MAC-TR-16

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CTSS TECHNICAL NOTES

by

J.H. Saltzer

MAC-TR-16

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

CTSS TECHNICAL NOTES

by

J.H., Saltzer

ABSTRACT

This report is a technical description of the 7094
Compatible Time Sharing System in use at Project MAC and the
M.l.T. Computation Center, |t is designed to acquaint a
system programmer with the techniques of construction which
were used in this particular time-sharing system, Separate
chapters discuss the overall supervisor program flow;
console message input and output; the scheduling and storage
algorithms; and a thumbnail sketch is given of each of the
subroutines which make up the supervisor program,

This report was prepared with the aid of the compatible
time=sharing system and the TYPSET and RUNOFF commands.

"Work reported herein was supported (in part) by
Project MAC, an M.1.T. research program sponsored
by the Advanced Research Projects Agency,
Department of Defense, under OQffice of Naval
Research Contract Number Nonr-4102(01).
Reproduction in whole or in part is permitted for
any purpose of the United States Government."

Preface

The writer intends these notes to provide a technical
introduction to the operation of the 7094 Compatible Time
Sharing System for a user who wishes to participate in
programming and related development of the time-sharing
system, In their present rough form, the notes attempt to
fill as quickly as possible a need for tutorial
documentation of the time=-sharing system.

The reader should have considerable experience in
computer programming, including a knowledge of the machine
language (FAP) of the 7094 computer. He should also be at
least a casual user of the time-sharing system and thus
familiar with the operating characteristics of the system,
and he should be familiar with the system description
provided in the CTSS wusers' manual (1). However, when
highly technical aspects of the 7094 operation or special
features of the time-sharing system are discussed, the notes
will provide enough background material for a reader
familiar with these subjects.

Note: In the interest of getting into distribution a maximum
amount of information in a minimum amount of time, sections
5,6, and 7 of the Technical Notes consist mostly of tables
and charts, with a minimum of verbal description. They
should provide a useful reference source, though they are
not ideal for tutorial purposes.

(1) F.J, Corbatdé, et al: The Compatible Iime=-Sharjing
System: A Programmer's Guide, M.1.T. Press, Cambridge,

Mass.,, 1963,

CTSS Technical Notes

Table of Contents

Preface

Introduction to the Technical Aspects of CTSS.

The Computer

Design Principles

Use of Disk and Drum Storage

Relation Between User, User Program, and Supervisor
Supervisor Commands

The Modular Time Sharing System

Construction of the Supervisor Program
Supervisor Program Flow
Data Channel and Clock Traps

System Modules

Input and Output

The General Logic of Input Flow
The General Logic of Output Flow
An 1/0 Adapter Module

The Typewriter Coordinator Module

Other 1/0 Devices: Interface |1

The Scheduling Algorithm and the Storage Algorithm
The Scheduling Algorithm
A Typical Scheduling Policy

The Background System

11
12

15
17
20
21
25

26
26
30

CTSS Technical Notes

Policy on Charges
The "Onion=Skin" Storage Algorithm

The User Dump

Appendices:

6.

7.

L=A States of a User

L-B Listing of Scheduling Algorithm

Flow Charts of Main Control and Trap Processors.
Cycle Entry of Main Control

Command Processing in Main Control

Flow Diagram of the Clock Trap Processor

Flow Diagram of RSTCPU

Flow Diagram of the Protection Trap Processor

The Disk Control Module.
Introduction

The Disk Control Routines
Loading and Dumping the Disk

Disk Routine Tables

30
31
32

37
39

52
53
54
55
56

57
57
57
57

Description of Entry Points and Cross-Reference Table,

Introduction

Thumbnail Sketches

63
63

CTSS Technical Notes PAGE 1
1. Introduction to the Technical Aspects of CTSS.

In this section we will review several ideas which are
covered in the CTSS Programmer's Guide, but from the point
of view of a system programmer rather than that of a user of
the system. We will discuss, in turn, the computer on which
the system operates; the overall design principles; the
place of the disk and drum memories in the system; the
relation between the user and the supervisor; the types of
commands; and finally, the modular construction of the
system supervisor,

Jhe Computer.

While many of the ideas involved in the time-sharing
system are to some extent independent of the computer which
the system uses, a technical discussion presently requires a
specific reference to details of the particular computer.
The computer in these notes is the [IBM 7094 with several
special features. The most important are;

1. Core storage interval timer clock. This includes an
"alarm clock" which can cause a program interruption
similar to a data channel trap.

2. Memory protection and relocation registers. These
permit a section of the computer memory and certain
instructions to be declared "off limits" to a program;
a trap will occur whenever a program attempts to tread
“Yoff limits.,"

3. At least five data channels, connected to the following
equipment:

Channel A: Printer, punch, reader, tapes, and
Chronolog clock.

Channel B: Tapes.
Channel C: Disk and Drum Storage.

Channel D: Direct data input and output for special
experiments,

Channel E: 7750 Communications Channel (which
communicates with typewriter consoles).

The Project MAC Computer has two additional channels:

Channel F: Disk and Drum Storage.

CTSS Technical Notes PAGE 2

Channel G: High Speed Drum,

L, Two 32K core storage modules,

These special features are combined with an extensive
supervisor program, known as the '"time-sharing system
supervisor' to provide a complete time-sharing system.

Design Principles.,

It will be somewhat easier to understand the general
import of the ideas to be presented in these notes if some
of the principles of design of the time-sharing system
supervisor are stated clearly at this point.

1. Although subsidiary computers (the IBM 7750) are
an integral part of the system, as many functions as
possible are carried out by the 7094. This centralization

of supervisor control is primarily to simplify the job of a
person trying to learn how the system operates.

2. The system is designed for the maximum possible
interaction rate with the wuser: the 7094 accepts each
character as it is typed by each user. It is not necessary
for the user to communicate on a line-by~-line or

paragraph-by=-paragraph basis with his program, although many
programs do not attempt to take advantage of the maximum
interaction rate,

3. Input and output from user programs are provided
by supervisor subroutines which allow the user to specify by
name the function he desires without irrelevant detail and
bookkeeping on his part. For example, if he wishes to store
some information on the disk he gives the supervisor the
block of information and a name by which he knows the block;
he can retrieve it later by asking for it by name. He need
never worry about disk track numbers or complicated data
channel programs. Similarly, the mechanics of communication
with a typewriter console via telephone 1lines would deter
even the most experienced programmer; but a subroutine call
is provided which accepts a message and the information that
it is to be typed on a console; the supervisor subroutine
takes care of the rest of the details. This principle is
carried to the point that the user is required to do all his
/@ via supervisor subroutine calls.

4, The supervisor is designed to be context-free,
That is, although it accepts commands from a user, it has no
direct interest in what the commands do; it considers a

command name to be merely the name of a program to be found
in a directory; when the program has been found it is loaded
and started just like a program written by the user,

CTSS Technical Notes PAGE 3

Use of Disk and Drum Storage.

As mentioned above, input and output are handled by
supervisor subroutines for the user. This comment applies
especially to the disk file and the magnetic drum memory. A
special supervisor module, the disk control, handles all
input and output for these units, The disk control module
has been designed so that the user cannot distinguish
between the disk and drum memories, There are four primary
uses of the disk files:

1. User files., These are files of information which a
user wishes to store away for future reference. They
may consist of programs, data for programs, or any
other information the user desires. They are kept on
the disk indefinitely and allow a user to retrieve a
program several weeks after he wrote it, Thus, the
disk replaces the decks of cards and reels of magnetic
tape usually associated with a large computer
installation,

2, Working programs. When a program actually works, it
shares the computer with several other users. Since
not all of these users will fit into core memory at
once, the excess are stored temporarily on the disk or
drum to be brought into the computer when their turn to
use the central processor comes up again,

3. Supervisor commands. Whenever a user types. a super-
visor command, he implicitly requests execution of a
program. |In most cases, this command program is kept
on the disk.

L, Scratch Pad memory. Many programs, such as trans-
lators, require large blocks of temporary storage which
do not fit into core memory. The disk is also used to
fulfill this need.

A1l files kept on the disk (and drum) are known to the
user only by name: the supervisor disk control module keeps
for each user a directory of names and corresponding track
locations on the disk, A simple chaining procedure is used
to locate any given file.

A master file directory, which contains the
identification of all potential users of the system, starts
at a fixed place on the disk and contains all pertinent
information about the user, including the 1location of his
personal file directory, His file directory lists names and
starting locations on the disk of each of his personal
files. Every user of the disk control module, including
even the supervisor, must appear in the master file
directory. As will be seen later, the supervisor modules
are also stored in relocatable binary form as files on the

CTSS Technical Notes PAGE 4

disk under the user number of a special BSS 1loader which
starts up the system,

Relation Between User, User Program, and Supervisor.

For every possible user of the system, there 1is an
entry in the Master File Directory of pertinent information
about his identification and use privileges. There is no
information, however, about the nature of the console he
might use; this information is not of interest to the
supervisor and only concerns the user (and possibly his
program) .

When a user logs in to the system, he is assigned a
user number and thereby becomes subject to the attention of
the scheduling algorithm., A logged-in user is assigned a
"state'" according to the demands he is placing on the
system; this "state" will usually change several times while
he is using the system. Each state has an associated code
number:

0. "Dead". This state corresponds to a user without a
program, He may be in this state because he has just
logged in and has not yet loaded a program, or because
his program has just completed execution and returned
him to the dead state. In all states bhut this one (and
sometimes state 3) there exists a ''core image" of a
program for this user,

1. "Dormant'", A user is in the dormant state when he has
a program which is potentially runnable, but which for
some reason the user does not want to execute at the
moment. His program is probably not being kept in core
memory but temporarily on the disk file, until he gives
the word for it to begin execution., A user will be in
this state if he has just loaded a program but has not
yet started it; or if he has just finished program
execution and returned to the dormant state. This
latter possibility differs from the similar situation
described under '"dead" in that the core 1image of the
program remains available either for rerunning or for
postmortems.

2. "Working". A wuser 1is in this state whenever his
program is scheduled for execution, Working users
actively share the use of the computer, but only one of
them is actually in execution at any given instant,
while the others may be in core or stored as core
images on the disk just like the dormant users. All of
those trying to execute are considered to be in the
working state,

CTSS Technical Notes PAGE 5

3. "Waiting Command", If a user is in either the Dead or
Dormant state, anything he types is considered a
command to the supervisor. When he finishes typing a
command, the supervisor places him in state 3 to
indicate that he should be actively considered by the
scheduling algorithm., When his turn comes to use the
computer, the corresponding command program is located,
loaded if necessary, and his state is then changed to
"working'". Note that a command program is considered
to be the user's program; once it is loaded it s
indistinguishable from one of the user's own programs.

4, "Input Wait". When a working user program attempts to
read a line of input from the console typewriter, there
is a good chance that the user (typist) has not vet
finished typing the line. |In this case, the wuser s
assigned state 4, and he is temporarily ignored by the
scheduling algorithm until such time as the needed line
has arrived, Although in principle a request for input
from any device could result in the input wait state,
this state does not apply during the reading of a file
of information from the disk. The rate of information
transfer in this case is so high that more time would
be lost switching users than waiting for the first
user's input to arrive.

5. "Qutput Wait". When a user's program attempts to type
out a series of messages on the typewriter console,
messages may be produced at a higher rate than the
console can type, After a few such messages have been
absorbed by intermediate buffers, the user is placed in
state 5 until the messages clear sufficiently to permit
the program to proceed, The output wait state could
also apply to any output device requested by the wuser,
but considerations similar to those described under
input again apply.

One further noteworthy detail of the present
implementation makes clear future remarks, The two memory
banks of the computer will be referred to as '"memory A" and
"memory B", The supervisor is in memory A, and user
programs are in memory B, It is not essential that such a
division of equipment take place, but a formalized division
greatly simplifies the programming within the supervisor.

Supervigor Commands.

A command program is nothing more or less than a
complete program previously written by someone, which is
stored in the form of a core image ready to load and run. A
number of those command programs are considered "public
commands'" and are stored in the supervisor's disk files,

CTSS Technical Notes PAGE &

Other, private command programs may be stored in a wuser's
private file., Examples of public command programs are the
MAD and FAP translator programs. An important aspect of the
way in which the supervisor handles commands (requests for
the execution of a command program) is that the supervisor
remains aloof, as it were, from the operation of the command
program,

Suppose a user types the command MAD with appropriate
arguments, The supervisor accepts this input 1line after
checking that it is in fact a command, When it is the user's
turn to run, the supervisor looks up the command name in a
command directory which contains BCD command program names
and command program starting locations. If the command
named MAD is found in the directory, the file named 'MAD
TSSDC." is read from the disk into core B and started at
the location given in the directory. This command program
is now the user's program and runs exactly as if he had

written and loaded it himself, Note, however, that the
supervisor itself has no information about the command or
what it does, except its name and starting location. It is
in this sense that the supervisor is context-free.

There are, in fact, three kinds of commands; we have
Just described the operation of "disk-loaded" commands. A
second type of command, also context-free, is the B-core
transfer command. |If the user types a B-core transfer
command and is in a dormant state (that 1is, has a B-core
image), his core image is loaded and the transfer is made to
a special place in his program (again given in the
supervisor's command directory), Examples of B-core
transfer commands are PM and FAPDBG. These functions are
carried out by subprograms which are loaded as part of the
user's program. The third command type is the A-core
transfer command, which requests an action intimately
connected with the supervisor and 1is thus not strictly
context-free. Examples of this type are LPGPUT, L@GIN, and
SAVE. Here no loading is needed, since the command programs
are built into the A-core supervisor,

Ihe Modular Time Sharing System.
The supervisor program has been written in the form of
modules, for ease in understanding and modification. Each

module of the supervisor takes charge of a specific
function, such as typewriter coordination, disk file input
and output, or scheduling of user programs. The modules are
written in languages which produce binary programs in BSS
relocatable form; thus the modules may communicate with each
other only through the two standard communication procedures
of BSS programs, namely the transfer vector and program
common, Thus the number of interconnections between
separate parts of the supervisor is minimized and such

CTSS Technical Notes PAGE 7

interconnections can only exist on a formal, advertised
basis, Most importantly, the reader can study and
understand the operation of a specific module while he
still has but a vague idea of what happens inside other
modules, Figure 1.1 is a schematic illustration of a layout
in core memory of the modules of the supervisor program, and
the user programs., The diagram shows only a few of the more
important modules.

> User Area

Core

Memory 1 Clock trap 1/0 Adapter)
Processor |
Main 1/0 Adapter
Control - 1] Supervisor
Storage Typewriter area
Allocator Coordinator
Scheduling Disk
Algorithm Control
| __Machine trapllocations)

Figure 1,1 -- Possible core Memory Layout.

While the system is operating, the modules of the
supervisor are in the form of a complete program loaded and
linked together in core memory., However, copies of each
module in BSS form are stored in the disk file, In addition
to the modules normally used in the system there may be
newer modules being debugged, or older modules kept as
backup in case the presently used version suddenly develops
an unforeseen bug., The system is started up by placing a
modified BSS loader into core memory and giving this loader
a special control card which specifies a list of modules to
be loaded and 1linked together, The steps involved in
starting the system are as follows: first, a 7094 program
loads the disk from a tape copy made of the disk following
the latest previous use of the time-sharing system; then,
another 7094 program loads and starts operating the 7750
computer, which handles console typewriter input and output.
Now, a special BSS loader which contains a copy of the disk

CTSS Technical Notes PAGE 8

control module is loaded, from a card reader or tape, into
the 7094. The loader is followed by a 'supervisor name
card." The BSS loader has a user number, and thus has
access to the disk files with the aid of its disk control
module. The "supervisor name card'" specifies the name of a
disk file accessible to the BSS loader which contains a list
of names of the disk files to be loaded to form a supervisor
program.

There are two interesting aspects of this procedure for
loading the time-sharing system supervisor., First, maximum
use is made of existing programs, such as the disk control
module. Second, if a module being checked out develops a
bug, it can be very easily removed from the system (and an
older, reliable version substituted) with a minimum of fuss
and bother, simply by a reloading of the special BSS loader
with a supervisor name card which specifies a different list
of disk files to be loaded to produce the supervisor, This
feature is vital in a system which is in use while still in
a state of development.

Epilogue.

In conclusion, a picture of the magnitude of this
undertaking, in terms of relative size of the programs
involved, may be of interest. The supervisor program
consists of about 12,000 (decimal) instructions plus tables.
This figure compares with 11,000 for the MAD compiler,
16,000 for the FAP assembler, and some 60,000 instructions
in the older 1BM Fortran |l compiler., Thus 1in the proper
perspective, the time-sharing system supervisor is an
undertaking comparable to the development of a completely
new compiler system, In addition to the FAP and MAD
translators, command programs totaling another 6,000
instructions are necessary to frame out a 'usable" time
sharing system,

CTSS Technical Notes PAGE 9

2, Construction of the Supervisor Program

Introduction.

In this section we examine the general flow of control
within the supervisor program and consider when and how it
obtains control, and what happens when it does. In doing
so, we will get a slightly closer, but not detailed view of
several of the important supervisor modules.

Supervisor Program Flow.

Suppose a user's program is operating. The program is
located in core B, and has control of the computer; the
supervisor is located in core A but is not presently in
operation. There are three events which can cause the
control of the computer to transfer to the supervisor, as
indicated in figure 2.1.

First, if any user at any typewriter types a character,
he causes a data channel trap at the 7094, Control passes
to one of several special supervisor modules called
Input-Output Adapters. The appropriate Adapter accepts the
character, performs any necessary code conversions on it,
and places it into a common input pool buffer along with the

typist's '"user number". Control then returns to the
interrupted program which continues as if nothing had
happened. A data channel trap is a true "interruption" as

it may occur at any point in the user's program,

A second event which gives control to the supervisor is
the following: after a period of time known as a "clock
burst," and typically of value 0,2 seconds, a clock trap
occurs, which passes control of the computer to the

supervisor clock trap processor, At this time the
supervisor does most of its '"housekeeping" work. The
typewriter coordinator processes input and output between
user programs and typewriter consoles. The supervisor

examines commands typed by other users and makes notes,
Finally, the supervisor consults the scheduling algorithm
module to learn whether or not this user should be permitted
another "clock burst" of running time. 1f he is allowed to
continue running, his program is restarted at the point at
which it was interrupted by the clock trap; if not, another
user is allowed to run, and a "swap'" may have to take place.

We have thus far looked at two ways in which control
may pass from the user's program to the supervisor. Both of
these traps, data channel and clock, have the property that
they may occur at any point in the wuser's program. The
third event which causes control to pass to the supervisor
however, is completely under the user's control. This event

Protection Clock Data Chahnel
trap trap trap
r‘—* —————————————— niniule
Protection i | clock trap [—»{ TcoORD Input !
trap Disk] Processor Adapter 1
processor Routine { |
state state | trap trap SCHED |
not changed | Storage : from from |
changed Algorithm | core core |
b and A or)
’ ! swap no swap 1
' needed needed 1
| Main Control ‘__.!____)
Perform swap I]
]
|
! A !
p| Restart swap] common
cPU needed | exit :
1
no swap 1 !
needed U R, disabled _ _ __ _ ____ -
enabled

Transfer to return to Note: Clock and
core B interrupted data channel

program program traps will

Figure 2.1 =-- CTSS supervisor, overall flow,

occur while
swapping.

[e21uydal SSLI

sajop

0T 3oVvd

CTSS Technical Notes PAGE 11

is the (presumably) intentional protection mode violation;
the signal that the user is calling on the supervisor to
perform some special subroutine function. When such a
subroutine call occurs, of course, the operation of the
supervisor depends on exactly which subroutine has been
requested. In general, however, if the user's state has not
changed as a result of the subroutine call, control returns
to him directly as soon as the subroutine operation has
finished, unless he used up his '"clock burst'" during the
operation of the subroutine, If the user's state has
changed as a result of a subroutine call, for example, a
call which requests a change from working to dormant status,
control passes instead to that portion of the supervisor
concerned with locating and running another user program,

Data Channel and Clock Traps.

For the interpretation of the flow diagram in figure
2.1, the operation of the data channel and clock traps must
be understood. These two traps may be elither enabled or
disabled. In the supervisor, they are almost always enabled
and disabled together. |If a trap is enabled, the program in
operation, whether user or supervisor, may be interrupted at
any time; the program has no control over interruptions
except to disable the traps. On the other hand if the traps
are disabled, when a trapping condition occurs the program
is not interrupted; instead the trap is remembered until
such time as the traps are re-enabled (restored), The
ability to disable traps, yet remember them, is necessary in
order that the supervisor may handle all traps in an orderly
manner.,

The dotted boundary in figure 2,1 is the disable-enable
boundary; all programs inside the boundary run with data
channel and clock traps disabled, those modules outside the
boundary run with data channel and clock traps enabled,
Thus a data channel trap cannot occur while in the
scheduling module but may occur while in the disk control
module,

When a clock or data channel trap occurs, further clock
and data channel traps are immediately disabled. The
supervisor continues to run with traps disabled until it
either returns to the interrupted program or it goes to the
sway (main control) section.

Note that care must be taken to insure that an enabled
supervisor subprogram is never entered following a trap from
the very same program. To make sure that this does not
happen, the clock trap processor never goes to the swap
section if a trap has come from core A. Instead, if a swap
is needed, only a switch is set, and return is made directly
to the point of interruption of the core=A subroutine. When

CTSS Technical Notes PAGE 12

the subroutine has finished, it returns to the user program
via the common user return RSTCPU, Since the user may have
run out of time during the subroutine operation, RSTCPU
checks the swap switch and if a swap is needed, performs the
transfer to the swap section whicn the clock trap processor
was afraid to do before.

System Modules.

After the brief consideration of a general picture of
the supervisor operation, it may be useful here to list all
of the modules with a brief sketch of their diverse
purposes, The block diagram, figure 2,2, shows the general
relationships between the various modules, although flow of
control between modules is not unambiguously indicated,

Each module is a subroutine, or group of related
subroutines, filed by a six-character primary name and a
secondary name corresponding to the language in which the
module is written., The first four characters of the primary
name are mnemonically related to the function of the module
and the last two characters are a number indicating the
version of the module., Some modules, because of their size,
are split between two or more files. Such a .split may or
may not imply separateness of functions of the parts of the
module. The names of the modules and their functions in the
version "1Al" system are:

Primary File

Name Function

MAIN Initialize time=-sharing supervisor,
cLgcC Clock trap processor,
CTRL Main Control Section,
STAR Storage algorithm,
SCDA)

SCDB

SCDC Scheduling algorithm,«*
SCDD }

SCDE

SCDF

SCDG

TCAR Typewriter coordinator.

PMTA Protection mode violation processor,

RTRN

SAVR

UTRP

RFLX
CcpMC
C@MD
CONV
@NLN
EDBG
L¢GA}
LAGB
LAGC

SAVC
pCcTC

DSK1
ADP1
AP75
TSTQ
CHNE
HIGH
UNIT
DCER
PLATS

or
KLUD

CTSS Technical Notes PAGE 13

Common exit routines to return to
trapped programs,

Save and restore user machine conditions.

Process STR, floating point, and data
channel traps for user programs,

Processes user input lines.
Miscellaneous subroutines,

Command directory (no instructions),
BCD conversion routines.

Do on-line |/® for supervisor.

Post mortem and trace routines for
debugging the supervisor,

LAGIN, LPGBUT commands,*

Start, save, restor, resume commands.
PCTLK, PCTPAT, and OCTTRA commands.
Disk control,

7750 1/0 adapter.

7750 Write subroutines,

Assign 7750 storage.*

Channel E hardware subroutines,

High speed line adapter.

Assign and look up logical user numbers,

Handles channel E errors.

Channel D 1/0 adapter.

* |ndicates a module written in the MAD language.
other modules are written in FAP,

NOTE: More detail about the entry points of each module
contained in Chapter 7.

The

is

Start STR, FPT Protection Interval
traps Mode timer
Violation trap
IMA | UTRP PMTA.B RE L TCO DAP, HIG CHN
Inftialize Process Protection buffer | __IClock trap | _[Typewriter Channel E | ___Hardware
System User trap Violation typewriter Processor Coordinator 1/0 Adapter Interface
Processor input Channe
CIR i ik T DCTER
Maln Scheduling Match Assign 7750 Handle
Control lgorithm physical & storage Channel E
l. i Errors
PLATS
LIChannel D
LOG 19 SKl ICAMD RTRN I/0 Adapter
LAGIN Storage |__Disk Command Common Save and
RESTAR LAGAUT Rigorithm Control Directory exit restore Mach
RESUME command routin iconditions
m
User
Program
Subroutines called by many modules:
[Eoed
Collect Miscellane~ Decimal to n-line 1/0 Supervisor
Statistics bus routines binary conv. for super- debugging
tc, isor and pm

Figure 2.2 -=- Block diagram of supervisor showing important inter-module links.

S?10N |Bd21uyd3dl SSI1I

®T 30Vd

CTSS Technical Notes PAGE 15

3. Input and Output

jntroduction.

In this section we will study the communication between
the user and his program in the time-sharing system. We
will discuss specifically how a typewriter communicates with
the system, although the ideas can easily be extended to
more exotic forms of input and output devices

To allow a continuous flow of input or output between
the typewriter and the user's program, which may not be in
core memory at all times, the supervisor provides buffers
for the data being transmitted, Input messages are buffered
in core A, within the supervisor, while output messages are
buffered in the 7750 computer.

The General Logic of lnput Flow.

Figure 3.1 is a flow diagram of the handling of input
from a typewriter by the time-sharing system. We may begin
with a user typing a character on his typewriter, This
character travels via telephone lines to the 7750 computer.
The 7750 accepts the character, and turns on the 7909 data
channel, The 7909 data channel places the input character
in a buffer in the 7094 memory and causes a 7094 data
channel trap to the appropriate 7094 input adapter. The
input adapter program moves the character into a character
pool buffer, in the form of a word containing the character
in the address and logical user number in the decrement.
This format, used for all character-oriented devices, is
known as "interface 1", The character pool buffer is
capable of holding about 600 such characters (for 30 users).
The 7094 then returns to whatever business it was about when
the trap occured.

The characters in the character pool buffer are thus
left for a later section of the supervisor to examine and
eventually route to the proper destination. It is
fundamental that the 7094 computer responds to input
character by character so that if a user program desires, it
can communicate back and forth on a character by character
basis with the user,

Further processing of input resumes when a clock trap
occurs, giving the supervisor program intentional, complete
control of the computer. At this time the input characters
are processed in two stages. The first stage, handled by
the typewriter coordinator module, collects characters into
messages, Each user has a separate secondary read buffer,
and all characters which he types are moved to his secondary
read buffer by the typewriter coordinator. No further

(ghar. + phys. un{E)

7909 data
channel

SESpE—

b e e — —

type-
writer

type-
writer

etc,

7094

Data
Channel E
trap

|

Adapter
input
buffer

—

Decode
and
move
input
char.

Clock trap

to
char,
pool
buffer

l

return to

interrupted |

program

e

|
|
|
l
l

TCOORD

Put
character|-»
in user's

secondary
read

buffer;
Mark

completed
lines by
ILINES

char.,,user no,

v
return to
clock trap
processor

RDTELY
Input Adapter

Figure 3,1 -~ Simplified

TCOORD
Typewriter
Coordinator

Input Flow.

Clock trap

processor (after

TCOORD done

)

Move completed

lines to

appropriate

buffer,

not at
command
level

v

continue

I
I
I

|at
rcommand

level

\

\
\
\

clock trap \
processing

\
\

¥

User
command
buffer

A call to subroutine RDFLX
obtains a line from the

user lines buffer
is a line for that user,

If not,

STATUS(USER)
changed to

if there

is

Input Wait,

S83O0N |Eed1uyda]l SS10

9T 39vd

CTSS Technical Notes PAGE 17

action is taken unless one of the characters typed by the
user is found to be a "break'" character such as a carriage
return or other special character designated by his program
as a break character, When a break character is found among
the input characters his message is considered to be
complete, and no more characters are placed in his secondary
read buffer. |f more characters remain in the character
pool buffer for this user, they are left there until his
secondary read buffer is free. A program switch is set to
indicate that this user has completed typing a message., The
typewriter coordinator attempts to thus dispose of all of
the characters in the character pool buffer by distributing
them to user secondary read buffers,

When the typewriter coordinator is finished moving
characters into the secondary read buffers, the second stage
of input processing begins, At this stage, handled by the
clock trap processor module, completed messages are

delivered to their final recipients' "mailboxes". If the
user is at command level (dead or dormant) the message is a
command and is placed in the user's command buffer., I|f the

user is not at command level, the message is for his
program, and so it is moved to the '"user lines'" buffer,
There the message remains until his program calls upon the
supervisor subprogram RDFLX for final delivery.

Note that the second stage, which removes the message
from the secondary read buffer, is not strictly necessary;
the user's secondary read buffer could be considered as his
mailbox. The second stage could consist only of noting
completed messages from users at command level., A floating
buffer scheme to do this simplification could easily be
implemented,

An important reason for the modular construction of the
system supervisor is well illustrated by the input scheme,.
There may be any number of input adapter modules
communicating with character-oriented devices. Each of
these modules, upon obtaining control from a data channel
trap caused by its hardware input device, can place
characters in the character pool buffer in the standard
Interface | format. The processing done by the typewriter
coordinator is completely independent of the source of the
character in the character pool buffer. The adapters can be
considered as "matching devices" between the specialized
hardware requirements of different input devices and the
standardized characteristics of the input interface of the
typewriter coordinator.

Ihe General Logic of Output Flow.

Having looked briefly at the input side of
communication between wuser and user program, we will
postpone detailed discussion of the input modules until we

CTSS Technical Notes PAGE 18

have surveyed the related output scheme. Output is handled
in a way quite similar to input but with some necessary
differences. The major difference is that a program can
produce output at a very high rate, while a typist can
produce input only much more slowly. On the other hand, the
output processor can easily turn a program off if too much
output comes out in too short a time; the input processor
cannot turn off a typist without annoying him and perhaps
losing some of his typed characters.

Thus one can make sure during input that the system
keeps up with the typists by making the character pool
buffer large enough to accept the maximum number of
characters that all the typists could produce in, say, two
seconds. Then, if the typewriter coordinator attempts to
empty the character pool buffer at least once per second,
only very rarely will the buffer overflow and the typists
told to desist.

In contrast, the output sections of the supervisor must
constantly expect to be overburdened with output lines
produced by programs which run faster than the typewriters,
The supervisor handles the problem very simply by refusing
to accept output from a program unless there is room for the
data in the output buffers. |If the buffers are full, the
user's program is placed in "output wait" status. The user
program does not return to working status until buffer space
is available for the program's output.

With these considerations in mind, we can now 1look at

figure 3.2, a flow diagram of output processing. Output
originates when the user's program calls for the supervisor
sub=-program WRFLX or WRFLXA. The user's message is

converted to 12-bit form if it is not already in that form
(that is, if the user is in the normal, 6-bit mode) and
moved into the primary write buffer., This buffer has room
for 29 words; since three 12-bit characters are stored in a
word, there is room for a "line" of 84 characters plus a
carriage return,

Subroutine WRFLX now calls the output adapter module at
the entry point WRTELY to write the information out on the
7750 computer. The output adapter may perform an error
return, however, to indicate that the 7750 does not have
room for the message. If this is the case, WRFLX itself
performs an error return which places the wuser in output
wait status. When space becomes available, the 7750 will
send a completion signal back to the 7094, and this user
will come back to working status. As soon as the user
begins executing again, subroutine WRFLX starts over from
the beginning, moving the message into the primary write
buffer (since the buffer may have been used by someone else
while the first user was in output walt).

CTSS Technical Notes PAGE 19

WRFLX

Move line to

Primary Write
Buffer
Primary
AWrite
HBuffer
WRTELY Y |
|
US2BS] Get | (29 words)
line number of
Physical Unit I
/

Y j

/
Do code conver- .
sion for this [~ Char, and Physical
device Unit_ number

v

Place data in Channel
Channel Output |~ — — 4+ — P> E

Buffer Output
Buffer
! |
IGEY ts 7750 i
0Q. Jstorage space |
* (Full Javailable? Y
return) yes
Set OUTPS 7909 Channel E
Write 7750 7750
7] N
Perform »7 ' AN
3,4 return ﬁ 4
Return to caller| Type Type Type
at 4,4 writer| Jwriter writer

Figure 3,2 -- Output flow. (TCOORD and WRTELY)

Assuming, however, that the 7750 has room for the
message, the output adapter encodes the message and delivers
it to the 7750, A detailed description of the output
adapter, and of the criterion used to determine whether or
not the 7750 has '"room" for a message is the subject of the
next section,

CTSS Technical Notes PAGE 20

WRFLX also does some processing of the output line. It
locates the last non-blank character in the line and inserts
a carriage return character after it, while it deletes the
trailing blanks. For those applications where this
processing is not desired, an alternate entry, WRFLXA s
provided which puts out the line exactly as given,

Since calls to WRFLX and WRFLXA always must specify an
integral number of words, they also always specify a
multiple of 3 or 6 characters, depending on the status of

FULSW. In those cases where a different number of
characters is desired, the null character, 57 (octal) may be
inserted to fill out the 1last word in the block. The

typewriter coordinator will ignore null characters found in
the secondary write buffer.

Note that the only communication between the
input-output adapter (the two functions are really handled
by a single module) and the rest of the supervisor is via
the primary read buffer (Interface 1) and the
subroutine~type call to the output adapter. The resulting
independence makes it very easy to remove one 1/0 adapter
program and insert another for a different class of
input-output devices.

An 1/0 Adapter Module,

We are now familiar enough with the general logic of
input and output to study in detail the modules which
perform it. We start with an 1/0 adapter module, but
remember that this 1is only a description of a typical
adapter module and that any other program with similar
characteristics with respect to the primary input and output
buffers can, and occasionally does, replace the particular
one we are studying.

The 1/0 adapter module is of course split into two
quite independent parts, one handling input and the other
output. Let us consider the output section first, as
illustrated in figure 3.2, The output adapter performs the
necessary code conversion for the user's particular device
(teletype, 1050, flexowriter, etc.) and places the data in
the proper format for the 7750, one character per word, with
the user's telephone line number in the decrement. The
supervisor module UNIT maintains a table of correspondence
between actual wuser, as identified by telephone line
numbers, and internal logical user numbers, Each user, as
he dials into the system, is assigned a logical user number
for easy identification. The adapter must then establish
whether or not there is room for the message in the 7750
buffer area. A separate module, TST®, keeps track of how
much space is available in the 7750, and this module also
decides the policy of who should be allowed how much space

CTSS Technical Notes PAGE 21

there., There is room for 10,000 characters n the 7750
buffer, and the amount which any user may have is known as
his allotment, ALAT. |If N characters are actually in use at
the time a user asks for output space, his allotment s
calculated as

AL@T = (10000 - N)/4

If the total number of his characters in the 7750 will not
exceed AL@T, he is allowed to perform his output. I1f he
will exceed AL@T, an error return is given to indicate that
he should go into output wait.

Consider now the input adapter module, figure 3.3. In
this case, control comes to the input half of the module via
a data channel trap; there is at least one character in the
adapter's input buffer. The input adapter picks up the
character, converts it from the 7750 format to Interface |
format for the character pool buffer and replaces the user
telephone line number with his internal logical user number.
It then checks to see if this character is really a
completion signal from the 7750 saying that a 31 character
buffer has been typed out on this user's typewriter, If it
is a completion signal, the adapter calls TSTP (at entry
point TGIVE) to tell it to release a block of 31 characters
assigned to this user. All other characters are placed into
the character pool buffer for later processing by calling
entry point T@P@PL in the typewriter coordinator. The input
adapter restarts the 7909 data channel program, and returns
via the common exit module to the program that was
interrupted by the data channel trap.

JThe Typewriter Coordinator Module.

Figure 3.4 is a flow diagram of the typewriter
coordinator program. As indicated, the coordinator only
handles input processing., Actually, WRFLX and WRFLXA,
described previously, are written as part of the typewriter
coordinator module.

The typewriter coordinator is called as a subroutine
once every time a clock trap occurs, by the clock trap
processor. Its purpose, you may recall, is to collect
characters from the character pool buffer into messages in
individual secondary read buffers. The coordinator begins
by examining the characters in the character pool buffer at
one time., Let us follow the path of processing of a single
character, First, the character is checked to see |f it is
one of the characters in the break character list. If it is
one of the three special ‘'quit-class" characters, (quit,
interrupt, or data-phone hang-up) this character by itself
is considered to be a complete message to the supervisor,
and the ILINES table is set to indicate that there is a

CTSS Technical Notes PAGE 22

Channel E data
channel trap

d

typewriter | Get character
W just typed.
7750 7909
""" channel E f
- x ! /
typewriter |”) / v
' / | Do code
¥ /. | conversion
Adapter
Input i
Buffer
BS2US Get

logical user no,

:

Is this a 7750

v yes | completion signal?
TGIVEI Notify TSTO no

that this user has
typed 31 characters
and 7750 space is

free. TOPQOLI pltace
| this character

Al in input pool.

Can user be allow-

ed to produce more
output?

yesl no

TOPOOL[Reset y
QUTPSW(USER) o Restart 7909
Data channel

l

Return to interrupted
program via common
exit.

Figure 3.3 -=- Input Adapter Flow Diagram,

waiting message from this user. To alert the supervisor
that this is a special message, the prefix of ILINES(USER)
is set to MZE and the quit-class character is placed in the
address of ILINES(USER). |If the character is not a break

CTSS Technical Notes PAGE 23

Call from clock
trap se;tion.

Get next character.

Characterj————pm{ls it Quit, Hangup, yes *

Pool or Interrupt?
Buffer no Set ILINES(USER)
\ to MZE char.

put |gg-!s there room
char. nolin this user's

back sec, read buffer?
J}e§
Is this an Check FULSW(USER)

yes jerase or kill] | for BCD mod
character 6-bit 12-bit
‘ho :;

Move character
Map into].. to user's sec.

6-bit equiv read buffer.

v v

Reset line Is this a break
or previous character (or is
character. S.R.B., full?) yes

no
* Set ILINES(USER)
to PZE FIRST,,n

Repeat for next

» character, <

done

return to caller

Figure 3.4 -- Flow diagram of Typewriter Coordinator.

character it will have to be moved into the user's secondary
read buffer, so the program then checks to see if there is
any room left in the secondary read buffer. If the buffer
is full, the variable ILINES(USER) will contain some
non-zero buffer address; this 1is an indication to the
coordinator program not to attempt to use the secondary read
buffer. Instead, this character is put back into the
character pool buffer.

Assuming that all these tests are passed, the program
then checks the variable FULSW(USER) to determine whether or

CTSS Technical Notes PAGE 24

not the user's program is using a full (12-bit BCD) mode.
If the user is using the ordinary 6=-bit mode, the 12-bit
character coming from the typewriter will have to be

translated. This translation includes two important
features. First, if the character is either the 'delete
line" or "delete preceding character,'" the 1line, or last

character, in the user's secondary read buffer is discarded,
Secondly, on all other characters a mapping is performed,
when possible, from the 12-bit character to one of the
allowed 6-bit BCD characters. For example, a small letter
"a" and a capital letter "A" can both be mapped into the BCD
letter "A" with octal code 21; however, certain special
characters such as the semicolon have no possible mapping
into 6-bit codes. If these non-mappable characters are
encountered, they are discarded at this point,

Having performed a 12-to-6 bit conversion when
necessary, all characters other than quit-class break
characters are stored in the user's secondary read buffer,
packed either 3 or 6 characters per word, depending on
whether the user is using 12=-bit or 6-bit mode. The final
check is to see either if the character is an ordinary break
(end-of-message) character or if it filled up the secondary
read buffer. If either case 1is true, the variable
ILINES(USER) is set to contain "PZE FIRST,,n" where FIRST is
the address of the secondary read buffer, and '"n" 1is the
number of words in the buffer., This is the indication to
the supervisor that this user has a complete, waiting input
line,

This entire processing operation is repeated once for
each character found in the character pool buffer. We have
not discussed here the inter-console communication
facilities provided by the ADPPT feature of the typewriter
coordinator.

Typical buffer sizes used by the typewriter coordinator
are:

Primary read (Character Pool) buffer: 600 characters
(for 30 users).

Secondary read buffer; 2 per user: 14 words,

Primary write buffer; 1 Only: 29 words (1 line).

The typewriter coordinator consists of about 500
instructions and about 2000 words of buffer space.

CTSS Technical Notes PAGE 2§

Other 1/0 Devices: lnterface 1l.

So far, the discussion has been restricted to
character-oriented input/output devices, including the
typewriter, A1l such devices have worked through the
character interface of the time-sharing system, known as
Interface 1, Any character-type device can easily be
attached to the system by providing an 1/0 adapter program
which converts the raw hardware interface into the standard
format of Interface I, which consists of one character/word
in the character pool buffer.

There is also another broad class of devices, such as
magnetic tape, which work in terms of words, and blocks of
words., A second interface is provided for these devices.

The details of Interface Il can be found in M.I.T.
Computation Center memorandum CC-226. For any input or
output device for which Interface |l appears to be

appropriate, an 1/0 adapter module may be written to perform
the function of matching the hardware characteristics to
Interface 1,

CTSS Technical Notes PAGE 26

b, The Scheduling Algorithm and the Storage Algorithm
Introduction.

In this section we examine the operation of two
important modules of the time=~sharing supervisor: the

module which decides who should run next and for how long,
and the module which allocates the user memory area among
various user programs. These two functions, scheduling and
allocation, are in fact closely related, and have been
separated in the supervisor because the particular
algorithms used permit the separate consideration of the two
problems. A more complex algorithm might consider both of
these functions simultaneously and therefore encompass both
modules. A third function, time accounting, has crept into
both of these modules, although it is nominally handled by a
separate module. The proper arrangement of these functions
is still open to debate, and the modules described here may
not represent the best possible organization,

[he Scheduling Algorithm

A1l scheduling policy is contained in the scheduling
module; in fact no mechanics of the time-sharing system are
performed by this module. The scheduling module is for the
rest of the supervisor a sage who is occasionally asked for
an opinion, but not asked to do anything else., Since
mechanics are absent, the scheduling module is well suited
to the MAD language, in which it is written, Since it is
hardly necessary to write an involved description of a
well-organized iMAD program, only the policy involved will be
stated, A reader interested in exploring how the policy is
carried out can easily understand the program itself, The
explanatory comments at the beginning of the program serve
to provide sufficient documentation.

\ Typical Scheduling Poli

The particular scheduling policy described here is not
the only such policy, and may not be the best policy,
particularly in the choice of the parameters given in the
program listing., However, it is a typical policy, and the
parameters given are typical parameters., |If one concludes
that a different parameter, or a completely different
policy, will produce better results, then a different
version of the scheduling algorithm may be easily inserted
into the system instead. Here, then, are the Iimportant
aspects of this algorithm, Figure 4.1 is a flow diagram of
the scheduling algorithm which may be easier to follow than

CTSS Technical Notes PAGE 27

the program itself on the first reading of the policy rules.
These rules apply to system version 1A3,

1.

6.

A1l users in state 2 or 3, "working'" or "waiting
command," are kept in a set of queues, which may be
considered to be one long queue of wusers to run, in
order,

The queues may be re-ordered at the end of each clock
period or more frequently, depending on events
occurring during that clock period. A clock period is
a short period of time, typically 200 ms., during which
some user program runs uninterrupted except for data
channel traps.

Each queue has an integer valued priority level, In
general, all the users in the queue with lTevel ";" are
run before any users in the queue with level "j+1",

There are MAXLVL+1 levels, numbered from 0.
(Typically, there may be 9 levels,)

A "quantum'" is the shortest period of time the
algorithm ever attempts to run a user, A user may run
more than one quantum, depending on his level, A user
at level "j" is normally allowed to run 2.P.,j quanta,
although he may be preempted by the arrival of a user

with higher priority.

A user at level "j" is moved to level "j+1" after he
has run 2,P,j quanta at level "j", Usually, he then
stops running in favor of other users at level "j'",

A user at level "j" is moved to level '"j-1" after he
has waited "QNTWAT" 60ths seconds without running at
all. Typically, this waiting time may be 60 seconds,

A user starts at a level depending on his program
length such that the time required to load his program
is a fixed proportion of the running time permitted at
that level, This proportion fixes roughly the maximum
efficiency of the system, (The efficiency may be
lower, because of pre-emption., See 8, below,) The
"level of entry" function can easily be changed to
reflect a different policy.

A user at level "j" may be pre-empted at the end of the
next clock burst by a user entering the queues with a
higher priority. The pre-emption will take place if
the user now running has run longer than would the
pre-emptor.

EVENT 0

system ———P»

startup

CTSS Technical Notes PAGE 28
_ SWAP &—1
initialize SCHEDL }J=—®»|NEWUSRe—U eturn
run background

EVENT 1 move long waiting move long running
clock —P»lusers to end of [W»|current user to endﬂ»decide
interrupt higher priority of lower priority
(200 ms) queue ueue
0 = DEAD
Delete from P decide
queues,
1 = DORMANT current gedecide
delete from user
ueues other
user ‘return
Dispatch no
EVENT 2 > on 2 = WORKING —»return
a user new was state compute
changed state b or 5 level basedpdecide
state yes—9»lon length
3 = Waiting Co
Compute level p——P»decide
based on
length
4,5 = WALTI
delete from P decide
queues
EVENT 3

dumping of old —#»|charge old user

user begins

EVENT 4 ———»
dumping of old
user done; load

of new user

begins

for running time [P return

charge old user
unless new user

for dumping time
has higher

|y

priority or old user is background|return
else charge new user for dump.
figure 4,1--Flow diagram of Scheduling Algorithm, (SCHEDL.)

CTSS Technical Notes PAGE 29

Flow diagram of Scheduling Algorithm (cont.)

EVENT 5——jcharge new user for restoring time|¥SWAP &0
restoring of new |unless backgound is new user, in
user done., New |which case charge old user. Set

user to begin new user to run for time based on decide
running LEVEL.

EVENT 6———»{Set LENGTH of user, | not current gdecide
user changed current |user user

length

Compute LEVEL but don't change
queues. Allow longer running
time if new LEVEL is of lower ——P return
priority than previous LEVEL.,

decide-————-———bhs SWAP non-zero?T ves Breturn
no
Ils head of queues user no
different from current Preturn
user? '

lyes

Has current user run for as long| no
as head of queues user will? return

lyes

SWAP€¢—1
NEWUSR €—head of queues user
OLDUSR €—current user

v

return

(When the SWAP switch is set non-zero, the supervisor will
call EVENT's 3, 4, and 5 in succession as soon as it can.
NEWUSR will be the next user to run. '

figure 4.1--Flow diagram of Scheduling Algorithm. (SCHEDL.,)

CTSS Technical Notes PAGE 30

9. When a user leaves states 2 or 3 he is removed from the
queues. wWhen he returns to state 2 or 3 he is assigned
a new priority level; his previous running time is not
taken into consideration, Thus the algorithm concerns
itself primarily wi th running times within
interactions. A program calling for a new command is
not considered a new interaction, but its level may be
changed if the new command is longer,

10. If a user returns to state 2 or 3 he is placed at the
end of the queue at his priority level based on program
length.

Ihe Backsround System.

it will be seen from the program coding that one user,
user number zero, may be accorded special treatment at
various points in the algorithm, User zero represents the
background batch-processing system which is maintained by
the supervisor both for compatibility with older systems and
to provide a guaranteed backlog of work for the computer in
case no regular ("foreground") users should need service for
a time. The following additional policy rules describe the
position of the background system with respect to the other
users:

11. The background system is always at the end of the queue
of users to be run, If the queue should become empty,
the background system will then run wuntil some other
user enters the queue.

12. The background operator may 'force'" the background
system to be run by depressing certain keys on his
console. The background system will be brought in at
the next clock trap, and run exclusively until the
operator signals that normal, time-shared operation
should continue,

13. It is possible to guarantee the background system a
certain percentage of the facility of the computer, by
setting the variable "PB" to the desired percentage in
the initialization of the algorithm,: When "PB" is
non-zero, the background system will pre-empt whenever
it falls behind its guaranteed percentage.

Policy on Charges

The above enumeration of policy rules does not describe

all of the coding in the scheduling algorithm module, As
ment ioned in the introduction, a certain amount of
time-accounting policy is maintained in this module. This

policy is handled by the coding following "events' 3, 4, and

CTSS Technical Notes PAGE 31

5. (See program listing for definition of an "event.") A
brief description of this charging policy can be stated in
the following five rules:

1. Each user pays for central processor time used.

2, A user may pay for the time it takes to 1load him and
dump him depending on whom he follows or precedes,
Note that with the present storage algorithm, loading
and dumping of a wuser are not overlapped with
computation.

3. The background system is specially privileged; it never
pays for loading or dumping itself.

4, With the exception of background, all wusers pay for
their own 1load time. The previous user pays for
background loading time,

5. A user pays for his dump unless he is being pre-empted
by a higher-priority user, In the latter case, the
higher priority user pays for the dump. The next user
always pays for a background dump.

The "Onion-Skin" Storage Algorithm.

The storage allocation algorithm presently used by the
time-sharing supervisor has as its main virtue simplicity.
There is no question that a more sophisticated procedure can
be devised, and will be when time permits. However, even
the present simple allocation algorithm illustrates some of
the important features which must be possessed by any
storage algorithm.

The simplicity of the storage allocation algorithm
results from two basic features: dumping and loading of user
programs are not overlapped with computation, and relocation
of user programs is not attempted. Thus all wusers are
loaded starting at absolute location zero.

The simplest possible storage algorithm would operate
as follows: when a user must be dumped on to the drum, his
entire program is dumped; assuming only one user in memory
at a time, all of memory 1is now available for the next
program, when necessary., The current storage algorithm
attempts to improve this performance by dumping only enough
of a user to fit in the next user; the earlier wuser is
therefore split into two parts, the one part on the drum
memory, and the other part in core memory, where its
integrity is insured by the memory protection feature. Thus
if the first user should be allowed to return to core memory
his next loading can be done more quickly than in the case
where he was completely dumped from core memory.

CTSS Technical Notes PAGE 32

Since a third user, following the second, may be larger
than the second, it may be necessary at a later time to dump
more of the first user.

To illustrate the splitting, consider figures 4,2-4,0,
in which several successive states of the user memory area
are shown., In 4,2, user A is occupying most of core memory,
and is about to be dumped in favor of user 8. Following the
dump, core memory appears in fig. 4.3, with part of wuser A
in core, part on the drum. Now, user C is to be brought
into memory, so user B is split in the same fashion, as
shown in figure 4,4, |f the next user,-D, requires a larger
space, as indicated in fig. 4.4, C must be completely
dumped, the dump of B must be finished, and the dump of A
continued a little farther, The result is shown in 4,5. |If
now, following user D, user A is to run again, the dump of
user D will have to be complete but only the part of A which
was dumped will have to be restored; thus saving some time.
The result is shown in 4,60,

In this example, only two users, A and B, were split
between memory and the drum at one time, As many as 16
users may be split between core and the drum, All dumps
onto the drum are made in blocks of 2043 words.

Although in the illustration only a small amount of
time was saved ultimately by not dumping all of A at first,
in a different situation the technique may be much more
effective. Consider for example, the situation when only
two or three console users, each with small programs, are
using the system, with background running a large share of
the time. Since background is always a 32K program, most of
it remains in core at all times; only enough 1is dumped to
make room for the smaller foreground users when they need
time. In this case, time saving can be large,

Ihe User Dump.

When a user is dumped from core memory, a file s
created on the drum memory. This file includes two
sections:

1. The User machine conditions status table, and the
User disk status table (including the current
section of his user file directory)

2. The user's core image.

The second section is not written for a user going to the

"dead" state. The file created is of temporary mode, and

named '000021 UDUMP.," for user 21, etc. This file is
cons idered one of the supervisor's personal files and does

not appear in the user's file directory.

CTSS Technical Notes PAGE 33

In figures 4.8, 4.9 and 4,10, are illustrated the three
subroutines of the storage algorithm, DUMP, UNDUMP, and
FREEUP. DUMP and UNDUMP are subroutines <called by the
supervisor to perform the functions indicated by their name.
The following notes inay help in interpretation of these flow
diagrams,

1, If DUMP is called to dump a working status user,
it actually only dumps his machine and disc status
tables and leaves the core memory dump to the
routine which tries to make room for the next
user, This is done because at the time the order
is given to dump a user it is not known how much
of him will have to go.

2, UNDUMP calls on subroutine FREEUP to dump out
enough space for the new user to fit 1into core.
Only then can it restore the new user core image
and his status tables,

3. Subroutine FREEUP is called with one parameter
("NWORDS"), the number of words of core memory
needed for the next user.

space
used by
A A
L,2
part of A
A
part of B
B
space C
used by4
C
b, b4

CTSS Technical Notes

User area
of
Core Memory

space
needed
by B

space
needed
by D

remaining

part of
A A

space B space
used needed
by B by C

b,3
A

used D space4 A

by used

D by A

4,5 4,6

PAGE 34

this
was
still
here

?only
this
much
comes

from
drum

figures 4.2-4,6--The Onion Skin Storage Algorithm,

CTSS Technical Notes PAGE 35

DUMP

Call SCHEDL
(Event 3)

L]

Is there room no
on high speed
drum for user

‘yyes

Dump machine Dump all of
onditions & user on low
Disk status speed drum
* or disk thru
< read buffer

Return

figure 4.,7--Flow diagram of subroutine DUMP,

UNDUMP

Call FREEUP
to make room
in core

v

Call SCHEDL.
(Event 4)

Restore User
dump

call SCHEDL,
(Event 5)

Return

figure 4.,8--Flow diagram of subroutine UNDUMP,

CTSS Technical Notes PAGE 36

FREEUP

Find smallest
user with a

> partial dump
(If any)

ny active
partial no Yeturn

user dump
found?
yes

Is this usern
core image yes
.G. NWORDS

{'no
_______Einish dump
[for_this user

Write out

enough words -—
to make room

‘or NWORDS

Return

Figure 4,9 -- Flow diagram of subroutine FREEUP,

CTSS Technical Notes PAGE 37

Appendix 4,A

States of a User

dead dormant

output wait| g \ - working
input wait Awaiting command
Figure 4,10

Additional transitions not shown:

1. Quit signal - any state to '"dormant"
2. Forced LOGOUT - any state to "waiting command"

Description of states:

0 dead - not waiting to run and no core image;
command level,

1 dormant - not waiting to run but has core image;
command level,

2 working - waiting in queues to run or running.

3 waiting command - waiting in queues for first run
of a command.

b input wait - program waiting for input from console,

5 output wait - typewriter output buffers filled.,

A1l input from the console is interpreted as commands when a
user is dead or dormant. He is said to be at command level
when in either of these two states.

CTSS Technical Notes PAGE 38

Description of Transitions

iti m - the wuser typed in a defined
command and is placed in the queues to wait his turn to run,

itin rki - the wuser begins to run the
command for the first time. From now on the command program
is treated exactly like a user program,

rki o i wait - the user's program needs input from
the console and the user has not yet typed in an input line,
(RDFLX)

.

- the user typed in an input line
terminated with a break character.

working to output wait - the user's program has generated
enough output to fill the output buffers. (WRFLX)

output wait to working - the output buffers are empty.

i iti nd - the wuser's program issued a
command. (CHNCPM or NEXCPM).
working to dormant - the wuser's program finished its

computation but the core image is still useful. (DPRMNT)

iti - the user typed in a defined
command which may operate on his core image or may destroy

it and start fresh.

working to dead - the user's program finished its
computation and the core image is to be destroyed (DEAD) .
dormant to working - supervisor is restarting the user's

program without a console interaction., (SLEEP)

CTSS Technical Notes PAGE 39

Appendix L,B

SCDA Rx*xxxxxxxx T]ME SHARING SCHEDULING ALGORITHM **sskdkdhhkrnkhrxn
T. HASTINGS AND R. DALEY

THE SCHE ULING ALGORITHM PERFORMS THE FOLLOWING FUNCTIONS

. DETERMINES WHICH USER IS TO RUN NEXT

. DETERMINES WHEN NEXT USER IS TO RUN

. DETERMINES HOW LONG NEXT USER IS TO RUN

« CHARGES USERS FOR SWAPPING AND RUNNING TIME
+ KEEPS TRACK OF THE STATUS OF EACH USER

V& W=

THE HEDUL ING ALGORITHM 1S CALLED FROM THE SUPERVISOR BY
EXECUTE SCHED.(EVENT, USER, ARG)
AFTER ALL TRAPS HAVE BEEN DISABLED
'USER' 1S BETWEEN 0 AND THE MAX. NO, OF USERS, 'MXUSR'
THE SIGNIFICANCE OF 'USER' AND 'ARG' DEPEND ON 'EVENT'
OR ARE MEANINGLESS AS DESCRIBED BELOW
"EVENT' DESCRIPTION
U INITIALIZATION OF SCHED,
CLOCK [INTERRUPT
'USER' HAS CHANGED TO STATE 'ARG'
BEGINNING OF SAVING 'USER' CORE IMAGE
BEGINNING OF RESTORING 'USER' CORE IMAGE
'USER' BEGINS RUNNING, AFTER SWAP
'USER' CORE IMAGE NOW HAS LENGTH 'ARG'
OPERATOR SET BACKGROUND KEYS TO 'ARG'
'"USER' LOGGED IN, 'ARG' IS LINE MULTIPLIER
'USER' LOGGED OUT
IS "NEWUSR' STILL RUNABLE
'USER' DIALED UP COMPUTER

=OgCot o nmeE WNEREC

-

ALL TIME 1S KEPT IN SIXTIETHS OF A SECOND AND VARIABLES
ENDING WITH 'TIM' ARE TIMES SINCE SYSTEM WAS
LOADED WITH THE EXCEPTION OF 'SYSTIM'

SCHED. HAS SOLE RESPONSIBILITY FOR SETTING AND CHANGING
THE FOLLOWING COMMON ARRAYS AND VARIABLES

THE FOLLOWING COMMON ARRAYS ARE USED

'STATUS' - THE STATUS OF EACH USER

WHERE STATUS(J) MAY BE
DEAD - NOT WAITING TO RUN AND NO CORE IMAGE
DORMNT - NOT WAITING TO RUN
WORKING = WAITING IN QUEUES OR RUNNING
WAITING COMMAND - WAITING IN QUEUES FOR COM,
INPUT WAIT - PROGRAM WAITING FOR INPUT
QUTPUT WAIT - OUTPUT BUFFERS FILLED
'LENGTH' - LENGTH OF USER CORE IMAGE IN WORDS
"LEVEL' - USER'S PRIORITY LEVEL(U, ... , 'MAXLVL')
'TIMLEV' - ELAPSED TIME RUN AT CURRENT LEVEL

DXV XTIVDDCSIN DDA I IDILX DXL DAODXNXIADRXNVIIST N IIIXNINIONUDNDIDODXIDDLOR
UE WO

DOV IIIDIXVIDIIDDIDT OOV IDODOODIDONDIDN DDA IDNDIDNIDONNNIINIONIONIOD

CTSS Technical Notes PAGE 40

'WATTIM' - THE LAST TIME THAT A USER BEGAN TO WAIT

'LINMUL' - USER LINE MULTIPLIER

'PLIST' - THE POSITION LIST SPECIFIES THE POSITIONS
OF THE USERS WHICH ARE IN THE WORKING QUEUE

'ULIST' - THE USER LIST INDICATES THE USER NUMBERS
WHICH CORRESPOND TO THESE QUEUE POSITIONS

'ENDPTR' - ENDPTR(J) IS END OF QUEUE J IN PLIST

'"NOTIME' - NOTIME(J) 1S SET TO 2 IF USER INACTIVE

AND USER J WILL SUBSEQUENTLY BE LOGGED OUT

THE FOLLOWING COMMON VARIABLES ARE USED
'MXUSRS' - MAX, NO, OF FOREGROUND USERS

'CURUSR' - CURRENT USER, RUNNING OR SWAPPING
'OLDUSR' - LAST USER TO BE RUN, WHEN 'SWAP' .NE. O
'NEWUSR' =~ NEXT USER TO BE RUN, WHEN 'SWAP' ,NE, 0
'PAYUSR' - THE USER CURRENTLY PAYING FOR TIME
'SYSTIM' - TIME SYSTEM WAS INITIALIZED

'BEGTIM' - THE LAST TIME 'CURUSR' BEGAN TO RUN
'"QUANTM' - MAXIMUM RUNNING TIME AT LEVEL 0
'MAXTIM' - USER RUNS AT SAME LEVEL UNTIL ‘'MAXTIM®

"TBASE' - BASE TIME FOR COMPUTING 'MAXTIM'
'"PAYTIM' - LAST TIME A USER WAS CHARGED FOR TIME
'LEVTIM' - LAST TIME 'CURUSR' WAS RUNNING AT CURRENT LEVEL
'SWAP' - NON-ZERO REQUESTS SUPERVISOR TO RUN
'"NEWUSR' AS SOON AS IT CAN

"MAXLVL' - THE MAXIMUM PRIORITY LEVEL(O ... "MAXLVL')
'MINLVL' - THE MINIMUM PRIORITY LEVEL ALLOWED
'"FULLVL' - INIT. LEVEL FOR 'FULLEN' TO FULL CORE USER
'EMPLVL' - INITIAL LEVEL FOR EMPTY CORE USER

'"FULLEN' - LENGTH FOR ENTRY AT LEVEL 'FuULLVL'

'PB' - GUARANTEED PERCENTAGE FOR BACKGROUND
"QNTWAT' - QUANTM WAITING TIME BEFORE LEVEL CHANGE
TO NEXT HIGHEST PRIORITY LEVEL
'"LEVINC' - AMOUNT PRIORITY LEVEL IS INCREASED WHEN

USER RETURNS TO WORKING FROM INPUT OR OUTPUT WAIT
'"INACTV' - MAX. TIME INACTIVE BEFORE LOGOUT
'"HANGUP' - MAX, TIME BEFORE INACTIVE LINE IS HUNGUP

COMMON VARIABLES REFERRED TO BY SCHED. BUT
NOT SET OR CHANGED BY SCHED.
'BKGTIM' - TOTAL TIME BACKGROUND HAS RUN
'SWPSW' - NON-ZERO WHEN SUPERVISOR IS SWAPPING AND
COMMAND LOADING
'PROBN(J)' - NON-ZERO WHEN USER J IS LOGGED IN
'ADOPT(J)"' - PROBN(J) .AND. ADOPT(J) .E. 1B, THEN
USER J IS ADOPTED

SCHED. CALLS THE FOLLOWING SUBROUTINES
INITQ. = INITIALIZES QUEUES
HEDUSR. - RETURNS THE HEAD OF QUEUE USER
AT HIGHEST NON-EMPTY PRIORITY LEVEL OR O
DELQUE,.(J) - DELETES USER J FROM QUEUES
ENDQUE.(J) - PLACES USER J AT END OF QUEUE LEVEL(J)

VAV OVINVIIDDIVOIDINOTOD

DOV DVOXD

CTSS Technical Notes PAGE 41

BEGQUE,(J) - PLACES USER J AT BEG OF QUEUE LEVEL(J)
ILOG2. (N) - RETURNS INTEGER PART OF LOG TO BASE 2 N
1.(J) - CONVERTS FORWARD INDEX 'J' TO BACKWARD
INDEX FOR REFERRING TO MAD ARRAYS
INITIM, = INITIALIZE TIME ACCOUNTING
INTIM, = USER 'U' LOGGED IN '
OUTIM. - USER 'U' LOGGED OUT
CHARGE.(U,T) - CHARGE USER 'U' FOR TIME 'T!
GETOTL. - RETURNS THE TOTAL TIME SYSTEM HAS RUN
DELTIM.(T) =~ RETURNS DELTA 'T' - THE DIFFERENCE
BETWEEN 'GETOTL.()' AND TIME 'T!
TIME 'T' IS ALSO SET TO GETOTL.(0)
CURTIM.(0) - RETURNS THE CURRENT TIME SINCE MIDNIGHT
OF DAY SYSTEM WAS INITIALIZED
MONSC1. (EVENT, USER, ARG) MONITORS SCHED.
MONSC2., 1S CALLED WHEN SCHED. CHANGES COMMON
PLOT1. (EVENT, USER, ARG) PLOTS SYSTEM ON ESL SCOPE
PLOT2. 1S CALLED WHEN SCHED. CHANGED COMMON

EXTERNAL FUNCTION(A, B, C)
ENTRY TO SCHED.
NORMAL MODE IS INTEGER

«+ SHORTEN LINKAGE, SETUP USER INDEX, CALL MONITORING SUB.,
.o CALL PLOTTING ROUTINE

oo ASSUME COMMON WILL BE CHANGED, AND DISPATCH ON 'EVENT'
EVENT = A

USR = B

IUSER = I ,(USR)

ARG = C

EXECUTE MONSC1l.(EVENT, USR, ARG)
EXECUTE PLOT1.(EVENT, USR, ARG)

MONITR = CHANGE

STATEMENT LABEL MONITR, RETURN, CHANGE
TRANSFER TO EVNT(EVENT)

CTSS Technical Notes PAGE 42

R.. 'EVENT' .E. 0, INITIALIZE SCHEDULING ALGORITHM FOR N USERS

Reo INITIALIZE INDEPENDENT COMMON VARIABLES
EVNT(Q) MXUSRS = 31
MAXLVL = 8
MINLVL = 0
FULLVL = 3
EMPLVL = 2
FULLEN = 4090
PB =0
QNTWAT = 3600
LEVINC = 0
QUANTM = 30
TBASE = 0
INACTV = 216000
HANGUP = 7200
R

Res INITIALIZE QUEUES AND TIME ACCOUNTING
EXECUTE INITQ.
EXECUTE INITIM,
R
Ree INITIALIZE TABLES
THROUGH JLOOP, FOR J = 0, 1, J .G. UMAX
JUSER = 1.(J)
JLOOP LINMUL(JUSER) =1
R
R.. SET BACKGROUND(USER 0) TO RUN
Re s USER 0 IS ALWAYS IMPLICITLY AT END OF QUEUES
SYSTIM = CURTIM,(0)
STATUS(1.(0)) = 2

SWAP = 1B
FIRST3 = 1B
BGMAX = 180

TRANSFER TO CHANGE

CTSS Technical Notes PAGE 43

Reo 'EVENT' .E. 1, CLOCK INTERRUPT
Re. ASSUME COMMON WILL NOT BE CHANGED

EVNT(1) MONITR = RETURN

ICUR = 1|.(CURUSR)
T = GETOTL.(J)
R.. DO THE FOLLOWING CHECKING EVERY 10 SECONDS
Res CHARGE PAYING USER FOR TIME
Reo MOVE LONG WAITING USERS UP IN PRIORITY
Res LOGOUT INACTIVE USERS, HANG UP INACTIVE LINES
WHENEVER T .G, CHECKT
CHECKT =T + 600
EXECUTE CHARGE.(PAYUSR, DELTIM,(PAYTIM))
THROUGH KLOOP, FOR K =1, 1, K .G, UMAX
WHENEVER K .E. CURUSR, TRANSFER TO KLOOP
KUSER = 1,(K)
DELT = T - WATTIM(KUSER)
WHENEVER STATUS(KUSER) .E. 3 .0OR. STATUS(KUSER) ,E. 2
WHENEVER DELT .G. QNTWAT .AND. LEVEL(KUSER) .G, MINLVL
MONITR = CHANGE
EXECUTE DELQUE. (K)
LEVEL(KUSER) = LEVEL(KUSER) -1
EXECUTE ENDQUE, (K)
WATTIM(KUSER) = T
TIMLEV(KUSER) = 0
END OF CONDITIONAL
OR WHENEVER PROBN(KUSER) .NE. 0
WHENEVER DELT .G. INACTV .AND. LINENO(KUSER) .E., 0
MONITR = CHANGE
NOTIME(KUSER) = 2
WATT IM(KUSER) = T
END OF CONDITIONAL
OTHERWI SE
WHENEVER DELT .G. HANGUP ,AND. ADOPT(KUSER) .E. 0
MONITR = CHANGE
NOTIME(KUSER) = 4
WATTIM(KUSER), = T
END OF CONDITIONAL
END OF CONDITIONAL
KLOOP CONT INUE
END OF CONDITIONAL
Res MOVE LONG RUNNING 'CURUSR' DOWN IN PRIORITY
WHENEVER CURUSR .NE, 0 ,AND. T .G. MAXTIM
1 +AND. .NOT., SWAP
MONITR = CHANGE
EXECUTE DELQUE.(CURUSR)
WHENEVER LEVEL(ICUR) .L. MAXLVL,

1 LEVEL(ICUR) = LEVEL(ICUR) + 1
EXECUTE ENDQUE.(CURUSR)
LEVTIM = T

TIMLEV(ICUR) = 0

MAXTIM = T + TRUN, (CURUSR, LEVEL(ICUR))
END OF CONDITIONAL
TRANSFER TO DECIDE -

CTSS Technical Notes PAGE 4y

R.. "EVENT' .E. 2, 'USR'('IUSER') CHANGED STATE

Rew DISPATCH ON NEW STATE, |IGNORE REDUNDANT TRANSITIONS
EVNT(2) WHEWEVER USR .NE. 0, TRANSFER TO STAT({ARG)

TRANSFER TO RETURN

R

Res 'USR'('IUSER') WENT DEAD, EVENT 6 WILL WOT OCCUR

STAT(0) EXECUTE DELQUE, (USR)
STATUS(IUSER) = 0
TRANSFER TO DECIDE

R

Ree 'USR'('IUSER') WENT DORMANT WHILE RUNNING
Ree OR PUSHED QUIT BUTTON

STAT(1) EXECUTE DELQUE.(USR)

STATUS(IUSER) =1

WHENEVER USR ,E. CURUSR, TRAHSFER TO DECIDE

TRANSFER TO CHANGE
R

Res 'USR'('IUSER') TO BEGIN WORKING AFTER 1/0 WAITING
Res OR ALARM CLOCK RETURN FROM DORMANT TO WORKING
STAT(2) WHENEVER STATUS(IUSER) .GE, &4 .OR. STATUS(IUSER) .E, 1
WHENEVER STATUS(IUSER) .NE. 1
WHENEVER LEVEL(IUSER) - LEVINC .GE. MINLVL,
1 LEVEL(IUSER) = LEVEL(IUSER) = LEVINC
LEV = LEVELF.(LENGTH(IUSER))
WHENEVER LEV .L., LEVEL(IUSER), LEVEL(IUSER) = LEV
TIMLEV(IUSER) = 0
END OF CONDITIONAL
EXECUTE ENDQUE.(USR)
WATTIM(IUSER) = GETOTL.(0)
STATUS(IUSER) = 2
TRANSFER TO DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN
R

Re. 'USR'('IUSER') BEGAN WAITING FOR A COMMAND
STAT(3) LEV = LEVELF,(LENGTH(IUSER))
WHENEVER STATUS(IUSER) .E. 2 .0OR, STATUS(IUSER) .E, 3
WHENEVER LEV .G, LEVEL(IUSER)
EXECUTE DELQUE, (USR)
TRANSFER TO COMAND
END OF CONDITIONAL
OTHERWI SE
COMAND LEVEL(IUSER) = LEV
EXECUTE ENDQUE,. (USR)
TIMLEV(IUSER) = 0
WATTIM(I1USER) = GETOTL.(0)
END OF CONDITIONAL
STATUS(IUSER) =3
TRANSFER TO DECIDE

CTSS Technical HNotes PAGE 45

R, '"USR'('IUSER') ENTERED INPUT WAIT
STAT(4) WHENEVER STATUS(IUSER) .E. 2
EXECUTE DELQUE.(USR)
STATUS(IUSER) = 4
TRANSFER TO DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN
R
R.. 'USR'('IUSER') ENTERED OUTPUT WAIT
STAT(5) WHENEVER STATUS(IUSER) .E. 2
EXECUTE DELQUE. (USR)
STATUS(IUSER) = 5
TRANSFER TO DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN

THE NEXT THREE EVENTS ALWAYS OCCUR IN SEQUENCE
WHEN CONTROL IS TRANSFERRED FROM 'OLDUSR' TO 'NEWUSR'
AS A RESULT OF 'SWAP' BEING SET NON-ZERO,

'OLDUSR' DOES NOT PAY FOR HIS DUMP, UNLESS
'"NEWUSR' 1S OF EQUAL OR LOWER PRIORITY

"NEWUSR' ALWAYS PAYS FOR BEING RESTORED EXCEPT
BACKGROUND NEVER PAYS FOR DUMP OR RESTORE,

e & o o o o
® ° & o o o o

"EVENT' .E. 3, SAVING OF 'USR'('IUSER') 1S BEGINNING
EVENT 3 MAY BE CALLED FOR ANY OF THE FOLLOWING:
1. FREEING UP CORE B BECAUSE 'CURUSR' EXTENDED SIZE
2, FREEING UP CORE A DRUM BUFFERS FOR SWAPPING
3. DUMPING 'OLDUSR!
4., DUMPING OTHER USERS TO MAKE ROOM FOR 'NEWUSR'
BOOLEAN SWPSW, FIRST3, DMPOLD, SWAP
EVNT(3) WHENEVER SWPSW
WHENEVER FIRST3
FIRST3 = 0B
EXECUTE CHARGE,(PAYUSR, DELTIM. (PAYTIM))
WHENEVER LEVEL(I.(NEWUSR)) .GE. LEVEL(Il.,(OLDUSR))

TN XOIDDIDOIDX X

1 +AND. OLDUSR .NE, 0 .OR. NEWUSR ,E, 0
PAYUSR = OLDUSR
OTHERWISE

PAYUSR = NEWUSR
END OF CONDITIONAL
TIMLEV(I, (OLDUSR)) = TIMLEV(1.(OLDUSR)) + DELTIM, (LEVTIM)
OTHERWI SE
EXECUTE CHRGSW,
WHENEVER USR .E. OLDUSR
DMPOLD = 18
OR WHENEVER DMPOLD ,AND., USR .NE. OLDUSR
1 .AND. NEWUSR .NE, 0
PAYUSR = NEWUSR
END OF CONDITIONAL
END OF CONDITIONAL
END OF CONDITIONAL
TRANSFER TO CHANGE'

CTSS Technical Notes FAGE 46

R.. "EVENT' ,E. 4, RESTORING OF 'NEWUSR' 1S BEGINNING

EVNT (&) EXECUTE CHRGSW.
WHENEVER NEWUSR .E. U
PAYUSR = OLDUSR
OTHERWISE
PAYUSR = NEWUSR
END OF CONDITIONAL
WHENEVER STATUS(I.(OLDUSR)) .E. 2,
1 WATT 1i4(1, (OLDUSR)) = GETOTL.(0)
CURUSR = NEWUSR
TRANSFER TO CHANGE

R
R.. "EVENT' .E. 5, 'NEWUSR' BEGINS RUNNING AFTER RESTORE

EVNT(5) EXECUTE CHARGE.(PAYUSR, DELTIM.(PAYTIM))

PAYUSR = NEWUSR
WHENEVER STATUS(1.(NEWUSR)) .E. 3, STATUS(I.(NEWUSR)) = 2

BEGTIM = GETOTL.(0)

LEVTIM = BEGTIM

MAXTIM = BEGTIM + TRUN,(NEWUSR, LEVEL(I,(NEWUSR)))
1 ~TIMLEV(] ., (NEWUSR))

SWAP = UB

FIRST3 = 1B

DMPOLD = uB

TRANSFER TO DECIDE

EVNT(6)

EVNT(7)

EVNT(8)

EVNT(9)

EVNT(10)

EVNT(11)

CTSS Technical Notes PAGE 47

R.. 'EVENT' ,E. 6, 'USR'('IUSER') CORE IS OF LENGTH 'ARG'
Ree JUST BEFORE ENTERING WAITING COMMAND
Re. OR LENGTH CHANGED WHILE RUNNING

LENGTH(IUSER) = ARG

WHENEVER USR .E. CURUSR

LEV = LEVELF,(LENGTH(IUSER))
WHENEVER LEV ,G. LEVEL(IUSER),

1 MAXTIM = BEGTIM + TRUN,(CURUSR, LEV) = TIMLEV(IUSER)
END OF CONDITIONAL

TRANSFER TO CHANGE

R
R.. "EVENT' E. 7, OPERATOR SET KEYS TO 'ARG'

KEYS = ARG

BACKGR = ARG

TRANSFER TO DECIDE
R
R.. '"EVENT' .E. 8, 'USR'('IUSER') LOGGED IN PROPERLY
LINMUL(IUSER) = ARG

EXECUTE INTIM, (USR)

TRANSFER TO CHANGE

R
R.. "EVENT' ,E. 9, 'USR'('IUSER') LOGGED OUT

EXECUTE OUTTIM, (USR)

TRANSFER TO CHANGE

R
R.. "EVENT' .E. 10, 1S 'NEWUSR' STILL RUNABLE
WHENEVER STATUS(!,(NEWUSR)) .E, 2
1 +OR, STATUS(I.(NEWUSR)) .E. 3, TRANSFER TO RETURN
SWAP = 0B

TRANSFER TO DECIDE
R
R.. 'EVENT' ,E. 11, '"USR'('IUSER') DIALED UP COMPUTER
WATT IMCIUSER) GETOTL.(0)

NOT IMEC ITUSER) 0

TRANSFER TO CHANGE
R

DECIDE

CHANGE
RETURN

CTSS Technical Notes

R.. COMMON EXIT FROM SCHED.
R.. DECIDE IF IT IS TIME TO RUN A NEW USER
R

Res NO DECISION WHILE SWAPPING

WHENEVER SWAP, TRANSFER TO MONITR

R
R.. CHECK I|F BACKGROUND NOT MEETING GUARANTEED PERCENTAGE
WHENEVER BKGTIi ,L, (PB/100,) * GETOTL.(0)

1 .AND. CURUSR .NE, 0, BACKGR =1

U = HEDUSR. (0)

WHENEVER BACKGR .NE. 0 .OR, KEYS .NE. 0 , U=

el v

.o RUN USER 'U' IF 'CURUSR' HAS RUN AS LONG AS 'U' WOULD
WHENEVER U ,NE, CURUSR ,AND,
(PREMPT ., (TRUN. (U, LEVEL(1.(U)))) .OR, CURUSR .E, 0)
.OR, STATUS(I.(CURUSR)) ,NE, 2 ,OR. BACKGR .NE. O
MONITR = CHANGE
SWAP = 18
NEWUSR
OLDUSR CURUSR
BACKGR v
END OF CONDITIONAL
R
R.. CALL iMONSC2, IF COMMON CHANGED, ELSE JUST RETURN
TRANSFER TO MONITR
EXECUTE MONSC2.
EXECUTE PLOT2,
FUNCT ION RETURN

[AS I ol

v

PAGE 438

CTSS Technical Notes PAGE 49

R.. INTERNAL FUNCT IONS

R.. '"TRUN' - COMPUTES RUN TIME FOR USER 'DU' AT LEVEL 'DL'
I NTERNAL FUNCTION TRUN.(DU, DL) =

TBASE + LINMULC(I.(DU)) * QUANTM = 2 .P, DL

TRUN

1
R
Ree 'LEVELF' - COMPUTE PRIORITY LEVEL BASED ON LENGTH 'LEN'
INTERNAL FUNCTION(CLEN)
ENTRY TO LEVELF,
WHENEVER LEN ,GE. FULLEN
L = FULLVL
OTHERW I SE
L = EMPLVL + 1LOG2. (LEN/(FULLEN/(2 ,P. (FULLVL-EMPLVL))))
END OF CONDITIONAL
FUNCTION RETURN L
END OF FUNCTION
R
PREMPT R.. 'PREMPT' - IS TRUE IF PREMPTION IS PERMITTED
Reo BASED ON TIME INTERRUPTER WILL RUN 'INTRUN'
BOOLEAN PREMPT,
INTERNAL FUNCTION PREMPT,(INTRUN) =
INTRUN L. GETOTL.(0) - BEGTIM

LEVELF

++ SUBROUTINE TO CHARGE SWAPPING TIME
.o FOREGROUND PAYS FOR BACKGROUND SWAP UP TO 3 SECONDS
INTERNAL FUNCTION
ENTRY TO CHRG SW.
TDEL = DELTIM.(PAYTIM)
WHENEVER OLDUSR ,E, 0 .AND, TDEL .G, BGMAX
EXECUTE CHARGE.(PAYUSR, BGMAX)
EXECUTE CHARGE.(Q, TDEL-BGHMAX)
OTHERWI SE
EXECUTE CHARGE.(PAYUSR, TDEL)
END OF CONDITIONAL
FUNCTION RETURN
END OF FUNCTION

X200

CHRGSH

CTSS Technical Notes

R.,. COMMON VARIABLES

VECTOR VALUES COMRLC = 32561
VECTOR VALUES COMRLC = 32561
VECTOR VALUES UMAX = 51

VECTOR VALUES UMAX = 51

VECTOR VALUES MAXLV = 10

VECTOR VALUES MAXLV = 10
R.s '"MXUSRS' MUST BE .LE. 51 AND
DIMENS ION FAKE(32561)

DIMENS |ON DUMMY0(51), STATUS(51),
DIMENSION TIMLEV(51)

DIMENSION WATT114(51), LINAUL(0),
DIMENSION PLIST(73), ULIST(0),
DIMENSION TOTLEV(O0)

DIMENSION DUMMY6(51), TAl(51),
DIMENSION TA4(51), TUl(51),
DIMENSION TUL(51), UTIME(51),
DIMENSION ITIME(51), PROBN(51),
DIMENSION LINENO(51), LINCR(51),
DIMENSION FULLSW(51)

DIMENSION UDWAIT(51), RWORDS(51),
DIMENSION WTIMES(51)

DIMENSION UNITID(51), COMMND(51),
DIMENSION ILINES(51), OUTPSW(51),
DIMENSION ULINE(51), ULINCT(51),
DIMENS ION AWAKE(51), TIMINC(51),
DIMENS ION OKPROB(51), OKPROG(51),
DIMENS ION DUMMYC(27), PBUFF(J)
DIMENSION DUMMYE(465), DBUF1(U),

PROGRAM COi4MON FAKE
PROGRAM COMMON ENBWD

PAGE 50

'"MAXLVL' MUST BE .LE. 10
LENGTH(51), LEVEL(51)
DUMMY 2(73)

DUMMY 4(10), ENDPTR(10)
TA2(51), TA3(51)
TU2(51), TU3(51)
NOTIME(51)

PROGN(51)
MANUAL(51), RSPONS(51)
WWORDS(51), RTIMES(51)

INTRSW(51), HUNGSW(51)
COMCTR(51), t0D(51)
UCLOCK(51), UCHARG(51)

CLOCON(51), ADOPT(51)

COMFSW(0)
DUMMYG(&BS), DBUF2(0)

R.. COMMON ARRAYS SET AND CHANGED BY SCHEDL. ONLY

PROGRAM COMMON DUMMYOQ, STATUS, LENGTH, LEVEL, TIMLEV
PROGRAM COMMON WATTIM, LINMUL, DUMMY2, PLIST, ULIST
PROGRAM COMMON DUMMYL4, ENDPTR, TOTLEV
R.. TABLES SET BY LOGIN, UPDATED BY TIME ACCOUNTING
PROGRAI4 COMMON DUMMY®6, TAl, TAZ, TA3, TAL
PROGRAM COMMON TU1, TUZ, TU3, TUL, UT I ME
PROGRAM COMMON NOTIME
R.. TABLES SET BY LOGIN

PROGRAM COMMON ITIME, PROBN, PROGN
R.. USER OPTIONS(CHECKED BY CLKINT AND TCORRD)

PROGRAM COMMON LINENO, LINCR, MANUAL, RSPONS, FULLSW
R.. TABLES FOR DISK MONITORING

PROGRAM COMMON UDWAIT, RWORDS, WWORDS, RTIMES, WTIMES
R.. OTHER USER TABLES

PROGRAM COMMON UNITID, COMMND, INTRSW, HUNGSW, °*'.INES
PROGRAM COMMON OUTPSW, COMCTR, 10D, ULINE, 'cINCT
PROGRAM COMMON UCLOCK, UCHARG, AWAKE, TIMINC, C.OCON
PROGRAM COMMON ADOPT, OKPROB, OKPROG, COMFSW

Reo
PROGRAM COMMON

COMMON VARIABLES SET AND CHANGED BY SCHEDL, ONLY
MXUSRS, CURUSR, OLDUSR,

NEWUSR, PAYUSR

PROGRAM COMMON SYSTIM, BEGTIM, QUANTM, MAXTIM, TBASE

PROGRAM
PROGRAM
PROGRAM
PROGRAM
R..

CTSS Technical Notes

COMMON
COMMON
COMMON
COMMON

PAYTIM, LEVTIM,

FULLVL
EMPLVL,
LEVINC,

FULLEN,
I NACTV,

VARIABLES SET BY LOGIN

PROGRAM COMMON SPROBN, SPROGHN

R..
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

R.. USER

R..

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
MACHINE

END OF FUNCTION

OTHER VARIABLES

USER,
SWPSW,
COMT IM,
CLKTIM,
DSKLOC,
BUFULL,
PBUFF,

CONDITIONS STATUS TABLE
(NOT REFERRED TO BY MAD PROGRAMS)

DATE,

COMSW,

USRWAT,
MXLINE,
BASEAD,
DUMMY C
DUMMYE,

SWAP,

PB,
HANGUP

DATEYR,
TOTTIM,
SWPWAT,
NWORDS,
WAIT,

DBUF1,

MAXLVL,
QNTWAT

TIMNOW,
BKGTIM,
COMWAT,
STOPSW
DUMMY 8,

DUMMYG,

MINLVL

NUSERS
SWPTIM
AUTOND
READY

DBUF 2

PAGE 51

CTSS Technical Notes PAGE 52

5. Flow Charts of Main Control and Trap Processors.

Introduction.

This section consists of five flow charts of Main
Control, the clock and protection trap processors, and the
module RSTCPU., These flow diagrams are to help provide a
temporary bridge between complete lack of information about
these modules and the assembly listings themselves.

>

Call SCHEDL
(Event 10)
Last chance
to set

SWAP # 0

[1s swap = 0 }—ves ’
l'no

Is NEWUSR in yes CMPROC
"Waiting Command"| > (on next

no page)
Dump USER

Restore NEWUSR

Y

Call SCHEDL
(Event 5)

€D

Figure 5.1 -- Cycle entry of Main Control.

CTSS Technical Notes

PAGE 53
CMPROC
Ils command ves
on disk
‘Po
Is user yes Is user yes Jinsure
= NEWUSR = NEWUSR —=lE nough Room
no no for command
‘ (FREEUP)
Dump USER Dump USER
Restore NEWUSR Restore tables
* for NEWUSR
Call SCHEDL < ‘
(Event 5) lLoad command
file into P
core B
Is command yes

in core B

5

Transfer to

core A command

Reset user

machine conditions
and active files,

v

Call SCHEDL
(Event 5)

P

Figure 5.2 -- Command Processing in Main Control.

CTSS Technical Notes PAGE 54

200 ms
clock
trap
TCOORD
Set TLINESCI) (1 is the user
Save # 0 for input index in the
Machine L—P»|Set OUTPSW(I) polling loop.)
Conditions = 0 if buffer
is empty.,
Is yes Is ILINES(I)] ves Process
ILINES(I) # 0 negative "1Quit ‘
'r no v, no
Is yes I's STATUS(!1)| no
OUTPSW(LE) # 0 0 or 1

* no v ves

s ng, s line a no
STATUS(Il) = 5 command

* yes * yes

Call SCHEDL type WAIT type Move input
(Event 2) to move command -= is notl|{line to
change STATUS line to a command]linput buffer
to Working (2) command buff '

Call SCHEDL
(Event 2) to
set STATUS
to 3,

<G> - -

Repeat for

next user

* done
no "

Call SCHEDL ilWas trap ‘xgs.ﬁs SWAP = 0] ves.|Return to
(Event 1) from Mem, b no i.'Int:er'rupted
Program via
' Common Exit

Move user Re-enable
machine traps —
conditions

Figure 5.3 -- The Clock Trap Processor,

CTSS Technical Notes PAGE 55

€D

[Is SWAP # 0] VES >
+ no

[Did user interrupt?] ves *
no

| Is he expecting
no | interrupts?

‘r ves

Type: Save current ILC,
"No Action" Reset ILC for
Interrupt

Y

Drop user interrupt level

v

Type new level number

\J

Check for HTR
at ILC location B

no | ves Type "PROGRAM
| STOP AT 0000" |~

Restore Machine
Conditions

v

Go to user,

Figure 5.4 -- Flow diagram of RSTCPU (Restart user.)

Protection
Mode
violation

Save user

machine
conditions

v

CTSS Technical Notes

Does user's
ILC violate

e

Pick up
violating
instruction

[1s it a T1A |

no

=
€

Pick up word
at address of
TIA

v

Is this a

no

PAGE 56

i |s user

Background

‘* ves

G

subroutine

‘yes

Transfer to

(In protection
section.)

user subroutine

Type -- is

not in core,

<

Figure 5.5 -- The Protection trap processor.

CTSS Technical Notes PAGE 57

6. The Disk Control Module.

Introduction.

As mentioned earlier, there are four distinct uses of
the disk and drum memories: 1) temporary storage of working
programs which do not fit into memory; 2) storage of
supervisor command programs; 3) storage of user programs and
data; and 4) scratch pad storage by user programs. These
uses have enough in common, however, that a single interface
program, the Disk Control Module, handles all use of these
memories, Calls from the supervisor are not distinguished
from calls from a wuser program, In particular, the
supervisor does not attempt at any time to use the disk
except through the disk control module.

In addition to this disk control program, there is a
pair of disk load and disk dump programs which are used for
off-line input to and output from the disk memory. These
routines are not part of the supervisor and in fact do not
presently operate while the time-sharing system is running.
The dump routine copies the contents of the disk memory onto
tape for backup purposes, and processes users' request cards
to produce printed and punched copies of their personal
files. The load routine copies a tape onto the disk to
~re-initialize the time-sharing system, and also processes

users' request cards to add files (consisting of punched
cards) to the disk.

The Disk Control Routines.

A complete, though slightly out-of-date, technical
description of the current disk control module may be found
in the Computation Center Memo CC-196, July 11, 1962, A new
disk control module is currently being designed.

oad and Dumpin isk.

A complete technical description of the two programs
LDEDT (disk load editor) and DPEDT (disk dump editor) may be
found in the Computation Center Memo CC-108, May 9, 1963,
An operational description is provided in Memo CC-212.

Disk Routine Tables.

The format of the master file directory is shown in
figure 6.1. Figure 6,2 is the layout of the user disk
status table as it appears in the disk routine and as it
appears on the drum or disk when a user leaves core memory.

CTSS Technical Notes PAGE 58
Chajn Word

Programmer Problem

Number number two=-word
entries

Track Address of user

Quota file directory.
etc.

(The first track of the M,F.D, is stored on track 0 of
Module 1.)

Figure 6.1 -- Format of Master File Directory

UTABLE

TRCNT
QUOTA
FILNR
UFILTR

chain word

document tracks
number ysed

Primary file name

Secondary file name

Mode file track
number address
Date last number of
used tracks

\\/_\
\/’—\

count of tracks used

track quota

Historical-not used

Pointer to current
track usage table track

Figure 6.2 -- The Disk Status tabhle.

\

Current
track of

L-word user's

entries yfile
directory
(466 wds,)

total size,

551 words,

FFDRTR
TPONLY
CHNGD

ACTTBL

DEFMOD

ASNMOD

UFLGS

TRKOVR
SVUFDT

CTSS Technical Notes PAGE

Location of first
track usage table track
Historical not used

Switch~-=-UFD has been
changed

Primary file name

Secondary file name

Buffer addresses

Track to be written next ’

Word count

Word count

\'/—\
\/—\

Logical Module Assignment

Historical

not used

Error Flags

Amount track quota is
exceeded

User file directory

| address

7-word
entries Active
$ File
Table
10 x 7
words
5 words

Figure 6.2 (cont,) The User disk status table,

59

CTSS Technical Notes : PAGE 60

7. Description of Entry points and Cross Reference Table

|ntroduction,

An invaluable aid in studying the operation of any
single-module or subroutine within a module is a thumbnail

sketch of each of the subroutines which it calls., If such a
sketch is available, attention can remain within the module
being studied; the reader need not have a detailed

understanding of how the subroutine works to comprehend the
program which calls the subroutine. Also, when 1looking at
the thumbnail sketch of a subroutine to figure out what it
does, it is useful to have some idea of which other modules
also call this subroutine; this allows one to establish the
"place" within the system of the subroutine. In this
section, then, is listed each entry point of each module, a
brief description of what the entry point does, and a list
of all modules of the supervisor which call this entry
point, The information in this section pertains to version
"1A1" of the time=-sharing supervisor. All program sizes are
given in octal,

Module ADPI
Function: 7750 1/0 adapter module,
Size: 2340 words,

Entry Points:

WRTELY Subroutine to write a line on a
teletype,
RDTELY Subroutine to accept characters

from a teletype.
callers: CHNE (ETRAP)

Module:

Function:

Size:

Entry Points:

Module:

Function:

Size:

Entry Points:

CTSS Technical Notes PAGE 61

AP75

Handles 7750 buffers.

447 words,

WT7750 Write output on 7750.
callers: ADPI, HIGH

CHNE

Hardware routine to drive data channel E
(7750 and teletypes). Contains 7909
channel programs.

363 words,

CHANLI Subroutine to initialize 7750 and
channel E,
callers: CTRL, MAIN

WR7750 Subroutine to transmit data to
7750,
callers: AP75

ETRAP Channel E data channel trap entry.
callers: MAIN, channel
E data channel trap.

STOPE Shut down channel E for high-speed
drum,
callers: STPR

STARTE Restart channel E after STQPE

has stopped it.
callers: ST@R

Module:

Function:

Size:

Entry Points:

Module:

Function:

Size:

Entry Points:

CTSS Technical Notes PAGE 62

cLpcC

Clock trap processor module,

1377

STCL@AC

CLKINT

GETOTL

ADDTIM

ceMc

Subroutine to start up interval
timer clock.
callers: CTRL, MAIN

Interval timer trap entry.
callers: MAIN; clock trap.

Get time system has been running.
callers: SCHED

Update time used,
callers: CTRL, ST@R

Miscellaneous subroutines.

146

ENKEYS

STOPIF

COMCHK

SETUSR

Subroutine to enter console keys
of interrupt to CTSS.
callers: CLPC, CTRL, PMTA

Subroutine to stop if key 24 is
down,
callers: PMTA, RTRN

Subroutine to search command
directory for command in logical
AC.

callers: CL@C, CTRL

Subroutine to establish current
user as a disk user,

callers: CTRL, LOGA, PMTA, SAVC
STPR

CTSS Technical Notes PAGE 63

BRPOM Scan adaption system,
callers: CL@C, TCPR, PMTA, RDFX,
LAGA
SWEEP Continue BROOM scan.
callers: CL@C, TCBR, PMTA, RDFX,
LAGA
Module: cCOMD
Function: The command directory.
Size: 372
Entry Points:
COMDIR Entry to command directory

control word,
caller: C@AMC (CPMCHK) SCHED

FILE Direct entry to FILE entry in
command directory.
callers: CL@C

LAGIN Direct entry to LAGIN entry in
command directory.
callers: CL@PC, CTRL, PMTA, STQR

ENDLQG Direct entry to ENDLPG entry in
command directory,
callers: CLPC, CTRL, LPGA

START Direct entry to START entry in
command directory.
callers: CL@C

TFILE Direct entry to TFILE entry in

command directory.
callers: CL@C

Module: CANV

Function: Conversion routines,

Size:

Entry Points:

Module:

Function.

Size:

Entry Points:

CTSS Technical Notes PAGE 64

2468

CTIME

TCTIME

DTBC

BTDC

0TBC

BTAC

RDYTIM

CTRL

Subroutine to convert time in 60th
to BCD 1/10th minutes.
callers: LPGA, L@PGB

Subroutine to convert time in 60th
to BCD in .01 hours.
callers: L@GA, PMTA

Subroutine to convert decimal to
binary.

callers: COPMC(SETUSR), L@GA, L@GB,
PNLN, PMTA

Subroutine to convert binary to
decimal,
callers: L@PGA, PMTA

Subroutine to convert octal(BCD) to
binary.
caller: @CTC

Subroutine to convert binary to
octal BCD,
callers: @CTC, PMTA, STPR, RTRN

Subroutine to obtain user command
time used, to be typed with the
“"READY" comment.

callers: CL@C, CTRL

Main control module,

1160

CHNCOM

NEWCOM

Entry to pick up next program-
initiated command if any.
callers: @CTC, PMTA, SAVC

Entry to set up new command
for user,
callers: PMTA

Module:

Size:

Entry Points:

CTSS Technical Notes PAGE 65

coLD

DEAD

ENDUSR

ENDCOM

CYCLE

CKQUIT

ILLCPM

DCER

2168

EPRINT

ALLSAV

ALLRST

Entry to restart system after
XEC loop, etc.
callers: EDBG(PANIC), MAIN

Entry to place current user in
"DEAD" status,
callers: LPGA, PMTA, SAVC, ST@R

Entry to set user status and type
ready,
callers: @CTC, PMTA, RTRN

Entry at end of command - ready
not typed.
caller: LPGA, PMTA

Entry to check for more work to do,
caller: CLPC, PMTA, RTRN

Subroutine to find if current
user has pushed "QUIT" while
in supervisor,

caller: PMTA, RTRN

Entry after illegal sequence
of commands,
caller: @CTC, SAVC

On-line print subroutine (saves
channel A),
caller: CHNE, DSKI, STOR

Subroutine which saves all basic
machine conditions,
callers: CHNE, DSKI

Subroutine which restores all
basic machine conditions.
callers: CHNE, DSKI

Module:

Function:

Size:

Entry Points:

CTSS Technical Notes PAGE

DSKI

Disk control module

11506

DINIT

JOPEN

+CLOSE

+ASIGN

+APEND

JWRITE

+FILE

«RELRW

+SEEK

+READ

+ENDRD

+DLETE

Initialize disk routine.
caller: MAIN

Sign user on to disk.,
callers: COPMC(SETUSR), CTRL,
LAGA, MAIN, PMTA, SAVC

Remove user from disk file.
callers: L@PGA, L@PGB, PMTA

Initialize writing a new file,
callers: LOPGB, PMTA, SAVC, ST@R

Add to end of an old disk file,
callers: L@PGB, PMTA, SAVC

Write data with a disk file,
callers: L@GB, PMTA, SAVC, STPR

Terminate writing of a file.
callers: L@GB, PMTA, SAVC, STPR

Open a file for relative
read/write,
callers: L@PGB, PMTA, SAVC

Initialize a disk file for
reading.

callers: CTRL, L@GB, PMTA,
SAVC, ST@R

Read data from a disk file.
callers: CTRL, L@GB, PMTA,
SAVC, STAR

Terminate reading from a disk
file

callers: CTRL, L@AGB, PMTA,
SAVC, ST@R

To delete a disk file and its
tracks.
callers: PMTA, SAVC

66

CTSS Technical Notes PAGE 67

+CTEST

+GTFLG

SETDU

+STATL

.FILDR

+UPDAT

.DFINE

+RESET

+FSTAT

+SETAB

+ RDWAT

«.CHECK

«STKER

.ERASE

Check if a disk channel is in
operation,
(not used.)

Pick up error or control flags.
callers: PMTA

Set current disk user,
callers: CTRL, L@PGB, MAIN,
PMTA, SAVC, STPR

Get location of disk user status
tables,
callers: MAIN

Read a track of user file
directory.
callers: PMTA

Update user file directory
onto disk.
callers: PMTA, SAVC

Define a new logical module
number,
(not used.)

Reset all files in active status.
callers: CTRL, PMTA, SAVC

Obtain information about a file,
callers: CTRL, PMTA

Set memory switches for A or B,
callers: CTRL, L@GB, MAIN, PMTA,
RTRN, SAVC, STQR

Read out and reset channel
waiting time,
callers: CTRL, SAVC, ST@R

Wait until all disk activity is
finished,
callers: ST@AR

Set error return on disk track
error.

callers: CPMC(SETUSR), CTRL,
LAGA, L@PGB, MAIN, ST@PR, RTRN

Delete a file from directory,
but leave its tracks.

. callers: PMTA, STOR

CTSS Technical Notes PAGE 68
.GETDS Get status of active disk files.
callers: SAVC

« RENAM Change name or mode of a file.
caller: PMTA

Module: EDBG
Function: System debugging aids
Size: 764

Entry points:
PANIC Entry to take a panic dump of
both cores,
callers: Console operator's
restart: MAIN

ADUMP Subroutine to dump memory A,
caller: CLPC

BDUMP Subroutine to dump memory B,
caller: CLOC

TRACE Subroutine to print out a trace
of all traps.
caller: CL@C

Module: HIGH
Function: High Speed line adapter
Size: 252

Entry Points:
RDHIGH Read high speed line,
caller: ADPI

WRHIGH Write high speed line.
caller: ADPI

Module:

Function:

Size:

Entry Points:

Module:

Function:

Size:

Entries:

Called By:

Module:

Function:

CTSS Technical Notes PAGE 69

LPGA, B, C

Login and logout commands and associated
subroutines,

A 1713

B 1206

c 131

LOGIN, TSS login command,
caller: PMTA

LAGERR Entry in case of error setting
up user's file directory.
callers: COMC(SETUSR)

ENDLG, TSS Automatic logout entry.

caller: COMDIR

LAGAUT TSS logout command,
caller: C@MDIR

MAIN

Main Program

2205

(MAIN PROGRAM) Initialize system, set up trap
returns, start system running.

System loader

MTRA

TSS system statistics collector,.

Size:

Entry Points:

Module:

Function:

Size:

Entry Points:

Module:

Function:

Size:

Entry Points:

CTSS Technical Notes

6 (Dummy not presently used)

M@NITR

EREAD

PCTC

PAGE 70

Entry to put away statistics,

caller:

cLpc

Entry to obtain collected

statistics,
caller:

PMTA

Octlk, Octpat, and Octtra commands

200

PCTLK:

OCTPAT:

PCTTRA:

@NLN

TSS ACTLK command for core B,

caller:

COMDIR

TSS PCTPAT command for core B,

caller:

CAMDIR

TSS PCTTRA command for core B.

callers:

COMDIR

On-line device manipulators for supervisor

420

CL@ACIN

PRINT

Read data and time from chronolog

clock,

callers:

LAGA, MAIN

Print 72 character line on-line,

callers:

PMTA,

RTRN,

CTRL,

ST@R

LAGA, MAIN,

CTSS Technical Notes PAGE 71

PUNCH Punch a card on-line.
caller: LOGA

Module: KLUD (PLQPT at Computation Center)
Function: Channel D /9 Adapter.
Size: 2161 at Center, 7173 at MAC

Entry Points:
PL@TS Plot statistics on 7094 scope
(center).,
caller: CL@OC

DSC@PE Display information on ESL scope.
caller: PMTA

DTRAP Channel D trap entry.
callers: MAIN, channel D data
channel trap.

DDTRAP Direct data trap entry.
callers: MAIN, direct data trap.

STOPD Stop data channel D for High
Speed Drum,
Caller: STOR

STARTD Restart data channel D after
High Speed Drum,
caller: STOR

Module: PMTA
Function: Protection trap processor,
Size: 5144

Entry Points:
PTRAP Entry on protection mode trap.
callers: MAIN; Protection mode
violation,

CTSS Technical Notes PAGE 72

BKSERV Entry to service background
(requested by Keys).
caller: CTRL

ERR@R Entry to comment after a disk
error. (not used)

DPRINT Entry to print out a disk error
on-line.,

caller: MAIN

DERR Entry to process a disk error.
caller: MAIN

USERER To process disk track error for
user,
callers: CTRL, RTRN

Module: RFLX

Size: 2705

Entry Points:
RDFLXA Entry for a user to obtain a lin
from common input buffer.
caller: PMTA

ENTLIN Entry for supervisor to add a
line to common input buffer.
callers: CL@PC, PMTA

RSSRB Entry to reset all input lines
for this user,.
callers: CLPC, CTRL, PMTA, TCPR

RSSWB Entry to reset user's output
lines.
callers: CL@C, CTRL, LPGA,
TCPAR
Module: RTRN

Size: 241

CTSS Technical Notes PAGE 73

Entry Points:

RSTCPU Entry to return to user program,
callers: CTRL, L@GA, MAIN,
PMTA, SAVC

CMEXIT Entry to return to interrupt
program,

callers: CHNE(ETRAP), CL@C
DSKI, PL@T, UTRP

CMXRTN Cell containing return location,
callers: EDBG(TRACE)

LBAD. 4 Cell containing IRL,
callers: EDBG(TRACE)

Modutle: SAVC
Function: Save, restore, resume and start commands.
Size: 624

Entry Points:
XDUMP This is the SAVE command entry
point.
callers: COMDIR

SAVE Subroutine to save a user,
(Used by XDUMP and ENDL@G).
callers: LPGA(ENDLAG)

RESUME TSS resume command.
callers: C@OMDIR

XLOAD TSS restor command.
caller: COMDIR

START TSS start command.
caller: COMDIR

Module: SAVR

Function: Save and restore routine.

Size:

Entry Points:

Module:

Function:

Size:

Entry Points:

Module:

Function:

CTSS Technical Notes PAGE 74

2468

SAVCPU Subroutines to save basic user
machine conditions.,
callers: CL@PC, PMTA

REST@R Subroutine to restore basic user

machine conditions,
callers: PMTA, RTRN

LANGSV: Subroutine to save complete user
machine conditions,
callers: ST@AR

LNGRST: Subroutine to restore complete user

machine conditions.
callers: SAVC, STOR

SCbA, B, C, D, E, F, G, H

Scheduling, time accounting, and monitoring,
including all subroutines.

A 1567 F 266

B 421 G 73

C 523 H 20

D 22

E 174

SCHEDL Entry to notify scheduling algo-

rithm that something has happened.
callers: CL@AC, CTRL, LOGA, MAIN,
PMTA, SAVC, ST@R, ADPI

M@NSCD,MANINF Monitoring
caller: PMTA

STPR

Storage allocation algorithm module.

CTSS Technical Notes- PAGE 75
Size: 2165

Entry Points:

DUMP Subroutine to dump user onto disk.

. caltlers: CTRL

UNDUMP Subroutine to restore a user from
the disk.

callers: CTRL

FREEUP Subroutine to freeup N words of
memory B,
callers: CTRL, PMTA, SAVC

Module: TCAR
Function: Typewriter coordinator - break processor,
Size: 5205

Entry Points:

TCOORD Subroutine to collect input char-
acters into messages and look for
break characters,
callers: CL@C

WRFLX Subroutine to write a message on a
typewriter., Follow message with a
carriage return, \ ‘
callers: CL@C, CTRL, LOPGA, L@GB,
@#CTC, PMTA, RTRN, ST@R, SAVE

WRFLXA Subroutine to write a message on a
typewriter, No carriage return
provided,

callers: CL@C, L@PGA, PMTA

RSSRB. Subroutine to reset a user's
secondary read bhuffer,
callers: RFLX

TOPOOL Subroutine to place an Input
character in the character pool
buffer.

callers: ADAP(RDTELY), HIGH

Module:

Function:

Size:

Entry Points:

Module:

Function:

Size:

Entry Points:

CTSS Technical Notes PAGE 76

RDLINE Obtain an input line from break
processor.
caller: CLPC

TSTQ

7750 storage allocator. (MAD)

254

TGET Subroutine to obtain a block
of 7750 storage.
callers: AP75

TGIVE Subroutine to give'back

a block of 7750 storage.
callers: ADAP(RDTELY), HIGH, AP7s

TRESET Subroutine to discard all of a
user's present output stored

in 7750.
callers: AP75

UNIT

Assigns logical unit numbers to consoles

247

ASNUNI Subroutine to assign a logical
unit number to a physical unlt.
callers: ADAP, HIGH

US2BS Subroutine to look up a physical
unit number given a logical unit
number,

callers: ADPl, AP7S

CTSS Technical Notes PAGE 77

BS2US Look up logical unit number given
physical unit number.
callers: ADPI, AP75

ERSUNI Subroutine to erase logical unit
assignment,
callers: CL@C, LPGA

Module: UTRP
Function: Process user traps.
Size: 4228

Entry Points:
ATRAP Process data channel trap
from channel A,
callers: MAIN, channel A
data channel trap.

BTRAP Process data channel trap
from channel B,
callers: MAIN, channel B data
channel trap.

STRTRP Process STR in a user's program.
callers: MAIN, STR trap.

FLPTRP Process floating point traps
in user program.
callers: MAIN, floating point
trap.,

CTRAPS Subroutine to check for waiting
traps.
callers: RTRN

UPCL@C Subroutine to update core clock
for current user.
callers: CL§C

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security claseitication of title, body of abstract and indexing annotation must be entered when the overall report ia clasaified)

1. ORIGINATIN G ACTIVITY (Corporate author)

Project MAC

Massachusetts Institute of Technology

28. REPORT SECURITY C LASSIFICATION
Unclassified

2b. GROUP

3. REPORT TITLE
Project MAC

TR-16 CTSS Technical Notes

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical description of 7094

Compatible Time-Sharing System

5. AUTHOR(S) (Last name, first name, initial)

Saltzer, Jerome H.

6. REPO RT DATE
March 15, 1965

7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

77 + IV 3

8a. CONTRACT OR GRANT NO.

Nonr 4102(01)

b. PROJECT NO.

DSR 9457

d.

9a. ORIGINATOR'S REPORT NUMBER(S)

TR-16

9b. OTHER ngpo RT NO(S) (Any other numbers that may be assigned
this report,

10. AVAILABILITY/LIMITATION NOTICES

No limitation

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

ADVANCED RESEARCH PROJECTS AGENCY through
OFFICE OF NAVAL RESEARCH

13. ABSTRACT

supervisor program.

This report is a technical description of the 7094 Compatible Time-
Sharing System in use at Project MAC and the M.I.T. Computation Center.
It is designed to acquaint a system programmer with the techniques of
construction which were used in this particular time-sharing system.
Separate chapters discuss the overall supervisor program flow; console
message input and output; the scheduling and storage algorithms; and a
thumbnail sketch is given of each of the subroutines which make up the

This report was prepared with the aid of the compatible time-sharing
system and the TYPSET and RUNOFF commands.

DD .i%%. 1473

Unclassified
Security Classification

Unclassified

Security Classification

KEY WORDS

LINK A LINK B LINK C

ROLE WT ROLE wT ROLE wT

Computers

Multiple-access computers
On-line computer systems
Real-time computer systems
Time-sharing

Time-shared computer systems

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
“‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 ‘as author-
ized.

3, REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal aathor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the docament will be identified
and controlled by the originating activity. This number must
be unique to this report.

9. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

17, AVAILABILITY/LIMITATION NOTICES: Enter any lim-

.itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) “‘Qualified requesters may obtain copies of this
report from DDC.”’

(2) ‘“Foreign announcement and dissemination of this
report by DDC is not authorized.’’

(3) ‘‘U. 8. Government agencies may obtain copies of
this report directly from DDC. 'Other quallfled DDC
users shall request through

(4) *“‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

”
.

(5) *“All distribution of this report is controlled Qual-
ified DDC users shall request through

‘)l

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or 1aboratory sponsoring (pay~
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall

be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected 80 that no security classification ia required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. Toae assignment of links, rales, and weights is optional.

F ORM
1 JARN 5L

DD 1473 (BACK)

Unclassified

Security Classification

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	_1
	_2

