COMPUTATION CENTER

Massachusetts Institute of Technology
Cambridge 39, Massachusetts

TIME-SHAKING SYSTEM NOTES

Introduction

- This document is a supplement to the CTSS Programmer's Guide¥,
It contains, as well as supplementary information, corrections to
some of the specifications given in the Guide, and periodic reports
on some features which have been imnlemented since the publication
of the Guide. The notes will be periodically revised and upcated.

Additions, corrections anc amplifications are organized with
reference by chapter and page to the Programmer's Guide. There will
be some additional sections which contain material not specifically
related to chapters in the Guide. Logical subdivisions of the
material will be dated.

*The Compatible Time- Sharing System: A Programmér's Guide, M.I.T.
Computation Center, M.I.T. Press, Cambridge, 1963.

November 20, 1963

This edition contains primarily addenca and errata to
Chapters 4 ancd 5, the sections on Supervisor Subroutines and Disk
Control Subroutine calls. Given below is a list of the items
discussed in the pages that follow. Note especially the description
of Automatic Logout ancd the new supervisor subroutines for command
chaining.

Automatic Logout (page 30) - interim version

Backgrouhd System Restrictions (pp 35-38) - new supervisor
subroutines RSTIME and TRA 1,4

Supervisor Subroutine Calls (Chanter 4) - minor amencdments to
specifications for the following supervisor entries:

RDFLXA
DEAD, DORMNT
SETMEM
TSSFIL, USRFIL
SAVBRK
GETILC
INSTRT, INPEND

New Supervisor Subroutines having to do with execution of a chain
of commands: SETCLS, GETCLS, SETCLC, GEICLC, CHNCOM.

Disk Control Subroutine Czlls (chapter 5) - minor amendments to the
specifications for the following disk routine calls:

.LOAD

READK
+ENDRD
WWRITE
+.CLEAR
+FILDR

Clarification of the meaning of Disk Error Conditions Codes.

Disk Editor Control Cards - current restrictionms.

GENERAL DESCRIPTION AND USAGE TECHNIQUES (Chapter 3)

Automatic Logout (page 30)

At the present time, an interim form of automatic logout is
provided. When the time-sharing system is shut down, either on a
scheduled basis or, when possible, on an emergency basis, each
active user is interrupted and is automatically loggecd out. This
is exactly as if the user had issued a quit signal followed by a
logout command. Any disk files which the user has created during his
gsession are correctly recordec on the disk, but any files which are
in active status at the time of automatic logout are reset (see page
50). At present no gaved file is created. It is worth noting here
that if the user is creating a large file by use of the input
command, all his input will be lost if he runs overtime; therefore,
it would be wise for the user to keep an eye on the clock. Also,
where :the input is extensive and tedious to retype, it is a good
idea to issue a file command from time to time, and then continue
input via the edit command. The precautions will become virtually
unnecessary in the future, when a version of automatic logout will
be implemented which will include creation of a saved file, .
automatic extension of track quota, and preservation of disk
status.

11/20/63

Background System Restrictions (pp 35-38)

Two additional supervisor subroutines are provided for the use
of the background system only. At the start of a background job
the simulated interval timer clock is set to zero by the call

TSX RSTIME, 4

which is issued by the FMS record SIGN-ON. (The location RSTIME
must contain TIA = HRSTIME.)

An entry is provided whereby a program may determine whether
orlgot it is running as background to the time-sharing system. The
call:

TSX T,4
with
T TIA %1
TRA 1,4
will cause a trap to the supervisor if and only if the job is
running as background (i.e., running in B coreg. If the program
is running in A core, this sequence will simply cause a return to

(1,4); if it is running as background in B core, the sunervisor
will effect a return to (2,4).

11/20/63

SUPERVISOR SUBROUTINE CALLS (Chapter &)
RDFLXA (page 40)

This subroutine has been slightly modified to allow for
reading in 12-bit mode. This description supercedes the description
given in the manual. The call

RSX RDFLXA, 4
PZE BUFF

reads 14 words into memory starting at BUFF., On return, in both
6-bit and 12-bit mode, the logical AC contains N, the number of 6-
bit bytes read, up to and including the break character (that is,
for 6-bit mode the break is the Nth character; for 12-bit, the break
is the N/2 character). Blanks are filled in to the right of the
break character. If the break character was not received in the
first 14 words of the input line, then bit 21 of the AC will be 1,
indicating that another call to RDFLXA is required to continue
reading the line. .

11/20/63

DEAD, DORMNT (pp 40-41)

By - way of clarification of the function of these entries, in
particular with regard to priority levels, this description super-
cedes that given in the manual. The call

TSX DEAD, 4

returns control to the supervisor and puts the user in dead status,
i.e., his machine conditions aie not saved. In addition, the user's
memory bound is set to zero; as a result, upon issue of a new
command his level will not be prejudiced by the old setting of the
memory bound.

TSX DORMNT, 4

returns control to the supervisor and puts the user in dormant
status, i.e., his machine conditions and the current status of
his program are saved. His memory bound is also saved., If a
command is issued which causes a new program to be read into
memory, the old machine conditions, status, and memory bound are
?gez)witten. If the start command is issued, control returns to
’ L

11/20/63

Change Of Memory Bound - SETMEM (page 41)

With regard to the use of SEIMEM to extend the user's memory
bound, it should be noted that in the current implementation the
memory bound is set by a word count in the AC, which is taken to
be the number of worc¢s of memory which the user wants to reference.
This presents a problem only when the user needs all of core, as
he cannot specify 32,768 locations in a 15-bit address. However,
ahword count of 777778 will, in fact, make all of core available to
the user.

Memory protection in the 7090/94 is controlled by the
protection indicators (a hardware modification) which are 7-bit
registers; the setting of these registers represents the high-order
7 bits of a memory address, so that protection is implemented on
the basls of 256-worc blocks. Thus, there are two numbers relevant
' to the user's memory allotment, the woid count (his 'memory
bound') and the block count, which is the unit of protection and the
quantity used for swapping users in and out of core. It is
apparent that the word count is in fact of interest only to the
user, who may need to maintain an accurate record of his memory
bound for the purpose of making small changes to it.

At present the supervisor dumps users by block count and
restores them by word count. A more consistent approach would be
for the supervisor to concern itself with block count only. In the
future, GETIMEM and SETMEM will probably be modified as follows:
SETMEM will set the user's memory bound to the nearest block count
greater than or equal to the word count specified in the AC; the
specified word count will be kept in the supervisor, however, and
will be returned in the AC on a call to GETMEM. Thus, the call

CAL =77777

TSX SEIMEM, 4
would be equivalent to

CAL =77401
ISX SETMEM, 4

but subsequent calls to GETMEM would not return the same word coun
in both cases. In this way, the sequence '

ISX GEIMEM, 4
ACL =14
TSX SETMEM, 4

would still be a meaningful and efficient way to increment the
memory bound.

11/206/63

TSSFIL, USRFIL (page 42)

The following is an expansion of the description of these
entries given in the manual, The call

TSX TISSFIL, &4

allows the user to read time~sharing system files from the disk
(e.g. the CISS library). After this call, only system files may be
read; to reset the mode, the user must give the call

TSX USRFIL, 4

which allows him to reference his own files again. After a call

to TSSFIL, all disk references are interpreted with reference to

the system file directory (until a call is issued to USRFIL);
however, the user is permitted to issue only the disk calls

.SEEK, .READK, .ENDRD, and .LOAD., When a call is issued to either
TSSFIL or USRFIL, any active files in the file directory currently

- referenced are reset (see description of .RESET, page 50) before the
switch is set to reference the other file directory.

11/20/63

SAVBRK (page 42)

Upon return from this subroutine, the AC contains an instruc-
tion TRA QL where QL is the quit entry point assigned to the quit
level just left. If the command level (level 0) is reached, the
contents of the AC is zero. It has been suggested that a better
way to ensure that a zero AC has unambiguous significance would be
to put in the decrement of the AC the number of the level to which
QL corresponds. Until this is implemented, however, it is only
necessary to remember that the left half of the AC contains a TRA
for non-zero levels.

11/20/63

GETILC (page 43)

On return from this subroutine, the AC contains an effective
STZ 1ILC where ILC is the value of the instruction location counter
at the time the user last went dormant; the STZ is due to the fact
that bits 3 and 4, turned on by a condition associated with the
two-core RPQ, are not masked out by the supervisor. This error
will be corrected in the near future.

11/20/63

INSTRT, INPEND (page 43)

This is an elaboration of the description given in the manual.
These two subroutines are used by the input and edit commands; they
are very rigid in format and requirements, and must be regarded
as special-purpose routines. Since they were not intended for -
general use, they were coded for maximum efficiency in the superx-
visor, and without any regard for external flexibility or
consistency. They are described here primarily to clarify the
mechanism of the input mode.

The call:
TSX INSTRT, &

puts the user into a console input mode. The contents of the
logical AC is taken as an initial line number, in BCD, without
alphabetic characters. The contents of the MQ is taken as a line-
number increment, in binary, less than 29. The supervisor types
out the initial line number and returns control to the program;
when a line is entered it may be read by RDFLXA, The supervisor
continues to generate line numbers, incrementing by the specified
increment, each time a line is read. (If no increment is provided,
an increment of ten is assumed.) According to the conventions
described under the input command (Chapter 7), a manual mode may
be entered where the supervisor suspends generation of line
numbers, and types out 'MAN." instead.

In addition to typing out line numbers or 'MAN.', the
supervisor inserts whatever it has ty-ed out into the 1l4th word
of the input line; line numbers are in BCD, left-justified, with
one blank to the right; leading zeros are explicit, making a full
five characters; if the line was entered in manual mode, the
fourteenth word contains the characters MAN. with one leading and
one trailing blank.

The supervisor expects the terminal line of the input to be
a command line, entered in the manual mode; at present the only
command which is accepted is file. Upon interpretation of this
command, the supervisor enters the command into the command buffers
but does not execute it; control returns to the program which
must prepare for the next command in whatever manner is requiced.
The supervisor does not transmit the command line to the program,
but transmits instead a line with a first word of all 7's. The
program must then issue the call:

TSX INPEND, &4

which causes the supervisor to go on to the waiting command.

11/20/63

New Supervisor Subxoutines (page 43)

Five new supervisor subroutines permit execution of a chain of
commands. By execution of a program using these routines, up to
five commands may be chainecd in a designated sequence. Along with
the user's machine conditions are kept five buffers containing the
command lists (command name plus arguments) of the commands in the
chain, and a command location counter (CLC) to govern the chaining.
The designated commands are numbered from 1 to mn € 5, in the order
of execution; the CLC contains the number of the next command to be
executed and the number of the terminal command in the chain. The
command lists may be set, read, and mocified, as may the CLC.

The call
TSX SETCLS, 4
PZE An,,n
where
An BCI 1, NAME
BCI 1, ARGl

¢cT 7777777777717

sets the nth command list to the command NAME and the associated
arguments. The word of sevens marks the end of the list.

The call

TSX GETCLS, 4
PZE BUFF,,n

{ills the 20-word buffer BUFF with the contents of the nth command
ist. 4

It must bemted that the Supervisor does not scan the command
list before moving it in or out of the user's buffer. Twenty
words arxe copied; the fence of sevens is interpreted.by the
particular command program itself, Consequently the user must
provide a 20-word buffer for GETCLS, regardless of the length of the
command list, and care must be taken that for short lists SETCLS does
not produce a protection violation.

In the near future some modifications will be macde to the =
method of storing command lists, which will affect GETCOM as well as
GETCLS and SETCLS. 1In particular, use of the fence of 7's will be
eliminated and instead an extra word will specify the number of -
words in each list. This will simplify the use of GETCOM (q.v.)
in that a single call will be used to obtain the entire argument .

list. At the same time, the inelegance of blindly transmitting
twenty words on GETCLS and SETCLS will be removed.

To set the CLC, a call
TSX SETCLC, 4
is given with the contents of the AC as follows:
PZE m,,n

This will set the CLC so that the mth command will be executed
next, and chaining will terminate after execution of tle nth
command. The call

TSX = GETCLC, &4

will return in the AC the current contents of the CLC. During
execution of the ith command, the address of the CLC contains i + 1.

The call
TSX CHNG/M, 4

causes execution of the next command according to the contents of
the CLC. Every command program should issue a call to CHNC{M on
normal exit, so that chaining may continue if the command is part
of the chain. If there is no ‘'mext command" waiting, the call to
CHNCYM will be equivalent to a call to DEAD or DYRMNT, depending
on the contents of the AC: if the address of the AC is zero, it is
as if a call to DEAD had been given; if the address of the AC is
one, a call to DPRMNT is effected.

All standard system commands are in the process of being
recoded to terminate in a call to CHNCOM.

11/20/63

USE OF THE 1301 DISK MEMORY (Chapter 5)

.LOAD (page 46)

A modification has been made to this subroutine. The following
description supersedes the one given in the manual.

To load a continuous block of core from a file previously
recorded on the cisk, the .LOAD entry is provided:

TSX .LOAD, &
PZE FILNAM
PZE A,,n

where A, n, and FILNAM are of the same foxm as in the .DUMP
calling sequence. The prefix code and module number need not be
specified. For loading files of undetermined length, n may be set
to a larger value than necessary; if the user snecifies a larger n
than the number of words actually in the file, upon return the
address of the AC will contain the number of words actually loaced.
If n is less than thie number of words in the file, n words will be
loaded and the contents of the AC will be meaningless. This
ambiguity will be removed in the near future, when .LCAD will be
revised so that the AC will always contain the correct number of
words actually read. Temporarily, however, the user may guarantee
that the word count he specifies is greater than or equal to the
number of words in the file (and so guarantee a correct word count
on return) by first calling .FSTAT (page 51) and using the estimated
word count from .FSTAT for the call to .LOAD,

11/20/63

.READK, .ENDRD (pp 48-49)

This description is a clarification of the one given in the
manual, and describes several new features. To read information
from a file initialized by a call to the .SEEK routine, any number
of calls to the .READK entry may be used in the following form:

TSX .READK, 4

PZE FILNAM
PZE A, T, n
PZE X

If T is zero, the first or next n consecutive words will
be read from the file specified by FILNAM, and storecd in consecu-
tive locations starting with location A, If T is non-zero, it is
taken as a "mon-transmit' indicator; n words of the file are - :
skipped over. If an attempt is made to read past the last word
of the file, control is transferred to location X. When this
occurs, the file being read is droppecd out of active read status,
and the buffers being used are available for other work. In
addition, on an "end of file' return the address of the AC
contains the number of words actually read on this call.

To terminate the reading of a file wituiout having to read
past the last word in the file, the following sequence is used:

TSX .ENDRD, &4

PZE FILNAM
It must be noted that if the user has read past the end of the
file, a call to .ENDRD is interpreted as an error (file not in

active status - error code 1), inasmuch as the file has already
been dropped from active status.

Relative Reading and Writing (page 49)
The call:

TSX WRITE, &4
PZE FILNAM, , RELADR
PZE A,,n

will write the n words starting at core memory location A into
the n words of File FILNAM, starting at relative location RELADR,
where RELADR is non-zero; (in other words, the first word of the
file has relative address 1). 1t is not permitted to write
beyond the existing limits of the file; i.e., the file must
already contain at least RELADR + n - 1 woxds.

Similarly as in the .WRITE call, when the first parameter
of a .READK call is

PZE FILNAM,, RELADR
with RELADR non-zero, the reading process starts from that

relative address of the file. If the word count of the file is

less than RELADR + i - 1, the normal end-of-file convention will
be followed.

11/20/63

.CLEAR (page 50)
The call:

TSX .CLEAR,&
PZE FILNAM,,n

will write n zeros into the file specified by FILNAM. This call
must be preceded by a call to ,ASIGN in standard form; on

return from .CLEAR, however, the file will automatically be
dropped from active status and no call to .FILE is required.

Note that this is a temporary divergence from the original
specifications., In the near future, the .CLEAR routine will be

revised to follow the description ziven in the Programmer's
Guide, ile.:

TSX .CLEAR, &
#%% FILNAM,,n

will create a file called FILNAM of mode *%%, and will write n
zeros into the file. Buffer space will be supplied automatically,

the module number may not be smecified, and calls to .ASIGN and
FILE will not be required.

11/20/63

.FILDR (page 51)

With regard to the user file directory obtained by a call to
FILDR, the following clarification should be noted. The
decrement of the first word of the last track contains the
number of words in this track not counting the first. The
address of the second word of the first track contains the
user's total track count.

11/20/63

Disk Error Codes (page 52)

With regard to disk routine error conditions, Error Code 1,
described as ""Illegal calling sequence', includes the following
error conditions:

a. Illegal call to the .WRITE routine; this occurs if the call
to WRITE references a file which is in active reacd status, or a
file in relative read-write status where a relative address is not
specified, or if a relative address is specified for a file not in
relative read-write status.

b. Illegal call to the .CLEAR routine; this occurs if the
call references a file in active read status or relative read-write
status.

c. Illegal call to the .FILE routine; this oécurs if the call
references a file in active read status.

d. 1Illegal call to the .READK routine; this occurs if the call
references a file not in active read status, or if a relative
address is specifiec¢ for a file not in relative read-write status.

e. Illegal call to the .ENDRD routine; this occurs if the call
references a file in neither active read nor relative read-write
status.

f., Relative address too large for file; this occurs if an
attempt is made to write into a relative address greater than the
length of the file referred to. :

g. File word count zero; this occurs on a call to .DUMP with a
word count of zero, or a call to .FILE where no words have been
written; the disk routine is so organized that a file with a zero
word count may not exist. (It is planned to remove this restriction
in the future.) :

h. Tried to rename read only class 2.

i. Attempt to delete file in raad only mode.

j. File (a,B) is not an active file; this occurs if a call to
WRITE, .CLEAR, .FILE, .READK, or .ENDRD references a file not

in active status; note that this is a temporary restriction on .
.CLEAR,

11/20/63

Disk Editor Control Cards (pp 52-54)

At present, the following disk editor functions are not
working:

a. 7Jpunch;
b. the CARDS option used with the Delete control card;

c. Link (this function was described as 'available soon';
in fact, it may be some time before it is available).

11/20/63

