¢ 128, underflow if Mc >128

Locate Drum Address LDAg,8 +0460 A=A M'= I'=1 w'=w Set so CPY refers to drum address of wy5_3¢

Copy or Skip CPYa,B +0700 A'=A M'=? | I'sL u'={2 Z is Word Read In, otherwise w is written out Min, 2 cycles
MQ may not be used at certain times in the CPY loop
If in read mode L' = L + 2 if end of file condition,
Lt = L + 3 if end of record condition is met Min, 2 cycles

Copy and Add and Carry Logical or | CPAa,B -0700 A=A+ M'=? I'.I d:{% Same as CPY, except word transferred is added to AC

Skip in the manner of ACL Min, 2 cycles

The following instructions do not refer to storage. The

effective address a-1 taken modulo 256 is in fact part of the operation code,

a-1 =n (mod 256) 0 £ n <256 Certain of these instructions cannot have an address. Others take a small absolute integer designated by i

None affect storage or index registers.

Long Left Shift LLSe,B +0763 A=h M} =Mj 4]
Logical Left Shift LGLa,B -0763 Aj=Aj+m M5= Mjim
Long Right Shift LRSa,B +0765 1A MM
AC Left Shift ALSa,B 40767 A=A, M'=M
AC Right Shift ARSa,8 +0771 AJ,LAJ!_m M'=M
Rotate MQ Left RQLa,B -0773 Als Mj=Mj,
No Operation NOPa,8 -0761

Rewind Tape Unit REW i +0772..... 220+

Write End of File on Tape WEF i +0770.....220+i

Back Space Tape BST i +0764.....220+
Read Select RDS a,8 +0762

Read Tape in BCD RTDi +0762.....200+i

Read Tape in Binary RTB i +0762.....220+

Read Drum RDR i +0762.....300+

Read Card RCD +0762.....321

Read Printer RPR +0762.....361
Write Select WRSa,B +0766

Write on Cathode Ray Tube WTV +07686.....030

Write Tape in BCD WTD i +0766.....200+i

Write Tape in Binary WTBi 40766.....220+

Write on Drum WDR i +0766..... 300+i

Write on Tape Simultaneously WTS i +0766..... 320+

In-Out Delay 10D +0766.....333

Write On Punch WPU +0766..... 341

Write on Printer WPR +0766.....361

*AL = M = Mg for j+u >35, Mj=0, Aci = Mj+n-35 AC overflow if a 1
*AL = Ag My = M fcr j+n > 35 M] = Ai = Mj+n—36 is shifted into or through P
*Ay =My =Ag jn4-1,Al=0; §-n<1, M =Aj 35

*AL =Ag ji>35 Al =0 AC overflow if a 1 shifted into or through P
¥AL =Ag jn<-i, AJ =0

*j+n taken modulo 38 *2 + 91;29' cycles min, 2, max, 23 .
Does Nothing
1=i=10 selects cne of Max 1.2 minutes May be delayed
ten tape units 50 msec. on tape if tape is not
'=A,M' =M MQ available, Min 50 msec. ready

Separate Instruction for each mode
} 1=i=10 for one of ten tape units may be delayed if tape

M' =0 not ready
1=i<8
Actually writes, but with echo check.

for one of eight logical drums ,

Separate Instruction for each mode

1=i<10 may be delayed if tape is not ready.
1£i=8
1=2i<4 Select one of first four tapes, may be delayed

Delays Computer until MQ is available after reading tape

THE IBM-704 INSTRUCTIONS (Continued)

Mnemonic
Instruction Code Octal Value Comments
Plus Sense PSEaq,B 10760 Separate Instruction for each n
Clear Magnitude CLM +0760.....000 AL =Ag A}=0,-1<5j<35
Low Bit Test LBT +0760.....001 L' =L+2 if Agg =1
Change Sign CHS +0760.....002 A =-A
Set Sign Plus sSSP +0760.....003 A' =14 _
Complement Magnitude COM +0760..... 006 A'S =Ag A;! =A -1¢j ¢35
Enter Trapping Mode ETM +0760..... 007 See *Note to transfer instructions
Round RND +0760.....010 A' = A 42735 M; AC overflow possible
Divide Check Test DCT +0760.....012 L' = L+42 if No Divide Check; Light is turned off if found on
Change Film Frame CFF +0760.....030 Index Camera connected to Cathode Ray tube
Sense Lights Off SLF +0760.....140 Turns all sense lights off
Sense Light On SLN i +0760.....140+i 1£i <4 Turn on one of four lights
Sense Switch Test SWT i +0760..... 160+ L' = L42 if ith switch is down (on) 1 =i <6
Sense Punch SPU i +0760..... 340+i 1€1i £2 Send impulse to hub i on punch control panel
Sense Printer Test SPT +0760..... 360 L' = L+2 If there is impulse on entry hub of printer panel
Sense Printer SPR i +0760..... 360+i 1<€i £10 Send impulse to hub i on printer panel
Minus Sense MSEa,B -0760 Separate Instruction for each n
P Bit Test PBT -0760..... 001 L'=L+2ifP=1
Set Sign Minus SSM -0760.....003 A' = - [A]
Leave Trapping Mode LTM -0760.....007 See *Note to transfer instructions
Redundancy Tape Test RTT -0760.....012 L' = Li+2 if Tape Check Light is off; Light turned off if found on,
Sense Light Test SLT i -0760.....140+ L' = L+2 if Sense Light i is on, Light turned off if foundon 1 =i <4

CC-40 , Page 1 of 23
MIT COMPUTATION CENTER
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

MEMORANDUM

To: Computation Center Staff Date: October 1, 1957
From: F. M, Verzuh .
Subject: Revised and Up-Dated Index of Available Share 704 Subroutines

The purpose of this memorandum is to provide a revised and up-dated index
of the Share-distributed 704 subroutines which are available in the MIT Computation
Center as of October 1, 1957, This memorandum is a revision of the previously-
issued memorandum CC-34, which contains a list of punched card routines,

This index presents the available subroutines ih the manner defined as the
Share catalogue classification which was approved at the 7th Share meeting in Decem-
ber, 1956, Specifically, the attached list consists of five parts:

A Share catalogue classification of 704 programs,

An index of the 704 library of punched card subroutines,

A listing of the subroutines available on the MIT Library Tape,
- A listing of new subroutines and cards received,

A listing of addended and superseded subroutines,

U'IyP-.ooM)—‘

The partlcular format used in Part 2 contams the following information (reading from
left to right):

a.. Share catalogue code classification,

b. Two-letter Share membership code -- on a Share membership basis,

c. The identification code number of the subroutine employed by the
originating Share member, '

d. Name or title of subroutine,
~e. The Share distribution number (3-digit number)

f. A write-up is available unless there is an asterlsk in place of the
distribution number indicating no write-up,

g. A'listing is available unless there is an asterisk indicating no
listing, ’

" h., The letter S indicates that symbolic cards are avaiiable at MIT,

i. The lefter B indicates that absolute binary cards are available
in the MIT library.

. jo The letter R indicates that relocatable bmary cards are available
* in the MIT library,

CC-40 Page 2 of 23

Part 3 contains a list of the subroutines which are available on the Library
Tape (logical tape 3). The following subroutines are available on the MIT Library
Tape:

NA34.1 LIB Square root
UAS+C1 = LIB Sine and Cosine
UABDC1 LIB Generalized Print Program
UASTH1 LIB BCD Tape Writing Program
UASPH1 LIB BCD OQutput Program
LAS820 LIB Floating Natural Logarithm
LLAS816 LIB Floating Exponential
CLASC1 LIB Arcsine and Arc Cosine
L.AS840 LIB Arctangent
CLTAN1 LIB Tangent
WHO3 LIB Arctangent of A/B
NAO5.1 LIB ~ Floating to Fixed
NAOS6. 1 - LIB Fixed to Floating
UAINV1 LIB Matrix Inversion -
GMMEQ1 LIB Generalized Matrix Equation
UADRBC1 LIB ‘Decimal, Octal, BCD Loader
UATSM2 LIB Read Tape with Redundancy Checking
UACSH2 LIB Read BCD Tape or On-Line Card Reader
GELAG LIB Lagrangian Interpolation
PKPOWR LIB : Real Power Evaluator

END ‘

NQTE: For WHO3, blanks must be in column 5 and 6
For GELAG, blank must be in column 6
Letter O in PKPOWR

LIB cards must be punched as shown in this listing and may be inserted anywhere
in a SAP symbolic deck. (See Share material for specifications.)

When using the MIT system, mount reel number 103 as logical tape 3.

The attached index of distributed programs will be revised periodically
to keep the index reasonably up to date.

v F M. Verzuh
nb v Assistant Dlrector

CC-40 Page 3 of 23
COMPUTATION CENTER

Massachusetts Institute of Technology
Cambridge 39, Massachusetts

REVISED SHARE CATALOGUE CLASSIFICATION

At the 7th Share meeting on December 13-14, 1956, the Share program
catalogue classification was extended and modified as follows:

A, Programmed Arithmetic
1. Real
2, Complex
3. Decimal

B. Elementary Functions
1. Trigonometric
2. Hyperbolic
3. Exponential and Logarithmic
4. Roots and Powers

C. Polynomials and Special Functions
1. Evaluation of Polynomials
2. Roots of Polynomials
3. Evaluation of Special Functions

D. Operations on Functions and Solutions of Differential Equations
1., Numerical Integration
2. Numerical Solutions of Ordinary Differential Equations
3. Numerical Solutions of Partial Differential Equations
4. Numerical Differentiations

E. Interpolation and Approximations
1. Table Look-up and Interpolation
2. Curve Fitting
3. Smoothing

F, Operations on Matrices, Vectors, and Simultaneous Linear Equations
1. Matrix Operations
2, Eigenvalues and Eigenvectors
3. Determinants
4, Simultaneous Linear Equations

G. Statistical Analysis and Probability
1., Data Reduction
2. Correlation and Regression Analysis
3. Sequential Analysis
4. Analysis of Variance
5. Random Number Generators

CC-40 Page 4 of 23

H. Operations Research and Linear Programming

L Input

1. Binary

2. Octal

3. Decimal

4, BCD

5, Composite
J. Output

1. Binary

2, Octal

3. Decimal

4, BCD

5. Analog

6. Composite

K. Internal Information Transfer
1. Read Write Drum
2. Relocation

L. Executive Routines
1. Assembly
2. Compiling

M. Information Processing
1. Sorting
2. Conversion
3. Collating and Merging

N. Debugging Routines
1. Tracing, Trapping
2, Dump
3. Search
4, Breakpoint Print

O. Simulation Programs
1. Peripheral Equipment Simulators

P, Diagnostic Programs

Q. Service Programs
1. Clear, Reset Programs
2. Check Sum Programs

Restore, Rewind, Tape Mark, Load Button Programs

Z. All Others

A2
A2
“A2
A2

A2
A2

A2
A2

A2

CL
cL
GE
NA
NA
NA
NA
NA
NA
NA

NA

DPA1l
DPD1
DPM1
DPPA
DPA1l
DPA2
018
88e1
89e1
905
91e3
921
9243
9361
94,40
9541
96¢1
971
98.1
9940
107
108
122
0005
DPA1l
DPD1
pDPM1

SHARE DISTRIBUTED PROGRAMS

Ae

Al REAL

OCTOBER 1y 1957

PROGRAMMED ARITHMETIC

DOUBLE PRECISION FLOATING ADD

DOUBLE PRECISION FLOATING DIVIDE

DOUBLE PRECISION FLOATING MULTIPLY

DOUBLE~PLUS PRECISION ARITHMETIC (FLOATING POINT
DOUBLE PRECISION FLOATING POINT ABSTRACTION

MURA DOUBLE PRECISION ADDITION

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

‘DOUBLE

PRECISION
PRECISION
PRECISION
PRECISION

PRECISION

PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION

(FIXED POINT)

ARITHMETIC ABSTRACTION

CLAs CLS»
sSTQ.

STO»
FLOATING
FLOATING
FLOATING
FLOATING

-CHS

ABSTRCTN
TRA
TPL

.TZE

LDQ

ADD AND SUBTRACT
MULTIPLY

DIVIDE

DIVIDE

FOR INTERPRETIVE ROUTINE

SQUARE ROOT.
ABSTRACTION EXIT

TMN
TRANSFER

ERROR DETECTION ROUTINE »
DOUBLE PRECISION FLOATING BINARY ARITHMETIC
DOUBLE PRECISION FAD AND FSB

DOUBLE -PRECISION FLOATING DIVIDE

DOUBLE PRECISION FMP

A2 COMP

DPC1
DPC2
CcPX .
019
62e1
631
6441
6541
6601
6740
6841
691

LEX

ON NO ZERO

DOUBLE PRECISION COMPLEX FAD AND FMP

DOUBLE PRECISION COMPLEX FAD»

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX

FMPs AND FDP

ARITHMETIC INTERPRETIVE SYSTEM
ARITHMETIC ABSTRACTION FLO

ABSTRACTION FOR INTERPRETIVE ROUTINE

SIN AND COS RADIANS FLO

N TH ROOT FLO

EXPs FLO .

SINH AND COSH RADIANS,s FLO
LNy FLO .

CLAs CLSy» LDQs FLO

"STO AND STQs FLO

223
223
223
237
110
256
096
096
096

169

169
0%é
149
096
096
096
096
096
096

. 096

096
096
096
047
198
198
198

223

223
111

087

087

087 -

087
087
087
087
087
087

061

DL unmnnvononon nn »n

v onow

DO OO OO LLOLOOOLnOL®n

B1
B1
B1
81
81
81
B1
B1
Bl
B1

Bl
‘Bl
Bl
B1
B1
B1
B1
B1
B1
81

NA

NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA

7041
703
71le1l
T2e¢1
7361
T4el
7501
760l
7741
78el
7961
80e1
8lel
82e1
8340
8441
85e1
8661l
871
1930

AS09
ASC1l
TAN1
ART2
ARCT
SINZ
5840
0196
0198
3063
3361
1353
0021
0029
0041
0052
0115
0083
ATN1
S+C1
03

COMPLEX ADD AND SUBs FLO

COMPLEX ADD AND COMPLEX SUBTRACT

COMPLEX MPYs FLO

COMPLEX DIVs FLO

COMPLEX RECIPROCALs FLO

COMPLEX CHS

COMPLEX TRANSFER ON IMAGINARY PLUS

COMPLEX TRANSFER ON REAL PLUS

COMPLEX TRANSFER ON REAL ZERO

COMPLEX TNZ

COMPLEX TRANSFER ON IMAGINARY ZERO

COMPLEX TRA

COMPLEX CONJUGATE

COMPLEX EXIT ABSTRACTION

COMPLEX DEBUG (ERROR DETECTION ROUTINE)

COMPLEX NOP

COMPLEX SCALAR MPYs FLO

COMPLEX POLAR TO RECTANGULAR CONVERSIONs RADIANSs FLO
COMPLEX RECTANGULAR TO POLAR CONVERSIONs RADIANSs FLO
SQUARE ROOT OF A COMPLEX NUMBER

A3 DECIMAL
Be ELEMENTARY FUNCTIONS
Bl TRIGONOMETRIC

SINE-COSINEsFLOATING

ARC SINE AND ARC COSINEs FLO

TANGENTs RADIANSs FLO

ARCTANGENT

ARCTANGENT SUBROUTINE (FLOs RADIANS)
SINE-COSINE (RADIANSs FLO)

ARCTAN ROUTINE FLOATING POINT

FIXED POINT ARCTANGENT SUBROUTINE

SIN COS SUBROUTINE FIXED POINT
SINE=COSINE SUBROUTINE RADIANS FLO
ARCTANGENT RADIANS FLO

ARC SINE - ARC COSINE SUBROUTINE

SINE COSINE RADIANS DEGREES CIRCLES FIX
TANGENT COTANGENT RADIAN FIX

ARCTANGENT FIXED POINT RADIANS DEGREES CIRCLE
ARC SINE ARC COSINE FIXED POINT
TANGENTs COTANGENT RADIANS FIX

ARCSINE ARC-COSINE FLOATING POINT RADIANS
ARC TANGENT SUBROUTINE RADIAN FLO '
SINE AND COSINE SUBROUTINE RADIANS FLO
ARCTAN A/B FLO

087
190
087
087
087
087
087
087
087
087
087
087
087
087
087
087
087
087
087
211

224
116
116
092
055
033
069
194
194
104
051
246
046
046
046
046
12
*

004
013
049

087

wn

nhnhounonon DL uLuovununnhounon

nwunonn

@

O OO honwnnonn

B2
B2

B4
B4
B4
B4
B4
B4
B4
B4
B4
B4
B4
B4
B4

AOOONNN

0

AS
BA

AS
BA
BA
GE
GE
GE
LA
LA
NA
NA

RL
RL
UA
UA
UA
wB

CcL
cL
GE
MU
MU
NA
PK
RL

UA
UA
UA

UA

cs
GE
GE
GL
GM

cL

AS33
F113

AS03
Fl12
F1l4
EXP

EXP2
LN

s816
5820
3143
3145
323
0037
0038
EXP1
LN 1
LN 2
EXP1

SQR2
SQR3
SAR

EXP1
EXP2
3441
POWR
0022
0056
SQR1
SQR2
SQR3
SQR&

BSLS
BPY
BSL
ROP1
POL1
152
AEQ1

B2 HYPERBOLIC

HYPERBOLIC SINE-COSINEs FLOATING
TANH X FLO

B3 EXPONENTIAL AND LOGARITHMIC

EXPONENTIALsFLOATING

EXPONENTIAL FLO

LN X FLO ' ‘
EXPONENTIAL SUBROUTINE FLO
EXPONENTIAL SUBROUTINE FLO
NATURAL LOGARITHM FLO

FLOATING EXPONENTIAL FLO

NATURAL LOGARITHM FLOATING
NATURAL LOGARITHM FLO

NATURAL LOGARITHM

EXPONENTIAL SUBROUTINES

E TO - X FIXED POINT

LOGARITHM FIXED POINT
EXPONENTIAL SUBROUTINE FLO
NATURAL LOGARITHM SUBROUTINE FLO
NATURAL LOGARITHM SUBROUTINE FLO

DOUBLE PRECISION FLOATING POINT EXPONENTIAL SUBROUTINE

B4 ROOTS AND POWERS

SQUARE ROOT FLO

SQUARE ROOT FLO

SQUARE ROOT FLO

MURA EXPONENTIALs BASE E
MURA EXPONENTIALs BASE 2
SQUARE ROOT FLO

REAL POWER EVALUATOR
SQUARE ROOT FIXED POINT
FIXED POINT SQUARE ROOT
SQUARE ROOT SUBROUTINE FLO
SQUARE ROOT SUBROUTINE FLO
SQUARE ROOT SUBROUTINE FLO
SQUARE ROOT SUBROUTINE FLO

Ce POLYNOMIALS AND SPECIAL FUNCTIONS

BESSEL FUNCTIONSs ALL ORDERS FOR ONE ARGUMENT
BIVARIATE POLYNOMINAL FLO

BESSEL FUNCTIONS

ROOTS OF POLYNOMIALS NEWTONS METHOD
POLYNOMIAL EVALUATION FLO

GSMMS FUNCTION

ROOTS OF A POLYNOMIAL FLO

224
0le6

224
012
027
003
020
003
069
069
104
189
lo4
021
106
0lo
0l0
olo
205

* 3
256
256
051
164
018
046
002
002
004
004

177
003
111
110
043
155
116

203

wn n

DO OLWOLOLOLLLOrLOLLOnnohnn

OCOOLLOOLOLLOLunvmnon

Do umnnonw

co
co

C1
C1

c2

c2
cz

c3
C3

DO

D2
D2
D2
D2
D2

NA
cL

AS
GE
GM

CcL

GL
GM

GE
GM
GM

CL

AT
CL
GM
LA

152
RAN1

ASl&4
BPY
poL1

AEQ1
AEQ2
ROP1
ZER1

BSL
CFR1
IEF1

SMD1

INT1
INT2
INT3
INT4
INTS
GAUS
5888
SIG

HEQ1

TPI
DEQ
DEQ1
5887
NIDA

GSMMS FUNCTION
RANDOM NUMBER GENERATOR

Cl EVALUATION OF POLYNOMIALS

POLYNOMIAL COEFFICIENT REDUCTION
BIVARIATE POLYNOMINAL FLO
POLYNOMIAL EVALUATION FLO

C2 ROOTS OF POLYNOMIALS

ROOTS OF A POLYNOMIAL FLO

POLYNOMIAL WHERE THE COEFFICIENTS ARE EITHER REAL
ROOTS OF POLYNOMIALS NEWTONS METHOD

ZEROS OF A COMPLEX POLYNOMIAL

C3 EVALUATION OF SPECIAL FUNCTIONS

BESSEL FUNCTIONS
CONTINUED FRACTION SUBROUTINE
INCOMPLETE ELLIPTIC INTEGRALS

De OPERATIONS ON FUNCTIONS AND SOLUTIONS OF
DIFFERENTIAL EQUATIONS

SMOOTH AND DIFFERENTIATE DATA POINTS
D1 NUMERICAL INTEGRATION

INTEGRAL EVALes TRAPEZe RULE (EQUs INTERVALS)
INTEGRAL EVAL«s TRAPEZe RULE (UNEQUe INTERVs)
INTEGRAL EVALes SIMPSONS RULE (EQUe INTERVs)
INTEGRAL EVALes SIMPSONS RULE (UNEQUe INTERVa)
INTEGRAL EVALes SIMPSONS RULE (UNEQUs INTERVs)
INTEGRATION SUBROUTINEs GAUSS QUADRATURE METHOD
GAUSS INTEGRATION OF MULTIPLE INTEGRALS
SIMULTANEQUS MULTIPLE INTEGRATIONs FLOATING PT
POINT HERMITE~-GAUSS QUADRATURE INTEGRATION

D2 NUMERICAL SOLUTIONS OF
ORDINARY DIFFERENTIAL EQUATIONS

TWO POINT BOUNDRY CONDITION DIFFERENTIAL EQUATIR
DIFFERENTIAL EQUATIONS ROUTINE

DIFFERENTIAL EQUATION FLO

INTEGRATION OF SPECIAL FORM OF 2ND ORDER EQU.
DIFFERENTIAL EQUATION SOLVING SYSTEM

D3 NUMERICAL SOLUTIONS OF
PARTIAL DIFFERENTIAL EQUATIONS

155
139

224
003
043

116
223
110
225

111
225
225

139

116
116
116
116
222
237
141
240
175

238
248
063
141
144 203

SB
sB

Nno;movn

wun v

A

huunnnononmonon

v nvwn

S
SBR

D3

D4

AT

CL

BA
CL
CL

GM
GM
GM
GM
GM

GM
GM
GM
LA
NA
PK

UA
WK

cL
CcL
CcL
GM
GM
GM
GM
GM

MG1

SMD1

FOlé
DD12
DDT1
LAG

DIN1
HVP1
HVT1
PVH1
PVT1
TIN1
TIN2
TVH1
TVP1
5880
O04el
ANIP
BPE1
BPE3
LIN1

Lsol
PINL
PIN2
HAS1
1TR1
ITR1
Lsal
SL30
sL31
SL32
SMT1
5872
0197
FsCl
4EAL
CUF1

MESH GENERATOR

D4 NUMERICAL DIFFERENTIATIONS

SMOOTH AND DIFFERENTIATE DATA POINTS
Ee INTERPOLATION AND APPROXIMATIONS
E1 TABLE LOOK=-UP AND INTERPOLATION

TABLE LOOK UP AND FAMILY INTERPOLATION FIX
TABLE LOOK UP DIVIDED DIFFERENCE INTERPOLATION
DIVIDED DIFFERENCE TABLE FORMATION

LAGRANGIAN INTERPOLATION SUBROUTINE FLO
DOUBLE INTERPOLATION FLO

AIR TABLE SUBPROGRAM

AIR TABLE SUBPROGRAM

AIR TABLE SUBPROGRAM

AIR TABLE SUBPROGRAM

TABLE INTERPOLATION FLO

INTERPOLATION SUBROUTINE

AIR TABLE SUBPROGRAM

AIR TABLE SUBPROGRAM

TABLE LOOK UP BINARY LINEAR INTERPOLATION FLO
BINARY SEARCH ROUTINE

AITKENS INTERPOLATION FOR N EQUAL INTERVALS FLO

BIVARIATE POLYNOMIAL EVALUATION SUBROUTINE
BIVARIATE TABLE INTERPOLATION
LAGRANGIAN INTERPOLATION

E2 CURVE FITTING

LEAST SQUARES POLYNOMIAL FIT
DARABOLIC INTERPOLATION

BIVARIATE PARABOLIC INTERPOLATION
HARMONIC ANALYSIS SUBROUTINE
ITERATION SUBROUTINE

ITERATION SUBROUTINE

GENERAL LEAST SQUARES CURVE FITTING ROUTINE
SMOOTHING WEIGHT TABLE SL30

SMOOTHING WEIGHT TABLE SL31

SMOOTHING WEIGHT TABLE SL32

SMOOTHING SUBROUTINE FLO

GENERAL LEAST SQUARES

FIXED POINT FOURIER ANALYSIS

FIXED POINT FOURIER COEFFICIENTS
FOURIER SERIES COEFFICIENT SUBROUTINE
CURVE FITTING PROGRAM

233

139

007
116
116
003
043
121
121
121
121
043
259
121
121
069
051
122
olo
081
197

116
248
248
121
121
225
121
156
156
156
121
141
194
250
175
201

039

121
121
121

DN urnunonoonmonn

OO uvununmuwnunuon

U0

T M T M M T

F1

CL

SMQ
DEV1
MEQ1
CRV1
CSM2
FMA1L
MXL1
CIMX
FLIP
DET1
DET2
FSC1
FSR1
LSQ2
LSQ3
MAD1
MBH1
MCP1
MCR1
MEX1
MIN1
MIV1
MKO1
MLD1
MLP1
MMP1
MPR1
MSB1
MSM1
MST1
MTR1
MTX1
SME1
SME1
SME?2
SME3
5885
MTX1
CIMX
FLIP
INV1

MAD1

E3 SMOOTHING

Fe OPERATIONS ON MATRICES)
VECTORS AND SIMULTANEOUS LINEAR EQUATIONS

SIMULTANEOUS EQUATION SOLUTION
DETERMINANT EVALUATION
GENERALIZED MATRIX EQUATION
CHARACTERISTIC ROOTS AND VECTORS
CHANGE SIGNS OF MATRIX ELEMENT

FLOATING POINTs SINGLE PRECISION MATRIX ADDITION

MATRIX CONVERSION FIT

COMPLEX ELEMENT MATRIX INVERSION

COMPLEX ELEMENT MATRIX INVERSION
DETERMINANT AND EIGENVECTOR FOR REAL MATRIX

DETERMINANT AND EIGENVECTOR FOR COMPLEX MATRIXe

FRACTION SERIES SOLUTION COMPLEX

FRACTION SERIES SOLUTIONs REAL

LEAST SQUARES S50Le OF SIMULTANEOUS EQUATIONS
LEAST SQUARES SOLs OF SIMULTANEOUS EQUATIONS
MATRIX ADDITION

MATRIX HEADING REMOVAL

MATRIX PUNCH

MATRIX CARD READ

MATRIX EXPAND

MATRIX INTERCHANGE OF ROWS AND COLUMNS
MATRIX, INVERSE

TIMES UNIT MATRIX

LOAD MATRIX TO CeSe FROM DRUM OR TAPE

MATRIX LOOP TEST

MATRIX MULTIPLICATION

MATRIX PRINT

MATRIX SUBTRACTION

SCALAR MATRIX MULTIPLICATION

STORE MATRIX FROM CeSe TO CeSes DRUMs OR TAPE
MATRIX TRANSPOSE

INTERPRETATION MATRIX ABSTRACTION
SIMULTANEOUS REAL EQUATIONSs DETERMINANT
SIMULTANEOUS REAL EQUATIONSy DETERMINANT
SIMULTANEOUS EQUATIONS COMPLEX

SIMULTANEOUS REAL EQUATIONS

SOLUTION OF GENERAL MATRIX EQUATION AX = B
GENERALIZED MATRIX ABSTRACTIONs REAL COMPLEX
COMPLEX ELEMENT MATRIX INVERSION

COMPLEX ELEMENT MATRIX INVERSION

MATRIX INVERSION

\
F1 MATRIX OPERATIONS

MATRIX ADDITION

003
110
043
148
178
170
173
122
122
116
116
139
139
116
116
085
085
085
085
085
085
085
085
085
085
085
085
085
085
085
085
085
116
222
116
116
141
138
122
122
058

085

nounonw
@
00D Pyl

@

(n(é;mann(n(n(n(n(n(n(n(n(n(n(.nmmmmmmmmmmmmmmmmmmmmm

F2
F2
F2

F2

F3
F3
F3

F3

Fa

cL
cL
NY
NY
GM

CL
cL
CL
CcL
GL

CL

MBH1
MCP1
MCR1
MEX1
MIN1
MIV1
MIV2
MIV3
MKO1
MLD1
MLP1
MMP1
MNR1
MNR3
MPR1
MsSB1
MSM1
MST1
MST2
MST3
MTR1
MTR1
MTX1
MVP1
pmCl
5885

MTX1'

CMI1
DMI1
INV1

DET1
FsCl
CRV1
CRV3
EI1G2

DET2
DET3
SMD2
MDT1
DEV1

SME1

MATRIX HEADING REMOVAL

MATRIX PUNCH

MATRIX CARD READ

MATRIX EXPAND

MATRIX INTERCHANGE OF ROWS AND COLUMNS
MATRIX INVERSE

INVERSEs REAL

INVERSEs REAL OR COMPLEXs

TIMES UNIT MATRIX

LOAD MATRIX TO CeSe FROM DRUM OR TAPE
MATRIX LOOP TEST

MATRIX MULTIPLICATION

NORMALIZE MATRIX

NORMALIZE MATRIX BY COLUMNS.

MATRIX PRINT

MATRIX SUBTRACTION

SCALAR MATRIX MULTIPLICATION

STORE MATRIX FROM CeSe TO CeSes DRUMs OR TAPE
STORE SUBMATRICES IN A LARGE MATRIX

STORE ROW MATRICES INTO A LARGE MATRIX
MATRIX TRANSPOSE

MATRIX TRANSFER

INTERPRETATION MATRIX ABSTRACTION

VECTOR DOT PRODUCT

EIGENVALUE SOLUTIONs COMPLEX

SOLUTION OF GENERAL MATRIX EQUAT+ON AX = Ba
GENERALIZED MATRIX ABSTRACTIONs REAL COMPLEX
COMPLEX MATRIX INVERSION

MATRIX INVERSION

MATRIX INVERSION

F2 EIGENVALUES AND EIGENVECTORS

DETERMINANT AND EIGENVECTOR FOR REAL MATRIX
FRACTION SERIES SOLUTION COMPLEX
CHARACTERISTIC ROOTS AND VECTORS
CHARACTERISTIC ROOTS AND VECTORS

EIGENVALUE SUBROUTINE

F3 DETERMINANTS

DETERMINANT AND EIGENVECTOR FOR COMPLEX MATRIXs

DETERMINANT AND EIGENVECTORs REAL
SMOOTH AND DIFFERENTIATE DATA POINTS
DETERMINANT AND EIGENVECTOR EVALUTION
DETERMINANT EVALUATION

F4 SIMULTANEOUS LINEAR EQUATIONS

SIMULTANEOUS REAL EQUATIONSs DETERMINANT

085
085
085
085
085
085
223
223
085
085
085
085
223
236
085
085
085
085
223
223
085
223
085
223
248
141
138
185
232
058

116
139
148
218
225

116
223
223
223
110

116

11

OO OLOLLOOLOLOLODOONOOBOHOOOOOOOOnnnon

wn Ww

[)]

nununnon

Fa
Fg
Fg
Fa
Fa
Fa

G2

G5

HO

H1

CcL
cL
CcL
CL
GE
GM

NY

NY

CcL

RS
RS
RS

DM
DS
GL
GL
MU
MU
NY
NY
PK
PK
PK
PK

RA
RL

SME2
SME3
SME4
SMES5
SMQ

MEQ1

MR1

MR1

RAN1

LPS1
LNP1
LPS1

csB1
cBL1
BUL1
BULZ2
LBL3
uBL1
BL1

RBL1
csBl
csB2
csSB3
csBg
CSBR
BCSC
0058

SIMULTANEOUS EQUATIONS COMPLEX
SIMULTANEOUS REAL EQUATIONS
SIMULTANEOUS EQUATIONSs REAL
SIMULTANEOUS EQUATIONSs REAL
SIMULTANEOUS EQUATION SOLUTION
GENERALIZED MATRIX EQUATION

Ge STATISTICAL ANALYSIS AND PROBABILITY
MULTIPLE REGRESSION AND CORRELATION ANALYSIS
G1 DATA REDUCTION

G2 CORRELATION AND REGRESSION ANALYSIS
MULTIPLE REGRESSION AND CORRELAT+ON ANALYSIS
G3 SEQUENTIAL ANALYSIS

G4 ANALYSIS OF VARIANCE

G5 RANDOM NUMBER GENERATORS

RANDOM NUMBER GENERATOR

He OPERATIONS RESEARCH AND LINEAR PROGRAMMING
LINEAR PROGRAMMING SYSTEM

LINEAR PROGRAMMING PROGRAM

LINEAR PROGRAMMING SYSTEM

I INPUT

11 BINARY

ONE CARD ABSOLUTE BINARY LOADER

CHINESE BINARY ON=LINE LOADER

ONE CARD ABSOLUTE BINARY UPPER LOADER

ONE CARD ABSOLUTE BINARY UPPER LOADER

MURA LOWER BINARY LOADER (ONE CARD)

MURA UPPER BINARY LOADER (ONE CARD)
RELOCATABLE BINARY LOADER

ABSOLUTE BINARY CARD + TRANSFER CARD LOADER
ABSOLUTE BINARY + CORRECTION CARD LOADER
RELOCATING BINARY LOADERs LOWER

GENERAL BINARY CARD LOADER
RELOCATING BINARY LOADERs UPPER

BINARY LOADER AND CHECK SUM CORRECTOR (LBLCSC)

ABSOLUTE BINARY LOADER

116
116
223
223
003
043

151

151

139

108
161
108

137
162
028
044
251
251

183
019
019
208
019
208
082
106

108

*

12

[GEONOR RG]

)
S

UJG)QJUJUJ‘CUUJWUJW(DUJCD

Il
Il
Il

Il

12
12
12

14
T4
14

I4
14
14
I4
I4

I9
19
Ig

19
I9
19
19
IS

UA
UA
UA

UA

DM
RS
WH

NO
MU

NY
NY
NY

NY
NY
NY
NY
RS
RS

GL
NA
NA
NY
NY
RS
UA
WH
WH

EL
GL
GS
NY
NY
NY
UA
UA
WH

CSE1l
csB2
RWT1
TL1

TSB3

OCHG
112X
02

INP

RDI1
VNPT
BLI1
BLU1
DCR2
DL1

INS1
LWR1
NFS2
PCR2
0001
0046

ING
0180
1801
DBD1
1sC1
0001
pBC1
001
02

BoL1
FILE
IN2

BOL1
INP1
INP2
CsH2
DBC1
001

ABSOLUTE BINARY LOADER

ABSOLUTE BINARY LOADER

BINARY READ-WRITE TAPE PROGRAM

AUTOMATIC TAPE LOADER-TO. WRITE A SELF-LOADING R
LOAD BINARY CARD IMAGES FROM TAPE

12 OCTAL

704 ONE~CARD OCTAL LOADER
AND 112Y ONE CARD OCTAL CORRECTORS
SEQUENTIAL DATA INPUT~VARIABLE FIELD

I3 DECIMAL

VARIABLE FIELD DECIMAL INPUT

MURA READ DECIMAL INTEGER ROUTINE
A VARIABLE FIELD PERIPHERAL INPUT
BASIC LOOP INITIALIZER

BASIC LOOP UPDATER

DIRECT CARD READER

DECIMAL DATA INPUT PROGRAM
INTEGER TO NUMBER SCALER

LOCATION TO WORKSPACE RETRIEVER

NUMBER TO FRACTION SCALER

PERIPHERAL CARD READER

CARD TO QUASI BCD

FLOATING POINT + FIXED POINT DECIMAL INPUTe

14 BCD

BCD TAPE INPUT PROGRAM

CARD PROGRAMMED CONVERTER

CARD PROGRAMMED CONVERTER

HOLLERITH TO BCD CONVERSION

INPUT SCALER

CARD TO QUASI BCD

DECIMAL»s OCTALs BCD LOADER

CARD DATA INPUT=-VARIABLE FIELD
SEQUENTIAL DATA INPUT-VARIABLE FIELD

I9 COMPOSITE

TWO CARD SELF LOADING PROGRAM TO LOAD OBSOLUTE BINARY
COMPOSITE INPUT PROGRAM

SCHENECTADY CECIMAL INPUT PROGRAM=VARIABLE FORMAT
BINARY OCTAL LOADER

INPUT PROGRAM UNDER SENSE SWITCH CONTROL

INPUT PROGRAM UNDER SENSE LIGHT CONTROL

READ BCD TAPE OR ON~LINE CARD READER

DECIMALs OCTAL» BCD LOADER

OCTAL DATA INPUT VARIABLE FIELD

066
066
120
214
119

101
249
134

241
256
209
145
145
145
152
145
145
145
145
o1ls
040

182
150
245
235

018
073
057
134

182
181
204
215
206
206
073
073
057

13

SB

S8
SB

OwurHmon
000 Pyl

v nnmnn v
T 00 A

NOOV OO onnn
v}

nvunnon n nn
ey

Fe)

I9

J1
J1
Jl
J1
J1
J1
J1
J1
J1
J1

J2

J2
J2

UA

GM
CL

LA
MU
MU
NA
NY
NY
NY
NY
NY
NY

NA
NA
RL
RL

GM
LA
LA
MU
MU
MU
MU
MU
NA
NY
NY
NY
NY
NY
NY
NY
NY

NY
NY
NY

TSM2

CAP1
PLTI1

AT20
BPU1
BPU2
03e1
BPU1
BPU3
BPU&4
BPU5
BTD1
BRTD2

121
122
0010
0065

CAP1
S110
5111
PIF1
PRF1
PRF2
PRF3
PRI1
0117
BLIL
BLUL
DBO1
DCP2
DLP2
FPO1
FPO2
FPO3
FPO4
NFS2
PCP2
PLP2

READ TAPE WITH REDUNDANCY CHECKING
Je OUTPUT

COMMENT ATTACHED PRINTER
POINT PLOT

J1 BINARY

REPRODUCE BINARY CARDS WITH CORRECT CHECK SUMas
MURA BINARY PUNCH ROUTINE

MURA BINARY PUNCH ROUTINE

ABSOLUTE BINARY CARD PUNCH

BINARY PUNCH

BINARY PUNCH

BINARY PUNCH PROGRAM

BINARY PUNCH PROGRAM

BINARY TAPE OR DRUM DUMP

BINARY TAPE OR DRUM DUMP

J2 OCTAL

ABSOLUTE OCTAL CARD PUNCH
ABSOLUTE OCTAL CARD PUNCH
PRINT TAPE IN OCTAL

OCTAL TAPE PRINT

J3 DECIMAL

COMMENT ATTACHED PRINTER

PRINT FLOATING DECIMAL DATA

PRINT FLOATING DECIMAL DATA

MURA VARIABLE COLUMN INTEGER-FRACTION PRINT
MURA VARTABLE COLUMN FRACTION PRINT

MURA SIX COLUMN FRACTION PRINT

MURA VARIABLE COLe AND DIGIT ROUNDED FRACTION P
MURA VARIABLE COLUMN INTEGER PRINT

WRITE 6~DIGIT DECIMAL INTEGER ON CRT

BASIC LOOP INITIALIZER

BASIC LOOP UPDATER

FIXED POINT OUTPUT FOR ATTACHED PRINTER

DIRECT CARD. PUNCHER
DIRECT LINE PRINTER
FLOATING POINT OUTPUT
FLOATING POINT OUTPUT
FLOATING POINT OUTPUT PERIPHERAL PRINTER
FLOATING POINT OUTPUT PERIPHERAL PUNCH
NUMBER TO FRACTION SCALER

PERIPHERAL. CARD PUNCHER

PERIPHERAL LINE PRINTER

ATTACHED PRINTER
ATTACHED PUNCH

073

121
131

069
256
256
051
075
075
212
212
075
075

051
150
018
106

121
069
069
258
258
258
258
258
150
145
145
152
145
145
075
075
075
075
145
145
145

14

n Wn

[RGRGRGNOROEORON OGN

(G GRORORGEGEONG T N

w3}

W

L OOOLnn O’

D A

pely)

e

DV AD

AVDRDVDDVDODAOVDVDONADOODNDIOA

J3
J3
J3
J3

J3
J3
J3

J&

Jb
J4
Jé
J&
Ja
Ja
Jb
J&
Ja
Jé
J&
Jé
Jbé
J4
Jb
Jb

Jé
J&
Jé

J5

J9

Jo
Jg
Jo
N
J9o
J9o
J9o
J9o

NY
RL
RL
RL

RS
RS
wB

GL

GM
GM
GM
GM
GM
NA
NA
NA
NA
NA
NY
NY
NY
NY
NY
NY
NY
RS
UA
UA

cL

GL

GM
GM
GM
GM
GM
GS
NS
NY

WLD1
0007
0020
0023
0063
0006
0129
SPF1

0UT1
ouT2
GPR1
GPR2
GPR3
GPR4
GPRS
0109
0110
0111
0112
1391
ciGl1
DHL1
0sCl1
PCP2
PLP2
TRC1
TRG1
0006
BDC1
STH1

PLT2

ouTl

ouT2

GPR1

‘GPR2

GPR3
GPR4
GPR5
OUTR

006
ouTl

WORKSPACE TO LOCATION DISPERSER
NORMALIZED FLOATING POINT PRINT
FRACTIONAL FIXED POINT PRINT
NORMALTZED FLOATING POINT PRINT
FLOATING POINT TAPE PRINT

BCD TO PRINTER OR PUNCH

FLOATING POINT DECIMAL PUNCH

DOUBLE PRECISION FLOATING POINT PRINT

J& BCD

GENERAL PURPOSE OUTPUT PROGRAM
GENERAL PURPOSE OUTPUT PROGRAM
GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

WRITE A SINGLE BCD CHARACTER ON CRT
WRITE BCD CHARACTES STORED IN N-704 WORDS ON CRT
PLOT PTe GIVEN BY SET OF COORDINATES IN FLe PTe
GENERATE GRID ON CRT

CONVERT BINARY CARDS TO OCTAL CARDS
CARD IMAGE GENERATOR

BCD TO HOLLERITH

OUTPUT SCALER

PERIPHERAL CARD PUNCHER

PERIPHERAL LINE PRINTER

BCD RECORD TO CARD IMAGE

BCD TAPE RECORD GENERATOR

BCD TO PRINTER OR PUNCH

GENERALIZED PRINT PROGRAM

BCD TAPE WRITING PROGRAM

J5 ANALOG
POLAR PLOT
J9 COMPOSITE

GENERAL PURPOSE OUTPUT PROGRAM

GENERAL PURPOSE OUTPUT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PRINT PROGRAM

GENERAL PURPOSE OUTPUT PROGRAM

BINARY PROGRAM LISTER

DECIMAL OUTPUT PROGRAM UNDER- SENSE SWITCH CONTROL

145
018
018
021
106
0ls
257
205

084
084
070
070
070
070
070
150
150
150
150
150

235
174
145
145

018
072
072

236

084
084
070
070
070
070
070
204
102
206

15

nwunonn

nnn

DB DDD®E

O OLnuuouumuvouomnunmunnonmonm

A0 0

pre i)

J9
J9
J9

RARARARARR

KO

K0
Ko
Ko
KO
Ko
Ko
Ko

Ko
KO
KO
KO

K1
K1
K1

Lo
Lo
Lo

NY
UA
UA

RL
RL
RL
RL
RL
RS
RS
NO
NY
NY
UA

UA
UA
UA
UA

UA
UA
UA
UA

NY

UA
UA

CwW
PK
RS

NA
NA
NA
NA
RN
UA

ouT2
BDC1
SPH1

0044
0059
0080
0081
0116
0075
0077
RWT

TFD1
TFD2
ccsl
CSH2
CTH1
RwWD2
RWT1
SPH1
STH1
TCH1
TPH1
TSB3
TSM2

BTD4
RWD1
RWD2

DECIMAL OUTPUT PROGRAM UNDER SENSE LIGHT CONTROL

GENERALIZED PRINT PROGRAM
BCD OUTPUT PROGRAM

Ke INTERNAL INFORMATION TRANSFER

TAPE .COPY

BINARY CHECK SUM CORRECTOR

WORD INSERTION

ECHO CHECK PRINTER COPY LOOP
CHECK SUM TAPE COPY

ADJUST TAPE

REVERSE TAPE

READ WRITE TAPE SUBROUTINES

TAPE FILE DUPLICATOR

TAPE FILE DUPLICATOR

BINARY CHECK SUM CORRECTOR

READ BCD TAPE OR ON-LINE CARD READER
OFF=LINE CARD READER SIMULATOR
READ-WRITE DRUM PROGRAM

BINARY -READ=WRITE. TAPE PROGRAM
BCD OUTPUT PROGRAM

BCD TAPE WRITING PROGRAM

OFF-LINE PUNCH SIMULATOR
OFF=-LINE PRINTER SIMULATOR

LOAD BINARY CARD IMAGES FROM TAPE
READ TAPE WITH REDUNDANCY CHECKING

K1 READ WRITE DRUM
BINARY TAPE OR DRUM DUMP

READ-WRITE DRUM
READ WRITE DRUM PROGRAM

‘K2 RELOCATION

- Le EXECUTIVE ROUTINES

DIS1

DSMB-

0128

RELOCATABLE TO SYMBOLIC DISASSEMBLER
BINARY CARD DISASSEMBLY PROGRAM
DE RELATIVIZE PROGRAM

L1 ASSEMBLY -

PREA
SAP1
SAP2
1780
019

SAP1

PRE-ASSEMBLY PROGRAM

SYMBOLIC ASSEMBLY PROGRAM

SYMBOLIC ASSEMBLY PROGRAM NAA VERSION
WRITE BINARY LIBRARY TAPE

701-704 SYMBOLIC ASSEMBLY PROGRAM = 1 FRAM
SHARE ASSEMBLER

16

206 s R
072 s
072 s
106 B
106 B
106 s
106 s
133 R
091 SB
091 SB
209 s
255 SB
255 s R
010 B
073 s
024 SB
080 S
120 S
072 s
072 S
071 SB
071 sB
119 SB
073 s
213 s R
054 3
080 s
153 B
158 .
230 SB
176 3
176 S8
176 ;!
176 S8
014

056 036 SB

M1
M1
M1
M1

M2
M2
M2
M2
M2
M2
M2
M2
M2
M2
M2
M2
M2
M2
M2

NO
NO
NO

N1
N1
N1
N1
N1
N1
N1

N1

NA
NO
NS

NA
NA
NA
NA
NA
NO
NO
NY
NY
NY
NY
RS
RS
RS
UA
UA

LA
NS
UA

GS
LA
LA
LA
MU

NS
NY
UA

2041
SORT
MRG1
SRT1

05e1
061
0761
1561
161
BCDI
FCD

CIGl
0SsCl
TRC1
TRG1
0002
0003
0009
CTQl
TSQ1l

D481
006
SPM1

HEJ

D080
D081
D481
EAS2
TTV1
TRC1
FTR1
SP0O2

L2 COMPILING
Me INFORMATION PROCESSING
M1 SORTING

SORTINGsMINIMUM SPACE

A MEMORY=-SORT SUBROUTINE
MERGE PROGRAM

SORT PROGRAM

M2 CONVERSION

FLOATING TO FIXED

FIXED 7O FLOATING

FIXED INPUT OUTPUT SCALING SUBROUTINE
FLOATING INPUT SCALING

FLOATING OUTPUT SCALING SUBROUTINE
PACKED BCD TO INTEGER BINARY SUBROUTINE.
FLOATING NUMBER TO PACKED BCD SUBROUTINESs
CARD IMAGE GENERATOR

OUTPUT SCALER

BCD RECORD TO CARD IMAGE

BCD TAPE RECORD GENERATOR

PACKED BCD TO INTEGER BINARY

POSITIVE BINARY INTEGER TO UNPACKED BCD
POSITIVE BINARY INTEGER TO UNPACKED BCD
QUADOCTAL TAPE WRITING PROGRAM

QUADOCTAL TAPE READING PROGRAM

M3 COLLATING AND MERGING
Ne DEBUGGING RQOUTINES

TRAP DECIMAL OR OCTAL MEMORY PRINT
BINARY PROGRAM LISTER
TRAP DECIMAL MEMORY PRINT

N1 TRACING»s TRAPPING

TRAPPING MODE CONTROL SUBROUTINESs
LOGIC TRACE

LOGIC TRACE WITH PARTIAL PRINT
DYNAMIC PRINT MONITOR

MURA EFFECTIVE ADDRESS SEARCH ROUTINE
MURA TRANSFER TEST (VISUAL)

TRACE PROGRAMy SUPERCEDES NS00l
HIGH-SPEED FLOW TRACE

FLOW TRACE

051
209
129
129

051
051
051
051
051
209
209

174

ol8
018
018
221
221

095
102
113

204
069
069
095
253
253
129
147
026

17

Lo ohnnon
D00 AD

o ®

SB
SB

SB
SB

sB

sB
sB

N1

N3
N3
N3

N&

01
01

01

Ql
Ql
Q1
Ql

. Q2

Q2
Q2
Q2

WK

GA
LA
LA

NS
PK
RS
UA

LA
LA
NS

UA

EL

NY
UA
UA
UA

CL
UA
UA
UA

NY
NY
UA
RL

BP

VALT
A420
D770
FRD1

005
SPOA
0071
SPO1

D620
D621
005

SPM1

TEST

pPCvl
CTH1
TCH1
TPH1

oubD1
2Cs1
2CS2
ZDR1

BL2
BL3
ccBl
0059

LEVELS OF BREAKPOINT PRINTING
N2 DUMP

STATUS STORING ROUTINE

DUMP MEMORY ON A SELECTED LOGICAL DRUM

MEMORY PRINT OUT

MURA FRACTION DUMP

MEMORY VERIFICATION PROGRAM

PRINT AND RESTORE CONSOLE

PUNCH CONSOLE

CONTROL PANEL PRINT + OCTAL MEMe PRINT (SCOOP)

N3 SEARCH

TRANSFER SEARCH PROGRAM

SEARCH MEMORY

MEMORY VERIFICATION PROGRAM

N4 BREAKPOINT PRINT

TRAP DECIMAL MEMORY PRINT

Oe SIMULATION PROGRAMS

36 SIMULATED LOGICAL SWITCHES

01 PERIPHERAL EQUIPMENT SIMULATORS
PERIPHERAL CARD VERIFIER

OFF-LINE CARD READER SIMULATOR
OFF=-LINE PUNCH SIMULATOR

OFF=-LINE PRINTER SIMULATOR

Pe DIAGNOSTIC PROGRAMS

Qs SERVICE PROGRAMS

Q1 CLEARs RESET PROGRAMS

OVERFLOWs UNDERFLOWs AND DIVIDE CHECK TEST
CLEAR CORE STORAGE AND MAIN FRAME
SET CORE STORAGE. TO ZERO

CLEAR N DRUMS

Q@2 CHECK SUM PROGRAMS

BINARY LOADER AND ZERO CHECKSUM CORRECTOR
BINARY LOADER AND CHECKSUM CORRECTOR

BINARY CHECK SUM CORRECTOR
BINARY CHECK SUM.- CORRECTOR

154

112
069
069
253
102
208
067
029

069
069
102

113

220

262
024
071
071

248
048
119
065

3¢

0lo0
106

3

18

B

SB
SB
S R

sB

sB
sB

SR
SB
SB
sSB

oz esiiesve)

Q2
Q2
Q2

Q3

03
Q3

NINNNNNNNNNNNN ~N N
oo

NINMNNNNNNN
OCOO0OO0OOO0OO0OO0OO0

RL

UA

NY
RS

UA

0116
pPCsl
VeSSl

PLB3
0075
0077
0TM2

REL
T04R

THA1
FIDO
011

BLIL
BLUL
INS1
LWR1
NFS2
WLD1
DsMB
0079
0076
0084
REL

0TM2
0TM&
pPCsl
RWD1
VCS1
2CS1
2CS2
ZDR1

CHECK'SUM TAPE COPY
PUNCH DRUM CHECK SUM VERIFIER
VERIFY DRUM CHECK SUM

Q3 RESTOREs REWINDs TAPE MARK, LOAD BUTTON PROGRAMS,

NY BOL1 TRANSITION
ADJUST TAPE

REVERSE TAPE

TAPE REWIND CONTROL

Ze ALL OTHERS

RELATIVIZE SYMBOLIC DECK
MURA REFLECTIVE 704

THERMAL ANALYZER

UTILITY PACKAGEe FUNCTIONSs INPUTs DIAGNOSTICS»
ASSEMBLY TRANSLATOR - NYAP1 TO UA SAP1
BASIC LOOP INITIALIZER

BASIC LOOP UPDATER

INTEGER TO NUMBER SCALER

LOCATION TO WORKSPACE RETRIEVER

NUMBER TO FRACTION SCALER

WORKSPACE TO. LOCATION DISPERSER

BINARY CARD DISASSEMBLY PROGRAM

TAPE COMPARE v

TEST TAPE FOR READABILITY (COUNT RECORDS)
COUNT RECORDS FOR TAPE READABILITY
RELATIVIZE SYMBOLIC DECK

TAPE REWIND CONTROL

TAPE REWIND CONTROL

PUNCH DRUM CHECK SUM VERIFIER
READ=WRITE DRUM

VERIFY DRUM CHECK SUM

CLEAR CORE STORAGE AND MAIN FRAME

SET CORE STORAGE TO ZERO

CLEAR N DRUMS

OUTPUT

133
065
065

91
091
064

116
253

248
181
001
145
145
145
145
145
145
158
106
091
091
236
064
097
065
054
065
048
119
065

19

127

sB
SB
SB

DOV ODVADD

CC-40 Page 20 of 23

NEW SUBROUTINE CARDS RECEIVED

DIST. DIST.
NAME _NO. CLASS NAME NO. CLASS
AT MGl 233 D3 MU RDI1 256 13
AT TPI 238 D2 MU DPA2 Al
AsS 03 224 B3 MU EXP1&2 B4
AS 09 Bl MU BPU1&2 J1
AS 14 C1 MU PRF1, 2, &3 258 J3
As 33 \f B2 NO FCD 231 M2
CL DPAl&2 223 Al NO SIG 240 D1
CL DPD1 Al NO INP 241 I3
CL DPCl1 A2 NA 135,3 246 Bl
CL DET3 F3 NA 180.1 245 14
CL SMD2 F3 NY DML 232 F1
CL SME2,4,5 F4 NY DBD1 235 4
CL MVP1 F1 NY DHL1 235 J4
CL MIV3 F1 NY PCV1 262 01
CL MST3 F1 NY PLV1 262 01
CL MTRI1 Fi NY TFD1&2 255 KO
CL MRT1 / Q3 NY FSC1 250 E2
CL MNR3 236 F1 RS 0128 230 LO
CL EL1&2 ZO RS 0129 230 J3
CL PLT2 y J5 RS 112X 249 12
GL DPPA 237 Al RS 112Y 249 12
GL GAUS 237 D1 MU PIF 258 J3
GM CFR1 225 Cc3 GM ZER1 \L C2
GM EIG2 F2 CL THA1 248 Z
GM IEF1 C3 CL 0UD1 Q1
GM 1ITR1 E2 CL PIN1&2 E2

‘GM TIN2 247 E1l CL DEQ D2
MU LBL3 251 n CL PMC1 \ F1
MU UBL1 251 il GM DIN1 239 El
MU TTV1 253 N1 NA 1891 260 F2

MU PRI 258 J3 MU LBL4 263 I1

CC-40 Page 21 of 23

DIST. DIST. |
NAME NO. CLASS NAME NO. CLASS
MU RATI1 253 K2 MU RONI1 263 I2

MU FRD1 N2 MU BPU3 263 J1
MU EAS2 N1 MU SQR2 263 B4
MU 704R Z0 MU ATN1 263 Bl
MU RDI2 263 I3 ‘

AS 0049 264 N1

NO INTP 265 El

NA 65.1 266 A2

PK EDIT 267 J9

PK HILO 267 QO

GI DBUG 270 N1

CL SMES6 273 F4

CL MMD1 2173 F1

CL MMP2 273 F1

RS 0140 274 11

NEW WRITE-UPS WITH NO CARDS

DIST.
NAME NO.
MU SBL2 251
MU CSC2
MU OCD1
MU IND1
WB CFT2 v
NY SNAP 2175

Since the New England Colleges, other than MIT, do not receive
Share letters concerning changes and corrections, the following information is parti-

cularly for their benefit. These changes have been noted in the MIT SHARE Library.

CC-40 : Page 22 of 23

SHARE DIST.S WHICH ARE ADDENDED BY LATER DIST.S

WH 001 #57 see #118, 126
GM GPR2 #70 see #163
CL MLD1 #85 see #187
NA 086.1 #87 see #191
NA 087.1 #87 see #191
RS 0077 #91 see #127
NY OSC1 #19 see #174
CL SME1 #116 see #222
CL INT4 #116 see #222
CL LsSQ2 #116 see #146, 187
PK NIDA #144, 203 see #195
CL RANI1 #139 see #187
. NA 092.3 #149 see #192
NA 090,33 #149 see #169 - superseded by 90.5
NA 090.5 #169 see #192
NA 091.3 #169 see #192
NA 098.1 see #192
NA 70,3 see #190
PK POWR v see #203
NY MR1 #151 see #217
UA TSM2 see #1718
UA SPH1 \ _ see #86
NY BPU3 #75 see #88
CL AEQ1 \ see #167
NY PCP2 #145 see #188
NY PLP2 #145 - see #188
GE ARCTN #3 superseded by #55
UA BDC1 see #99
NY CIG see #109

NY TRG1 ' see #109

CC-40

NA
NA
NA
RL

RL
RS
NA
NA
RS
GE
GE
UA
(O]
NA
NA
NA
RS

LETTERS

c- 4
6
7

12
13
14
58
60
61
68
70
71

C-125
C-131

030.1 s. s,
31.1 s. s.
32,1 s, 8,
0039 s. s.

0042 s, s,
0004 s. s.
012 s, s,

90, 3 s. s.
0083 s, s.
ARCTN s, s,
SIN2 s, s.
TSM1 s. s.
ARTNL1 s, s,
91,1 s.s.
92,1 s.s.
90.1 s. s,
0084 s, s.

ABOUT CORRECTIONS OR CHANGES

C-22
23
24
25
28
29
74
1
78
79
80
86

Cc-32
35
38
41
44
47
88
89
90
92
96
97

SUPERSEDED ROUTINES

by
by
by
by

by
by
by
by
by
by
by
by
by
by
by
by
by

NA 30,3
NA 31.3
NA 32,2

RL 0078
&
RL 0115

RL 0065
RS 0004
NA 012,2
NA 90,5
RS 0083
GE ARCTN
GE SIN2
UADBC1
CS ART2
91,3

92, 3

91.5

RS 0084

C-48
50
54
55
56
57
98
99

100
112
113
114

Page 23 of 23

#104
#104
#104
#106

#125
#106
#40
#150
#169
#1179
#55
#33
#13
#92
#169
#149
#169
#127

