CC-200-2 COMPUTATION CENTER
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

February, 1963

TO: All Fortran Users
FROM: - Jessica D, Hellwig

SUBJECT: Subroutines in Fortran

INTRODUCTION

This memorandum discusses at some length the five Fortran
subroutine types. Included are descriptions of the essgential
differences between them, their purpose, definition, -and
proper usage. Special problems associated with the use of
subprograms are discussed in detail. '

This is essentially a coordination and expansion of
material gathered from the Fortran manuals published by IBM,

GENERAL DESCRIPTION

A subroutine may be considered any pre-defined sequence
of instructions which performs a specific operation and which
may be executed repeatedly, at various points within a
program, '

Fortran provides two kinds of subroutines. One kind is
the set of functions, of which there are four types. The
other kind are known as Subroutine subprograms. The functions
bear a close resemblance in many ways to "functions" in the
mathematical sense; Subroutine subprograms may also represent
mathematical functions, but they lack certain resemblances
and play in fact a much more general role.

In mathematics, a function is a quantity whose value
depends upon the values of variables ?arguments of the
- function) in a fixed relationship. The function

£(x) = Ax? +.Bx | | (1)

implies a series of operations to be carried out on x,
regardless of the value of x; however, £(x) itself is a
quantity, having a different value for each value of x. Thus,
one may write ‘

£(x) - £ |
sy) = L= f | ()

-2

illustrating the status of £(x) as guantity, as well as the
interchangeability of arguments. Lastly, one might define
a variable z, such that

z = g(x,y) f(#). | (3)

In Fortran, the various functions have much the same
status. Equation (1) is in effect the definition of the
function; this could be translated in Fortran (as one type of
functions as follows:

FIRSTF(X) = A*X#%%2 + B*X,

Equation (2) illustrates the use of the function, or its
appearance as a variable, in an arithmetic statement, (which
is incidentally another function definition). In Fortran, this
might be written .

SECYNDF(X,Y) = (FIRSTF(X) - FIRSTF(Y))/ (X-Y)
while equation (3) would become
Z = SECPNDF(X,Y)* FIRSTF(X).

It becomes clear then that a function in Fortran has
the following properties:

1) Its definition is distinct from its use, or call, It
is called within an arithmetic statement where the function
value is an operand in the statement.

2) Hence, the name of a function is the name of its
value. During execution the instruction sequence that comprises
the subroutine is carried out, and the result replaces the
function name in the arithmetic statement.

3) The arguments given in the definition of a function
are replaced, when the function is referenced in an arithmetic
statement, by the arguments required at that time. Hence,
the arguments in the definition are in effect dummy
arguments.

The only major restriction on Fortran functions which

 is not generally applied to mathematical functions is that

Fortran functions are always single-valued.

In Fortran, functions, then, are subroutines which
represent single-valued functions of single or multiple
arguments, called within an arithmetic statement, where the
name of the subroutine is the name of the function value.

A Subroutine subprogram is by nature a more general
type of subroutine. It may, in fact, be just like a function

-3-

in its definition, in the status of its arguments, and in its
mathematical significance. It may be quite different, however,
in all these respects, and is always different in the following:

1) A Subroutine subprogram is called by a separate special
statement which initiates the execution of the instruction
sequence which it comprises.

2) Hence, the name of a Subroutine subprogram corresponds
not to a value but to the instruction sequence itself.

In addition, a Subroutine subprogram may produce multiple
outputs. Its "arguments’ may be not only arguments in the
strict mathematical sense but may be input of any sort from the
calling program to the Subroutine subprogram; in particular,
the argument list may include names to be assigned values
computed by the subroutine.

FUNCTIONS - DEFINITION

There are four types of functions in Fortran. The first
two are used, but not in general defined, by the Fortran
programmer. The second two are used and usually defined by the
programmer.

l. Built-in Functions. These exist in the Fortran
processor. They differ from all the other subprogram types in
being open; that is, the instruction sequence is generated by
Fortran and incorporated into the program, during compilation,
at each occurrence in the source program of the function name.

2, Library Functions. These are independent subprograms
which exist in a program library, either as a card deck or on a
library tape. They are originally coded in machine language
according to definite conventions.

3. Arithmetic Statement Functions. These are defined by
an arithmetic statement in the calling program. Following their
definition they are used, or called, by other arithmetic state-
ments in the same program.

4. Function Subprograms (also called Fortran Functions),
These are independent subprograms defined by separate compila-
tion. The first statement in the definition program has the
form -

FUNCTI¢N name(arg;, arg,, ... arg,)
which identifies the subprogram as being of function form and

implies the identification of the value of the function with
the specified name.

iy

SUBROUTINE SUBPROGRAMS - DEFINITION

These are all of one type. They are independent subprograms

defined by separate compilation. The first statement of the
definition program has the form

SUBRPUTINE name (arg,, argy, ... argn)

which identifies the subprogram as being of Subroutine sub-
program form and may imply the identification of one or more of
the argument names with the value(s) computed by the subroutine.
The execution of the subroutine is effected by a statement in
the calling program of the form

CALL name(argl, argy, ... argn)

These five types of subroutines may be differentiated on

~ the basis of their form (restrictive or not) and also on the
basis of the generality of their application (i.e. distinguishing
functions frequently used by most programs from special-purpose
routines). One may expect that those most commonly used should
be most readily available, or simplest to use.

1. The built-in functions are a special case, being open
routines. 1In fact, they look like subroutines from the vantage
point of the source program but not from that of the object
program. Since the generated coding is reproduced in the
object program each time the function is referenced, such:-"
routines must be limited to functions which are simple in terms
of machine-language coding. There is a decrease in execution time.
in the object program, though at the expense of memory space.
Since these routines are implicit in the Fortran Processor
(occupying valuable space and time in it) they must be restricted
to functions which are of the most general utility and which
become an extension of the Fortran language itself, rather than
being germane to its applications. For such basic functions, the
open type combines the simplicity of subroutine usage in the
source program and the efficiency of machine-language straight
line coding in the object program.

2. Library functions, as the:name implies, are of suf-
ficiently general utility to be permanently maintained by the
computer installation. The most commonly used of these are
maintained on a special tape which is automatically available
to every program running in the system, Others are maintained
as binary decks also readily available to the user. Functions
made available in this form are likely to include those most
often needed by the user of a particular installation -- their
generality, in other words, is peculiar to the principal appli-
cations of one computer.

Library functions, since they are pre-written and used
frequently, are coded in machine language mainly in the interests
of economy. They are subprograms with a unique convention for

-5-

linkage which demands machine-language coding.

3. Arithmetic statement functions are the first and
simplest of the subroutines written by the user. They are
restricted to those functions which may be expressed in a single
Fortran arithmetic statement. They satisfy, however, the basic
requirements of a subroutine -- i.e., repeated availability
without redefinition, and interchangeability of arguments.

The limitations on their definition are counterbalanced by a
distinct advantage over subprograms: since they are internal
to the calling program, all the variables of the calling
program are available to the subroutine as arguments and
variables, without the problems of tramsmission introduced by
the use of other subprograms.

4. Function subprograms are used for the computation of
functions which may not be defined by a single arithmetic state-
ment. They may, therefore, be mathematically as complicated as
necessary. (We may note here that at one end of the scale are
subroutine types which are highly restrictive but which compute
functions of the most common type; on the other end are sub-
routine types of the most generalized form, used for more special
applications.)

Function subprograms are principally used for mathematical
operations. This is implicit in the major restriction placed on
them, that they compute a single quantity which takes its place
in the arithmetic statement which referenced the subroutine. It
is possible to extend the application of these programs so that,
for example, they may compute many other quantities as well, or
may perform additional non-arithmetic operations. Their most
usual application, however, and the one for which they are.
intended, is the computation of a single-valued arithmetic
function.

. 5. Subroutine subprograms, finally, are the most general
form of subroutines available. They can be used to do anything
a Function subprogram does, but are even less restrictive.
Probably their most fitting applications are for the computation
of multi-valued functions (although this can also be done in-
directly by means of a Function subprogram) and especially for
the execution of non-arithmetic operations (e.g. input and
output). :

FUNCTIONS - NAMING AND CALLING

1. Built-in, Library and Arithmetic Statement functions are
all named and called in the same manner.

The name consists of 4 to 7% alphanumeric characters with

=
Double precision and complex Library and Built-in functions:
4 to 6 characters.

-6-

these restrictions: the lasc character must be F; the first
character must be alphabetic, and is X if and only if the value
of the function is of fixed point mode.

N.B. The mode of a function and of its arguments is determined

by the function definition. Hence, a change in the mode configu-
ration would require a new definition and a new name,¥%%

Examples :
Built-in

I = (MHN/2)*XM@DF (M, N)
X = DELTAX + MAXIF(YA,YB,YC,10.0)

Library _
B = A + C{SF(A)
M = XDETRMF(NN, N, AMATR, D)

Arithmetic Statement

(Definition) TESTF(ARGL,ARG2) = (A/ARGZ)*(ARGl-ARGZ)

(Use) A = 3,0%DELTA
GAMMA = ALFA*TESTF(ALFA, BETA)

¢ o0

2. Function Subprograms. The name consists of 1 to 6 -
alphanumeric characters with these restrictions: the last
character must not be F unless the entire name is less than &
characters; the first character must be alphabetic' and must
govern the mode of the function according.te the rules for -
naming variables. -This name is used: to -call the .function in the
same .manner as the.other functions. No'F.is attached to’ the
function name when it is used in a statement.

Examples:
(Definition) FUNCTI@N FUNK(A, B,C)

FUNK = P+Q%*B*C
RETURN

® o0

** There are no fixed-point double precision or complex function
names., The names of double-precision and complex_Library and _
Built-in functions axe listed w%th a prefix D or T, is prefix
must not be used in function references. :

-7-

END _
(Use) . A = FUNK(DELTA,X,25.) + ALPHA

SUBROUTINE SUBPROGRAMS - NAMING AND CALLING

The name consists of 1 to 6 alphanumeric characters with
these restrictions: the first character is alphabetic; the last
character must not be F unless the entire name is less than 4
characters. Since the name of the subroutine is not the name of
a value, the name does not affect the mode of any of its values.

The names of values computed by the subroutine may be
designated in the argument list. These govern the mode of the
values they represent. There must be correspondence in the mode
of each argument in the subroutine definition with the respec-
tive arguments in every call for the subroutine.

EXAMPLES :
(Definition) SUBRPUTINE L@VE(ABLE, BAKER, NAN) .

LI)

NAN = ...
RETURN
END

(Use) X = X + DELX
CALL L@VE(X,Y,M)
Y = Y*%M

DOUBLE-PRECISION AND COMPLEX FUNCTIONS AND SUBROUTINES

An arithmetic statement referring to a double-precision or
complex function is prefixed with a D or I in column 1. A D
or I prefixing a CALL statement signifies that all floating-
point arguments in the statement are double-precision oxr complex,
respectively.

A double-precision or complex Arithmetic Statement function
definition must of course have D or I in column 1.

EXAMPIE:
D AREAF(R) = SQRTF (PI*R*%*2)

USE OF FUNCTION AND SUBROUTINE NAMES AS ARGUMENTS

The argument list of a Function subprogram or a Subroutine

-8-

subprogram may include the names of Library functions, other
Function subprograms, or other Subroutine subprograms (but not
Built-in or Arithmetic Statement functions). As with any other
argument, a dummy function or subroutine name appears in the
argument list of the subroutine definition. The following rules

‘apply:

1. The name of a Function subprogram, Subroutine sub-. -
program, or Library function used in an argument list must
appear also in a pseudo-statement, in the calling program, of
the form

F NAMEl, NAME2, .., NAMEn (F in column 1).

2. In the case of a Library function the terminal F is
dropped in the argument list and also in the F pseudo-statement.

3. 1In the case of a double-precision or complex Library
function, the name appearing on the F card is prefixed with a D
or I, '

EXAMPLES :
SUBRGUTINE PRIME (DUMMY,X,A)

LI N)
LA N]

A = DUMMYF(X)

* e

This would allow the selection of any library function when
calling PRIME, as

CALL PRIME(SIN,ALPHA,Q)
CALL PRIME(C(¢S,ALPHA, P)

F SIN,C@s
Again,

FUNCTI¢N PETER(DUMMY,X,A)

PETER = DUMMY(Y)

allows the calling program to specify various Function sub-
programs when calling PETER, as

0=

X = Y + PETER(FIRST,ARG,41)
A = PETER(SEC{ND, ARG,A2)

LN

F FIRST,SEC¢ND
Finally,
SUBR@UTINE PAUL(DUMMY,X,A).

CALL DUMMY (X)

o 00

allows the calling program to specify subroutine subprograms
when calling PAUL, as

CALL PAUL(SUBR,EX,EA).

F SUBR

Note that the definitions (though not the argument list) of
Arithmetic Statement functions, as well as of Function sub-
programs and Subroutine subprograms, may involve other functions.
An Arithmetic Statement function definition may involve other
Arithmetic Statement functions which have been previously -
defined in the same program.

RULES FOR DIMENSIONING SUBROUTINE ARGUMENTS

The arguments in a SUBRPUTINE or FUNCTIQN statement (the
dummy arguments of the subprogram definition) may not be
subscripted. No subscripted variables may appear in the state-
ment defining an arithmetic statement function. An array may be
an argument; the array name (non-subscripted) appearing in a
CALL statement or function subprogram reference must of course
be dimensioned in the calling subprogram; the corresponding
dummy argument of the subprogram definition must be dimensioned
in the subprogram and the dimensions must correspond in both
calling and called programs.

_ In fact, the dimensions of the dummy array in a subprogram
need not be exactly the same as those of the corresponding
array in the calling program., Variation is permitted as follows:

The dimension of a one-dimensional array may vary;

The second dimension of a two-dimensional array may
vary;

The third dimension of a three-dimensional array may .
vary;

-10~-

in other words, for an n-dimensional array, the first (n-1)
dimensions must correspond exactly between subprograms.

A single element of an array may be used in the argument
list of a calling statement. It is, of course, subscripted, and
corresponds to a single non-subscripted dummy variable, as:

Calling: Called:
| CALL SUB(A,B(I,J)) SUBRPUTINE SUB(X,Y)
On the other hand,
Calling: Called:
DIMENSI¢N B(15,10) SUBRQPUTINE SUB(X,Y)
CALL SUB(A,B) DIMENSI¢N Y(15,10)

transmits the whole array B.

An exception to the above occurs in the case of double-
precision or complex variables. Given a double-precision or
complek array (say ALPHA, dimensioned (n,n)) where it is
desired to use a single element ALPHA(I,J) as an argument to a
subprogram, then the corresponding dummy argument in the sub-
program must be given like dimensions (n,n) in a double-.. -~ .
precision or complex DIMENSI@N statement. Otherwise ALPHA(I,J)
must be set equal to a single variable for use in the argument
list. TFor example, the following illustrates both cases:

Calling: -Called:

SUBRAUTINE NAME(X,Y)
D DIMENSI¢N A(10),B(5,5) D DIMENSI¢N Y(5,5)
D C = A(5) DY =X+ (2.,1.)
D CALL NAME (C,B(1,3)) RETURN

Dimensioning Y in the subroutine enables the FORTRAN processor
properly to compute the address of the imaginary or least signi-
ficant element of the pair represented by B(1,3§. Reference is
then made in the subprogram to the variable Y, which is in fact
the first element, i.e. Y(1,1), of an implicit array. Use of
subscripts (other than (1,1)3 with Y should be employed only
with great care and a thorough understanding of the ordering of
arrays in storage.

USE OF C¢MMPN FOR SUBPROGRAM LINKAGE

Variables may be transmitted to a function or subroutine
subprogram by the use of CYMMPN storage. Consider the arithmetic
statement function

-11-

FIRSTF (X,Y) = (A*X+B)/Y .

The arguments X and Y are dummy arguments and will be replaced
when the function is called; A and B, however, are variables
which always remain the same (though not necessarily of the same
value). This sort of arrangement is possible because the ‘
arithmetic statement function is, though closed, contained with-~
in the calling program.

In the case of a function or subroutine subprogram, however,
where the subroutine is an independent program and all the '
programs are relocatable, variables like A,B which we may call.
'function constants", must be transmitted from the calling to the
called subprogram. One could write

CALL SUBR (X,Y,A,B)
CALL SUBR (P,Q,A,B)
etc.,

but it is also possible to use C{MM@PN storage for the purpose.
The statement
C/MMPN A,B,

assigns the given variables to specific non-relocatable loca-
tions in upper core. The first variable is assigned to 7746lg,
the second to 77460q, and the rest in order proceeding down-
ward. Successive C%MM%N statements within a program will
continue to store variables below those already encountered.

Each subprogram will again assign the variables listed in C@MM@PN
statements to upper core starting at 7746lg. Thus one may write:

Calling: Called:
DIMENSI@N = T(5,5) SUBRQUTINE SUBR(D)
CyMMPN A,B,T,C DIMENSI¢N DUMMY(5,5)
ces c/MMgN P,Q,DUMMY,R

CALL SUBR(X)

Because of the correspondence in the order of variables in the
two COMM@N statements, the pairs A and P, B and Q, and T and
DUMMY will be identical,

For most purposes, the simplestand safest way to guarantee
consistency among subprograms is to make C@MMPN statements, and
DIMENSI¢N statements for those variables which appear in C{MM@N
statements, identical in all subprograms and the main program.
This may easily be done and there is, of course, no need,
generally, to change variable names between subprograms. (The
use in those examples of different names for arguments in sub-
program definitions is primarily to stress their status as
dmmy variables.) As will be seen from what follows, departures
from this procedure should be made with caution.

-12-

In the example above, should it be desired to call another
subprogram which involves the variable C but not the others, it
would be necessary to include in a COMMPN statement in the sub~-.
program, dummy variables of proper dimension to assign CYMM@N
storage properly, thus: '

SUBRGUTINE NAME(ARG)
DIMENSI¢N DUMMY(5,5) (1)
CiMM@N P,Q,DUMMY,R

This is necessary to force correspondence between all C{MM@N
assignments.

Additional care must be taken with double-precision or
complex variables assigned to CPMM@N storage, where several sub-
programs refer to CPMMPN storage. Consider the example of a
main program where A and B are complex variables and T is a
complex array:

I DIMENSION T(2,4)
C/MMPN A,B,T
X = A%®%24B%%2
CALL ABLE(X)

- -

LK N 2

Since complex variables consist of two parts, they are stored
ii?:.arrays. In this example, CHMMPN storage would look like
77461 : A (real part)
60 : A (imaginary part)
57 : B (real part)
56 : B (imaginary part)
55 ¢ T(1,1) (real part)
54 : T(2,1) (real part)
53 : T(1,2)
77445 : T(Ll,1) (imaginary part)
etc.
- The appearance of A and B in complex arithmetic statements, and
of T in a complex dimension statement, guarantees that double
storage will be assigned. Suppose now that the subprogram

ABLE is to operate on the array T, but does not involve A or B,
If we write

-13-

SUBR{UTINE ABLE(D)
I DIMENSI¢N DUMMY(2,4)
C/MMPN P, Q,DUMMY

then P and Q are for the purpose of ''spacing down' to the loca-
tion of the array in upper core. Since we have assumed, however,
that P and Q never appear again in ABLE, there is within . this
independent subprogram no indication that P and Q are complex
variables. Hence CYMMPN storage will look like this:

77461 : P

77460 : Q

77457 : DUMMY (1,1) (real part)

77456 : DUMMY (2,1) (real part)
etc.

and the desired correspondence between the arrays T and DUMMY is
not accomplished.

The simplest way to circumvent this problem is to inwlude
all complex (double-precision) variables assigned to COMM@N in a
complex (double-precision) DIMENSI@N statement. Thus, in the
example above, if we write

SUBRJUTINE ABLE(D)
I . DIMENSI¢N DUMMY(2,4), P(1), Q(1)
C/MMPN P,Q,DUMMY

The dimensions of P and Q are not really changed but their status
&s complex variables is established, and each will be assigned
two locatioms. "

Clearly, the use of CHMMPN assignments may be applicable
not only towhat we have called function constants, but to
arguments as well., Arguments which are transmitted to a sub-
program by being placed in C@MMPN storage are implicit
arguments, as opposed to those explicitly mentioned in the sub-
program argument list., Again, it is only necessary to create
correspondence in upper core between each argument and its dummy
correspondent in the subprogram.

It must be noted that a Function subprogram must have at
least one argument. Thus, implicit arguments may be used for all
arguments of a Subroutine subprogram, but at least one explicit
argument (a dummy, if so desired) must be given for a Function
subprogram. ‘

-14-

RELATION BETWEEN C{MM@N AND EQUIVALENCE STATEMENTS

The normal oxrder of CYMMPN storage assignment, described
above, is changed in the case where variables appear in both
COMMPN and EQUIVALENCE statements. Any C{MMPN variables
appearing in EQUIVALENCE statements will be assigned upper
core values above those not in EQUIVALENCE statements
regardless of the order of the C{MMYN statements. For example,

c/MmMgN A,B,C,D
EGUIVALENCE (C,G), (E,B)
will cause the following assignments:

774618 C and G

60 B and E
57 A
56 D

Note that the variables are assigned in the oxder in which
they appear in the LQUIVALENCE, and then in the order of the
CAMMPN statement. (Note also that a variable made equivalent
to a C{MIPN variable is assigned to C{MMPN storage.)

Consequently, if equivalences are established involving
variables in C{MM@N storage, similar equivalences should be
sat up in all subprograms which refer to CHMMYN in order to
force proper correspondence between subprograms.

In the case of double-precision or complex variables, :
a D or I prefixing a C{MMYN or EQUIVALENCE statement is ignored,
but the double nature of the variables is preserved when they
are so defined in other statements within the program. Generally,
single-precision variables should not be made equivalent to
double-precision or complex variables, nor should they be
given the same location in CIMMPN storage.

TRANSMISS ION OF VARIABLE SUBSCRIPTS BETWEEN SUBPROGRAMS

A variable subscript has a scmewhat ambiguous status
because of the way FORTRAN performs indexing. If a DY loop
(or an input 1ist¥ has an index I which appears only as index
and subscript, there is no storage location set aside for I:
the indexing and the subscript reference are taken care of in
another way. If I also appears as a variable, either inside
or outside of the loop, then there is a storage location
assigned to I, and this location is referred to when necessary.

«15=

As a result, the storage location "I" may sometimes have a
value different from the indexing value of I. For example:

I=N/2

A(I) = X

DH1 I=1,N

B(I) = X*A(I)
1 CONTINUE

Vhen the loop is completed, i.e,, when the index I is equal
to M1, the storage location "I’ will still contain the value
N/2, and any reference to I as a variable gr as a subscript
will use this value until a new value is assigned or a new
loop is initiated. Suppose we continue the above program,
following statement 1 by:

NU = I%%2 (equivalent to NU = (N/2)#¥*2)
D 2 I =1,N

* 00

2 L = 2%I-1 (equivalent to L = 1,3, ... 2*N-1)

Following statement 2, the storage location of 1 (i.e., I in
the role of variable) will be equal to M1, the current value
of t?e index 1. This is because 1 is used as a variable within
the loop.

Because of the ambiguous nature of subscripts, care must
be exercised in transmitting them between subprograms. (N.B.:
A variable subscript which is not being used as an index is
called, in the FORTRAN manual, a ‘‘relative conmstant'. For
further details about variable subscripts, see Fortran
Reference Manual, pp. 82-385.)

1. In_an Argument List

Transmission of variable subscripts via an argument list
is straightforward. '

I=0N/2 SUBRQUTINE SUBR(A,N,Y)
CALL SUBR(X,I,B) DIMENSI¢N G(10)
Y = @(N)

The value of I will be transmitted properly. Other examples
of correct linkage are:
Dp 1 I = 1,10
CALL SUBR(X,I,B)
1 e 00

where although I is not explicitly used as a yariable its
appearance in the argument list allows for proper transmission,

and,
CALL SUPER (I,Y) SUBRJUTINE SUPER (K,A)
‘ K = XFIXF(A%**2-X%%2)
RETURN

where I will be properly transmitted from the calling to the
called program and back again. Note, however, that if the

CALL statement in this example were within the range of a D@
with index I, the change in I effected by SUPER would not hold,
and I would be reset, upon return, to the proper indexing value.

It should be observed that in this last example, the
argument K is used both as an input and an output parameter.
This is in general a dangerous procedure; any change in the
value of input variables may cause difficulties, because it
requires considerable understanding of FORTRAN operation to be
sure of exactly how this change will be effected. '

2. [Transmission of Variable Subscripts via CYMMPN Statements

Consider the following example:

COMMPN K (1) SUBRGUTINE ABC(X) (6)
K=K+ 1 (2)

A(K) = B(K)**2 (3) COMMPN N (7)
CALL ABC(A(K)) (&)

TERM = B(K) (5) N=N+ 2 (8)

When ABC is called, K has its proper value in C{MM@N
storage and thus N has the same value, Statement (8) changes
the value of K in CYMM@PN storage. At execution of statement (5)
however, the value of K in CYMM@PN is not used to find the
appropriate term in the array B; because of the way FORTRAN is
set up the subscript K is determined by a different storage
method, and on return from a subprogram which recalculates the
variable K, the subscript K will not have been changed.

The statement
K=K (4a),

inserted between (4) and (5) in the example, will cause the
subscript K to be reset by the value of the variable in C@MM@N.

Now consider this example.

=17~

COMMPN K (1) SUBRPUTINE ABC(X) - (4)
‘ CiMMAN N (5)
D 1 K=1,J (2)

1 CALL ABC(A(X)) (3)

Throughout the loop on K, the subscript K will be
advanced in accordance with the D@ specification; the value of
K in C{MM@PN storage, however, as transmitted to the subprogram
ABC, will remain at whatever value it had before entering the
loop. (If statement (2) is the first appearance of K following
statement (1), moreover, K in C@MMPN storage will have had no
value assigned to it at all.) A statement

K=K (2a)

inserted within the range of the Dfj, or any appropriate state-
ment with K on the left of an = sign, will reset K in' CEMMEN
storage (i.e., K in its role as variable) in accordance with
the values of the index,

