AN ANALYSIS OF
TIME-SHARED
COMPUTER SYSTEMS

ALLAN LEE SCHERR

RESEARCH MONOGRAPH NO. 36
THE M.LT. PRESS, CAMBRIDGE, MASSACHUSETTS

Copyright © 1967 by

The Massachusetts Institute of Technology
and printed in the United States of America by
The Riverside Press

All rights reserved. Work reported herein was supported (in part) by Project
MAC, an M.L.T. research project sponsored by the Advanced Research Projects
Agency, Department of Defense under Office of Naval Research Contract
NONR-4102(01). Reproduction in whole or in part is permitted for any purpose
of the United States Government.

For Herb Teager

FOREWORD

This is the thirty=-sixth volume in the M.I.T. Research
Monograph Series published by the M.I.T. Press. The objective of
this series is to contribute to the professional 1literature a
number of significant pieces of research, larger in scope than
journal articles but normally less ambitious than finished books.
We believe that such studies deserve a wider circulation than can
be accomplished by informal channels, and we hope that this form
of publication will make them readily accessible to research
organizations, libraries, and independent workers.

Howard W. Johnson

vii

ACKNOWLEDGMENTS

This monograph is based on the author's doctoral thesis,
written while a Research Assistant with MIT's Project MAC. It is
an attempt to apply measurement and evaluation techniques to a
relatively new development in the digital-computer systems area:
the time-shared, interactive machine. Some of the aspects of the
operation of such systems are analyzed with the emphasis on the
reaction of the hardware systems to the demands placed upon them
by its users. Both time-shared systems and their users are
characterized in order that the performance of the two acting
together can be predicted. User characteristics are defined and
quantitatively described. Simulation models as well as
mathematic ones are developed and their accuracy is compared to
actual system measurements. All of the measurements were made
with the Project MAC "Compatible Time-Sharing System" (CTSS).

First, simulation models are used to study the effects of
changing small details in the operation of CTSS-like systems.
Throughout, the actual measurements of CTSS are used as a basis
for comparison.

The author would like to express his deep appreciation to
Professor Herbert M. Teager, who served as thesis supervisor.
Thanks are also due to the thesis readers, Professors Ronald A.
Howard and Chung L. Liu.

Many friends and colleagues at Project MAC contributed to
this research, and, in a very real sense, they were the ores
being measured. The author would particularly 1like to thank
Professors D, C. Carroll, R. M. Fano, M. Greenberger, and D.
Wilde; Messrs. P. Clermont, P. Denning, G. Everest, G. Gorry, T.
Johnson, M. Jones, L. Kanodia, R. Mills, D. Ness, F. Russo, A.
Saltalamacchia, L. Selwyn, and M. Wantman. In addition, thanks
are also due to G. A. Maley and J. Ever of the IBM Corporation.

Finally, the author would 1like to express his sincere
appreciation to his parents, his aunt, and his wife, Marsha, who

2

was a constant source of inspiration.

A.L.S.

Poughkeepsie, New York
October 7, $66

ix

PREFACE

Allan Scherr's monograph is an important contribution to the
art of quantitative performance evaluation of computing svstems.
He has shown that a somewhat gross characterization at the level
of processing and transmission rates between subsystem "black
boxes" can realistically duplicate on a contracted time scale the
actions of a real system. His simulation model, when applied to
an existing time-shared system, has pinpointed its rate-limiting
aspects and predicted its reactions under a wide range of
conditions. Evaluation tools such as he has developed are
crucial in improving the design of computer systems, yet taken
alone they are not sufficient, since knowledge of the load and
its probable future changes is a precondition for their wuse.
Aspects subject to future change, such as applications, user
population, programming languages, and the input-output (I/0)
device interface can dramatically alter the loading and thus the
behavior of computer systems. However, it was not part of
Scherr's task to treat these influences explicitly.

The author of this preface is a systems engineer whose
abiding professional interest is the development of better
computer-information processing systems. His intentions are,
first, to give his reasons for writing; second, to consider
béiefiy facets that can affect system behavior relative to a set
of performance criteria; and £finally, in the 1light of these
criteria, to discuss some of the commonly held notions with
respect to time-shared computer systems.

My reasons for writing thus go beyond simply evaluating
Scherr's efforts and placing them in a larger context. ILike most
other professionals in the field =-- scientists, engineers,
technicians, and promoters =-- I have my own notions of how to
achieve progress. Since I have worked at each of these levels as
a designer, programmer, and user, my biases may hopefully be at
least somewhat more wideranged than is the usual case. It is my
observation and conviction that the following factors are
materially slowing progress in realizing the potential of
computers:

xi

xii Preface

1. Computer information processing is a systems problem
that goes beyond the range of separate disciplines and is more
than the sum of their parts. Computer systems are highly
complex, and their development requires the concentrated and
co-ordinated skills of many professions. A system can be a
success from the standpoint of its hardware and programming, vet
still be a resounding failure when not meeting the needs of its
user or doing so at too great a cost.

2, Computer information processing is not a science and
cannot begin to become one without a prior foundation of
evaluation and measurement. Neither, for that matter, can
systems be improved without a careful study of their defects and
strengths relative to a meaningful set of evaluation criteria. A
physical system such as a bridge, a power network, or a satellite
has some advantages in these regards as compared to
information-processing systems. Their failures are glaring and
evident to the senses. Their objectives are generally clear,
their tangible costs can be ascertained, and corrective measures
can be taken. This 1is not wusually the case with computer
information-processing systems, which generally involve large
numbers of people with the usual distribution of intelligence,
knowledge, thoughtlessness, self-interest, and cussedness, to
which any and all "temporary" and intangible difficulties with a
system can be ascribed.

3. While our understanding of the interaction between
programming and hardware aspects of computer systems leaves much
to be desired, it is in the area of the needs and capabilities of
the user that our ignorance is greatest and most telling. Most
professions -- management, science, engineering, medicine, and
the military -- have a large and growing need for computers and
"intellectual automation." If we are to believe the
prognostications, it will not be long before ordinary citizens
experience intimate contact with computing services. Yet today
all is still far from ideal in the interface between men and
machines, and the major impact on most professions is vyet to
come. A fruitless and frustrating interchange between a citizen
and a "mindless" merchandising or government agency computer may
rate a humorous squib in the Sunday supplement, but it is
symptomatic of current and future difficulties. The interface
between men and machines is not yet sufficiently close to human
needs and capabilities for us to be comfortahle about their

Preface xiii

extension into the brave new world to come.

4. There is a communication and semantics problem within
the subspecialties of the computer field as well as between the
computer specialist and the larger community of professional
users. To avoid confusion, the term "professional user" shall be
reserved for the engineers, scientists, doctors, managers, and
others, whose use of computers, irrespective of their computer
training, is ancillary to their major professional occupation.
The term "programmer" shall be used to denote the
computer-software specialist (technician through scientist),
regardless of training and work level, whose primary professional
interest is in computation per se. The professional user,
regardless of his computer competence, faces a difficult problem
in making his influence and observations on computer usage felt.
It is all too easy to dismiss his dissatisfactions by attributing
them to a lack of knowledge or to a reactionary attitude.
Further, within the computer industry there is no single group
willing or prepared to accept responsibility for a system's
usefulness to a user. There is thus no form of protest open to
the user except the nonconstructive, passive one of avoiding
computers.

5. There is a basic and deep conflict between the
promotional and prestige needs of the computer field and the
development of better computer systems. The attitude that any
"unfavorable" criticism can stifle and impede progress in
"computer” science discourages free inquiry and frank discussion.
Multiple-access computing is currently enjoying an adulatory
promotional buildup. When such systems were first considered in
the late fifties, it was exceedingly difficult to convince people
that such systems and their interaction with people were worthy
of study. Today, the pendulum has swung to the state wherein
"computer utilities,” "time-sharing," "Teleprocessing,”
"multiprocessing,” "multiple access,” and "machine-aided
cognition" are hailed as universal panaceas, although there has
been all too little penetrating analysis and evaluation in the
interim to support such conclusions.

The hope of bringing about some future change in these
factors is my primary reason for attempting to assess the current

state of the art in multiple-access systems.

xXiv Preface

Performance Issues

There is neither the knowledge nor the space to treat all
issues bearing on computer usage in depth here. Yet even a
superficial consideration of evaluation criteria and effects can
aid in delineating the intrinsic 1limitations of a particular
design or usage from those that are subject to influence and
change, such as experience, marketing practice, technological
advance, and programming emphasis.

Time-shared, multiple-access computing exhibits many of the
virtues and defects of other modes of access, such as batch
processing and single-user machines. With the exception of some
unique applications, it is generally comparable with such access
modes. The primary performance criterion of this preface and the
accompanying monograph 1is feasibility, and the fundamental
requirement for feasibility, once Eossibilitz has been
ascertained, is that over-all cost, including time, resources,

and effort relative to the benefits, must be advantageous

compared with the ever-present alternatives. The performance of

all computing systems depends upon at least four strongly
interconnected factors: the application and user population; the
language and device interface through which communication to . the
machine is achieved; the internal programming systems that
translate user specifications into machine processes; and,
finally, the central processing and accessible storage capability
of the equipment per se. The observed behavior of a system is
largely dictated by the weakest link _in the
User-language-software-hardware chain. Unfortunately the causal
relationships in a system may be far from clear. Effects may be
caused by such diverse and ephemeral factors as a manufacturer's
marketing policy, production technology, or programming staff and
inclinations, over and above any intrinsic limitations.

Let us first consider the key factor of wusage and user
population, restricting our attention to classes of uses
encountered in various areas of scientific research and
professional practice. We could make a 1long 1list of specific
applications involving "intellectual automation" in areas such as
weather forecasting, satellite data systems, experiment
monitoring, machine-aided design, hospital and library
automation, and so on. Each such area has three levels of
interest: the varied objective of the system, a cormon core of
information-processing technique, and a residue of psychological

Preface b4

research problems bearing on how to substitute for human ability
and where to put the man-machine interface. Our understanding of
human capabilities such as sensory perception, concept formation,
abstract reasoning, insight, and human judgment is primitive and,
while crucial to computer scientists, in the domain of the
psychologist.

Iet us direct our attention for the moment upon information
processing techniques, such as data reduction, simulation or
modeling, casual "desk-calculator" computation, on-line
experimentation, programming language translation, and data
retrieval.

Each of these processes puts its own specific requirements
upon the hardware, software, and interface characteristics of a
system in the sense of minima on cost, data and computation
rates, storage sizes, and interface modes and languages. On-line
experimentation, regardless of its specific nature, for example,
implies sufficiently high data-rate sensors and internal
processing speeds to keep pace with the experiment, with
appropriate display and input facilities for the user both to
monitor and direct the course of the experiment. Data reduction
and program language translation imply the ability to handle the
input, output, and internal processing. The rates and costs are
determined by what the user is willing to accept. Simulation can
cover a broad class of phenomena, some of which can place
inordinate demands upon central processing speeds and costs. For
example, in the casé of atmospheric modeling, the computations
required to achieve a single useful "run" may be on the order of
101% which in turn implies submicrosecond speeds, if results are
to be achieved in hours or days. Data retrieval requires an
appropriately sized storage whose contents are readily accessible
and intelligibly displayed on an acceptable time scale, while a
personalized "desk calculator"” requires a minimum of an
appropriate keyboard and printer text that will accept and
produce a usable language.

For any application, these processes are preceded by a
period of program development and checkout, which may well
require sizable amounts of computation. Thus, applications
require the availability of low-cost computation capacity, which
is general-purpose enough to handle both the application itself
and the debugging of the software.

xvi Preface

The user and user population are also important in dictating
systems requirements. In a trivial sense, the computation
requirements of a group of users go up as their numbers and
average demands increase., It is difficult to set limits on the
optimum user demand when benefits are compared with costs.
Clearly, a computational facility can be justified or expanded if
the change increases the job effectiveness of the user population
commensurate with the cost., It would be a platitude to point out
that a scientist, engineer, or manager might be made more
effective if he were relieved of the tedium of "cranking out" the
answers to problems whose solution techniques were
straightforward but tedious or time consuming. It is also
obvious that such a worker can and will shun proffered assistance
if it is more troublesome and time consuming to explain what was
wanted and to interpret and validate the eventual result than to
do it himself, some other way. If the cost in time and effort is
acceptable, the process is, to all intents and purposes,
subjectively one of "real time" for the user, regardless of the
absolute elapsed time,

It is in such real-time applications that a potential user
impinges upon the device-and-language interface of a computer
system. A computer, in general, is designed to accept a
step-by-step procedure rather than a statement of a problem.
Further, the general standard of keyboard-symhol cormunication

devices puts further constraints on the languages with which the
user can express his requirements. Although programming systems,
such as compilers and translators, are generally available to
raise the level of language somewhat above a detailed sequence of
machine operations, the current common standard of an "algebraic"
scientific programming language is still at the level of a
detailed sequence of arithmetic and trigonometric operations upon
scalar variables.

This means, for example, that to evaluate an integral for
which a formula can be expressed in a few inches of writing, a
user would have to begin by developing an iterative procedure,
then carefully typing out the ten or twenty lines of the process
before submitting the procedure to a computer. The result would
then have to be carefully checked and interpreted from a table of
numbers, and the entire process repeated until the answers were

satisfactory.

Preface xvii

It should be pointed out that we are not talking here of
what is feasible in the area of programming languages and
input-output devices, but we wish to indicate only the general
level of attainment. It is not an impossible task to generate
"problem-oriented" languages, programming systems, and more
versatile input-output devices for technical workers. In
specific areas, such as highway, circuit, or lens design and
analysis, as well as "desk-calculator"-type computing, many
companies and laboratories have seen fit to undergo the process
of developing languages that allow the user to express his
problem succinctly in the language of the field. Some of these
have, in addition, been made available on special-purpose,
remote-access systems.

Such language facilities are, however, costly and require
the intense and continuing attention of professional computer
programmers and engineers who understand the user's problem
rather than that of the user himself. It is thus no surprise
that, faced by a language-and-device barrier and the time lapses
of breaking down and checking out a detailed procedure in the
available languages, most professionals outside of university
computing laboratories choose to work through an intermediate
programmer rather than directly with a machine,. To our
hypothetical user, regardless of his occupation and whether or
not he works through an intermediary, the process of working with
a machine can still be in "real time" if he is not significantly
delayed relative to other alternatives.

Obviously, a shorter "real time” will allow the user to pose
better and more pointed questions on subsequent tries and will
thus increase his own effectiveness.

Until such time as more appropriate "problem-oriéented"
languages and devices are developed and come into widespread
usage, we can only speak of "man-machine interaction" or
"real-time computation" for the currently predominant user, that
is, the professional or part-time programmer. It is well,
however, to keep in mind that we have been removed one stage from
the real consumer. Conclusions drawn from today's experience may
well have to be substantially modified if newer communication
interfaces shift the center of wusage to the professional
scientist or engineer.

While "real time®™ to the ultimate user may have a loose and
flexible meaning, to a programmer it has a definable immediacy.

xviii Preface

Programming in the current languages requires concentrated and
single-minded attention, and a lengthy "turnaround time" between
run submission and result availability, such as an hour or a day,
can cause a loss of productivity. Further, if the result is 1in
the nature of notification of a trivial clerical error, such as a
misplaced cormma or bracket, anything short of immediate
turnaround can be highly frustrating.

The programmer's needs are thus not nearly so diverse and
demanding as those of the ultimate user, and by and 1large the
programmer is at home with the familiar programming devices and
languages. Yet, perhaps even more than the user, he requires
large amounts of inexpensive computation, available at reasonable
turnarounds. Neither batch processing nor the -available
single~user machines have been able to cope for long with
ever-growing usage, and thus ever-lengthening turnarounds. The
periodic changes to higher performance equipment, generally
accompanied by a learning transient and the reworking of old
programs, have bought only short breathina spaces before the
problems reoccurred.

It has therefore been the directly affected programmer who
has been most strident in his demands for ever larger computation
rates, shorter turnarounds, centralized storage, and
remote~consoled, multiple-access systems. Even for him, however,
we must look far more closeup at the feasible alternatives in
order to be sure that the potential advantages are not illusory.
In comparing feasibility, let us distinguish between the three
modes of computer access: First, there is the computer systenm,
usually "small" and relatively "inexpensive," is operated by a
single "on-line" user; that is, one is connected directly to a
computer via its manual input-output interface. Such a system
may include interface facilities such as keyboards, printers,
magnetic tapes, and graphical I/O0. Second, there is the "large,"

centralized "computer center" which processes the user runs
semi~-automatically in the sequence in which they are submitted as
separate "batches." Such a system wusually includes scores of
backup peripherals, such as high speed printers, card readers,
magnetic tapes, and plotters, along with distributed
card-preparation equipment such as keypunches on which a user
prepares his run "deck" off-line. Finally, there is the
"remote~access" system with a distributed set of input-output

terminals that can be connected to a centralized computing

Preface Xix

facility via public or private communication lines. To a user,
such a system can be "on-line" in the sense that the processing
equipment is capable of directly servicing his requests. It is
this last category that 1is wusually called "multiple-access
computing,” and the processing techniques for providing the
necessary time multiplexing for a set of active user programs and
requests are called “time-sharing."

Computing through remotely located terminals connected to a
centralized single or distributed facility is not new. In
high-priority military command and control areas such as air
defense, similar systems have been in existence since the
beginnings of the modern electronic technology that made
reliable, high-performance computers feasible. Similarly, in the
commercial world, accurate and timely inventory control, such as
centralized airline reservation, was possible only via on-line,
remote access. The unique feature of these systems has generally
been the necessity of providing distributed access to a large,
time-varying data base. ‘

With the exception of such priority needs where viable
alternatives were lacking, the acceptance of remote-access
centralized computing systems in the scientific and business
world has, until recently, been slow and fitful. In part at
least, the slow acceptance can be ascribed to a lack of published
experience and the tools to evaluate the performance of systems.
Both these factors might point to definite advantages that can
of fset the added costs, unknown pitfalls, and the inertia of
habit.

Among the advantages that have been or could be given for
time-shared, multiple-access systems, we might consider the
following:

1. Computing capacity becomes cheaper and more efficient as
the speed, memory size, peripheral makeup, and thus the cost of a
system are increased.

2. The only feasible method of reducing turnaround is to
utilize multiple access and time sharing.

3. The user finds that multiple access greatly augments his
effectiveness.

4, The existence of a large centralized store of programs
and data is essential to the user.

5. A centralized, multiple-access system is more versatile,
reliable, and flexible than either single-user or batch modes.

XX Preface

None of these statements is true in other than a highly
qualified sense. At best they can be restated as a series of
tradeoffs. Iet us now consider each of them.

1. Relative Cost and Efficiency of Computing Capacity.

Until the standardization of low-cost, high-speed transistor
circuitry and the development of economical, moderate-speed
(microsecond) core memories, it was generally true that the
computation costs on commercially available equipment dropped
with increasing system size, expense, and complexity. Thus, it
was then economically advantageous to centralize capacity on the
largest facility that could be afforded, rather than to parcel
out the problem to a set of smaller units. Large systems were
further equipped with adequate storage peripherals and large
memories that made programming simpler and computing rates
higher. Finally, the large investment on the part of both
manufacturers and users assured that an adequate population of
programmers was available to contribute to the common systems
programming chores, such as the writing of compilers, etc.

The situation with respect to low-cost systems was far less
advantageous. Only low-performance logic and memory was
available at low cost, and thus performance fell off very rapidly
as costs were reduced. Adequate peripherals and programming
systems were generally lacking. Therefore, the over-all
performance of such systems was comparably quite poor.

The situation has dramatically changed over the past three
years. First, with advances in the technological art, the costs
of integrated high-performance circuitry have dropped by an order
of magnitude and do not begin to rise wuntil wultra high-speed
performance (in the nanosecond range) is required. At that point
costs may rise faster than the added performance. Thus it is
harder and more expensive to design and build an ultra
high-performance machine than one of moderate (microsecond range)
capability. Today, a moderate performance processor comparable
to a high capacity system of the early '60s with about an even
split between logic and memory cost are being produced and sold
for on the order of $50,000. Such systems do not possess a huge
memory, but with adequate peripheral backup, such as low-cost
magnetic tapes, even a few thousand words are quite sufficient
for many computing tasks, once the software is made available and
accessible.

Preface XXi

Many of the data-reduction, on-line experimentation, and
programming language-translation tasks do not require a costly,
massive, addressable memory and can be far more efficiently
accomplished on a small but adequate system. Thus, for example a
four-million dollar system need not be significantly faster for
such tasks than one of a forty-thousand dollar investment. With
the passage of time and the further development of
mass-fabrication techniques such as integrated circuits and
subsystems, the balance can well shift further to small machines,
particularly if production rates are high encugh to attract and
justify the necessary program support and attention.

A small system puts much of the processing burden upon the
user, requiring him to select his tapes, complete his commands,
or merely idly await his next move, during which the capacity of
the system is not utilized. A larger system, on the other hand,
cannot afford the delay of slow manual operations and thus
requires additional equipment, which in turn may end up running
at a very low-duty cycle. As Scherr's analysis shows, a
time-shared system, regardless of the number of processors, can
achieve an acceptable level of central processor efficiency only
by the addition of costly equipment in the form of high-speed
memory to eliminate access bottlenecks. Whether a system is run
at an efficiency of 25 per cent usable processing steps or its
cost is doubled to run at 80 per cent, the over-all affect is
still one of substantially increased computing cost relative to a
batch-processing alternative. The selfsame system, when run in a
batch-processing mode in off hours, will further have the added
overhead disadvantage of unused equipment.

Clearly, there is and will be a population of users whose
demands for computing are too small to support even the smallest
machine and to whom the cost of a low capability terminal and
supporting communication in a time-shared system will be the most
attractive alternative.

2. Reduction in Turnaround Time. Turnaround manifests

itself in different ways in batch, single-user, and
multiple-access systems. A lengthened turnaround is a system's
reaction to excess loading relative to a fixed and finite
computation rate: that is, too many wusers with an excessive
demand. With a batch system, a user may be kept waiting for long
periods of time before his results become available. With a
single-user system regulated by a signup, the signups will £ill

xxii Preface

far faster, and the inattentive user will face 1longer gaps
between his intervals on the machine.

Multiple-access, time-shared systems, as Scherr's analysis’
shows, are not exempt from the effects of supply and demand.
While any number of remote consoles can be potentially connected
to a single system, there is an upper limit to the number that
should be active at any one time. Beyond that limit, additional
users will face the equivalent of a busy signal, while those on
line will experience the effects of competing user demands in the
form of a much slower machine and longer waits. While these
effects can be minimized for a preferred class of user by an
administrative policy such as priorities and time allocations,
such alleviation is at the expense of the balance of the user
population. So long as the system is kept underloaded, that is,
the rate limiter of the user time demand is lengthy input and
output requests (at 10-15 characters per second that currently
can be handled by the available low-grade communication lines and
teleprinters), a multiple-access system can significantly reduce
the turnaround time to the user. Much of the multiple access
experience has been in just such I/0 limiting masks as file
maintenance, editing, and listings. With larger computing
demands, the delays can be comparable to those of any other
overloaded facility.

3. Increased Effectiveness. To a computer user, the facts

of current usage are a far cry from the popular concept of a
"thinking machine" or even of the "industrious dog worker" that
can augment the human intellect by rapidlv carrying out
meaningful tasks once these are propounded. We cannot yet talk
to machines, and we are only beginning to write into them, and
the machines are generally limited in how they can communicate
back. Yet it no longer takes a dreamer to extrapolate from
current experiments on small and large single-user machines with
graphical I/0 devices and 1languages to see that man-machine
interaction can potentially provide technical workers, other than
computer specialists, with a potent, real time tool. No one vet
knows where to put the split between man and machine tasks or
what is needed in the way of language-and-device interfaces to
assist the designer or analyst in arriving at the insight he
needs to solve his technical problems. The central problem is
psychological and, subsequently, one of providing suitable

resources to attack the language and device requirements. Until

Preface xxiii

more is known about such factors, it would be premature to
ascribe any special benefits to the mode of computer access
‘alone. Certainly such issues as the closeness of the language to
the user's needs and experience and the degree of distraction
associated with the mechanics of carrying out a task -are as
crucial as response time.

As we have already indicated, multiple-access systems may
not have any intrinsic wvirtues for ‘"machine aided cognition"
relative to other on-line possibilities, and may well, in the
case of high~data-rate graphical I/O facilities and languages
suffer from a cost disadvantage due to the added costs of
communication lines, buffering equipment, and terminal gear that
can easily add up to a cost greater than a similarly equipped
computer system of moderate capacity.

A multiple-access system may, however, serve as a catalyst
for the development of interactive languages and devices if part
of the necessarily large prograrming staffs are diverted from the
more pressing and immediate problems of reproducing batch
capabilities on multiple-access machines. For the present, such
experience as has been gathered about effectiveness pertains to
the usage of programmers or of professionals acting as part-time
programmers . Such experience largely parallels that of
equivalently loaded small machines and batch facilities when
equipped with comparable language facilities. The elapsed time
to check out a program can go down by a factor on the order of 5,
but both machine time and the wuser's time are substantially
increased relative to off-line processing. No psychological
studies have yet been undertaken on the issue, but there must be
some minimum limit to turnaround and maximum limit on a session
length before fatigue and other factors cause a programmer to
lose effectiveness. It might be argued that there is a point at
which a user ceases directing the machine and instead begins to
react to its insistent replies. Delays, either forced or
voluntary, that allow time for thought and reflection might even
be beneficial under these circumstances.

4. Centralized Storage of Data and Programs. For a

programmer surrounded by files of punched cards and magnetic
tapes, a centralized store can appear as an unmitigated blessing.
Accordingly, it has appeared as an unavoidable biproduct on most
remote-access systems, and the user has been provided with no
comparative alternative for storage requirements at his remote

xxiv Preface

location.

A centralized, short-access time storage file can be an
expensive facility (with costs per bit of one to two orders of
magnitude greater than off 1line media) whose finite storage
limits, regardless of magnitude, are generally reached far sooner
than expected. 1In such circumstances, management policy must be
invoked to limit the space allocated to individual users and to
purge the files of relatively "inactive" records periodically.
File access then becomes something far short of immediate or
conveniept for the wuser, whose definition of “inactive" or
"little-used" disagrees with the management's. Further, since a
user can no longer scan his programs and data manually without
the intervention of the central facility, comparatively simple
changes and deletions can invoke additional computer attention in
the form of file maintenance and printing.

Access to a large, central program file and 1library can
alternatively be gained on either a batch-processing or a
single-user system. Access is after all a relative term and can
be achieved by a variety of means, ranging from completely manual
to semi-automatic. Certainly paramount issues are both the
presence of the program library in some form and knowledge of its
existance and details in the mind of the user. Where the
development of programs is rapid, the sheer mechanics of
dissemination of information and its assimilation by the user can
far outweigh the time advantage of rapid program availability.
Changes without the user's knowledge are generally worse than no
changes at all.

The situation with respect to centralized data files is more
advantageous for the remotely accessed system, if the data base
is exceedingly large, the data turnover is rapid, and the changes
are observed and contributed by a distributed set of users. A
large complicated design effort, a management control system, or
an information retrieval system can easily be of this nature.

5. Versatility, Flexibility, and Reliability. The major

examples of large-scale, multiple-access systems have generally
been developed with substantial government support. They are on
the whole more versatile and flexible than their batch-processing
counterparts with respect to their system commands and varieties
of programming languages developed.

Versatility and flexibility in complicated hardware and

software systems are, however, generally difficult to achieve and

Preface XXV

to maintain in the face of the changing requirements of large
numbers of people. Original concepts can become frozen,
enshrined, hallowed, and perpetuated because of the complexity
and human inertia associated with change, regardless of potential
benefits. The volume of programming associated with such systems
is far greater than that for other modes of access, and thus is
even more costly and resistant to change. A "compatible" system
designed around file maintenance, with multiple 1levels of
comnmand, programming, and debugging language tendé to remain in
its original form, and changes will occur by the slow accretion
of additional structure rather than by quantum jumps based upon
experimental findings.

This would appear to be the normal double-edged sword of
development in general, where a large group can bring large
resources to bear on moderate changes which then acquire a
permanence and stability, whereas a small group can be far less
restricted in scope but is much more 1limited in depth and
permanence of its hardware and software developments.

To the extent that present-day multiple-access computer
designers have correctly foreseen and allowed for the probable
changes in need, a multiple-access system can be highly flexible.
Where the needs are beyond the scope and experience of such
designers, present systems may well have safeguards against
future change which will inhibit their growth. Computer
development is not immune to the psychological blinders which
afflict any other in-group which is given the responsibility for
both developing and then assessing their own brain child. A
prior promotional statement, under these circumstances, can
become an "established conclusion,” and contradictory evidence
can be ignored, or belittled.

With respect to reliability, a large system can be made more
failure-proof than a smaller one, at the expense of added
facilities. Such failures as inevitably will occur can be more
difficult to foresee, diagnose, or correct. They also have more

drastic effects on a user who has been left no other alternative.

Conclusions

Despite all the foregoing, it would be incorrect to assume
that remote-access systems are destined for premature
obsolescence. A good deal of attention is being given to their
development by government, universities, and industry. Many
industrial users are already contracting for such facilities, and

xXxvi Preface

some service bureaus are offering remote facilities on a leasing
arrangement.

In other instances, however, some organizations are rushing
into such facilities on a basis of prestige, manufacturer's
pressure, and fashionable catchwords, rather than on a considered
analysis. One object of this introduction was to indicate that a
completely general purpose regional "public utility" form of
computing facility with longhaul communication lines attached to
unlimited numbers of consoles is neither a completely obvious nor
the best solution to all computation problems; there are
alternatives that are potentially as good or better.

The next decade will probably see the expansion of
medium-scale, limited-purpose, time-shared systems in schools,
hospitals, merchandising and industrial establishments within
which there are large numbers of users with moderate computing
demands for which the cost of transmitting data over private or
leased lines is not excessive, where centralized data and program
files with rapid access are needed, and, most important, where
the devices and lanqguages that are available match the needs of
the user population. Scherr has focused some of the attention
that is needed to understand the equipment constraints of such
systems. It is the user about whom we must learn far more in the
coming years: The assumption that we understand his needs,
working habits, and human constraints remains the greatest
impediment to future progress in this field.

Herbert M. Teager
Cambridge, Mass.
December, 1965

CONTENTS

Foreword vii
Acknowledgements ix
Preface xi
Chapter 1. Introduction 1
Chapter 2. The CTSS Environment 4
Chapter 3. Modeling Time-Shared System Hardware

and Software 19
Chapter 4. BAnalysis of Model Predictions 34
Chapter 5. Conclusions 56
Appendix A. Description of CTSS 65
Appendix B. Additional CTSS Data 78
Appendix C. The Simulation Programming System 80
Bibliography 113
Index 115

xxvii

Chapter 1

INTRODUCTION

Computer systems that are able to serve a single user in a
conversational or interactive manner have been in existence for
relatively many years. Lately, for economic and other reasons,
interactive computer systems have been implemented to serve many
users simultaneously. At any given time in the operation of such
a system, some portion of the interacting users may require
particular programs to be executed. The function of the computer
system is to execute these programs in such a way as to provide
"reasonable" service to each user's requirement. A widely-used
technique for providing this type of service is called
"time-sharing” and consists of executing each user's program in
some order, for some time, not necessarily to completion.
Typically, a particular user's program will be allowed to use a
processing unit for a period of time, will be stopped so that
another user's program can run, and then at some later time will
be continued from the point where it was stopped. In order to be
able to continue a program, its status must be saved when it is
stopped and restored when it is resumed. At the point in time
when one user's program is stopped and another's resumed, the
status of the former must be saved and that of the latter
restored. This process is called "swapping.” In general, the
status of a program consists of the state of the processor as
well as a copy of every word of the program.

The primary aim of the research reported here is to develop
techniques and models for the analysis of a broad class of
interactive, time-shared computer systems. The emphasis 1is on
the reaction of a hardware system to the demands made upon it by
its users. Segments of the over-all problem include the
specification of a model for and the measurement of user
behavior, the development and verification of both mathematical
and simulation models of time-shared systems, and the
specification and measurement of performance metrics for
time-shared systems. The user measurements and some of the
performance measurements were made on Project MAC's "Compatible

1

2 Introduction

Time-Sharing System" (hereafter referred to as "CTSS;" see
Corbato, 1962, and Saltzer, 1965).

The model development is divided into two phases. First,
simulation models are used to study in detail the effects of
small changes in the operation of CTSS-like systems. Then,
continuous-time Markov processes are used to model more general
classes of time-shared systems. Throughout, the CTSS
measurements form a basis of comparison with the model
predictions.

The primary result obtained is that it is possible to model
accurately users of interactive computer systems and the systems
themselves by means of relatively simple models. Moreover, many
of the results obtained and most of the techniques developed are
applicable to the analysis of a broad class of interactive
systems. This fact is established and discussed in the
Conclusions (Chapter 5).

Since human users are an integral part of any interactive
system, no real progress can be made in the analysis of the
performance of such systems until the behavior of its users is
established. The CTSS user characteristics were measured and
modeled, and these results are presented in Chapter 2, The user
model is represented as being the composite of the models for
users working on a "mix" of different tasks. Thus, to a certain
extent, models for a type of user other than those studied can be
generated by using a different task mix.

The models for the hardware-software time-shared systems are
divided into two classes (Chapter 3). First, simulation models
are used to study three systems: (1) CTSS, (2) CTSS modified by
the replacement of its scheduling procedure by a simple
round-robin, and (3) a time-shared system using the CTSS hardware
but using some multiprogramming techniques to improve hardware
efficiency. Using the operation of these simulation models,
detailed measurements are made of several performance parameters
and hardware usage (Chapter 4). Where possible, simulation
results are also compared with actual CTSS measurements for
verification,

The second class is a simple continuous-time Markov model
for single- and multiple-processor time-shared systems, derived
for the purpose of predicting the mean of one of the performance
measures (Chapter 3). The accuracy of the values predicted by
these models is established by comparing them with the CTSS

Introduction 3

measurements. Then, using the Markov models, several examples of
multiple-processor time-shared systems are investigated (Chapter
4).

The Conclusions (Chapter 5) discuss the generality of the
techniques and models used as well as the specific results
obtained. It is shown that a broad class of systems has been
covered by the techniques presented, the extension of these
techniques to other systems is discussed, and observations are
made about the operation of CTSS~like systems.

It should be stated at this point that nowhere in what
follows is discussed the question of whether or not time-sharing
is the proper mode of operation for any type of system. Such a
debate cannot go very far on a strictly technical level. It does
not make sense, for example, to base the evaluation of
time-sharing on hardware efficiency, because much of the usage of
time-shared hardware is for functions not provided by a
conventional system. Any such judgment can be made only on the
basis of what is currently unmeasurable: the economic value of
the increased function and responsiveness provided by time~shared
systems.

Chapter 2

THE CTSS ENVIRONMENT

The CTSS environment consists of approximately 250 users
whose individual load on the system varies from nearly zero to
the equivalent of several hours of IBM 7094 time per month. The
model of this environment consists of a description of what a
single user does during an elementary operation at his console,
the "interaction." Simply stated, an interaction consists of the
user requesting and then receiving service from the system. The
events usually forming an interaction are: the wuser's thinking,
typing input at his remote console, waiting for a response from
the system, and finally watching output. From the point of view
of the time-shared system, the user may be thought of as being in
one of two states: either the user is waiting for the system to
respond, or the system is waiting for the user. Since the
function of a time~shared system is to execute programs at the
request of its users, these states may be rephrased as: either
the system does or does not have a program to execute for a
particular user. An interaction can now be precisely defined as
the events occurring between two successive exits from the state
in which the system has a program to execute for +the user.
Figure 2.1 shows a typical interaction with the corresponding
activities at the console and internal to the system. Appendix A
gives an explanation of the internal status of a user's program.

The primary purpose for the development of a user model is
its incorporation into models of complete time-shared systems.
The most important requirement for these models is that they
reproduce the activities of a real system during several hours of
operation, They will be required to reproduce faithfully
distributions of service times, hardware usage, and so forth.
Fidelity of the model's minute-to-minute operation is of
secondary importance,

In this chapter, the user interaction model is completely
described, next the inherent compromises with reality in the
model are discussed, and finally the limitations on this type of
model are outlined. It is assumed that the reader has some

4

The CTSS Environment

TIME
USER USER
BEGINS USER BEGINS USER
INPUT FINISHES INPUT FINISHES
LINE INPUT LINE iNPUT
l LINE LINE
¥ PROGRAM PROGRAM V *PROGRAM PROGRAM
CONSOLE OUTPUT OUTPUT . OQUTPUT OUTPUT i
INPUT | BEGINS ENDS | BEGINS ENDS
|
CONSOLE { ! l :
OUTPUT i | |
USER'S i ! 4~ PROGRAM | | PROGRAM
REQUIRES I REQUIRES
PR aM . lI INPUT N 1 weur
EXECUTED i b :
! PROGRAM | I PROGRAM |
I RUNS IN | ! RUNS IN |
| TIME SLICES | : TIME SLICES |
EN e | | : l
U
. i ; —fe—
USER'S \WAIT —><—WORKING —>-1 INPUT WAIT WORMNG—~><&—4NPUTWMH———{
PROGRAM

INTERACTION ————————>

Figure 2.1. Example of a simple interaction.

knowledge of the operation and hardware configuration of CTSS.

However, Appendix A describes the operation of this system in
sufficient detail to enable understanding of the remainder of
this monograph.

The data presented in this chapter were
between December 29, 1964, and February 4, 1965, during 112 hours
of weekday 9:00 A.M. to 5:00 P.M,

80,000 commands were monitored.

taken primarily
operation. Approximately

the
well

A more

The day-to-day changes in
data were slight, and there was stability in the system as

as in user behavior for the duration of the monitoring.
detailed discussion of these considerations appears at the end of

this chapter.

2.1 The Composite Interaction Model

interaction have a
CTSS.
The part of the interaction during which the system has a program

The two states of the user during an
definite correspondence to the six user states internal to

to execute for the user corresponds exactly to the
state and the Wait" This
interaction will be called "the working part of the interaction,”

"Working"

"Command state. portion of the

and its duration is defined as the response time. The other part

of the interaction corresponds to the "Dead," "Dormant," "Input

Wait," and "Output Wait" states and will be called "the console

6 The CTSS Environment

part of the interaction."™ This name comes from the fact that the
time which the user spends in this part of the interaction is
determined by console operations; however, since the primary
activity during this portion is the user's thinking, this portion
will also be referred to as the "think time." Exit from either
the Dead or Dormant states is caused by the user's completion of
a line of input that is interpreted as a command by the CTSS
Supervisory Program. A line of input for the program serving the
user terminates the Input Wait period. Output Wait lasts until
the console output buffers empty.

The event marking the transition from the working part of
one interaction to the console part of the next is the completion
of the program serving the user. The nature of this completion
determines what happens during the following console portion.
The program may require input from the console, it may have
attempted to add to an already full output buffer, or it may
terminate. In addition, a program may enter the Dormant state
for a program-specified period of time. The subsequent
transition from the console part to the working part occurs at
the end of this "sleeping" period. A program-generated command
will be considered as a new interaction with a zero console
portion.

Thus, one transition can be tied to the event of a program's
finishing, the other uswually to an event at the console (that is,
end of an input line or output buffers at a certain level). The
importance of the other console events, that is, the beginning
and end of output, the beginning of input, etc., to the operation
of the system is slight. Moreover, the volume of input-output is
negligible. Even 50 consoles transmitting or receiving at 15
characters per second yield a total rate of only 750 characters
per second. This figure is a maximum; the average rate on CTSS
with 30 users is closer to 100 to 150 <characters per second.
Furthermore, there is no relation of these other console events
to anything of importance within the system. For example, output
started during the working part of the interaction usually
overlaps into the console part. Naturally, higher data rate
consoles, based on devices other than keyboards and typewriters,
are possible but will not be considered, Appendix B contains
statistics describing console input-output. No further
separation of console I/O and the time the user spends thinking,

etc., will be made; and, as was stated, all of these activities

The CTSS Environment 7

will be lumped under the term "thinking."

The description of the user during the console part of an
interaction consists of simply the elapsed time from start to
finish of this portion and the specification of the cause of the
last program completion. The time will be specified by a
probability distribution. The nature of the program completion
marking the beginning of the console portion indicates what the
user is doing during this portion. It is necessary to know, for
example, whether a new program will be started, that is, a new
command, or the old one continued, etc. The distribution of the
time a user requires for the console part of the interaction is
shown in Figure 2.2. The mean value of this time was determined

oo/lmpulse area = 0.12
A

0.04
Median

003 No. of Dafa Points 238,308
Mean 35.2 sec
Standard Deviation 23 sec

Median 11 sec

0.02 -

0.01 |-

PROBABILITY DENSITY

0 10 20 30 40 50 60 70 80
"THINK TIME" (Sec)

Figure 2.2. Probability density of time for part of interaction
(Think Time).

to be 35.2 seconds. Table 2.1 shows the relative probabilities
for the various reasons that a user is in the console part of an
interaction. These probabilities are generally not independent
from interaction to interaction, as will be seen.

8 The CTSS Environment

TABILE 2.1
Probability of Activity During the Console Part of Interaction

User typing the next command (Dead or Dormant)

User typing program lngut (Input Wait)

Program waiting for output buffers to empty
(Output Wait)

Program "sleeping" (Dormant)

Program-generated command

OO Vi
N oW

The time distribution shown in Figure 2.2 can be divided
into several different phenomena. The impulse of area .12 at
time zero represents the 2zero console time required for
program-generated commands. The high probability between =zero
and 2 seconds is caused primarily by the easily typed, trivial
responses, such as a carriage return only, in Input Wait. A user
is in Dead or Dormant (typing a command) for at least 3 seconds.
This delay occurs because a user must wait until a "ready”
message is typed (10 to 15 characters taking approximately 1
second) , and then he must type the several characters
constituting the command word. The line of input for Input Wait,
however, may consist of only a carriage return character. Users
nontrivially responding at their maximum rate cause the second
high-probability area at around 7 seconds. Superimposed on these
maxima is an extensive, uniformly distributed time caused by the
responses that require the user to stop to think, the times that
a user is in the Output Wait state, and the periods when the user
is temporarily away from his console.

An important statistic describing the nature of the wuser's
activity during the console part of the interaction is whether or
not a new command is coming next. In addition, it is necessary
to know whether or not the user is in the Dead or Dormant state
(i.e., whether or not a core image is being saved on the drum).
Figure 2.3 shows the distribution of the number of interactions
per command. Note that the probability of having another
interaction of a command is not independent of the number of
interactions preceding it. The average number of interactions
per command is 2.8. The ratio of entries to Dead versus Dormant
is .8 to .2.

During the time a user is in the working portion of the
interaction, he is loading the system. The amount of time that
the user remains in this state is determined by how much of a
load the system is already carrying (in the form of other users
working) and the amount of work this user requires. A user's
loading during the working part of an interaction will be

The CTSS Environment 9

0.5r No. of Data Points 84,697
Mean 2.8
Median 2
> 0.4
=
wn
2
L
(]
S 0.3
-
-
2
g 0.21 Median
&
a
0.1r e Mean
l] | | 1 1 |
OO 5 10

INTERACTIONS PER COMMAND

Figure 2.3. Probability density of interaction per command.

described by two parameters: the amount of processor time
required by the user's program during the interaction and the
size of the program. The latter determines how long it will take
for the system to swap the user's program in and out of core
memory and/or how many other users' programs are able to fit
simultaneously into a core memory with it. Ordinarily, the size
of a user's program remains constant for the duration of the
command. The user's program may change size in CTSS, but this
will be ignored in the model. The probability distribution of
program size, shown in Figure 2.4, reflects measurements made at
the end of a command, i.e., on the program's entry to either the
Dead or Dormant state. The average program size was determined
to be 6300 words. The parameter of processor time was chosen to
reflect the user's processing requirements because of its
simplicity. Since there is no significant overlapping of
processor and channel operation in CTSS, the processor runs at a
nearly constant rate. The time that a user requires the
processor for an interaction includes any overhead computation

10 The CTSS Environment

0.005+
- 0.004 No. of Data Points 37,632
& Mean 6.3K words
=z Standard Deviation 9 K words
&8 0.003M Median 1.5K words
>-
I._
3
o 0.002H .
% Median
o
& 0.001 -
) Mean
0
0 10,000 20,000 30,000

PROGRAM SIZE (Number of words)

Figure 2.4. Probability density of program sizes.

needed by the system and unoverlapped access and transmission
times for the wuser's program to access the disk storage.
Swapping time is not included in the processor time, since it is
a function of the time-shared system and not of the user. System
overhead includes scheduling and the continuous processing of
console input. These functions are almost uniformly distributed,
degrading the processor's execution rate by almost a constant.
Disk storage is used by the user's programs in much the same way
as tapes on a conventional batch~processing systen. The
breakdown between overhead computation, disk usage, and "useful"
computation will be discussed later. The distribution of
processor time per interaction is shown in Figure 2.5 and has a
mean of .88 second.

There is really no necessity to know anything more about a
user's processing needs than the amount of time required.
Typically, a program receives control of the processor for about
one to four seconds at a time. During this period, several

The CTSS Environment 11

O.7TF
No. of Data Points 237,645
Mean 0.88 sec
0.6+ Standard Deviation 0.7 sec
Median is less than 0.05 sec
O05H
>
|_
2
g 0.4
=)
>_
=
= 0.3F
m
<
m
o)
o
a 0.2
O
O | R S —— ——. e |
0 2

PROCESSOR TIME (Sec)

Figure 2.5. Probability density of processor time per
interaction.

hundreds of thousands of instructions may be executed. Clearly
if the structure of second-to-second operation is not important,
no instruction mixes, disk I/0 statistics, etc., are required.
However, if channel operation overlaps pfocessor operations to
the extent that the rate of instruction execution is affected, or
if multiple special-purpose processors are used in a time-shared
system, information concerning instruction mixes, command types,
and so forth, may be desirable. Such considerations will be

discussed next.

12 The CTSS Environment

2.2 Limitations and Possible Extensions of the User Model

In order to develop the interaction model, many
simplifications of reality have had to be made. The following
paragraphs discuss these and attempt to justify them from CTSS
data and other reasoning. Some possible expansions of the
interaction model are discussed. In addition, the effects of
such simplifications on the behavior of the model are outlined.

The first simplification is to consider all users as equal
in the sense that all are representable by the same model. The
interaction model tends to average out the differences between
individual users. However, since there may be as many as thirty
or forty consoles being used simultaneously and since there is a
considerable turnover in this user population (approximately 30
per cent per hour), no significant long-term errors should
result. The model will also tend to smooth out the effects of
users working in bursts. That is, users sometimes have flurries
of activity, working at a high rate, followed by periods of
comparative inactivity.

The next simplification is that there is no dependence of
the model on the total number of users sharing the systen. Data
show that user loading, as reflected by the time in the console
part of the interqction and the processor time per interaction,
is relatively insensitive to the number of users sharing the
system. Moreover, there has been very little drift in the means
of the user parameters during the two months when the data were
taken. However, changes in the system tend to affect these. user
parameters. Such changes will be discussed later.

The choice of the interaction to be the basis for the model
can be defended in several ways. First of all, the interaction
is an operation of great interest to the user. The response time
of the system to a line of input from the user is an important
parameter of a time-shared system. In fact, it is one of the few
well-defined, measurable performance parameters available. This
response time determines the basic rate at which the user can
operate. Moreover, data show that the count of the number of
interactions per hour is a stable, reliable measure of how much
the users or the system are accomplishing. Counts of commands
per hour are much less dependable and have greater deviations
from the mean. The fact remains, however, that users working on
different tasks behave differently. A "task" is defined as the

interactions comprising a sequence of commands of the same type

The CTSS Environment 13

from start to finish. The various purposes of the user's
operation can be reflected by a modification of the parameter
values of the basic interaction model. Thus, different
interaction models can be used for different types of command
sequences. In addition, information describing the 1length of
command sequences in interactions per task and/or commands per
task is required to complete the specification. In this way,
users can be modeled by selecting a task type for each, using the
corresponding interaction model for the number of commands or
interactions specified by the appropriate distribution, and then
switching tasks. The concept of a task is useful for returning
some of the fine structure to the operation of the interaction
model and for deriving a new composite interaction model with a
different "mix" of tasks.

The expansion of the interaction model, as just outlined,
will first involve the definition of the task types. The
approximately 75 CTSS commands will be divided into five types,
and then the parameters for the interaction model for each type
will be presented and discussed. The first type of task is
(disk) File Manipulation. In terms of conventional
batch-processing systems, File Manipulation is usually carried
out by hand or with tabulating equipment. The CTSS commands that
correspond to this type of task print the contents of a file,
combine files, split files, list the names of the files in a
user's directory, delete files, copy files, and so on. A
complete listing of these commands is given in Appendix B. File
Manipulation commands are characterized by usually consisting of
a single interaction and requiring little processor time.

The second type of task is that of Program Input and
Editing. Commands of this type are used for the generation and
modification of disk files that contain the MAD, FAP, FORTRAN,
etc., source programs written by the user. These commands are
characterized by many interactions and very little processor time
per interaction. Commands that generate disk files from console
input for purposes such as memoranda, etc., are not included in
this category. The third type of task is that of Program Running
and Debugging. These commands cause files corresponding to
binary decks to be loaded and 1linked by a conventional BSS
loader. Also included are commands to start and stop these
programs, to initiate debugging traces of their operation, to
examine the registers of a program or the state of the processor,

14 The CTSS Environment

etc. Commands of this type are characterized by a moderate
number of interactions and more processor time per interaction
than either of the previously mentioned types. The fourth type
is that of Program Compilation and Assembly. These commands
generate binary card-image files from source language files, and
are characterized by usually having 3just one interaction and
requiring the greatest amount of processor time per interaction.

The fifth and final type is "Miscellaneous" and consists of
the unclassifiable commands. Included in this type are the
commands that save and resume core images of programs in the
process of running. Also included are commands to generate other
commands, to cause the commands listed in a disk file to be
executed, to generate memoranda, and so forth.

Table 2.2 presents the parameters of the various interaction
models for each task and information describing the relative
frequency of each type of task. These data were gathered
concurrently with the composite interaction model statistics.

The shapes of the individual distributions for the
parameters of the different tasks are very similar to those of
the composite model.

No data on program sizes were taken to go with Table 2.2,
but it is fairly easy to estimate the program sizes of most of
the command types. A breakdown of the usage of individual
commands is also given in Appendix B.

Since there are differences between the time a user takes to
type a cormand, the time he takes to type a line of input to a
program, etc., the question might be asked if the time in the
console part of the interaction can be predicted from the mix of
typed commands, Input Waits, Output ﬁaits, and so forth. The
answer is generally that such a prediction can not be made,
although the mix furnishes some indication. For example, it
turns out that there are significant differences in the
distributions of time in Dead or Dormant for File Manipulation
commands and Program Running and Debugging commands, Perhaps the
best explanation of these differences is that the user requires
different thinking times for different command input lines: some
commands are easy to remember and require no arguments; others
require a complicated argument string,

The loss of fine structure in the operation of the model
amounts to a smoothing of the peaks in user activity. Of course,
use of the task model will return some of this structure, but the

The CTSS Environment 15

TABLE 2.2

Parameters of Various Interaction Models

File Program In- Program Assembly Misc.
Manipu- put and Running and Com-
lation Editing and Debug. pilation
Command
Probability -36 .15 .12 .09 .29
Interaction
Probability .16 .32 1M .04 .34
Interactions
per Command (Avg.) 1.3 6.3 3.0 1.4 3.4
Avg. Duration of
Console Portion 52. 33. 38. 25, 29,
of Interaction
(Sec.)

Avg. Processor
Time per Inter- 1.1 0.4 1.5 3.4 0.6
action (Sec.)

Prob. of Activity
During Console
Portion of Inter-

action:

Typing Command .61 .10 .29 W5l .12
Program-generated

Cormand .18 .06 .0l .16 .18
Input Wait .02 .84 .61 .16 .65
Output Wait .18 .00 .05 .04 .03
"Sleeping" .00 .00 .02 .10 .02
Avg. Interac- 2.8 10.7 5.8 1.7 6.3

tions per Task

Proportion of
Processor use .21 .15 .25 .16 .24

Proportion of

user's total .22 .27 .18 .06 .28
time
model is unlikely to reproduce every detail. The effects of

users getting "into phase" with each other is still possible with
the interaction models but not as likely. This phenomenon, which
occurs when many users require service at the same time, is
self-perpetuating. That is, as more and more users begin
waiting, service for the individual user is reduced; and there is
time for more users to reach the point where they require
service. Thus, users can fall into step with each other; many
working at the same time, many thinking at the same time. With
the composite interaction model, this phenomenon will occur with
one basic frequency. If the task model is used, a frequency

16 The CTSS Environment

corresponding to each task type will appear. In reality, there
are many subfrequencies to this rise and fall of the number of
users in the working part of the interaction.

2.3 The Reliability of the Data

During the period when these data were taken, the hardware
configuration of CTSS remained nearly constant. The software
system was virtually the same throughout. Several commands were
added to the system, but their usage amounted to less than 1 per
cent of the interactions. The day-to-day user characteristics
did not change very much. During the 47 different time periods
when the data were taken, there were bnly one or two instances of
really unusual behavior (e.g., unusually short times for the
console portion of the interaction and high processor times per
interaction). The average of the means obtained during each
period for the console part of the interaction time was 34,2, the
median was 34, and the standard deviation was 5 seconds. This
compares with the mean time for the console portion for all of
the data of 35.0. These figures include data taken during the
evening and on weekends! In fact, no significant differences
were noted between the user parameters for weekend and evening
operation and prime-time operation. The mean time for the
console portion for prime time only was 35.2, for evening and
weekend operation, 32 seconds. What makes this so surorising is
that on nonprime time the average number of users sharing the
system was approximately 10, whereas for prime time it was nearly
28. loreover, there was no measurable correlation between the
variation of the times for the console portion of an interaction
with time, time of day, or the number of users interacting with
the system. For processor time per interaction, the average of
the 47 means was .92, the median .93, and the standard deviation
.15 second. Here again, these data include both prime time and
weekend, and evening operation. This compares with the over-all
rmean of prime-time operation of .88 second of processor time per
interaction and the nonprime-time mean of .94, The biggest
difference between prime- and nonprime-time operation turned out
to be in the standard deviation of the means from separate
periods. The evening and weekend user characteristics tended to
be much more erratic. With regard to the mix of interaction
types, there was no significant correlation of the probability of
a particular type of interaction with time, time of day, number

The CTSS Environment 17

of users interacting with the system, level of service, and so
forth. The standard deviation about the mean probabilities for
interactions of types one through five were .16, .16, .28, .31,
and .19 of the means, respectively.

These data were taken by a program written to run as part of
the CTSS Supervisory Progran. The data-taking program was
entered each time the Scheduling Algorithm was entered and thus
was able to determine the exact time of user state changes. The
data gathering added negligibly to the overhead computations of
the system and in no other way affected the operations of the
users being monitored. State changes took approximately 100
microseconds to process and occurred about 2 to 3 times per
second. Typically, the periods monitored amounted to several
hours, but several periods were less than 1 hour and some as long
as 8 hours. Due to the fact that there was a strict limit to the
size of the data-gathering program (roughly 2000 words), some
important parameters could not be measured. This is the primary
reason why the program-size distribution was gathered during a
separate interval.

Overhead computation can be thought of as degrading the
effective operating rate of the processor as seen by the user.
Overhead computation primarily involves scheduling and the
processing of input characters from remote consoles. Every 200
milliseconds, and whenever a character is typed at a console the
processor is stopped and control is transferred to the CTSS
Supervisory Program for these purposes. Therefore, this overhead
can be considered as being uniformly distributed because users
are generally interrupted for these functions many times. Rough
measurements show that CTSS, operating with 30 users, has an
approximate overhead of from 3 to 5 per cent. That is, a program
requiring 1 second of IBM 7094 processor time under
nontime-shared operation requires approximately 1.05 seconds on
CTSS. As previously stated, all processor-time measurements
include this overhead. Also included is user programs' use of
the disk (not to be confused with loading commands from the disk)
as a tapelike input-output device. Data taken over the summer of
1964 by T. Hastings, formerly of the M.I.T. Computation Center
Programming Staff, indicate that the average program accesses
approximately 3500 disk words per interaction: 2000 words read,
750 words written, and 750 words deleted by reading. The number

of words deleted per interaction was estimated by equating it

18 The CTSS Environment

with the number of words written because the net number of words
on the disk remains nearly constant.

2.4 Changes in the System Reflected in User Characteristics

Changes in the time-shared system itself have a definite
effect on the behavior of the users. For example, if a heavy
scheduling penalty is placed on the users of large programs, the
average program size will decrease. In fact, over the summer of
1964 data taken by Hastings indicated that the average program
size dropped from 9000 to 6000 words in the space of three months
because of just such a scheduling policy. The addition of new
commands, which may supplant the functions of the older ones but
operate in a different manner, will obviously affect the users'
characteristics.

Chapter 3

MODELING TIME-SHARED SYSTEM HARDWARE AND SOFTWARE

This chapter will describe models that represent time-shared
hardware-software systems. They will range in generality from
CTSS-like systems to idealized, multiple-processor, time-shared
systems. Simulation models that represent systems close to CTSS
will be used to predict distributions for response times,
processor usage, disk usage, saturation, and so on, whereas more
general, mathematical models will be used for the prediction of
the mean values for some of these parameters. The 1level of
detail incorporated into these models will match that of the
interaction model. That is, individual instructions, data words,
and disk tracks will not be considered. The models will be based
on processor time for an interaction, transmission time for a
block of words from disk to core-memory, and so forth.

The first model developed matches CTSS. The very same
Scheduling Algorithm and storage-allocation scheme will be used.
Next, a simple, first-come, first-served, round-robin* scheduling
procedure will be substituted. Then, a model that incorporates
multi-programming techniques with the CTSS hardware configuration
will be developed. Finally, a simple continuous-time Markov
model will be wused to represent both single-processor and
multiple~processor time-shared systems.

As stated in the Introduction, the first three models to be
developed are of the simulation type. Simulation models are
required because of the level of detail necessary to handle some
of the features studied is beyond the scope of mathematically
tractable models. Markov models cannot, in general, be used to
represent processes where other than random queueing is used.
Queueing Theory models are not usable for processes where the
arrival rates of service requests are a function of the service
rate. Furthermore, the addition of pre-emptive scheduling

* That is, users are entered into a queue in the order in
which they enter the working portion of an interaction. The
queue is served in a round-robin manner, each gqueue member
getting a slice of processor time in turn.

19

20 Modeling Time~Shared System Hardware and Software

complicates the mathematics beyond the point where models can
even be formulated.

In order that efficient simulations can be written using a
convenient notation, a special simulation programming language
and operating system were designed. The language itself is
fairly straightforward and about as readable as any of the
algebraic programming languages. A discussion of the problem
will be found later in this chapter, and a complete description
of this simulation language and operating system will be found in
Appendix C along with listings of the simulation programs for the
models presented here.

3.1 The CTSS Model

The CTSS hardware-software simulation model consists of six
interacting subprograms:

1. The actual CTSS Scheduling Algorithm (see Appendix A)

2. The Console element (simulating the users' finishing the
console portion of the interaction, waiting for the
completion of the working part, and so on). This
element is based on the data taken in Chapter 2 for the
composite interaction model.

3. The Main Control element (informing the Scheduling
Algorithm of changes in wuser status, starting and
stopping the processor, and initiating swapping). This
does the first function at the direction of the console
element, the second and the third at the direction of
the Scheduling Algorithm.

4. The Storage Allocation element (directing the detailed
operation of swapping). This controls the disk and drum
storage elements, causing programs to be 1loaded and
dumped in accordance with the "onion-skin" algorithm
used in CTSS.

5. The Processor element. This is started and stopped by
the Main Control element.

6. The Bulk Storage element. This simulates both drum and
disk storage, controlled by the Storage Allocation
element.

The console element is based on the composite interaction
model developed in Chapter 2, An array of values indicating the

Modeling Time-Shared System Hardware and Software 21

status of each user is kept. When a wuser first enters the
console part of an interaction, the amount of time he will
"think™ is drawn from a distribution fitting the one in Figure
2.2, After this time elapses, a signal is sent to the Main
Control element placing the user into the Working status. When a
"finish" signal is received from the Main Control element, the
process is repeated.

The Main Control element has several functions: (1) to
enter the Scheduling Algorithm every 200 milliseconds £for the
basic timing event, (2) to inform the Scheduling Algorithm of
user status changes using the six CTSS user states, (3) to
control the starting and stopping of the processor and the
swapping process under the direction of the Scheduling Algorithm.
An informal flow chart of this element is shown in Figure 3.1.
Using the distributions presented in Chapter 2, the Main Control
element selects for the user an internal state in the console
portion of an interaction. Likewise, when a user enters the
Working portion of an interaction, a program size and processor
time are selected.

The Storage Allocation element is activated whenever a swap
is to occur. Given the size and identification of the program to
be loaded and a "map" of the current contents of the core memory,
this element caused the proper disk and drum activity to load
this program. With the use of the CTSS "onion skin" algorithm,
only as much of the contents of the core memory is dumped as is
required to make room for the incoming program. All dumping is
done to the drum. Since all programs are loaded from location
zero, there can be only one complete program in core at a time.
However, there also may be many partial sections of other
programs in core. In CTSS, the number of these partially-dumped
programs is limited to four. Naturally, whenever a program is
loaded which is already partially in core, only the part that is
missing is transmitted from the drum. In addition to the
transmission of the core images, each swap is accompanied by the
dumping and loading (with the drum) of the processor status and
disk file status of the outgoing and incoming programs. This
transmission consists of 714 words in each direction.

The Processor element is started by being given the number
of instructions to be executed. If it is stopped, it supplies
the number of instructions actually executed. If it finishes,
it informs the Main Control element. The Bulk Storage element

22 Modeling Time-Shared System Hardware and Software

Initialize Scheduling
Algorithm. Send “‘ready”
signals to consoles

{

Wait for an input from
another element, or until Je—]
200 msec have passed
since the last clocked

entry to Sched. Alg. +

6 aswap in progress oris
Is it time for aclocked
entry to Sched. Alg.?

Has a swap just finished?

Turn off swap switch,
start processor running
new user unless background

Send a “ready” signal to the
user corresponding to the

i program that just finished

See if user goes into dead,

Sched. Alg. calling for a swap?
- dormant, or input wait.*

Yes Inform Sched. Alg. of state
Yes (Has a swap been started D change. Swap now begins
Call Sched. Alg. event Yes | No
is a clocked entry
Set swap switch. Tell
§ A storage allocation element

to begin load from disk
(if user in “‘command wait”)
ordrum

Stop processor and update
the time old user has yet
to run

Is the /Ith user’s console
sending a “go” signal?

Gs the ith user in input wait?

+ Yes

Signal user/ that “‘go” signal

is accepted. Tell Sched. Alg.

to change user’s status to
‘“‘command wait.” Pick a program
size and processor time for

this interaction

(s user /in dead or dormant?)m—>-

Signal user / that ““go” signal

is accepted. Tell Sched. Alg.

to change user's status to
“command wait.” Pick a program
size and processor time for

this interaction

lI—I-I--‘ll

—_J

*Since “input wait” and “output
wait"” are functionally identical,
the latter will not be used.

Figure 3.1l. Operation of the main control element for the CTSS
simulation.

Modeling Time-Shared System Hardware and Software 23

simulates the disk and drum systems. The number of words to be
transmitted is supplied along with the type of wunit (disk or
drum) , and the element signals when the transmission is
completed. For the drum, a rotational delay uniformly
distributed between zero and 17.2 milliseconds 1is used with a
transmission time of 8.4 microseconds per word (IBM 7320 drum).
The disk is simulated as having a head positioning delay of
either 50, 120, or 180 milliseconds with probabilities of .033,
.134, and .833 respectively. The rotational delay is distributed
uniformly between zero and 34 milliseconds, and the transmission
time is 66.6 microseconds per word. Since up to 9320 words (20
"tracks") may be read without repositioning the read/write heads
of the disk, some assumption must be made about the organization
of the programs on the disk, Measurements showed that
approximately 80 per cent of the programs loaded from the disk
come from files that are arranged optimally on the disk, i.e., on
adjacent tracks. The remainder of these files come from the
user's file area (i.e., they are RESUME class programs, see
Appendix B) and were determined to be arranged 1less optimally,
approximately 650 words being obtained per seek.

The interconnection of these elements is shown in Figure

Scheduling
Algorithm

Main Storage Disk and
control allocation drum
]
l l

Processor |rgie — o om —J

Remote
consoles

Figure 3.2. Interconnection of elements in CTSS simulation.
(Dashed lines show connections for overlapped use of processor
and disk or drum.)

3.2. Since CTSS does not overlap the operation of the drum,
disk, and processor, there is no interference at the core memory
for accesses. Thus there is no need to represent the core memory
in the CTSS simulation.

3.2 Variations of the CTSS Model

The first variation to be considered is a change in
Scheduling Algorithm. Instead of the multiple-gueue arrangement

24 Modeling Time-Shared System Hardware and Software

used by CTSS, a simple, first-come, first-served, round-robin
procedure will be used. The time interval during which users'
programs are given "bursts" of processor time will be a constant
and not variable as in CTSS. The length of the burst is also
referred to as the "quantum time" or "time slice." In operation,
a list of all of the users in the working state will be kept, and
the corresponding programs will be given bursts of processor time
in the order in which they are 1listed. As users' programs
finish, they are removed from the list; users whose programs have
just received a burst of processor time are removed from the
front and placed at the end of this list. In both cases, the
remaining programs are moved toward the front. Programs newly
entering the working status are added to the end of the queue.
The final model to be simulated will represent a system in
which swapping and processor operation are overlapped. While a
program is being run by the processor, the program that was
running previously is dumped and the next program to run is
loaded. Since loading and dumping cannot occur simultaneously,
there must be room in the core memory for at least two complete
user programs =-- the program being executed and the program being
dumped or loaded. Should two programs intended to run in
sequence not fit together in the core memory, the processor must
be stopped to complete the swapping. This procedure is shown in
detail in the informal flow chart of Figure 3.3. While a program
is running, all or as much as will fit of the next program to run
is loaded. After the quantum time is up, the swap 1is completed
if the next program could not be completely loaded; and then that
program is started. A dump of the stopped program is then begun,
and the process is repeated. The quantum may be extended in
order to overlap swapping completely. Scheduling is done
strictly on the basis of program size, with a simple algorithm
used to sort programs in an attempt to maximize the number of
adjacently scheduled programs fitting together in memory.

3.3 The Need for a New Simulation System

There exist dozens of different types of simulation
programming systems. Among these are many special-purpose as
well as several general-purpose systems, At this time, there
exists no special-purpose simulation programming language

specifically for use with models of digital computer systems.
The general-purpose languages, such as SIMSCRIPT, GPSS, etc., all

Modeling Time-Shared System Hardware and Software

25

!

Wait for input from
another element or
until time to pre-empt
current user (if any)

Check the states of the use
consoles for changes

Was a user’s program
running?

Yes

]

Has the current user’s
program run the allotted
time?

Remove current user from queu
Current user is now “last user”

1

e—.l

Was a dump or a load \ No
goingon?

Was adumporaload Yes
goingon?

Is the dump or load)_No
finished?

No

Yes +

(Is there a user to run?)

No

(Loading?

No
Begin dumping
the last user
No

Yes
e next u
loaded?

Yes

user’s program
to begin load-
ing?

ser
Yes

Is the dump or load
finished?

Start loading as much

[~ as possible of next

No

No

Is there roomin cord\ [Start processor Yes
for the next user’s executing the Begin loading
program? program just the next user's
No loaded program
Begin dump Beginthe
of enough loading of Is any of the
ofold thenext |Nof olduser’s
user’s pro- user’s pro- program still
gram io make gram in core?
room for the
next user’s
Start dumping
the rest of
theolduser’s
program

(s there a user’s program to begin loading?§ No

user’s program Start loading all
+ Yes the next user's
Will the next user’s program fitinto core program
No \ withthe current user's?? Yes
Figure 3.3. Operation of the main control element for a

time-shared system with overlapped swapping and processing.

26 Modeling Time=-Shared System Hardware and Software

have faults which render them unsuitable for this type of work.
Since SIMSCRIPT (MARKOWITZ, 1963) and GPSS (IBM, 1963) are
perhaps the most widely used of the general-purpose languages,
they will be discussed in more detail. The basic objections to
these languages are that: (1) their notation is not convenient
for the description of digital systems, (2) they are inefficient
in their use of computer time, and (3) their basic timing
structure is not well matched to the structure of the digital
systems being simulated.

SIMSCRIPT is an event-based language. That 1is, the
simulation is described, event by event, with small programs, one
per event., Each event program (or subprogram) must specify the
times for the events following it. Conditional scheduling of an
event is extremely difficult. The notation is an augmented
version of FORTRAN, which is acceptable; but this organization
does not take advantage of the modularity of digital systems.
SIMSCRIPT's list of coming events may grow to an indeterminately
large size, but in a computer system there are only as many
coming events as there are independent elements. In SIMSCRIPT it
is difficult to distinguish the events associated with a
particular physical element. Thus, the modification of such an
element is frequently not K easily accomplished. Finally,
SIMSCRIPT is very difficult to 1learn, there are no real
provisions for automatic tracing and other debugging aids, it is
inefficient, and it is not available for on-line use with CTSS.

On the other hand, GPSS is organized around the flow of
information through a system. A fairly inconvenient (for the
author's purposes) block-diagram notation is used. Again, it is
difficult to express and take advantage of modularity in GPSS,
It is also extremely inefficient from the standpoint of computer
time because it is executed interpretively, i.e., not compiled
into machine language. The use of "canned" machine-language
routines is therefore difficult. It is available as a command
with CTSS but is rarely used, despite the fact that quite a 1lot
of simulation is being done at Project MAC. Furthermore, GPSS is
difficult to learn.

As opposed to the above disadvantages, the simulation
programming system used here and described in detail in Appendix
C is easy to learn, has great modularity, has automatic debugging

features, is moderately efficient, and, it is felt, is very well
suited to the simulation of digital computer systems. This new

Modeling Time-Shared System Hardware and Software 27

language is now being used by several people at project MAC who
learned it in approximately two or three hours of instruction.
The language is based on MAD, and each physical element in a
system to be simulated corresponds to a conventional MAD
subroutine. Built-in traces of the activities of a running
simulation can be started or stopped at any time by the
programmer, special post-mortems are available to print the state
of the simulation at any point, and real-time interaction with
the simulation from a CTSS remote console is possible.

3.4 Continuous-Time Markov Model for CTSS-like Systems

A simple continuous-time Markov process will be used to
represent the operation of a single-processor, time-shared
system. The primary reasons for developing such a model are to
compare its predictions with those of the simulation models and
with the actual CTSS data and to extend its usage to more complex
systems. The basis for this model is the interaction model for
the CTSS user, described in Chapter 2. The states of the Markov
process representing a system with n users will correspond to the
number of users in the working part of the interaction. That is,
state j being occupied will indicate that 3§ usérs are in the
working portion of an interaction. Thus, the Markov process will
have (n+l) states. In order to use a continuous-time Markov
process, the distributions of processor time per interaction and
the duration of the console portion of the interaction must be
exponential. The mean time for the console portion will be T H
the mean processor time per interaction, P . In this
development, P will include the necessary swap time per
interaction since in CTSS swapping is not overlapped with

computation, and the processor stands idle while swapping occurs.
The time-shared aspect of the operation of CTSS will be idealized
in that no overhead will be associated with additional users
waiting for service. The processor will be considered as
switching from program to program at an infinite rate with no
loss of efficiency. Thus if there are currently j users waiting
for service (i.e., in the working part of an interaction), the
rate of exit to the state where (j+l1) users are waiting for
service is (n-3j)/T; in other words, (n-j) wusers are in the
console portion of the interaction. The rate of exit to the
state where there are (j-1) users is(1l/p). This implies that
each of the Jj wusers is receiving (1/j) of the processor's

28 Modeling Time-Shared System Hardware and Software

capacity. Thus, each user is finishing at a rate of (1/jp) and
any one of the j users is finishing at a rate of (1/p). Equation
3.1 shows the rate matrix (HOWARD, 1960, pp. 92 f£f). An
expression for the steady-state probabilities is found; and
expressions for the average number of users waiting for service

and the mean ratioc of waiting time to processor time are derived.

—) —
_n n 0
T T 0 0
1 1 n-1 n-1
P (F T) T 0 0
1 1 n-2\ n-2
0 B (5*“?)—1-—0
0 0
0
1 1. 3 3
P (5+'T") T o 0
1 12 2
0 B (p*?) T 0
1 1 1) 1
0 0 B (15*?)?
1 1
0 0 0 —_ -
P P
[]
(3.1)
Let
M= {me, ™, T =+ Tn} (3.2)

be the vector of the steady-state probabilities of occupancy.

Then,

A =0 (3.3)

The equations for the n's are

Modeling Time-Shared System Hardware and Software

n 1

-fno+§ﬂ1 =0
n 1 n-1 1
Tpm- T mtpTm e O
yielding
P
1T1 = ni"ﬂo

T, = n{n - 1)(—?—)Z o

In general,

. __n__(f’_)
i7" m-ni\t) °

Making use of the fact that

the following equation results:

2 j
1= no[1+n§+n(n-l)@) +oe +ﬁ<§) +

Letting P/T = r and solving for m; yields

1

T =

n!
m-
j=0

Thus

29
(3.4)

(3.5)

(3.6)

(3.7

(3.8)

(3.9)

..-+n!(§y1 (3.10)

(3.11)

(3.12)

30 Modeling Time-Shared System Hardware and Software

T, is the steady~state probability that the processor is idle.

Now, let W be equal to the mean length of time a user spends
in the working part of the interaction (i.e., the mean response
time). Let @ be the average number of users waiting for service.
Then

—_ w .
Q:nW+T=Z11Ti (3.13)

n

z : in! i

n - i)! .
—_ i=0
Q= n

nl i
————— 1
(n - i)!
i=0

w
= 14
P W+T (3.14)

Solving for W

5
= (n - i)!

W= — 7T (3.15)

Dy
(n-i-1)!

i=0

Dividing both sides by P and using the definition of r:

n

5
(n - i)!

- i= (3.16)

w
P n

0
ri
r _r
}E:(n-i - 1!

i=0

Expressed in terms of LA

w 1
P 0-.-3"7 (3.17)

e
I

(3.18)

Modeling Time-Shared System Hardware and Software 31

It is interesting to note that the rate matrix and the
resulting calculations would be the same if it were assumed that
each program were run & finite quantum of time or if all programs
were run to completion, I.e., batch processed! This is due to
the fact that there is no swapping loss and that the time
distributions are exponential. Different distribution functions
would not, in general, yield the same results for any gquantum

size.

3.5 HMarkov Model for Multiple-Processor, Time-Shared Systems

Using the same definitions and assumptions as for the
single-processor system, a model for the operation of an m
processor, n user time-shared system can be derived. From a
state where j users are waiting for service, the exit rate to the
state where there are (j+l) users waiting for service is (n-j)/T,
the same as for the single processor model. If j is less than m,
then each user's program is assigned its own processor and the
rate of exit to the state where (j-1) users are waiting for
service is (j/P). 1If j is greater than or equal to m, the 3j
users share the m processors just as in the case of a single
processor, and the rate of exit to the state where (j-1) users
are waiting is (m/P). The rate matrix for this process is not
shown.since it is similar to the one for the single processor
case. Solving the equation

IA =0 (3.19)

the steady-state probabilities are obtained:

- 1 (3.20)
To = m-1 n i
L n! I
il{n - i)t ml(n - i)! i-m
i=0 i=m
for i less than or equal to m, .
n! :
— ;i
L i!(n - 1)! (3.21)
™ T n

E : n! gy n! rd
il -)N m!(n - j}! _j-m

j=0 j=m

32 Modeling Time-Shared System Hardware and Software

and for i greater than or equal to m,

n! ri
o m!(n - i)! i-m (3.22)
T m-1 n i
.] J
n!- M+ n! : ?
ilm - 1 Zm!(n-m I
j=0 j=m
Finding
n
6 = iTTl (3.23)
i=0
then
m-1 . n .
it E :_____Ll______
Z il(n - i)! m!n - i)Im'™™
g = =9 izm (3.24)
Q = m-1 i n ;
1 T
§ ; - + § : . i-m
i(n - i)t m!(n - i)Im
i=0 i=m

The average number of processors is similar to Q and is equal to

m
Z (m - i) L
i=0

The expression for the ratio of the average time in the

working
part of the interaction to the average processor time per
interaction is:
m-1 n
§ : irl E ; iri
.t -
il(n - i)! m!(n - iftm!™™
w 1 i=0 i=m
Pt m-l] n . (3.25)
L o me
ifn - i - 1)! m!(n-i- 1)Im™
i=0 i=m
The results obtainable from the models presented in this

chapter will be compared to the measurements made on CTSS in the
next chapter. No closed form expression for W/P in terms of

Modeling Time-Shared System Hardware and Software 33

n, was found. However, as n gets large, LA approaches zero, and

0

W n 1
="z (3.26)

Chapter 4

ANALYSIS OF MODEL PREDICTIONS

This chapter compares the results ohtained from the wvarious
simulation models, the Markov models, and the <CTSS data. In
addition, extensions into multiple-processor systems are
analyzed. Each system studied 1is compared on the basis of
several metrics. Measures of a system's response time to
requests for service, hardware efficiency, scheduling procedure,
and the effects of 1loading will be used to illustrate the
differences between time-shared systems. Since the Markov model
for the single-processor, time-shared system yields surprisingly
accurate results, this model and its multiple-processor extension
will be used in the discussion of both parallel- and
series-connected multiple systems composed of either equal
general-purpose processors or special-purpose processors. This
chapter can be divided into two portions: a detailed study of
CTSS and related systems, and a general discussion of
multiple-processor, time-shared systems.

Four measures are used to compare the results from the
CTSS-like systems. The first of these is the dependence of the
mean time for the working portion of the interaction (i.e.,
response time) on the average number of users interacting with
the system, all other parameters being equal. Since during the
measurements of CTSS 1in operation these other parameters could
not be controlled, the variation of processor time per
interaction will be removed by including it in the measure of
response time. For this reason, the ratio of response time to
processor time per interaction will be substituted for response
time. It turns out that this ratio is a more stable measure of
CTSS performance. The variation of this ratio as a function of
the average number of interacting users is a measure of how well
the system responds to a change in its load.

Secondly, the relationship between processor time per
interaction and response time will be investigated. This will be
done with no variation in the number of interacting users, in the
distribution of processor time per interaction, program size, and

34

Analysis of Model Predictions 35

so on. This relationship is a measure of the scheduling policy
of a system and clearly shows how a system achieves a low mean
response time by scheduling short running Jjobs more favorably.
Thirdly, the probability densities of the response time for the
various systems will be discussed 1in conjunction with the
scheduling policies.

Finally, the percentage usage of the processor, disk
storage, and drum storage will be plotted as a function of the
number of users interacting with the system. This function is
used in a discussion of the relationships bhetween hardware usage
and scheduling policy, response time, etc.

Throughout the use of the above measures, the results from
the simulation of CTSS will be compared with the actual measured
data. Since the primary objective in the CTSS measurements was
to characterize the user, and since time and space for the
measuring programs was limited, some CTSS parameters were not
measured.,

The results from approximately twenty simulations are used
here. Each simulation represents the operation of a time-shared
svstem under a load of between twenty and fortyv-five users for a
period of eight hours. Each such simulation cost between ten and
twenty minutes of IBM 7094 computer time. While such a cost is
not exorbitant, it put a limit on the total number of simulations
that could be run.

Multiple systems are divided into two types: series and
parallel. The parallel systems are those in which interactions
may be processed by any one of the several processors in the
system, The selection of a processor to service a particular
user's interaction depends on the decision process employed.
Serial systems are those in which interactions must be processed
by more than one processor in some sequence. Both types of
systems will be considered for the two-processor case. The
results can be easily generalized to cases with more than two
processors and having any arrangement of interconnections.

Two types of parallel two-processor systems are discussed,
First, a system is analyzed in which either processor may serve
any portion of any user's interaction requirement, This system
corresponds exactly to the case for m equal to two of the
multiple-processor Markov model derived in Chapter 3. This
system can be thought of as a single queue feeding two

processors. The second type of svstem analyzed is one in which

36 Analysis of Model Predictions

the two processors are able to service mutually exclusive types
of interactions, i.e., each processor has its own queue. In both
cases the two processors have the same capacity and service the
same number of users, on the average. This is an optimal
arrangement; the effect of the nonoptimal situation is discussed
in another example. A double-speed, single-processor system will
be used as a basis of comparisoQ with these parallel
two-processor systems. A two-processor serial system is then

discussed and analyzed.

4.1 Response Time versus the Number of Users

Figure 4.1 shows the ratio of mean response time (time for
the working portion of an interaction) to mean processor time per
interaction for various systems. The normalization of response
time with respect to average processor time is unnecessary for
the simulated systems because the mean processor time per
interaction was identical for all. However, the CTSS data were
taken under normal operating conditions, and thus the data points
represent many different means for processor time per
interaction. Even though these means were all close to the
overall mean of .88 seconds, use of the ratio of response time
to processor time gives less variance to the results than if the
unnormalized response time were used. Moreover, this ratio is an
important performance parameter by itself being the reciprocal of
the proportion of the system's computing power seen by an
interacting user. The CTSS data points shown in Figure 4.1 were
measured during all periods of operation: prime time, weekends,
and evenings, Through these points 1is passed a cubic,
least-squared-error fit. The RMS deviation from this fit was a
surprisingly low 1.2,

The data points resulting from the simulations of CTSS are
also shown in Figure 4.1. All of the simulation data points are
well within the envelope of the CTSS points and are close to the
cubic fit.

In addition, Figure 4.1 shows the prediction of the
single~processor Markov model. In order to use this model, the
mean processor time per interaction must be increased to take
into account the mean swapping time per interaction, because the
processor is idle during swapping in CTSS. The mean swapping
time per interaction was measured and found to be .56 second.
Thus, the mean net processor time per interaction is 1.44

Analysis of Model Predictions 37

B-B Fit to CTSS Data
(RMS Deviation =1.2)

PN Y T T T O O I A A I N I

0 5 10 15 20 25 30 3% 40 45
MEAN NUMBER OF INTERACTING USERS

LR

z
=9 /
ouh » CTSS Data B X
== 20 |0 CTSS Simulation ‘
X o © o Round-Robin, First Come,
LFE First - Served-
== 151~ | * Overlapped Swapping
axC @
eha
<y
Sit-Alds
P
z
L= A-A Markov Model
o s 2 5 Predictions
- w
3
2g

Figure 4.l1. Ratio of mean time for working portion of interaction
(response time) to mean processor time per interaction vs. mean
number of interacting users.

seconds. A mean time for the console portion of an interaction
of 35.2 seconds was used. These values were substituted into the
expression for (W/P) for the single-processor Markov model in the
preceding chapter. The results obtained from this. expression
must be increased by a factor equal to the mean processor time
per interactiOn, including swapping, divided by the mean
processor time per interaction without including swapping time.
This is done to keep thé ratio in terms of the .88 second
processor time per interaction. The implications of the good fit
of the results obtained from the Markov model to the CTSS data
will be discussed in Chapter 5. No significance should be
attached to the way the Markov curve crosses the fit to the CTSS
data.

Figure 4.1 also shows the data obtained from the simulation
of CTSS with its Scheduling Algorithm replaced by a first-come,
first-served, round-robin scheduler. Each wuser's program was
allowed to run for a time slice of two seconds. If it had not
finished by that time, it was pre-empted and placed at the end of

38 Analysis of Model Predictions

the queue, and the next user swapped in and run. The slightly
worse performance of this system compared with CTSS can be
attributed entirely to the difference in scheduling. The
difference between this system and that of the Markov model can
be attributed to the fact that they have slightly different
swapping overheads.

The results of the simulation of the system with overlapped
swapping and processing are also shown in Figure 4.1. The reason
for the improvement in performance is that the time during which
the processor is idle because of swapping is down to .33 seconds
per interaction, a decrease of approximately 41 per cent from the
CTSS value.

The ratio of response time to processor time can be thought
of as indicating what part of the system's capacity a user |is
receiving. For example, a value of ten for this ratio indicates
that, on the average, a user receives one tenth the capacity of
the system. As expected, this ratio is just over one for only a
few interacting users and nearly equal to n, the number of users,
as n gets large. The increase over a unity value for n equal to
oné or two is because of swapping time. As n increases, this
ratio increases slowly due to the fact that not all interacting
users require service at once. For large n, nearly all of the
users are in the working portion of the interaction and the ratio
approaches n.

4.2 Scheduling Policy and Response-Time Distributions

The average response time to a particular processor time
requirement can be a useful parameter. It is used here to show
how the CTSS Scheduling Policy differs from the round-robin,
first-come, first-served system. These measurements, made from
simulations and shown for a load of twenty-five interacting users
in Figure 4.2, 1is highly dependent on the distribution of
processor time per interaction. The one used to obtain these
measurements was shown in Figure 2.5. It 1is «clear that CTSS
obtains its slightly better mean response time by favoring the
short-running interactions at the expense of the 1longer ones.
The primary effect is that the swapping overhead is reduced. The
reason for .this effect is that the longer~-running interactions,
with low priority, are run for a longer time when they are
finally run. This is one of the advantages of a dynamically
variable quantum time. The "shortest-operation-first" aspect of

Analysis of Model Predictions 39

25 CTSS

20 Round-Robin,

2-sec Quantum

15

MEAN RESPONSE TIME (Sec)

I l I | I l
0 1 2 3 4 5 6

PROCESSOR TIME FOR AN INTERACTION

Figure 4.2. Mean response time vs. processor time per interaction
for CTSS and round-robin (quantum = 2 sec.)

CTSS scheduling seems to be slight, and is discussed in the
Conclusions (Chapter 5).

Figure 4.3 shows the response time versus processor time per
interaction for CTSS under varying loads. The shift from an
effective quantum time of two seconds to one second can be
clearly seen at loads of approximately 28 users. Figure 4.4
shows the same curves for the round-robin, first-come,
first-served scheduler for 25 users and values of quantum times
from .5 to ten seconds. Using a quantum time of ten seconds is
almost equivalent to a policy of running all programs to
completion. The variability of the response times about the
means plotted can be estimated by the jaggedness of the plots.
From this it could be deduced that the CTSS Scheduling Algorithm
yields somewhat less predictable response times than does a
round~robin, first-come, first-served scheduler. This is in
agreement with the result of job-shop scheduling showing that

first-come, first-served scheduling vyields a higher mean

40 Analysis of Model Predictions

20 users

[35 Users—
N 30 users
: 28 users
251 25 users
20
151~
10 N\j

MEAN RESPONSE TIME (Sec)

1 1 1 | |
{ 2 3 4 5

PROCESSOR TIME FOR INTERACTION (Sec)

Figure 4.3. Mean response time vs, processor time per interaction
for CTSS.

05 1.0
20 I 20
- 10.0
8 |5:—
Wk
g L
|t L
I.(})Jio—
8
& /
1
- 5;7_1,J
léJ L
[! I | | |]
1 2 3 4 5 ©

PROCESSOR TIME FOR INTERACTION (Sec)

Figure 4.4. Mean response time vs. processor time per interaction
for various gquanta in round-robin, first~-come, first-served
scheduling (25 users).

Analysis of Model Predictions 41

completion time with a lower variance than shortest-operation-
first scheduling (see CONWAY, 1964, p. 1020). This "trade-
off" will be discussed in Chapter 5.

There are several restrictions on the response time as a
function of processor time. If the scheduling procedure does not
schedule on the basis of job types or attempt to predict the
processor time for an interaction, the slope of the response
time versus processor time curve must be greater than or equal to
unity at all points. Furthermore, the response time as a
function of the processor time, w(p), must satisfy the following
relation:

o0
n _palp) 4
t(p) + w(p) (4.1)

0

where n is the number of users interacting with the system, p is
the processor time per interaction, gq(p) is the probability
density of p, t(p) is the think time as a function of p, and w(p)
is the scheduling policy function =-- the response time as a
function of p. All that this relationship expresses is that the
scheduling policy cannot attempt to provide to the users more
than one second of processor time per second.

Figure 4.5 shows the response-time distributions for CTSS
(simulation) and round-robin scheduling with quanta of .5 and 2
seconds.

The differences between CTSS and the round-robin schedulers
for large response times is not shown. The CTSS response time
distribution has by far the longest tail. The effects of CTSS
favoring the shorter interactions is again evident in the higher
probability for shorter response times., The round-robin with a
quantum time of 2 seconds yields almost exactly the same
distribution as for longer gquanta, except for differences in
means. An interesting effect can be seen when comparing the
distributions for the two different round-robin schedulers. With
a quantum time of .5 second, it would be expected that the
probability of extremely short response times should increase
over the case with a quantum of two seconds. However, the effect
is that a .5-second quantum increases swapping overhead
sufficiently to overcome most of the advantage of a small quantum
time to the short-running users. The data points from the CTSS

measurements are not shown in Figure 4.5 because they coincide

42 Analysis of Model Predictions

0.30

CTSS (Simulation)

0.25

0.20

— Round -Robin, Quantum = 2 sec

0.5 — Round-Robin, Quantum = 0.5 sec

040 F

PROBABILITY DENSITY

005+

O|11|I||||I|||1 T | T pm—r —

1
0 5 (6] 15 20 25 30
TIME FOR THE WORKING PORTION OF INTERACTION
(RESPONSE TIME)

Figure 4.5. Probability density of response time per interaction.

almost exactly with the results of the CTSS simulation.

As a further means of comparison, the mean response times of
the various systems simulated are listed below (all figures are
for 25 users):

System Mean Response Time (seconds)

CTSS 7.0
Round=~Robin
Quantum= .5 10.7
Quantum= 1.0 7.7
Quantum= 2.0 7.3
o 1 ngantum= 10.0 8.1
verlappe wappin

verggon of Egssg 5.1

Analysis of Model Predictions 43

The differences in the mean response times for the round-robin
schedulers are due to the differences in swapping overhead.
Other effects of changing the quantum size will be discussed in
Chapter 5.

4,3 Hardware Usage

Figure 4.6 shows the percentage usage of the processor for

2 « CTSS Data

g§ o CTSS simulation

P 100 |- | @ Round - Robin

8§ 90 L | Overlapped swapping

g_"- 80 Overlapped swapping

%) X

70 I~ [} ° ° //‘

gé &0 . o,,/.!;t.%:QTSS simulation

> "6//':"" Round-Robin

u - 50 D. F}

oo .

we 40T]

<Z 30 .

C5 .

o5& 20F .

€= 10or .

o 0 I ! ! I | 1 | !

0 5 10 15 20 25 30 35 40
MEAN NUMBER OF INTERACTING USERS

Figure 4.6. Percentage usage of processor for users' programs vs.
mean number of interacting users.

users' program execution as a function of the numbher of
interacting users. Shown are the CTSS data points as well as
the points from the simulations of CTSS, the round-robin system
with a quantum time of two seconds, and the system with
overlapped swapping. The phenomenon of saturation can be clearly
seen. As the number of wusers increases, the wusage of the
processor increases until some limit is reached. With completely
overlapped swapping, this limit would be 100 per cent. But since
there is some swapping overhead, the limit is approxinately 60
per cent for CTSS and the round-robin system and 75 per cent for

44 Analysis of Model Predictions

the (imperfectly) overlapped system. It is interesting to note
that these curves are equal to the quantity (1- m,) of the Markov

models within a multiplicative constant, where is the

steady-state probability of zero users waiting for se;;ice. This
constant is equal to the asymptote of the usage curves. (The
Markov model predictions are not plotted because they are so
close to the measured results.)

The efficiency of the processor usage in CTSS is not
particularly bad. For a scientific installation (IBM 7090 or
similar) using batch processing techniques, a 603 processor usage
is about average, and 75% usage is excellent.

Since saturation can be identified with the probability of
zero users waiting for service, it might be defined as follows:
Saturation occurs when the probability of zero users waiting for
service is lower than some small number, €. The specification
of € is arbitrary, but typically might be .01. Another
definition of saturation will be found in Chapter 5.

Figure 4.7 shows the usage of the drum and disk for swapping
as percentage of total time. As is expected, the usage of the
disk and drum increases with the number of interacting users.
The usage of the disk for CTSS is slightlv larger than that of
the round robin. This effect is a result of the preference shown
by the CTSS Scheduling Algorithm for short-running interaction.
This preference extends to interactions that have received no
service; since these interactions veryv often require loading from
the disk, the amount of disk usage is up slightlv. The drop in
disk usage for CTSS at approximately 30 users is due to the fact
that the CTSS scheduler switches to an effective quantum time of
one second at that point (see Fiqure 4.3). With a smaller
quantum time, there is more swapping and thus an increase in the
use of the drum. Comparing the CTSS disk and drum usage with
that of the round-robin scheduling (quantum time of 2 seconds),
it is apparent that CTSS has a slightly lower swapping overhead.
This is because the CTSS Scheduling Algorithm uses different
quanta, depending on the number of users waiting for service at a
particular time -- the fewer the users waiting, the 1longer the
effective quantum.

The approximately 10 per cent usage of the drum and 30 per
cent usage of the disk imply that if interprocessor interference
could be eliminated a single disk or drum could service more

than one processor. The only condition on this statement is that

Analysis of Model Predictions 45

30

Round - Robin .
CTSS } Disk

Round - Robin D
10k CTSS rum

i . l

10 20 30 40
MEAN NUMBER OF INTERACTING USERS

PERCENTAGE OF TIME BULK-STORAGE DEVICES ARE
USED FOR SWAPPING

Figure 4.7. Usage of bulk storage devices for swapping vs. mean
number of interacting users.

the storage capacity of the disk or drum would have to be
increased to take care of the additional users' disk files and/or
core images.

In the system with overlapped swapping and processor use,
the total use of the bulk storage devices increases with the
usage of the processor, as is the case with the nonoverlapped
systems. At a load of 45 interacting users, the usage of the
drum was 12.7 per cent, and that of the disk 33.8 per cent.
Nonoverlapped usage of the drum amounted to 8.5 per cent, and of
the disk 9.1 per cent. Unfortunately, runs were not made with
more users, and saturation operation with the overlapped system
was not achieved. However, an extrapolation of the measurements
taken indicates a saturation level of usage for the processor at
approximately 75 per cent.

46 Analysis of Model Predictions

4.4 Multiple Systems

Parallel multiple-processor systems can be divided into two
basic classes, depending on the ability of a single processor in
the system to serve requests. In a multiple system with
general-purpose processors, any processor can service any
request. In effect, requests to be serviced (i.e., programs to
be executed) are drawn from a single queue. The alternative
multiple-system arrangement uses special-purpose processors to
the extent that a single processor can serve only certain types
of requests. In this case a processor draws requests to be
serviced from the queue containing the proper type of request.
In practice, a multiple system may contain both types of
operation: a group of processors fed from a single queue, and
many queues differentiated by the type of request being serviced
by the attached processor group. A third kind of multiple system
is the serial type, in which jobs must pass through two or more
time-shared processors in sequence. An example of such a system
would be one with input and output processors which pre- and
post-process all jobs for the main processor.

In general, any multiple system can be analyzed by
considering each group of processors individually, as will be
discussed. Two parallel multiple systems, each with two
processors, will be analyzed. Their performance will be compared
with a single-processor system of the same capacity in
instruction execution rate. Next, the effects of augmenting a
CTSS-like system with a processor capable of simple character
manipulation and channel operations to take care of some of the
job types normally executed at the central processor will be
studied. The augmented system will be compared to CTSS on the
basis of performance and additional cost. Finally, serial
multiple systems will be analyzed.

4.4.1. Equal Capacity, Parallel Multiple Systems. The

first multiple system to be considered is one with two
general-purpose processors. Assume that each processor has the
capacity of the single processor of the CTSS system (IBM 7094-I)
and that the same swapping overhead is present, Thus, the
average net processor time per interaction is 1.44 seconds, .88
second of useful processor time and .56 second of processor idle
time due to swapping per interaction. With an average "think"
time of 35.2 seconds, the parameter r is .041. The results from

Analysis of Model Predictions 47

the Markov model of a two-processor, time-shared system are
plotted in Figure 4.8. The average response time (time in the
working portion of an interaction) is shown as a function of the

30
)
[
2
L 20f
=
L
%)
=
)
a
)
0l
v
1oF
Z Single Processor
g Two - Processor, 2 queue /' Asymptote, slope = 0.72
Two-Processor, 1 queues [~
/
/
1 | | | |

10 20 30 40 50 60 70 80 90
INTERACTING NUMBERS OF USERS

Figure 4.8. Mean response time vs. number of users for three
multiple systems with equal capacity.

number of users interacting with the system,

A system with two special-purpose processors can be
equivalent to two separate time-~shared systems if each subsystem
is used, on the average, by half of the user population and each
is equally loaded (i.e., equal P's and T's). As will be seen,
this is an optimal situation. Any deviation from the ideal
results in an increased over-all mean response time. For such a
system, the mean response time can be calculated as a function of
n, the number of interacting users, by wusing n/2 in the
expression for the response time for the single-processor Markov
model. The results of this calculation are also shown in Figure
4.8.

48 Analysis of Model Predictions

As a basis for comparison, a single-processor system of
exactly the same capacity as the two-processor systems will be
used. If the single-processor system is exactly twice as fast
for every operation, the r for this system is .02, exactly half
that of the duplex systems. The mean response time for this
system is plotted in Figure 4.8 as a function of the number of
interacting users.

Looking at the three systems from the standpoint of over-all
mean response time, the double-speed, single-processor system is
superior. The two-processor, single-queue system is better than
the two-processor, two-queue system. The reasons for the
differences in the systems can be explained in terms of degrees
of freedom. The single-processor system can turn the entire
capacity of its processor to the execution of a single job.
Thus, the single-processor system is superior by almost a factor
of two to the two-processor systems when the number of users is
small, The only difference between the two-processor,
single-queue system and the single-processor system is their
performance when only one user is waiting for service. This
difference is due to the fact that there are times when the queue
of one processor of the double-queue system is idle and its
capacity cannot be used to relieve the other processor. The fact
that the plots all join into the same straight line is indicative
of the fact that all three systems have identical capacity. The
full capacity of all three systems is used because the number of
interacting users is sufficient to keep all of the gueues

non-empty nearly all of the time. Thus, running in complete
saturation, the performance of each of these systems is
identical.

4.4.2. Systems with Special Purpose Processors. The

two-processor, two-queue system is of special interest because it
can be used to represent a system with two special-purpose
processors. In such a system the wusers interact with one
processor at a time, and the processor that is used is determined
by the type of task the interaction performs. The assumption
will be made that the mix of interaction types remains constant
regardless of the service a user receives. Thus, the relative
probabilities of different types of interactions remains fixed.
Reference should be made to the end of Chapter 2 for the
measurements made of the probabilities of different types of
interactions., In order to analyze the two-queue, two-processor

Analysis of Model Predictions 49

situation quantitatively, the following variables are defined:

a, = the probability that a user's next interaction

i

will require the use of processor i.
The sum of the a's is unity.

P. = the mean processor time per interaction
for processor i. This time includes

any non-overlapped swapping time.

T. = the mean time for the console portion of
interactions using processor i (i.e.,
"think" time).

n = the total number of users interacting with

all processors.

All of these parameters are determined by user behavior and
the speeds of the various processors. The following variabhles
are functions of the above:

n, = the mean number of users interacting
with processor i.

W, = the mean time for the working portion of
interactions using processor i (i.e.,
response time).

W = the overall mean response time.

The analysis of multiple, special-purpose processor systems
will be carried out for only two processors, but the extension to
any number is straightforward. In order to determine the Wi and
W, the n. must be found. Tor a two-processor system, n; = n-nj
and thus only n; need be found.

oW, +T,)

BT W, F T faldW, +T,)

(4.2)

The expression for n; was found by equalizing the rate of users
starting interactions of type one and the rate of users
finishing interactions of type 1, This equation can also be
interpreted as the total number of users multiplied by the mean
proportion of the time that a single wuser is interacting with
processor number 1, Since the W, are non-linear functions of the
o, and since both are unknown, the n;, are perhaps best found by

a relaxation technique (i.e., a value is assumed for n; and ny,

50 Analysis of Model Predictions

then W; and W, are calculated; a new value for n; is calculated,
etc., etc.). This being done, the overall mean response time per
interaction can be found:

W = ;W + a,W, (4.3)

In the two multiple systems previously discussed, the
two-processor, two-queue system was "balanced." That 1is, each
processor served the same average number of users, each had the
same associated mean think and processor time per interaction.
In general, values for the parameters of a system with
special~-purpose processors will not be so favorable. The
parameters under the control of the systems designer are the P
and the a; . Selectively scheduling on the basis of command type
by giving certain commands a higher scheduling priority, the
probabilities for the occurrence of interactions associated with
"out-of-favor" commands will decrease as users abandon their use
as being too time consuming. The P, can be changed by shifting
"capacity" around the system; that is, by manipulating processor
speeds. Comparisons between two systems without involving
economic issues makes sense only if both have the same over-all
capacity to execute instructions or to process interactions. If
capacity is defined in terms of instructions per second or
interactions per second, then manipulation of the P, that leaves
the total capacity unchanged is subject to the following
constraint:

ot 1
Z 5 - c (4.4)

i=1

Here C is the capacity of the entire system in interactions per
second, and m is the total number of processors. A solution to
the problem of minimizing W as a function of the a; and P, is
possible, but is best taken up after a consideration of the
two-processor, two-queue system in an unbalanced mode of
operation. If the processors are unbalanced, the operation of
the total system exhibits an interesting phenomenon as one of the
processors saturates before the other.

The following describes a specific example of a
two-processor, two-queue system drawn from a real world
situation. Nature being what it is, this system is unbalanced.
The effects of imbalance, possibly remedies for it, and

Analysis of Model Predictions 51

differences in performance will be discussed. The example
described has another merit in that an interesting actual
situation is analyzed.

Using the data concerning the mix of task types for the CTSS
user (see Chapter 2), some predictions will be made on the cost
and performance of a CTSS system augmented by an auxiliary
special-purpose processor. Of the five types of tasks that CTSS
performs, two can clearly be accomplished by a processor that is
simpler than that of the IBM 7094 with 1little increase in the
mean processor times per interaction for these tasks.
Specifically, the Program Input and Editing commands involve very
little data processing. A simple, character-oriented processor
could probably do the same manipulations that are required of the
7094 processor in much the same time. Fewer instructions would
have to be executed since no unpacking and repacking of
characters is necessary in the character-oriented processor.
Furthermore, such a processor would be considerably cheaper than
an equivalent speed (for Input and Editing), general-purpose,
parallel arithmetic, floating-point processor. The other type of
task which a very simple processor could perform is that of File
Manipulation. The operations involved are merely that of
controlling a disk channel so as to copy, concatenate, split,
merge, and so on, disk files. If such a processor were added to
the present configuration, it would relieve the load on the
central processor of the 7094 to the extent of handling nearly
half of the interacting users, nearly half of the interactions,
and approximately 35 per cent of all users' processing
requirements. First, the performance improvement brought about
by the addition of this auxiliary, special-purpose processor will
be analyzed; then a few general statements about the additional
cost of the system will be made. Essentially, the auxiliary
processor will transform CTSS into a two-processor, two-queue
system. For the sake of simplicity, the assumption will be made
that the auxiliary machine is able to process interactions of the
File Manipulation and Program Input and Editing types at the same
speed as the IBM 7094 processor. Furthermore, assume that the
swapping overhead is the same as in the normal version of CTSS
(.39 of the total processor time per interaction). These
assumptions are reasonable since the auxiliary processor will
probably be somewhat slower than the IBM 7094, but its swapping
overhead will be lower because of its smaller programs and the

52 Analysis of Model Predictions

possibility of "read-only" routines for common functions that are
not swapped. Using the data of Chapter 2 and the definitions of
the preceding pages (processor number 1 will be the auxiliary):

a; = .48

a, = .52

P; = .63/.61 = 1.03 second
P, = 1.11/.61 = 1,82 second
T; = 39.3 second

T, = 31.3 second

W is found as described before and is plotted in Figure 4.9
along with the values for normal CTSS as a function of the total
number of interacting users. In both cases the Markov model was

130
120

110
CTSS

100} Slope = 1.4 ™y

T

~N ®
O O O
|

Augmented CTSS
Slope = 0.9\

MEAN RESPONSE TIME (Sec)
o2}
@]
T

O + T I | | { | 1 1 |
0] 10 20 30 40 50 60 70 80 90 100

NUMBER OF INTERACTING USERS

Figure 4.9. Mean response time vs., number of interacting users
for CTSS and "augmented" CTSS.

used to obtain the wi’ It is interesting to note, for example,

that the "augmented" version of CTSS yields the same mean
over-all response time with a load of 45 users as the normal CTSS

Analysis of Model Predictions 53

does with 30. The distribution of over-all response time for
each system will, in general, have different shapes. The normal
CTSS over-all mean response time should have a variance smaller

than that for the augmented system. Figure 4.10 shows a plot of

Processor No.?2
(7094 CPU)

70

50

40

30
Processor No. 1

(Auxiliary)

20

MEAN NUMBER OF USERS INTERACTING WITH
EACH PROCESSOR OF AUGMENTED CTSS

1 | | ! 1 { 1 1 1

10 200 30 40 50 60 7O 80 90
TOTAL NUMBER OF INTERACTING USERS

Figure 4.10. Mean number of users interacting with each processor
of augmented CTSS vs. total users.

the mean number of users interacting with each portion of the
system as a function of the total number of users. Since the
capacities of the two systems and the user preferences between
then (the a;) are nearly equal, the n, are nearly equal wuntil
the total number of users in the sytem reaches approximately 40.

At this point the values of the n, diverge. The mean number of

users interacting with the iess heavily loaded auxiliary
processor remains constant at 21, and any additional users added
to the entire system show up in the mean number of users
interacting with the 7094 central processor. The reasoning
explaining this phenomenon is that because the 7094 processor is

more heavily loaded than the auxiliary one, the mean response

54 Analysis of Model Predictions

time for the 7094 processor increases more for each user added to
the system than that of the auxiliary. As a response time
increases, more users are held waiting for the corresponding
processor on the average, and the response time increases still
more. This effect is analogous to a positive feedback situation
in an amplifier: saturation occurs. As the total number of
users increases, the 7094 processor is forced into saturation and
holds more and more of the total number of interacting users,
leaving the auxiliary processor with a steadily decreasing
proportion of the user population.

By manipulating either the Pi or the a;, or both, both
processors can be kept out of saturation or at 1least equally
saturated. Taking the expression for n; presented in the
previous discussion and substituting for W, o+ T the value
yields an equation in terms of the Pi' e and a, which must be

i
satisfied in the steady state:

;P ayP;
(1- Toz) (1 - mpy)

(4.5)

Both processors can be kept equally saturated if the 7&'5 are set
equal. This will insure that neither processor saturates leaving
the other unsaturated (i.e., m; = 0 and w, # 0). Doing this

yields the balance condition:

Py = ,P, (4.6)

Looking at the example under consideration and keeping the
constant capacity restriction in mind, the only way to achieve
balance would be either to encourage users to shift their
interaction mixes toward the File Manipulation and Program Input
and Editing, or to speed up the 7094 processor (perhaps by
installing a Model II 7094) and/or allow a slight decrease in the
performance of the auxiliary processor.

Returning to the example, the effects of adding the
auxiliary processor is to increase the number of users that can
be effectively served by 50 per cent. The additional cost of the
system is Jjust that of the auxiliary processor and the hardware
necessary to access a disk file from two different processors
simultaneously. Certainly this additional cost will be well
under 50 per cent of the cost of the IRM 7094 CTSS configuration.
Any further discussion of costs at this point would involve going
beyond the purposes of this example.

Analysis of Model Predictions 55

4.4.3. Serial Multiple Systems. A serial multiple system

is one in which users' interactions are processed by two or more
processors in sequence. That is, after a wuser completes the
"think"™ time, his Jjob requires P; seconds of processor time on
the first time-shared processor, P, seconds on the second
time-shared processor, etc. For two processors, the think time T
and the response time of the first processor W; appear to the
second processor as the actual think time., Therefore, using the
results from the single-processor Markov model:

nP,
W, = ——— . - 4.7
Sl W, -T (4.7)
Similarly, for the first processor:
- nP, -
1~ 1_“.01' Z'T (4-8)

The solution to these two equations is obtained by simply adding
them and solving for the net response time, W; + Wy :

W=W1+W2=%[1_L:TOI+—1—_-P—ZTE]-T (4.9)

A serial system such as this one would be a good model for a
real system if all of the jobs processed by the main computer
(processor 1) are then sent to an output computer for
post-processing. For nonsaturation operation, a relaxation
technique such as described previously must be used to find the

steady-state values for W; and W; separately.

Chapter 5

CONCLUSIONS

The purpose of this chapter is to analyze the generality of
the techniques and models presented as well as to summarize and
discuss the specific results obtained. The use of mean response
time as a performance metric is discussed and the generality of
the techniques and models for predicting the performance of
interactive time-shared systems is evaluated. Furthermore,
results concerning the specific systems studied are outlined and
analyzed.

The most important performance aspect of any man-machine
system is the quantity of results obtained (in terms of
"significant" problems solved) per unit time. At this time, such
a quantity is unmeasurable. The productivity of a machine user
might be represented in simpler, more tractable terms. Ry
excluding an evaluation of the relative merits of the problems
solved, productivity can be measured in terms of subsolutions (or
"microsolutions") obtained per unit of time. In this way the use
of the time rate of interaction can be defended as being a
well-defined, measurable quantity which approximates (however
roughly) the ultimate performance metric. Since the number of
interactions per unit time can be derived in terms of the
response time and the user think time distributions and because
the use of the response time allows the machine performance to be
separated from users' performance, the distribution of response
times was chosen to be the primary system performance measure.
Other parameters of interest, such as the mean nurmber of users
queued at a particular processor, can be derived from mean
response time.

The problem can also be viewed from the hardware aspect. A
system that performs a useful processing function at a certain
performance level and cost (measured both in hardware and user
time) is clearly "better" than a functionally equivalent one with
the same performance level but a higher cost. In a sense, a
measure of cost is the complexity and duty factor (percentage of
use) of the hardware portion of the system. Moreover, there is

56

Tonclusions 57

an infinite variety of possible information processing services
that can be utilized by a user, and an infinite number of
possible system organizations to provide him these services. The
tasks a system performs, as well as the level of acceptable
‘performance and hardware complexity, are obviously important
issues. However, primary attention is paid to system performance
as characterized by the distribution of response times which are,
in turn, derivable from the characterizations of both the user
and the interactive systemn.

There are many metrics that can be used to describe a
distribution of response times. For some pufposes the maximum
might be equated with the "worst-case"; the minimum, with the
best achievable service. The mode of the distribution indicagés
the most probable level of service. A simple metric, such as the
mean (with or without a measure of expected deviation),
characterizes most of these aspects, is readily computed, and is
extremely useful in modeling. For this reason, it is used as the
principle characterizing feature of interactive performance.

A fairly simple model for a generalized interactive system
can be developed in terms of the mean response times. This model
can be viewed as an arbitrary network of wunilateral delays
through which the processes necessitated by user interaction
pass. The delays are of two types: those due to the user, and
those due to the hardware system. User caused delays represent
the time it takes for users to observe console output from
previous interactions, to think over their next moves, and
finally to produce console input which will request further
services from the hardware system. All of these activities are
lumped under the single term "thinking." The systen=-induced
delays represent the response times of the various subsystems
that, comprise the hardware portion of the entire interactive
system. Each node in the network may have any number of branches
entering or leaving it provided there is at least one in each
direction. Each branch leaving a node has a probability of being
selected by a user in preference to the others. This probability
is a function of the specific service or type of interaction
selected by the user. The allocation of hardware resources to
various jobs by the system will be taken into account in the
processing delays. In general, the delays and probabilities may
be any arbitrary function of the state of the entire system or

its past history. The user-induced delays represent the think

58 Conclusions

times for various types of interactions. The processing delays
take into account the capacity of the processors, the
distribution of processor time, etc. for the particular type of
interactions being delayed.

There may be portions of the system that are inaccesible to
a number of its users., After assuming that certain numbers of
users are interacting with each portion, the ohject is to
determine the steady-state values of every delay in the network.
In general, there may not be a steady-state solution if arbitrary
delay functions are allowed. However, if all delays are positive
and do not decrease with the addition of users to the
corresponding branch, an analogy can be made to passive
electrical circuits; and the existence of a steady-state solution
can be shown to exist always.

A subclass of this generalized interactive system model has
been analyzed. This subclass differs from the general model
because of two simplifying constraints: First, the probtabilities
for choosing an exit branch from a node are assumed to be
constants. These probabilities represent the users' choice of
interaction types. Since the CTSS data showed that the mix of
the five interaction types remained nearly constant from
day-to-day over a period of more than two months (see Section
2.3), this simplication is justifiable. Second, there are
restrictions on the functional dependence of the delays. In all
of the systems discussed, the think times were constants. This
was done on the basis of the CTSS data, as was discussed in
Section 2.3. The only restriction on the delavs is that they be
some known function of the flow of users' interactions through
the network.

The processing delays were determined with the use of the
single and multiple-processor Markov models, but they may be
determined by simulation of the individual subsystems themselves.
Note that it should not be necessary to simulate the entire
interactive system; simulation is necessary only for those
portions of the system that are not mathematicallv analyzable,
In some cases it may be necessary to do a few simulations of a
subsystem in order to determine the net processor time per
interaction. 1In other words, the processor time per interaction
required by the user is known, but the effective expansion of
this processor time due to overhead factors, such as

nonoverlapped swapping, etc., may have to be determined by

Conclusions 59

simulation. The Markov models are useful if: (1) the subsystem
is time-shared; and (2) the net processor time per interaction is
a simple function of the processor time the user originally
requires. This second condition can be amplified by the
observation that the terms (1/p) and (j/p) in the original rate
matrices for the Markov models (see Sections 3.4 and 3.5) can
easily be made into more complicated functions and still be
soluble for the steady-state occupancy probabilities. If the
system is not time-shared (in the sense used in this monograph)
or the accuracy of the Markov models is not sufficient, some
other Markov process or method of analysis can be employed. The
delay networks for a few specific examples of interactive systems
are shown in Figure 5.1.

There may be the case that processor time per interaction is
not the appropriate parameter, because the processor is not the
rate-determining factor in a subsystem. In all of the examples
studied, the processor speed determined the basic rate of
operation. It may well be that there exist, or will some day
exist, systems whose rate-determining element is, for example,
the bulk-storage device. For such a case it might make more

mse to use the term "bulk -storage use per interaction" instead
of "processor time per interaction.” Thus, in all of the
discussions of processor time the possibility of substituting the
time required for some other device should be kept in mind.

At this point, some observations will be made about the
specific systems studied. First, some general remarks concerning
the operation of CTSS-like systems will be presented and then
some of the implications of the specific results obtained will be
analyzed.

Perhaps the most important result of the research in this
report is that time-shared systems and their wusers can be
successfully modeled. The consistent, predictable behavior of
users interacting with time-shared systems was not a foraone
conclusion at the onset of the research; it had to be
established. That a simple model is sufficient to represent a
time-shared system user did not come as a complete surprise, but
neither was it obvious from considering the situation a priori.
The same statement can be made of the modeling of CTSS. The
accuracy of the single-processor Markov model in predicting the
CTSS mean response time function was sonewhat more surprising.

The implications of this accuracy will be discussed later in this

60 Conclusions

L Think time -—a Processor _}

Lo 4

I

delay delay
(a)

Think delay Processor J

fortype 1 e 1 dela
interactions # y p: = probability

of an interaction

Think delay Processor of type 1

for type 2 >
interactions #2 delay —’

(b)

1-p
Normal think| _ Main processor | Output processor
timedelay | = delay p delay
Think delay
_ | when new p: = probability of an
output interaction generating
displayed anew display

{c)

Figure 5.1. Delay networks for some interactive systems.

chapter.

As was seen during the discussion of mean response time as a
function of the number of interacting users (Section 4.1), the
operation of CTSS can be split into two segments, saturated and
unsaturated. The exact point of crossover between these two
regimes of operation is somewhat hazy, since saturation may only
be defined with reference to a probability. That is, a
time-shared system enters saturation when the probability of zero
users waiting for service becomes less than some small number.
Theoretically, the point where there is zero probability of an

Conclusions 61

empty queue does not exist except for an infinite load on the
system. The most important factor determining when a system
enters saturation is the mean net processor time per interaction.
In nonsaturated operation the addition of another interacting
user has little effect on the mean response time of the systenm,
whereas for saturated operation an additional user makes a
noticeable difference. There is a distinct difference in the way
a CTSS-like system responds on the two sides of the saturation
point. The difference in mean response time for loads of twenty
and thirty users is much more noticeable (to the CTSS user) than
that between loads of ten and twenty users.

Another definition of the saturation point can be based on
the Markov model. Using the expression for the response time in
a saturated m-processor, n-user system, W = (nP/m)-T. Extending
this straight line to the axis (see Figure 4.8, for example)
yields a crossing point of n = m T/P. This is the point at which
the system first starts into saturation. For CTSS, this
saturation point is equal to (35.2/1.44) = 24.4 users. This is a
method of very roughly finding the capacity of a time-shared
system measured in the number of interacting users it can handle,
This is not to say the response times with m(T/P) users will be
satisfactory, however,

Another interesting phenomenon is the effect that changes in
the performance of a time-shared system have on the behavior of
the users. All of the data and results presented so far in this
report were taken during a period when the operating
characteristics of CTSS were stable. However, if a heavily used
command is changed so that its average processor time 1is
increased (thus increasing the mean response time), users are
likely to decrease their usage of this command. If a new command
is added which accomplishes the same function as an established
command in a faster or more elegant manner, changes in the
distributions of think time and processor time per interaction
should be expected.

There are other factors that can affect user
characteristics. If the scheduling procedure gives low priority
to a user's program because of one of its characteristics (e.g.,
program size), users seem to try to eliminate these
"objectionable" features from their programs and interaction
usage (e.g., they attempt to write and use smaller programs).
Thus it seems that scheduling, if properly executed, could be

62 Conclusions

used to "mold" the users to some extent by assigning priority on
the basis of job type, program size, program running time, user
think time, etc., etc. Then the user, in trying to "beat the
system," will tend to conform to the image of what the writers of
the scheduling program considered to be the ideal user.
Fortunately (or unfortunately) wusers are generally not so
flexible that they can all arrange their usage so as to be always
in the highest priority group. If users were this flexible, all
would have the same priority; and any scheduling procedure, no
matter how complex at the onset of its use, would respond with
simple round-robin behavior.

The fact that the single-processor Markov model produces
accurate predictions of the mean response time as a function of
the number of users interacting with the system has several
interesting implications. The model (see Section 3.4) 1is a
highly simplified version of the processes occurring in a highly
conplex hardware-software system. Many features that would seem
essential to the operation of actual time-shared systems are not
present in the Markov model: swapping (except as a constant
overhead factor), quantum time, priority scheduling, etc.
Moreover, the distributions of think time and processor time per
interaction are fit in the model by exponentials with the proper
means. The fact that all of this detail may be omitted and still
leave a model that accurately predicts mean response time is
startling. The implication is that only mean think time, mean
processor time (including swapping), and the number of users
interacting with the system are of first-order effect, and that
the rest of the details have second- or third-order effect.

It might be possible to obtain better mean response times
than those predicted by the Markov model with the use of a
"shortest job first" procedure. The ability to predict the
length of a job accurately is essential to such a scheduler. As
the accuracy of its prediction mechanism is reduced, performance
rapidly approaches the level of a first-come first-served or
random scheduler.

The chief effect of the quantum size (except in predictive
schedulers) is to change the swapping overhead and thereby affect
the mean response time. In a system where the quantum time has
no effect on the swapping overhead (such as in a system with
complete swapping overlap), the quantum size has no effect on the
mean response time., The quantum size, however, always has an

Conclusions 63

effect on the shape of the dependence of response times on
processor time per interaction.

There is no reason to believe that the Markov model for a
rmultiple-processor system serving a single gueue of users is not
just as accurate as the single-processor model. The results it
predicts are completely reasonable: that for equal capacity
systems the performance of the single-processor system will be
better than that of the two-processor system. Furthermore, given
equal capacity systems with the same number of processors, the
system with the fewest number of queues will yield the best
performance. Extrapolating these results, the conclusion can be
made that, for equal capacity systems, the smaller the number of
processors and queues, the better the mean response time. The
observation should be made that at saturation, all equal capacity
systems have the same performance, and a system with fewer
processors should require no 1less main storage or swapping
activity than a system with more processors. However, if
traditional computer economics hold, the fastest possible
processor will provide the best processing capacity per dollar.

Asymmetric multi-processor systems, appearing to yield the
worst performance from the equal capacity comparison, begin to be
very attractive with the introduction of economic comsiderations.
In the example discussed (see Part 4.4.2), the performance of
CTSS could have been improved to the point of allowing
approximately 45 users to be served with the same mean response
time as 30 with the addition of hardware representing 1less than
ten per cent of the monthly rental of CTSS (an IBM 1400 series
machine and an additional channel, file control unit, and access
arms for the 1302 disk).

What constitutes acceptable response time is a question that
is completely open to discussion. However, there is certainly no
relationship between the point at which a system saturates and
whether or not the response time is at that point are acceptable.
Thus, the question of whether it is desirable to operate a system
in saturation must be settled by other considerations. Given a
maximum acceptable mean response time, the maximum number of
users to be served, and a specification of user characteristics,
the most desirable system meeting these requirements will be the
cheapest. And the cheapest system is very likely to be the one
with the lowest processing capacity consistent with meeting the

specifications. This system will be run in saturation.

64 Conclusions

So far in this discussion, most of the results cited were
derivable from considerations of the CTSS data and the Markov
models. There are, of course, many factors which the Markov
model cannot be made to predict, and a more detailed model must
be used. As was seen, the simulation models were able to predict
the distribution of response times, hardware usage, response time
as a function of processor time required, and so on. Most of
these parameters were discussed sufficiently as they were
presented. Perhaps the most interesting result of the
simulations is the fact that good accuracy can be obtained from a
fairly simple model (when compared to the actual system). The
biggest problem in simulation modeling, as in all model building,
is to retain all "essential” detail and remove the nonessential
features. It is felt that the efforts in this direction in the
case of the simulation models was successful.

Summarizing the over-all accomplishments of this research,
the proof that time-shared systems and users can be accurately
modeled is of first importance. Secondly, if mean response time
is of primary interest, simple mathematical models can be
constructed having good generality and yielding accurate results.
Excellent predictions of parameters other than mean response time
can be obtained from more detailed but still highly simplified
simulation models.

With the advent of new time-sharing techniques and systems,
much more analysis and measurement must be accomplished if these
systems are to be designed and used intelligently. It is clear
to the author that no small effort should be expended in order to
monitor and measure the performance and use of any operating
time-shared system. It is through intelligent use of this type
of data that improvements can be made to present systems and that
proposed systems can be evaluated.

Appendix A

DESCRIPTION OF CTSS

A.l. The CTSS Hardware

Simply stated, the CTSS configuration is an IBM 7094 (Model
I) computer, augmented by disk and drum storage, connected
through an IBM 7750 transmission controller to wusers' remote
consoles, each consisting of a keyboard and printer. By typing
at the console, a user may communicate with either the CTSS
Supervisory Program or a program activated by this Supervisor. A
line of input interpreted by the Supervisor is called a
"command."” Commands cause programs to be loaded from disk
storage. These programs are queued, and each is executed for a
short period of time, not necessarily to completion. The
sequence of programs to be run and the duration of each "burst"
of processor time is determined by a subroutine in the Supervisor
called the "Scheduling Algorithm." The following is a 1list of
the hardware elements in the system and a brief description of
the function of each.

1. Central Processing Unit (CPU) - normal 7094 with the
addition of automatic relocation and memory protection.
Automatic relocation is not used on the present system as all
programs are loaded beginning with location =zero. In the
protection mode, all memory references are checked against
pre-set "memory bounds"; and if an out-of-bounds reference
occurs, the CPU is trapped. Programs are given only enough space
as is required. The limits on this space are location zero and
the nmemory bound. In addition, the execution of any channel
operating or tape handling instructions causes a protection mode
violation and a trap to the Supervisor. Also, an Interval Timer
is attached. This device can cause a trap after a
program-specified time interval. The time unit is 1/60-th of a
second.

2. Core Memory - 2 modules of 32,768 36-bit words. The two
units are designated "Core A" and "Core B." These units do not
operate independently, and only one of them can operate during a

65

66 Description of CTSS

given cycle. The access time is 2 microseconds. Core A holds
only the CTSS Supervisory Program and Core B is wused to hold
users' programs as they are being executed.
3. The system configuration during the time the data was
taken consisted of up to seven I/0 channels:
A. Conventional tape channel with six tapes, printer, punch,
and card reader. Used for batch processed programs only.
B. Conventional tape channel with six tapes. Used for
batch-processed programs only.
C. Direct Data Channel - used to connect non-standard 1I/0
devices to system. At present, only the Electronic System
Laboratory's Display Console 1is connected. This unit
consists of a CRT, light pen, buttons, etc. Displays are
originated and maintained by the 7094, 'but 1light pen
tracking and coordinate rotation, translation, and expansion
are done by local circuitry.
D. Disk and Drum Channel and File Control - A 1301 Model 2
disk file and a 7320 drum were connected. The 1301-~-2
contains 20,000 tracks of 466 words each. Access time
consists of arm positioning, an average of 165 ms.,, and
rotational delay, 19 ms. Words are transnitted at a rate of
66.6 microseconds/word. This disk was replaced by a 1302
Model 2 disk on January 12, 1965, but because of the way it
was used its characteristics remained practically the same
as the 1301-2 for the period of the monitoring. The 1302-2
has a capacity of 40,000 tracks. A 466 word track size was
used (half capacity) to maintain system continuity while new
system programs were developed. The drum has a capacity of _
186,400 words (400 tracks). Reading heads are switched
electronically so that the average access time is just the
average rotational delay, 8.6 ms. The transmission rate is
approximately 30 microseconds/word.
E. IBM 7750 Transmission Control - a stored program computer
used to coordinate input-output through a telephone
switchboard to user's consoles, IBM 1050's and Teletype
Model 35's. Both of these wunits tvpe output at
approximately 10 characters per second, including the timing
for carriage returns,
F. Disk and Drum Channel and File Control - Same as Channel
D.

Description of CTSS 67

G. High speed Drum Channel and File Control - A model 7320A

drum is used with a capacity of 208,608 words, access time

of 8.6 ms. average, and transmission rate of approximately 9

microseconds/word. On the installation of this channel

(September 14, 1964), Channel F was removed and its disk and

drum files were placed on Channel D. The 1302 Model 2

replaced both 1301-2 disks on January 12, 1965,

The almost 20 million words (40,000 tracks) of disk file
storage are primarily for the use of the approximately 300 CTSS
users at Project MAC. Each user is allotted between 50 and about
1000 tracks of space for his own use. Typically, a users's
tracks will contain files of source decks of programs in MAD,
FAP, FORTRAN, etc., binary decks ready for the conventional BSS
loader, data files, core-images, etc. A core-image is an exact
copy of the contents of the core memory after a program has been
loaded, linked, and possibly run, along with the status of the
CPU. The core-image is only as long as it has to be; unused
cells are not saved. The CTSS Supervisory Program has an area on
the disk which is used to hold the core-images of nearly 80
command programs, a library for the BSS loader, etc.

Drum storage is used to hold core-images of wuser programs
queued for execution. When a user's program is selected for
running, it is transferred from the drum to Core B. The
core-image previously in Core B is dumped to the drum. However,
only the CPU status and enough of the old core-image to make room
for the new one is placed on the drum. All core-images are
always loaded into Core B starting at the first location, thus
there will never be more than one complete core-image in Core B
at a time. Other core-images, as many as four, may be split
between Core B and drum storage. This process of dumping and
loading user's programs is called "swapping."

A.2. The CTSS Software

Users are assigned one of six internal states:

0. Dead. User has no core-image on the drum and 1is not
waiting for service.

1. Dormant. User has a core-image on the drum, but is not
waiting for service.

2. Working. User has a core-image and is being served.
That is, his program is either being run by the CPU or it is in

68 Description of CTSS

the queues waiting for service.

3. Waiting Command. User has no core-image and is waiting

to be given service for the first time. A core-image will be
obtained from the disk and when loaded, the user's status will be
changed to "Working".

4. Input Wait. The user's program requires console input.
The core-image is on the drum, and the user is no longer in the
queues. Upon completion of a line of input, the user is placed
back into.the Working state.

5. Output Wait. The user's program has filled its console
output buffers and attempted to add more. After the buffer
empties to a certain point, the user is returned to the Working
status and further output can occur. While a user's program is
in Output Wait, the core-image is on the drum, and the user is no
longer in the queues.

The difference between the Dead and Dormant states is simply
whether or not a user is left with a core-image after a command
program finishes. Most commands finish in the Dead status.
However, commands for the loading, linking, and running of BSS
files leave a core-image. This is done so that post-mortems,
traces, etc. may be initiated. 1In addition, any program can be
stopped by the wuser from his console by typing a special
character sequence. This action, called a "quit," puts the
program into Dormant. It may be restarted at any time by the
appropriate command. A core-image may be saved on the disk in
a permanent file and then restored at a later +time by the
appropriate sequence of commands.

Swapping and the use of the CPU are non-overlapped in the
version of CTSS studied. During either of these activities,
control is returned to the Supervisor via traps for various
reasons. Every time a character is received at the 7750 console,
the 7750 channel traps the 7094 CPU. The input character along
with a source identification is immediately transmitted to Core
A, with no processing being done. Every 200 milliseconds a clock
trap occurs. At this time all input characters received since
the previous clock trap are sorted by user and appended to the
corresponding input line. Any user status changes brought about
by the completion of an input 1line are cormunicated to the
Scheduling Algorithm. Output from programs is handled in much
the same way except that the buffering is in the 7750,

Description of CTSS 69

Whenever the Scheduling Algorithm determines that a wuser's
program is to be stopped or pre-empted, the swapping procedure is
started. Priorities are assigned user's programs on the basis of
length and previous running time. In order to Kkeep efficiency
up, longer programs are given slightly less priority because they
require longer swapping time. Longer programs, when they finally
are to run, are usually allowed a longer period of CPU time. In
more detail, the Scheduling Algorithm has nine gqueues in which
users wait. These queues are ordered; the zeroth queue has the
highest priority, and the eighth, the lowest. When wusers enter
the Command Wait status from Dormant via a command, &a gqueue
assignment is made based on the size of the command core-image.
If the memory bound is greater than 4096, queue number three is
assigned, otherwise gueue number two. The next user to run is
always selected from the highest priority, nonempty queue. If a
user remains in the same queue for more than 60 seconds without
being run, he is moved to the end of the next higher priority
queue.

A user is normally allowed a burst of CPU time equal to .5
seconds multiplied by 2 to the power of the user's queue number.
Thus, a user of level 3 would normally run for (.5) (2) (2) (2)
= 4 seconds. If a user exceeds this time while running, he is
removed from his present queue and placed at the end of the next
lower priority one. A user is pre-empted, that is, another user
will be swapped in, if the current user is no longer the first
user in the queues, and he has run as long as the new first wuser
will run, computing the burst as above. When a user returns to
the Working status from Input or Output Wait, his queue number
is re-computed by size as above, but it remains the same if it is
already as good as or better than queue 2. If a user goes from
Dormant to Working via a program generated "sleeping period," the
old priority level is used. If a program generated command is
encountered, the new queue is either the old one or is computed
by size, whichever yields the lower priority. A listing of the

Scheduling Algorithm appears below.

70

SCDA

Description of CTSS

Rrtxxxxrxex TIME SHARING SCHEDULING ALGORITHM *txxkxkxkxrndrnsk

DDV BVHVII OO IIIINAIAIINITDOAIAITINDITNNITIDNOIDIDNIIAIIDITIDNTNONIDOITOINIIIIDONID

T. HASTINGS AND R. DALEY
THE SCHEDULING ALGORITHM PERFORMS THE FOLLOWING FUNCTIONS

1. DETERMINES WHICH USER IS TO RUN NEXT

2. DETERMINES WHEN NEXT USER IS TO RUN

3. DETERMINES HOW LONG NEXT USER IS TO RUN

4, CHARGES USERS FOR SWAPPING AND RUNNING TIME
5. KEEPS TRACK OF THE STATUS OF EACH USER

THE SCHEDULING ALGORITHM IS CALLED FROM THE SUPERVISOR BY
EXECUTE SCHED.(EVENT, USER, ARG)
AFTER ALL TRAPS HAVE BEEN D!SABLED
'USER' 1S BETWEEN 0 AND THE MAX., NO. OF USERS, 'MXUSR
THE SIGNIFICANCE OF 'USER' AMD 'ARG' DEPEND OM 'EVENT'
OR ARE MEANINGLESS AS DESCRIBED BELOW
YEVENT' DESCRIPTION

0 INITIALIZATION OF SCHED,

1 CLOCK INTERRUPT

2 'USER' HAS CHANGED TO STATE 'ARG'

3 BEGINNING OF SAVING 'USER' CORE [MARE

L BEGINNING OF RESTORING 'USER' CORE IMARE
5 'USER' BEGINS RUNNING, AFTER SWAP

6 'USER' CORE IMAGE NOW HAS LENGTH 'ARR!'

7 OPERATOR SET BACKGROUND KEYS TO 'ARG!

8 'USER' LOGGED IN, 'ARG' IS LINE MULTIPLIER
9 'USER' LOGGED OUT

10 IS 'NEWUSR' STILL RUNABLE

11 'USER' DIAJLED UP COMPUTER

TO CLARIFY THE ORDER IN WHICH EVENTS HAPPEN, BLOCKS
OF CODING BRACKETED BY COMMENTS HAVE BEEN PLACED 1IN
TYPICAL ORDER OF EXECUTION FOR A COMMAND

ALL TIME IS KEPT IN SIXTIETHS OF A SECOND AND VARIABLES
ENDING WITH 'TIM' ARE TIMES SINCE SYSTEM WAS
LOADED WITH THE EXCEPTION OF 'SYSTIM!

SCHED. HAS SOLE RESPONSIBILITY FOR SETTIMNG AND CHANGING
THE FOLLOWING COMMON ARRAYS AND VARIALBES

THE FOLLOWING COMMON ARRAYS ARE USED
'STATUS' - THE STATUS OF EACH USER
WHERE STATUS(J) MAY BE
0 DEAD - NOT WAITING TO RUN AND NO CORFE IMAGE
1 DORMNT - NOT WAITING TO RUN
2 WORKING = WAITING IN QUEUES OR RUNNING
3 WAITING COMMAND - WAITING IN QUEUES FOR COM,
4 INPUT WAIT - PROGRAM WAITING FOR INPUT
5 OUTPUT WAIT - OUTPUT BUFFERS FILLED
'"LENGTH' - LENGTH OF USER CORE IMAGE IN WORNS
"LEVEL' - USER'S PRIORITY LEVEL(O, ... , "MAXLVL")
'TIMLEV' - ELAPSED TIME RUN AT CURRENT LEVEL
"WATTIM' = THE LAST TIME THAT A USER BEGAN TO WAIT
'"LINMUL' - USER LINE MULTIPLIER
'PLIST' - THE POSITION LIST SPECIFIES THE POSITIONS
OF THE USERS WHICH ARE IN THE WORKING QUEUE
'ULIST' - THE USER LIST INDICATES THE USER NUMBERS
WHICH CORRESPOND TO THESE QUEUE POSITIONS
"ENDPTR' - ENDPTR(J) IS EMD OF QUEUE J IN PLIST
'NOTIME' - NOTIME(J) IS SET TO 2 IF USER INACTIVE

Description of CTSS 71

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

AND USER J WILL SUBSEQUENTLY BE LOGGED OUT
PB' - PERCENTAGE USER MUST RUN WHILE IN WORK STAT

THE FOLLOWING COMMON VARIABLES ARE USED
'MXUSRS' - MAX. NO. OF FOREGROUND USERS
"CURUSR' - CURRENT USER, RUNNING OR SWAPPING
'OLDUSR! LAST USER TO BE RUN, WHEN 'SWAP' _NE. 0
'NEWUSR' NEXT USER TO BE RUN, WHEN 'SWAP' .NE. 0
'PAYUSR' THE USER CURRENTLY PAYING FOR TIME
'SYSTIM! TIME SYSTEM WAS INITIALIZED
'SYSDAT' DATE SYSTEM WAS INITIALIZED
'BEGTIM! THE LAST TIME 'CURUSR' BEGAN TO RUN
YOQUANTM! MAXIMUM RUNNMNING TIME AT LEVEL 0
'MAXTIM' USER RUNS AT SAME LEVEL UNTIL 'MAXTIM'
'TBASE' - BASE TIME FOR COMPUTING 'MAXTIM!'
'PAYTIM' - LAST TIME A USER WAS CHARGED FOR TIME
TLEVTIM' - LAST TIME 'CURUSR' WAS RUNNING AT CURRENT LEVEL
'SWAP' - NON-ZERO REQUESTS SUPERVISOR TO RUN
'NEWUSR' AS SOON AS IT CAN
THE MAXIMUM PRIORITY LEVEL(O ... 'MAXLVL')
THE MINIMUM PRIORITY LEVEL ALLOWED
INIT. LEVEL FOR 'FULLEN' TO FULL CORE USER
INITIAL LEVEL FOR EMPTY CORE USER
LENGTH FOR ENTRY AT LEVEL 'FULLVL'
TIME LIMIT FOR CURRENT FIB JOB
QUANTM WAITING TIME BEFORE LEVEL CHANGE
TO NEXT HIGHEST PRIORITY LEVEL
TLEVINC' = AMOUNT PRIORITY LEVEL IS INCREASED WHEN
USER RETURNS TO WORKING FROM INPUT OR OUTPUT WAIT
VINACTV' - MAX. TIME INACTIVE BEFORE LOGOUT
'HANGUP' - MAX. TIME BEFORE INACTIVE LINE IS HUNGUP

'MAXLVL'
‘MINLVL'
‘FULLVL'
'EMPLVL'
'FULLEN'
'ESTTIM'®
TQNTWAT!

COMMON VARIABLES REFERRED TO BY SCHED. BUT
NOT SET OR CHANGED BY SCHED.
YBKGTIM' - TOTAL TIME BACKGROUND HAS RUN
'SWPSW' - NON-ZERO WHEN SUPERVISOR 1S SWAPPING AND
COMMAND LOADING
'PROBN(J)"' - NON=-ZERO WHEN USER J IS LOGGED IN
*ADOPT(J)' - PROBN(J) .AND, ADOPT(J) .E. 1B, THEN
USER J IS ADOPTED

SCHED. CALLS THE FOLLOWING SUBROUTINES
INITQ. - INITIALIZES QUEUES
HEDUSR. - RETURNS THE HEAD OF QUEUE USER
AT HIGHEST NON=-EMPTY PRIORITY LEVEL OR 0
DELQUE.(J) - DELETES USER J FROM QUEUES
ENDQUE.(J) - PLACES USER J AT END OF QUEUE LEVEL(J)
BEGQUE.(J) - PLACES USER' J AT BEG OF QUEUE LEVEL(J)
ILOG2.(N) - RETURNS INTEGER PART OF LOG TO BASE 2 N
1.(J) - CONVERTS FORWARD INDEX 'J' TO BACKWARD
INDEX FOR REFERRING TO MAD ARRAYS
INITIM, = INITIALIZE TIME ACCOUNTING
INTIM, - USER 'U' LOGGED IN
OUTIM. - USER 'U' LOGGED OUT
CHARGE,.(U,T) - CHARGE USER 'U' FOR TIME 'T'
GETOTL. - RETURNS THE TOTAL TIME SYSTEM HAS RUN
DELTIM.(T) - RETURNS DELTA 'T' - THE DIFFERENCE
BETWEEN 'GETOTL.()' AND TIME 'T'
TIME 'T' IS ALSO SET TO GETOTL.(0)
CURTIM. (0) - RETURNS THE CURRENT TIME SINCE MIDNIGHT

72 Description of CTSS

OF DAY SYSTEM WAS INITIALIZED
MONSC1. (EVENT, USER, ARG) MONITORS SCHED.
MONSC2. IS CALLED WHEN SCHED, CHANGES COMMON
PLOT1.(EVENT, USER, ARG) PLOTS SYSTEM ON ESL SCOPE
PLOT2. IS CALLED WHEN SCHED. CHANGED COMMON

TV OOI

EXTERNAL FUNCTION(A, B, C)
ENTRY TO SCHED.
NORMAL MODE IS INTEGER
R
R.. SHORTEN LINKAGE, SETUP USER INDEX, CALL MONITORING SUB.,
R.. CALL PLOTTING ROUTINE
R.. ASSUME COMMON WILL BE CHANGED, AND DISPATCH ON 'EVENT'
R
EVENT
USR =
IUSER
ARG = C
EXECUTE MONSC1.(EVENT, USR, ARG)
EXECUTE PLOT1.(EVENT, USR, ARG)
MONITR = CHANGE
STATEMENT LABEL MONITR, RETURN, CHANGE
TRANSFER TO EVNT(EVENT)

A

[l]

I1.(USR)

R
R.. 'EVENT' .E. 0, INITIALIZE SCHEDULING ALGORITHM FOR N USERS

R.. INITIALIZE INDEPENDENT COMMON VARIABLES
EVNT(0) MXUSRS = 31

MAXLVL = 8

MINLVL = 0

FULLVL = 3

EMPLVL = 2

FULLEN = 4096

QNTWAT = 377777777777K

LEVINC = 0

QUANTM = 30

INACTV = 216000

HANGUP = 7200

R

R.. INITIALIZE QUEUES AND TIME ACCOUNTING
EXECUTE INITQ.
EXECUTE INITIM.,
R
R.. INITIALIZE TABLES
THROUGH JLOOP, FOR J =0, 1, J .G. UMAX
JUSER = 1.(J)
PB(JUSER) = 0

JLOOP LINMUL(JUSER) = 1
R
SYSTIM = CURTIM.(0)
SYSDAT = DATEYR
SWAP = 1B
FIRST3 = 1B
BGMAX = 120
TRANSFER TO CHANGE
R
R.. SCHEDULE BACKGROUND (USER 0) AT LEVEL 9
EVNT(12) EXECUTE DELQUE. (0)

LEVEL (0) = 9
STATUS (0) = 2
TRANSFER TO CHANGE

Description of CTSS 73

EVNT(1)

KLOOP

R
R.. "EVENT' .E. 1, CLOCK INTERRUPT
R.. ASSUME COMMON WILL NOT BE CHANGED
MONITR = RETURN

ICUR = I.(CURUSR)

T = GETOTL.(0)
R.. DO THE FOLLOWING CHECKING EVERY 10 SECONDS
R.. CHARGE PAYING USER FOR TIME
R.. MOVE LONG WAITING USERS UP IN PRIORITY
R.. ALSO LOGOUT INACTIVE USERS
R.. AND HANGUP INACTIVE LINES
R..
R..
R

NDECREASE LEVEL OF USER NOT MEETING PERCENTAGE RY 1
. PERCENTAGE CALCULATED ON TIME SINCE USER ENTERED
.o WORKING STATUS
WHENEVER T .G. CHECKT

CHECKT = T + 600
EXECUTE CHARGE.(PAYUSR, DELTIM.(PAYTIM))
THROUGH KLOOP, FOR K = 0, 1, K .G. UMAX
WHENEVER K .E. CURUSR, TRANSFER TO KLOOP
KUSER = .(K)
WHENEVER K .G. 2
DELT = T - WATTIM(KUSER)
WHENEVER STATUS(KUSER) .E. 3 .OR. STATUS(KUSER) .E. 2
WHENEVER DELT .G. QNTWAT .AND. LEVEL(KUSER) .G. MINLVL
MONITR = CHANGE
EXECUTE DELQUE. (K)
LEVEL(KUSER) = LEVEL(XUSER) - 1
EXECUTE ENDQUE. (K)
WATTIM(KUSER) = T
TIMLEV(KUSER) = 0
END OF CONDITIONAL
OR WHENEVER PROBN(KUSER) .NE. 0
WHENEVER DELT .G. INACTV
MONITR = CHANGE
NOTIME(KUSER) = 2
WATTIM(KUSER) = T
END OF CONDITIONAL
OTHERWISE
WHENEVER DELT .G. HANGUP ,AND, ADPOPT(KUSER) .E. O
MONITR = CHANGE
NOTIME(KUSER) = 4
WATTIM(KUSER) = T
END OF CONDITIONAL
END OF CONDITIONAL
END OF CONDITIONAL
WHENEVER 100 * WRKTIM (KUSER) .L. PR (KUSER) = (TIMNOW -
1 STRTIM(KUSER)) .AND. (STATUS(KUSER) .E. 2 .OR.
2 STATUS(KUSER) .E. 3) .AND. LEVEL(KUSER) .G. MINLVL
MONITR = CHANGE
EXECUTE DELQUE. (K)
LEVEL(KUSER) = LEVEL(KUSER) -1
EXECUTE ENDQUE. (K}
END OF CONDITIONAL
CONTINUE
END OF CONDITIONAL

R

R.. MOVE LONG RUNNING 'CURUSR' DOWN IN PRIORITY

WHENEVER T .G. MAXTIM .AND. .NOT. SWAP

MONITR = CHANGE
EXECUTE DELQUE. (CURUSR)

74

EVNT(6)

EVNT(2)

STAT(3)

COMAND

EVNT(10)

EVNT (3)

Description of CTSS

WHENEVER LEVEL(ICUR) .L. MAXLVL,

1 LEVEL(ICUR) = LEVEL(ICUR) + 1
EXECUTE ENDQUE. (CURUSR)
LEVTIM = T

TIMLEV(ICUR) = ¢

MAXTIM = T + TRUN, (CURUSR, LEVEL(ICUR))
END OF CONDITIONAL
TRANSFER TO DECIDE

.. '"EVENT' .E. 6, "USR'('IUSER') CORE IS OF LENGTH 'ARG'
.o JUST BEFORE ENTERING WAITING COMMAND
. OR LENGTH CHANGED WHILE RUNNING
LENGTH(IUSER) = ARG
TRANSFER TO CHANGE

=l R e}

R.. 'EVENT' .E. 2, 'USR'('IUSER') CHAMGED STATE
R.. DISPATCH ON NEW STATE, IGNORE REDUNDANT TRANSITIONS
WHENEVER USR .NE, 0, TRANSFER TO STAT(ARG)

TRANSFER TO RETURN
R
R.. 'USR'("IUSER') BEGAN WAITING FOR A COMMAND

LEV = LEVELF.(LENGTH(IUSER))

WHENEVER STATUS({1USER) .E. 2 ,OR. STATUS(IUSER) .E. 3

WHENEVER LEV .G. LEVEL(IUSER)

EXECUTE DELQUE. (USR)
TRANSFER TO COMAND

END OF CONDITIONAL

OTHERWISE
LEVEL(IUSER) = LEV

EXECUTE EMDQUE. (USR)

TIMLEV(IUSER) = 0

WATTIM(IUSER) = GETOTL.(0)
END OF CONDITIONAL
STATUS(IUSER) = 3
TRANSFER TO DECIDE
R
R.. "EVENT' .E. 10, IS "NEWUSR' STILL RUNABLE

NEWUSI = 1. (NEWUSR)

WHENEVER STATUS (MEWUS!) .E. 2
1 .OR. STATUS (NEWUSI) .E. 3, TRANSFER TO RETURN

SWAP = 0B

TRANSFER TO DECIDE

THE NEXT THREE EVENTS ALWAYS OCCUR IN SEQUENCE
WHEN CONTROL IS TRANSFERRED FROM 'OLDUSR' TO 'NEWUSR'
AS A RESULT OF 'SWAP' BEING SET NON-ZERO,.

'NEWUSR' PAYS FOR CORE FREEUP AND HIS OWN LOAD

e o o
« o e .

"EVENT' .E. 3, SAVING OF 'USR'('IUSER') IS BEGINNING
EVENT 3 MAY BE CALLED FOR ANY OF THE FOLLOWING:
1. FREEING UP CORE B BECAUSE 'CURUSR' EXTENDED SIZE
2. FREEING UP CORE A DRUM BUFFERS FOR SWAPPING
3. DUMPING 'OLDUSR'
4. DUMPING OTHER USERS TO MAKE ROOM FOR 'NEWUSR'
BOOLEAN SWPSW, FIRST3, SWAP
WHENEVER SWPSW
WHENEVER FIRST3
FIRST3 = 0B
CHARGE. (PAYUSR, DELTIM. (PAYTIM))
OLDUST = . (OLDUSR)

.
o« .

ATV IDIDIDONDO
.

Description of CTSS 75

TIMLEV (OLDUSI) = TIMLEV (OLDUS1) + DELTIM.(LEVTIM)
PAYUSR = NEWUSR
END OF CONDITIONAL
TRANSFER TO CHANGE
END OF CONDITIONAL
TRANSFER TO RETURN
R
R.. 'EVENT' .E. &4, RESTORING OF 'NEWUSR' IS BEGINNING
EVNT (&) oLbust = 1. (OLPUSR)
WHENEVER STATUS (OLDUSI) .E. 2,
1 WATTIM (OLDUSI) = GETOTL.(0)
CURUSR = NEWUSR
TRANSFER TO CHANMGE

R
R.. 'EVENT' .E. 5, 'NEWUSR' BEGINS RUNNING AFTER RESTORE
R.. NEWUSR'S TIME ALLOTMENT 1S SET TO THE QUANTUM AT THIS
R.. LEVEL LESS HIS TWO-WAY SWAP TIME FROM DRUM, AMD LESS
R.. ANY TIME ALREADY RUN AT THIS LEVEL.
EVNT(5) TDEL = DELTIM.(PAYTIM)
WHENEVER TDEL .G. BGMAX
EXECUTE CHARGE.(PAYUSR, BGMAX)
EXECUTE CHARGE. (OLDUSR, TDEL=-BGMAX)
OTHERWISE
EXECUTE CHARGE.(PAYUSR, TDEL)
END OF CONDITIONAL
NEWUST = . (NEWUSR)
WHENEVER STATUS (MEWUS1) .E. 3

STATUS (NEWUSI) = 2
WRKTIM (NEWUSL) = 0
STRTIM (NEWUS!) = TIMNOW
END OF CONDITIONAL
BEGTIM = GETOTL. (0)
LEVTIM = BEGTIM
MAXTIM = BEGTIM + TRUN.(NEWUSR, LEVEL (NEWUSI))
1 ~LENGTH (NEWUSI)/1024% - TIMLEV (NEWUSI)
SHAP = 0B
FIRST3 = 1B
TRANSFER TC DECIDE
R
STAT(4)
R.. 'USR'('IUSER') ENTERED INPUT WAIT,
R
STAT(5)
R.. 'USR'('IUSER') ENTERED QUTPUT WAIT.
R
STAT(6)
R.. 'USR'('IUSER') ENTERED FILE WAIT
R TRIED TO ACCESS INTERLOCKED FILE.
R
STAT(7)
R USER (FIB) ENTERED FIB WAIT.
R FIB CANNOT GO DORMNT BUT CAN SCHEDULE ITSELF
R DORMNT. THUS, STATUS 7 IS TOTALLY UNNECESSARY.
R

WHENEVER STATUS(IUSER) .E. 2
EXECUTE DELQUE. (USR)
STATUS(IUSER) = ARG
WATTIM(IUSER) = GETOTL, (0)
TRANSFER TO DECIDE

END OF CONDITIOMAL

76 Description of CTSS

TRANSFER TO RETURN

R
R.. 'USR'('IUSER') TO BEGIN WORKING AFTER 1/0 WAITING
R.. OR ALARM CLOCK RETURM FROM DORMANT TO WORKING
STAT(2) WHENEVER STATUS(IUSER) .GE. &4 .OR. STATUS(IUSER) .E. 1

R..INITIALIZE TIME USER HAS WORKEDN (WRKTIM)
R..SET TIME USER ENTERED WORKIMG STAT (STRTIM)
WRKTIM(IUSER) = 0
STRTIM(IUSER) = TIMNOW
WHENEVER STATUS(IUSER) .NE. 1
LEVEL(IUSER) = LEVELF.(LENGTH(IUSER))
TIMLEV(IUSER) = 0
END OF CONDITIONAL
EXECUTE ENDQUE. (USR)
WATTIM(IUSER) = GETOTL.(0)
STATUS(IUSER) = 2
TRANSFER TO DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN

.. 'USR'('IUSER') WENT DORMANT WHILE RUNNING
.e OR PUSHED QUIT BUTTON
STAT(1) WHENEVER STATUS(IUSER) .L. 7
EXECUTE DELQUE. (USR)
STATUS(IUSER) =1
WATTIM(IUSER) = GETOTL.(0)
WHENEVER USR .E. CURUSR, TRANSFER TO DECIDE
TRANSFER TO CHANGE
END OF CONDITIONAL
TRANSFER TO RETURN

R
R
R
R

R
R.. 'USR'('IUSER') WENT DEAD, EVENT 6 WILL NOT OCCUR
STAT(0) WHENEVER STATUS(IUSER) .L. 6
EXECUTE DELQUE. (USR)
STATUS(IUSER) = 0
WATTIM(IUSER) = GETOTL.(0)
TRANSFER TO DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN
R
R
R.. 'EVENT' .E. 7, OPERATOR SET KEYS TO 'ARG'
EVNT(7) KEYS = ARG
BACKGR = ARG
TRANSFER TO DECIDE
R
R.. 'EVENT' .E. 8, 'USR'('IUSER') LOGGED IN PROPERLY
EVNT(8) LINMUL(IUSER) = ARG
EXECUTE INTIM.(USR)
TRANSFER TO CHANGE
R
R.. 'EVENT' .E. 9, 'USR'('IUSER') LOGGED OUT
R.. THIS EVENT IS NOW CALLED FROM CORE-B LOGOUT
R.. AND MAY THEREFORE BE INTERRUPTED AFTER CALL
R.. BUT BEFORE LOGOUT IS COMPLETE.
R.. THE PROBLEM NO OF THE USER HAS NOT BEEN SET
R.. TO ZERO WHEN THIS CALL TAKES PLACE.
EVNT(9) EXECUTE OUTTIM, (USR)
R TRANSFER TO CHANGE

R.. 'EVENT' .E. 11, 'USR'('IUSER') DIALED UP COMPUTER
EVNT(11) WATTIM(IUSER) = GETOTL.(0)
NOTIME(IUSER) = 0
TRANSFER TO CHANGE

Description of CTSS 77

DECIDE

CHANGE

RETURN

R
R.. COMMON EXIT FROM SCHED.
R.. DECIDE IF IT IS TIME TO RUN A NEW USER

R
R.. NO DECISION WHILE SWAPPING

WHENEVER SWAP, TRANSFER TO MONITR
R
R
R.. WHENEVER NO-INTERRUPT SWITCH IS ON
R.. USER CANNOT BE SWAPPED

CURUS! = I. (CURUSR)
WHENEVER STATUS (CURUS!) .E. 2 .AND. USWICH (CURUSI)
1.A.NINTBT .NE. 0, TRANSFER TO MONITR
R
U = HEDUSR.(0)
WHENEVER BACKGR .NE. 0 .OR. KEYS .NE. 0 , U =0
R
R.. RUN USER 'U' IF 'CURUSR' HAS RUN AS LONG AS 'U' WOULD
WHENEVER U .NE. CURUSR .AND.
1 (PREMPT. (TRUN. (U, LEVEL(1.(U)))) .OR. CURUSR .L. 3)
2 .OR. STATUS(I.(CURUSR)) .NE. 2 .OR, BACKGR ,NE. 0
MONITR = CHANGE
SWAP = 1B
NEWUSR = U
OLDUSR CURUSR
BACKGR = 0
END OF CONDITIONAL
R
R.. CALL MONSC2. IF COMMON CHANGED, ELSE JUST RETURN
TRANSFER TO MONITR
CONTINUE
EXECUTE MONSC2.
EXECUTE PLOT2.
FUNCTION RETURN

R

R

R.. INTERNAL FUNCTIONS

R.. 'TRUN' - COMPUTES RUN TIME FOR USER 'DU' AT LEVEL 'DL'
INTERNAL FUNCTION TRUN.(DU, DL) = QUANTM=(2.P.DL)

R

R

.o 'LEVELF' - COMPUTE PRIORITY LEVEL BASED ON LENGTH 'LENM'
INTERNAL FUNCTION(LEN)
ENTRY TO LEVELF.
WHENEVER LEN .GE. FULLEN
L = FULLVL
OTHERWISE
L = EMPLVL + 1L0G2.(LEN/(FULLEN/(2 .P. (FULLVL-EMPLVL))))
END OF CONDITIONAL
FUNCTION RETURN L
END OF FUNCTION

R
R.. '"PREMPT' - 1S TRUE IF PREMPTION IS PERMITTED
R.. BASED ON TIME INTERRUPTER WILL RUN "INTRUN'

BOOLEAN PREMPT.
INTERNAL FUNCTION PREMPT.(INTRUN) =
INTRUN .L. GETOTL.(0) - BEGTIM

INSERT FILE MADCOM
«. USER MACHINE CONDITIONS STATUS TABLE
.o (NOT REFERRED TO BY MAD PROGRAMS)
END OF FUNCTION

1
R
R
R.. COMMON VARIABLES
R
R

Appendix B

ADDITIONAIL CTSS DATA

This appendix contains statistics describing console
input-output and the internal states of users as well as the
relative usage of the CTSS Commands.

Table B.l shows the measured steady-state probabilities of a
user console state (idle, input, or output) and of the internal
states (Dead or Dormant, Working or Command, Wait, Input Wait,
and Output Wait). For example, the probability of finding a
user's console idle with an internal state of Dead or Dormant 1is
.276. The probability of an idle console (regardless of internal
state) is .502 , etc. Table B.2 shows the mean occupancv times
for these states.

Table B.3 gives a list of each of the CTSS console commands,
separated by task type with the relative usage in a sample of
110,050 commands.

TABLE B.1l
Steady-State Probabilities

Internal State
Console Dead or Working or Input Output Total

State Dormant Command Wait Wait Wait
Idle .276 .136 .090 0 .502
Input .057 .005 .119 0 .182
Output .114 .038 .059 .105 . 316
Total .448 .179 .268 .105 1,000
TABLE B.2

Mean Occupancy Time (seconds)

Internal State

Console Dead or Working or Input Output
State Dormant Command Wait Wait Wait
Idle 36.8 8.6 11.7
Input 7.6 0.3 15.5
Output 15.2 2.4 7.6 77.8

78

TABLE B,3
Relative Frequency of Command Usage

Commands of Type 1 Commands of Type 2 Commands of Type 3 Commands of Type 4
(File Manipulation) (Program Input and (Program Running (Compilation and
Editing) and Debugging) Assembly)

ARCHIV, .0l17 CTEST9 . 001 CTESTL .001 CTEST2 .011
CHMODE ,018 REVISE . 000 CTESTR . 006 CTEST6 .001
COMBIN .011 INPUT . 010 CTEST4 .002 CTEST8 .000
COMFIL .018 EDIT .00 FAPDBG . 005 DYNAMO .001
CRUNCH ,016 FILE .045 LOADGO .031 MADTRN .010
CTESTS .000 ED . 045 MADBUG . 001 BEFAP .000
CTEST/? .000 TFILE . 002 NCLOAD . 003 BLODI .000
DELETE .060 OCTPAT . 001 COMIT .000
EXTBSS .001 Total 142 OCTTRA . 000 GPSS .000
PRINTF . 060 RESTOR . 003 LISP .002
REMARK . 000 LDABS . 000 AED . 002
RENAME N OCTLK .008 FAP .013
RQUEST ,017 PATCH . 000 MAD .037
LISTP .058 LOAD . 009 OPL .000
PRBIN . 002 PM ,006 SNOBOL .001
PRBSS .00 TRA . 000

PRINT .01 USE .003 Total . 086

COPY .021 START .029
LOG . 000 VLOAD .005 Commands of e 5

SPLIT ,002 STOPAT ,000 (Miscellaneous
UPDATE .010 STRACE .001

UPDBSS . 004 gggggg .882
Total 349 Total -114 RESUME ,187 (includes R)
) RUNCOM 009
RUNOFF .008

- DITTO . 001

Note: LOGIN, LOGOUT, etc. were not included MEMO . 000
in these counts and account for .030 of the SD . 004
usage, SP . 000
SAVE .060

TYPSET ,009
Total .278

eled SSIO TRUOT3ITPPY

6l

Appendix C

THE SIMULATION PROGRAMMING SYSTEM

This section describes a means for preparing and running
programs to simulate digital computer systems. A language, based
on the Michigan Algorithm Decoder (MAD, see ARDEN, 1963) and a
schene for organizing such programs is presented. The simulation
language is based both on the way digital systems are organized
and on the methods a designer uses to specify such a system. The
organization of the operating system for a simulation is
explained and the specific implementations are discussed.
Finally, this simulation programming system is compared to
several other widely wused ones. Examples and information
required to use the system are also presented.

C.1 Organization of a Simulation

The design of a large digital computer system is generally
divided into several parts. For example, the memory system is
usually not designed by the same people who design the
instruction processing unit or the input/output channels and
devices. Moreover, the software and environment aspects fall
into completely different provinces. Therefore, it is felt that
this same modularity should be preserved in the specification of
a simulation of such a system. Such an organization would have
several advantages: (1) different people could independently
specify the simulation programs for their modules, needing to
work together only to the extent that the original designers did
(ideally, the designer of the module could also write the
simulation program); (2) a change in the internal operation of
one of the modules or elements in the simulation would not
disturb the rest; (3) the traditional, well-known organization of
a digital computer system can be maintained thereby increasing
the understandability of the simulation program; etc.

The place of the software parts of the system is clear in
simulations with great detail: The programs are simply 1loaded
into the memory simulation element and executed. However, in a
less detailed simulation, the software functions can either be

80

The Simulation Programming System 81

distributed amohg the various hardware elements or, more
naturally, be lumped into the control section of the simulated
system.

The specification of a program to simulate a large system is
now reduced to the specification of the elements which comprise
the system. Two factors must be defined in this specification:
the series of events occurring within the element and the timing
of these events with respect to events occurring in the remainder
-of the system., Note that this problem is identical to the one
faced by the original system designer.

The implementation of the element specification as a module
in a sinmulation program should involve nothing more than
expressing the series of events and their timing in some
convenient notation. Since most events within elements of a
computer system require sonme computation, an algebraic
programming language such as FORTRAN, MAD, etc., is sufficiently
well-known and convenient to provide this capability.
Communications with other elements within an event could be
accomplished by "sending" outputs from one element to another.
Timing, then, depends on the occurrence of inputs, fixed time
increments, variable increments, and combinations of these. The
elements specification language to be developed incorporates
communications with other elements and the definition of timing
with a conventional algebraic language in a natural way.
Translation in this language from the timing charts and flow
diagrams of the hardware designer should then be as natural as
that from software flow diagrams to an algebraic language.

lLooking at the simulation structure from an overall view, a
digital system will be represented by a number of programs, one
for each element of the system. Since the real elements operate
simultaneously, their programs shbuld at least appear to run
simultaneously. Thus, elenent specifications can be written as
if they will be operating in parallel with the rest of the
system, thereby preserving the organizational relationships of
the original system.

The element specification language itself is an augmented
version of MAD. It includes all of the MAD declarations and
statements plus additional statements for defining timing and
communication. The translation to machine 1language is
accomplished by a preprocessor and the normal MAD compiler.
Element specifications become relocatable subroutines (in the

82 The Simulation Programming System

usual sense). The system is implemented for use on both CTSS and
the IBM 7090 Fortran Monitor System.

C.2. System Variables
One of the factors of an element specification is the

definition of its interconnection with other elements. For this
purpose a special type of variable 1is introduced, the "system
variable." As in real digital systems, elements may have inputs
and outputs, an output originating from a single element and
fanning out to one or more others. System variables must be
referred to by the same name wherever they are used and must be
declared as either input or output system variables by each
elerent specification in which they appear. Two statements are
provided for the declaration of system variables:

OUTPUT VARIABLES 'list' (1)

INPUT VARIABILES 'list' (2)
where 'list' is a list of MAD variable names separated by cormas.,
The mode (i.e., floating=-point, integer, etc.,) of a system
variable may be declared at the programmer's option; however, it
should be the same mode in all elements. A system variable may
be an array; but if it is multidimensional, it must have the same
dimension vector in every element in which it occurs.

There are no restrictions on the naming of system variables
other than those of the MAD compiler. Input system variables
must not appear on the left side of a substitution statement.
Moreover, no system variable can be declared as an output of more
than one element. In operation, whenever a MAD substitution
statement having an output variable on the left side is executed,
the new value is instantaneously transmitted to the elements

where this system variable is an input.

C.3. Timing of Events

As was previously stated, an event consists of
communication, next event selection, and normal computation. By
use of the system variable declarations and the statement
repertoire of MAD these functions can be accomplished.

Timing may be specified in two different types of statement.
In every case, the last statement of one event and the first
statement of the next are separated by a timing statement.
First, the time between events may depend on the state of the
element at the beginning of this delay. Such delays can be
specified by either:

The Simulation Programming System 83

DEILAY OF 'expression' (3)

WAIT UNTIL 'expression' (4)
where 'expression' may be any legal MAD arithmetic expression. A
statement of type (3) causes a delay between events equal to the
value of ‘'expression.' The type (4) statement causes a delay
between events such that the event occurs when the value of
simulation "time" reaches the value of ‘'expression.' Thus,
simulation time is incremented by the value of the delay as the
delay statement is executed. Moreover, the state of the
remainder of the elements in the simulation is brought "up to
date" during this execution.

Alternately, the delay between events can depend on the time
of the arrival of inputs from other elements. Such delays are
specified by the following statement:

WAIT FOR INPUT (5)
where the delay is equal to the increment necessary to bring the
simulation time up to the point of the next input from another
element. In dealing with elements which have many inputs from
various sources, the following statements are useful:

WAIT FOR INPUT $'input variable name'$ (6)

WAIT FOR INPUT FROM $'element name'$ (7)

Statement type (6) causes a delay until the specified input
variable is sent, type (7), until an input originates from the
specified element, Neither (6) nor (7) have been implemented in
the present system, but experience has indicated that they would
be useful if available. Timing can be specified by combinations
of the two basic types of delay statements. For example,

WAIT FOR INPUT OR UNTIL ‘'expression' (8)
causes a delay until the time of the next input or until the
point where simulation time reaches the value of ‘'expression',
whichever occurs first. The statement

WAIT FOR INPUT AND UNTIL ‘'expression' (9)
causes a delay until the time of the next input or until the
point where time equals ‘'expression', whichever occurs last.
Similarly, the following statements are also allowed:

WAIT FOR INPUT OR DEIAY OF 'expression' (10)

WAIT FOR INPUT AND DELAY OF 'expression' (11)
and their use is similar to that of (8) and (9).

C.4. Element Specification-Form and Restrictions

The first 1line (exclusive of corments) of an element
specification defines the name of the element:

84 The Simulation Programming System

ELEMENT ‘name'’ (12)
where 'name' is any legal MAD variable name. At the start of the
simulation, time zero, control passes to the statement just after
the element name defining statement (type 12). Any desired
initialization should be placed between this point and either the
execution of the first delay statement or the first appearance of
an output variable on the left side of a substitution statement.
Also, all system variable declaration statements (types 1 and 2)
must occur in this initialization segment and must not be placed
in such a way as to cause them to be executed more than once.
The last line of an element specification is:

END OF SPECIFICATION (13)

All lines following this statement will be ignored.

In addition, there are two other items of importance. Any
element specification may refer to a variable named "TIME" whose
value is always the current value of sirmulation time. The mode
of TIME must be declared by the programmer (or 1left as normal
mode). In any case, this mode (integer or floating-point) must
be the same in every element in a simulation. Furthermore, care
rnmust be taken that if the mode of TIME is integer, all
expressions in the delay statements (types 3 - 11) must be
integer expressions and not of mixed mode. This restriction is
due to a foible of the MAD compiler. Care should be taken that
the smallest non-zero time increment used in a delay statement
with floating-point TIME is never so small that it will be
truncated when added to TIME. For integer time, TIME may go up
to a 35-bit number if care is taken and up to a 27-bit number in
any case. A second variable named "INPUT" is available. It is
of the Boolean mode and its value is "1B" if and only if an input
was received during the previous delay. That is, INPUT is reset
to "OB" at the beginning of any delay and set to "1B" on the
arrival of any input.

Element specifications are compiled in the form of MAD
external functions. Internal functions containing delays, etc.,
may be used; but outside of an internal function definition, no
use should be made of the following MAD statements:

FUNCTION RETURN

ENTRY TO 'name'.

END OF FUNCTION

END OF PROGRAM

The Simulation Programming System 85

Furthermore, should control pass to the 'END OF SPECIFICATION'
statement or to a FUNCTION RETURN, the simulation will
immediately stop.

Diagnostic printouts from either the MAD preprocessing
program, the MAD compiler, or the simulation operating system
will occur in the event that an error occurs. Most of the
restrictions are covered in this way. ;

A final area of trouble is the use of output variable
setting substitution statements as the last statement in a
"THROUGH" loop. The exact reason for this .problem is easily
solved by making the last statement in such loops "CONTINUE".

C.5. Examples of Element Specification

The following are three examples of element specification.
They are fairly simple but serve to illustrate some of the
features of the simulation language.

1. Oscillator
This element will have no inputs and a Boolean output named
"TRIG" which oscillates with a period of 10.

ELEMENT 0SC first line.

OUTPUT VARIABLES TRIG
TRIG = 0B

DELAY OF 5.

TRIG = .NOT. TRIG
TRANSFER TO L
BOOLEAN TRIG

END OF SPECIFICATION

initialization.
initialize TRIG.
wait half the period.
change output.
continue.

mode declaration.
last line.

TIME, in the above element, is floating point.

2. Gated Oscillator

This element is the same as in Example 1, except that it has
-a Boolean input, GATE, which, when 1B causes the oscillator to
start. When GATE is reset to 0B, the oscillator will immediately

stop and its output return to zero.

ELEMENT GATOSC
INPUT VARIABLES GATE
OUTPUT VARIABLES TRIG

initialization.

Ll TRIG = 0B

L2 WAIT FOR INPUT wait for GATE to come up.
WHENEVER ,NOT. GATE, TRANSFER TO 12

L3 WAIT FOR INPUT OR DEIAY OF 5. wait half period or for

86 The Simulation Programming System

WHENEVER INPUT, TRANSFER TO Ll GATE to come down.

TRIG = .NOT. TRIG change output.

TRANSFER TO L3 continue.

BOOLEAN TRIG, GATE

END OF SPECIFICATION

The simplifying assumption is made that after GATE comes up

the only input arriving will be GATE coming down. Notice that if
the "OR" of the compound delay at L3 were made an "AND" the
current output pulse would always be finished completely before
the oscillator turned off.

3. Memory

The following element specification will simulate a 1000
word memory with an access time of 2 units. Assuming three
inputs:

ADDR The memory address being referred to.

MEMIN The word to be stored by the memory.

MEMGO The "go" signal. 1Its value is zero for no action,
positive to write and negative to read. When it
changes to non-zero, the other inputs are assumed
to be set up.

and two outputs:

MEMOUT The word being read out by the memory.

MEMRDY The ready signal from the memory. It is non-zero
when ready.

The element specification is
ELEMENT MEM
OUTPUT VARIABLES MEMOUT, MEMRDY initialization.
INPUT VARIABLES ADDR, MEMIN, MEMGO

MEMRDY = 1B send fact that memory is
R ready.
Ll WAIT FOR INPUT wait for "go" signal.

WHENEVER MEMGO .E. 0, if "go" zero,

1 TRANSFER TO Ll resume waiting.
MEMRDY = 0B turn off ready.

DELAY OF 2 wait access time.
WHENEVER MEMGO .G. 0

CONT (ADDR) = MEMIN if writing, put new

R contents in.
OTHERWISE if reading, output

MEMOUT = CONT (ADDR) requested cell.

The Simulation Programming System 87

END OF CONDITIONAIL
MEMRDY = 1B

L2 WAIT FOR INPUT interlock, reception of
WHENEVER MEMGO .NE.O, ready should cause
1 TRANSFER TO L2 "go™ to drop.
TRANSFER TO L1 go back and wait for the
R next service request.
R remark card.

NORMAIL MODE IS INTEGER

BOOLEAN MEMRDY

DIMENSION CONT (1000) dimension memory size.
END OF SPECIFICATION

Notice that if the "go" signal were to come up again
immediately after the interlock, continuous memory operation
would result. 1In this case the ready signal will stay up for
zero time. This is sufficient because of the interlock. TIME is
used as an integer variable in this element.

The problem of interlocking signals 1is sometimes complex
both in real and simulated systems. To insure that an output is
received at more than one place it is usually most convenient to
have this output hold its value for a finite 1length of time
(perhaps 1 unit). Interlock techniques are usually a matter of
taste and several different schemes are wused in the element
specifications shown.

C.6. The Simulation Operating System

The simulation operating system is a group of programs which
cause the element specification programs to appear as if they are
being simultaneously executed. Since events occur in instants of
time, the only real problem is with simultaneous events. Events
not occurring at the same time are simply queued in the order of
their occurrence and sequentially executed. Events set to occur
simultaneously are executed in an arbitrary, but not random,
order.

Basically the operation of the system is a follows (let n be
the number of elements in the systemn):

l. Let j = 1, let TIME = 0, .

2. Enter the jth element at its entry point (just after the
"ELEMENT 'name'" statement).

3. Control returns to the operating system via

a. a system variable declaration statement. The name and
location of the variable are added to the proper list and control

88 The Simulation Programming System

is returned to the element at the point from which it came.

b. a delay statement. The time for the next event, for
this element, as specified by the delay statement, is placed in a
list of next-event times. If the element 1is waiting for an
input, a notation is made. The location of the delay statement
is recorded. The next operation is step 4.

c. an output being sent; error, the simulation is
stopped. (At least one delay must precede the first "send."
This is taken care of by the translator.)

4, Let j = j+1, if j is less than n, go to step 2.

5. The list of next-event times is scanned for the lowest
time. In case of duplicates, the first is used. If all elements
are waiting for inputs, the simulation is stopped. TIME is
incremented to the value of this nearest event. In case TIME is
greater than this value, no change is made; i.e., a negative
delay is made a zero delay. Control is now transferred to the
point of the last delay in the element corresponding to this
nearest event.

6. Control is returned to the operating system via

a. a system variable declaration statement or a FUNCTION
RETURN -- error, simulation is stopped.

b. a delay statement. The time for the next event for
this element, as specified by the delay statement, is placed in a
list of next-event times. Notations are made of the location of
the delay statement, the type of delay, etc. The next operation
is step 5.

c. an output being sent. Checks are made to determine
that this is a valid "send."” A linear subscript is computed by
taking the difference between the location originally declared
and the location being sent. If the variable is not subscripted,
the linear subscript will be zero. The new value for the
variable is sent to all elements where it is an input using the
linear subscript. The status of any waiting element receiving an
input is appropriately changed. Control returns to the element
at the point from which it came. The simulation operating
program has the following entry points:

MAIN99 Original entry to begin simulation.

IN9999 Entry to declare input variables.

ouT999 Entry to declare output variables.

DELAY9 Simple delay entry.

The Simulation Programming System 89

WAIT99 Simple "wait for input® entry.

WVD999 "Wait or delay" entry.

WAD999 "Wait and delay" entry.

TIME99 Entry to return the value of TIME in the accumu-
lator (for routines other than element specifi-
cations).

RESTRT Entry to restart the simulation at time zero.

TRACER Entry to start the diagnostic trace (see below).

STOPTR Entry to stop the diagnostic trace (see below).

PRSTAT Entry to print out the status of the simulation
(see below).

Two features are added as an aid to debugging. First, there
is an entry which prints the status of the simulation. This
information includes the name, location, value, source, and
destinations for every system variable as well as the name and
status of every element. The status of an element is described
by the location of the 1last delay, its type, and the time
associated with it. This time is the value at which the delay is
to end or, in the case of a simple wait, the value of TIME when
it began. This status can be printed by a call to "PRSTAT" at
any point in the simulation except during the initialization
period. The other debugging feature is the trace routine. The
exeéution of every delay statement and the sending of every
output variable (except those which have no destination) is noted
by: the name of the element in which the statement occurs, the
location of this statement, the current value of TIME, and either
the type of delay or the name, subscript, and value of the system
variable being sent. A trace may be started at any time after
initialization and then stopped, restarted, etc.

This simulation programming system was in almost continuous
use by the author and some others for approximately eighteen
months and is free of errors. Aside from simulating time-shared
systems, use has been made of this system for the simulation of a
storage system, sequential logic circuits, etc.

The following pages contain 1listings of the element
specifications used in the simulations.

90

Lo

LoopP

R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

R
R

R
R

R
R

R

The Simulation Programming System

ELEMENT MAIN
. .MAIN CONTROL ELEMENT FOR CTSS SIMULATION.
THIS ELEMENT SUPERVISES THE ENTRY OF PROGRAMS INTO ACTIVE
STATUS, CALLS THE SCHEDULING ALGORITHM FOR CLOCKED ENTRIES,
PROGRAM STATUS CHANGES,ETC., SUPERVISES DUMPING AND LOADING
AND SIGNALS THE CONSOLES, THE VARIABLES USED ARE--
STATUS....STATUS OF PROGRAM (SAME AS IN SCHED.)
LENGTH....LENGTH OF PROGRAMS
INTCYC....NO, OF CYCLES TO END CURRENT INTERACTION.
SWAPGO....SIGNAL TO STORAGE ALGORITHM TO BEGIN SWAP, VALUE
1S THE S1ZE OF THE PROGRAM TO BE SWAPPED. SIGN IS
POSITIVE IF PRG ON DRUM, NEG. IF ON DISK.
OLDSTA....STATUS OF PROGRAM BEING DUMPED
NXTUSR....NEXT USER TO BE RUN (NEWUSR)
NEWUSR....NEXT USER TO BE RUN
CURUSR....CURRENT USER
OLDUSR....USER BEING DUMPED
GOuvoseososoSIGNAL FROM CONSOLE INDICATING INPUT FINISH.
RDY.oesso0s.SIGNAL TO CONSOLE INDICATING INPUT WAIT (IF
NEGATIVE) OR PROGRAM FINISH (IF POSITIVE).
SWPDON,...SIGNAL FROM STO. ALG. INDICATING SWAP FINISH
CPUGO.....START SIGNAL FOR CPU.
CPUBSY....BUSY SIGNAL FROM CPU
CYCDON....SIGNAL FROM CPU INDICATING NO. OF INSTRUCTIONS
EXECUTED.

.. 1/0 VARIABLES.
OUTPUT VARIABLES CPUGO,SWAPGO,OLDSTA,NXTUSR,LSTUSR,RDY
INPUT VARIABLES SWPDON,CPUBSY,GO,CYCDON

«INITIALIZE SCHEDULING ALGORITHM,
NC=NCONS, (0)

EXECUTE SCHED.(0)

EXECUTE SCHED.(6,0,32767)

NXT IME=TIME

SWPSW=0

THROUGH LO, FOR J=1,1,J.G.NC

RDY (J)=1

LINMULC(1.(J))=1

..MAIN TIMING LOOP,
WAIT FOR INPUT OR UNTIL NXTIME

SEE IF TIME FOR A CLOCKED ENTRY TO SCHED,
WHENEVER TIME,.GE .NXTIME

EXECUTE SCHED.(1)

NXTIME=TIME+CLKINT

WHENEVER ,NOT.INPUT .AND. SWAP.E.0, TRANSFER TO LOOP
END OF CONDITIONAL

The Simulation Programming System

L1

LWl

LwW2

L2

LW3

L3

L5

R..CHECK INPUT STATUS OF EACH CONSOLE.
THROUGH L1, FOR J=1,1,J.G.NC
R
WHENEVER GO(J).NE.O
WHENEVER STATUS(1.(J)).E.4
R USER IS COMING OUT OF INPUT WAIT.
INTCYC(J)=CYCINT. (J)
RDY(J) =0
EXECUTE SCHED.(2,J,2)
OR WHENEVER STATUS(!.(J)).LE.1
R USER JUST FINISHED COMMAND,
INTCYC(J)=CYCINT. (J)
EXECUTE SCHED.(6,J,PRGSIZ.(J))
RDY(J)=0
EXECUTE SCHED.(2,4,3)
END OF CONDITIONAL
END OF CONDITIONAL
R
R..CHECK STATUS OF SWAP, IF GOING ON,
WHENEVER .NOT.SWPDON, TRANSFER TO L2
R..SWAP FINISHED, SET SWITCHES, RESTART CPU.
SWPSW=0
SWAPGO=0
WAIT FOR INPUT
WHENEVER SWPDON, TRANSFER TO LW1
WHENEVER CURUSR.E.0, TRANSFER TO L2
CPUGO=INTCYC(CURUSR)
WAIT FOR INPUT
WHENEVER .NOT,CPUBSY, TRANSFER TO LW2
TRANSFER TO LOOP
R
R..SEE IF SWAP IN PROGRESS.
WHENEVER SWAP.E.0, TRANSFER TO LS
WHENEVER SWAPGO.NE.O, TRANSFER TO LOOP
SWPSW=1
WHENEVER OLDUSR.E.0, TRANSFER TO L3
R..STOP CPU SO SWAP CAN BEGIN,
CPUGO=0
WAIT FOR INPUT
WHENEVER CPUBSY, TRANSFER TO LW3
INTCYC(OLDUSR)=INTCYC{OLDUSR)-CYCDON
WHENEVER INTCYC(OLDUSR).LE.0, INTCYC(OLDUSR)=1
WHENEVER STATUS (I.(NEWUSR)).E.3
SWAPGO=-LENGTH(1.(NEWUSR))
OTHERWI SE
SWAPGO=LENGTH (1 .(NEWUSR))
END OF CONDITIONAL
NXTUSR=NEWUSR
LSTUSR=0LDUSR
OLDSTA=STATUS (1 .(OLDUSR))
TRANSFER TO LOOP
R
R..NHOT SWAPPING, CHECK CPU.
WHENEVER CURUSR.E.0 .OR. CPUBSY, TRANSFER TO LOOP
CPUGO=0

91

92 The Simulation Programming System

PUBSY=1B
EQUIVALENCE (CPUBSY,PUBSY)
LWs WAIT FOR INPUT
WHENEVER CPUBSY, TRANSFER TO LW4
INTCYC(CURUSR) =0
R
R..SEE IF PROGRAM GOES DEAD, DORMANT, OR INTO 1/0 WAIT,
TEM=CONSTA.(0)
WHENEVER TEM.E.3
INTCYC(CURUSR)=CYCINT,(0)
EXECUTE SCHED.(6,CURUSR,PRGSIZ.(0))
OTHERWISE
RDY(CURUSR) =T IME
END OF CONDITIONAL
EXECUTE SCHED.(2,CURUSR,TEM)
R..'SWAP' MUST BE SET, BEGIN SWAPPING,
WHENEVER SWAP,E,0, FUNCTION RETURN
SWPSW=1
TRANSFER TO L3
R
R
BOOLEAN CPUBSY,KILL,PUBSY,SWPDON
DIMENSION GO(50),RDY(50), INTCYC(50)
NORMAL MODE 1S INTEGER
VECTOR VALUES CLKINT=200000
INSERT FILE COMN1A
END OF SPECIFICATION

The Simulation Programming System 93

WAIT

LW0O

LWOo1

FREEUP

ELEMENT STOALG
R..THIS ROUTINE TAKES CARE OF SWAPPING PROGRAMS,
R..THE VARIABLES USED ARE--
R CORUSR....LIST OF USER NOS. FOR CORE USERS.
R COREUB....UPPER BOUND LIST FOR CORE USERS.
R CORELB,..,..LOWER BOUND LIST FOR CORE USERS.
R NINCOR... .NUMBER OF USERS IN CORE.
R MXCORE....MAXIMUM NUMBER OF USERS ALLOWED IN CORE.
R SWAPGO,....GO SIGNAL TO BEGIN SWAP. VALUE IS
R +SIZE OF NXTUSR WHEN NXTUSR ON DRUM,
R 0 FOR NO ACTION.
R -SIZE OF NXTUSR WHEN NXTUSR ON DISK.
R NXTUSR....NO. OF NEXT USER (NEWUSR).
R XMITeesesoGO SIGNAL TO BULK STORAGE TO XMIT A PROGRAM
R BETWEEN CORE AND DRUM OR DISK, DEPENDING
R ON SIGN OF "XMIT',
R XMTRDY....READY SIGNAL FROM BULK STORAGE.
R SWPDON, .. .READY SIGNAL TO MAIN CONTROL.
R CONDS.....NO, OF WORDS FOR MACHINE CONDITIONS AND DISK
R STATUS OF A USER. ALWAYS DUMPED AND LOADED.
R
R..1/0 VARIABLES.
INPUT VARIABLES SWAPGO,OLDSTA,NXTUSR,XMTRDY,LSTUSR
OUTPUT VARIABLES XMIT, SWPDON
R
VECTOR VALUES CONDS=714
Re.INITIALIZATION,
XMIT=0
NINCOR=0
SWPDON=0B

R
R..WAIT HERE FOR SWAP GO SIGNAL FROM MAIN CONTROL.
WAIT FOR INPUT
WHENEVER SWAPGO.E.0, TRANSFER TO WAIT
R
R..DUMP OLD USER, TELL SCHED. ALG.
EXECUTE SCHED.(3)
R.o.1F LAST USER NOT 0, DUMP MACHINE CONDITIONS TO DRUM.
XM1T=CONDS
WAIT FOR INPUT
WHENEVER .NOT.XMTRDY, TRANSFER TO LW0O
XMIT=0
WAIT FOR INPUT
WHENEVER XMTRDY, TRANSFER TO LWO1
WHENEVER OLDSTA,NE.2, TRANSFER TO BIGDMP
WHENEVER NINCOR, G.NBUFF, TRANSFER TO DMPONE
R
R..MAKE ENOUGH ROOM IN CORE FOR NEW USER.
WHENEVER NINCOR,E.O
XM1T=SWAPGO
TRANSFER TO DMPDON
OR WHENEVER NXTUSR, E.CORUSR(1)
XMIT=CORELB(1)
TRANSFER TO DMPDON

94 The Simulation Programming System

OR WHENEVER .ABS.SWAPGO.LE.CORELB(1)
XMIT=SWAPGO
TRANSFER TO DMPDON

OR WHENEVER ,ABS,SWAPGO.L.COREUB(1)
XM1T=.ABS.SWAPGO-CORELB(1)

LWl WAIT FOR INPUT
WHENEVER ,NOT.XMTRDY, TRANSFER TO LWl
XMIT=0

LwW2 WAIT FOR INPUT

WHENEVER XMTRDY, TRANSFER TO LW2
XMIT=SWAPGO
CORELB(1)=.ABS.SWAPGO
TRANSFER TO DMPDON
OTHERWISE
XMIT=COREUB(1)~CORELB(1)
LW3 WAIT FOR INPUT
WHENEVER .NOT.XMTRDY, TRANSFER TO LW3
XMIT=0
LWt WAIT FOR INPUT
WHENEVER XMTRDY, TRANSFER TO LW4
THROUGH L2, FOR J=1,1,J.GE.NINCOR
CORUSR(J)=CORUSR(J+1)
COREUB(J)=COREUB(J+1)
L2 CORELB(J)=CORELB(J+1)
NINCOR=NINCOR~1
END OF CONDITIONAL
TRANSFER TO FREEUP
R
R..ALL DUMPING DONE, LOAD HAS JUST STARTED. INFORM
R..SCHEDULING ALGORITHM AND WAIT FOR COMPLETION.

DMPDON EXECUTE SCHED.(&)

LW5 WAIT FOR INPUT
WHENEVER .NOT .XMTRDY, TRANSFER TO LW5
XMIT=0

LW6 WAIT FOR INPUT

WHENEVER XMTRDY, TRANSFER TO LW6

R
R..PROG. LOADED, LOAD MACHINE CONDITIONS, ETC. FROM DRUM,
R.. ALG., GIVE FINISH SIGNAL TO MAIN CONTROL ELEMENT,

XMIT=CONDS

LW100 WAIT FOR INPUT
WHENEVER .NOT .XMTRDY, TRANSFER TO LW100
XMIT=0

LW101 WAIT FOR INPUT

WHENEVER XMTRDY, TRANSFER TO LW101
EXECUTE SCHED.(5)
SWPDON=1B
WHENEVER NINCOR,G,0 .AND, NXTUSR,E.CORUSR(1)
CORELB(1)=0
TRANSFER TO LW7
END OF CONDITIONAL
CORELB(0)=0
COREUB(0)=.ABS. SWAPGO
CORUSR(0)=NXTUSR
NINCOR=NINCOR+1

The Simulation Programming System 95

THROUGH L3, FOR J=NINCOR,-1,J.LE.O
CORELB(J)=CORELB(J=-1)
COREUB(J)=COREUB(J~-1)

L3 CORUSR(J)=CORUSR(J~-1)
LW7 WAIT FOR INPUT
WHENEVER SWAPGO.NE.O, TRANSFER TO LW7
SWPDON=0B
TRANSFER TO WAIT
R
R

R..NO MORE WRITE BUFFERS, COMPLETE DUMP OF USER
R..CLOSEST TO BEING COMPLETELY DUMPED.
DMPONE JJy=2
SI1ZE=COREUB(2)-CORELB(2)
THROUGH L&, FOR J=3,1,J.G.NINCOR
WHENEVER SIZE.G.COREUB(J)=CORELB(J)
JJd=J
S1ZE=COREUB(J)~-CORELB(J)
L4 END OF CONDITIONAL
XMIT=SI1ZE
Lw3 WAIT FOR INPUT
WHENEVER .NOT.XMTRDY, TRANSFER TO LW8
XMIT=0
LW9 WAIT FOR INPUT
WHENEVER XMTRDY, TRANSFER TO LW9
THROUGH L5, FOR J=JJ,1,J.GE.NINCOR
CORELB(J)=CORELB(J+1)
COREUB(J)=COREUB(J+1)
LS CORUSR(J)=CORUSR(J+1)
NINCOR=N INCOR-1
TRANSFER TO FREEUP

R
R
R..OLD USER NOT IN WORKING STATUS, DUMP ENTIRELY.
B 1GDMP WHENEVER OLDSTAE .0, TRANSFER TO DELETE
XMIT=COREUB(1)
LW10 WAIT FOR INPUT
WHENEVER NOT.XMTRDY, TRANSFER TO LW10
XMIT=0
LWll WAIT FOR INPUT
WHENEVER XMTRDY, TRANSFER TO LWI11l
DELETE THROUGH L6, FOR J=1,1,J,.GE.NINCOR

CORELB(J)=CORELB(J+1)
COREUB(J)=COREUB(J+1)
L6 CORUSR(J)=CORUSR(J+1)

NINCOR=NINCOR-1
TRANSFER TO FREEUP

R

R
NORMAL MODE IS INTEGER
BOOLEAN SWPRDY,XMTRDY, SWPDON
DIMENSION CORELB(5),COREUB(5),CORUSR(5)
VECTOR VALUES NBUFF=4
END OF SPECIFICATION

96

Loop
WAIT1

WAIT2

The Simulation Programming System

ELEMENT BULK

R..THIS ELEMENT SIMULATES BOTH THE DISK AND DRUM,

R

R..1/0 VARIABLES.

R

INPUT VARIABLES XMIT
OUTPUT VARIABLES XMTRDY,DSKUSE,DRMUSE

DSKUSE=0
DRMUSE =0
XMTRDY=0B
WAIT FOR | NPUT
WHENEVER XMIT.E.0, TRANSFER TO WAIT1
WHENEVER XMIT.G.0
TEM=DRMDEL . (XMIT)
DRMUS E=DRMUSE + TEM
OTHERWISE
TEM=DSKDEL . (.,ABS .XMIT)
DSKUSE=DSKUSE+TEM
END OF CONDITIONAL
DELAY OF TEM
XMTRDY=18
WAIT FOR INPUT
WHENEVER XMIT.NE.O, TRANSFER TO WAIT2
TRANSFER TO LOOP

NORMAL MODE 1S INTEGER
BOOLEAN XMTRDY
END OF SPECIFICATION

The Simulation Programming System 97

Loop
WAIT1

WAIT2

WAIT3

STOP

ELEMENT CPU

R..THIS ELEMENT SIMULATES A CPU WITH NO SIGNIFICANT
R..CHANNEL OPERAT!ICN GOING ON WHILE IT IS OPERATING.
R

R..1/0 VARIABLES.

R

INPUT VARIABLES CPUGO
OUTPUT VARIABLES CPUBSY,CYCDON,CPUUSE

C RUUSE=0
CPUBSY=0B
WAIT FOR INPUT
WHENEVER P UGO.E.O0, TRANSFER TO WAIT1
CPUBSY=18B
STARTT=TIME
TEM=FTO1.(ITOF.(CPUGO)/INRATE.(0))
FINTIM=TIME + TEM
TEM=CPUGO
WAIT FOR INPUT OR UNTIL FINTIM
WHENEVER CPUGO.E.0
CYCDON=(TIME~STARTT) * INRATE.(0)
WHENEVER CYCDON.GE.TEM, CYCDON=TEM-1
CPUBSY=0B
TRANSFER TO STOP
OR WHENEVER TIME.GE.FINTIM
CYCDON=TEM
CPUBSY=0B
WAIT FOR INPUT
WHENEVER CPUGO.NE.0, TRANSFER TO WAIT3
TRANSFER TO STOP
END OF CONDITIONAL
TRANSFER TO WAIT2

CPUUSE=CPUUSE+T IME-STARTT
TRANSFER TO LOOP

NORMAL MODE 1S INTEGER
FLOATING POINT INRATE,.,ITOF.
BOOLEAN CPUBSY

END OF SPECIFICATION

98

Lo

LoopP

LWl

JOINT
L1

The Simulation Programming System

ELEMENT CONS
R..THIS ELEMENT SIMULATES ALL OF THE CONSOLES.
R..THE VARIABLES ARE--
R GOuceeeso.SIGNAL TO MAIN CONTROL INDICATING CONSOLE'S
R COMPLETION OF INPUT.
R RDY.......SIGNAL FROM MAIN CONTROL INDICATING EITHER
R USER'S PROGRAM IS IN INPUT WAIT (IF NEG.) OR
R FINISHED (IF POSITIVE).
R NXTACT....LIST OF TIMES FOR CONSOLES TO FINISH INPUT,
R IF ZERO, CONSOLE IS WAITING FOR PROGRAM,
R NXTIME....TIME OF NEXT EVENT (CONSOLE FINISHING INPUT).
R NCONS.....NUMBER OF CONSOLES.
R
R

++1/0 VARIABLES.
INPUT VARIABLES RDY
OUTPUT VARIABLES GO
NC=NCONS.(0)
R
R.«INITIALIZATION,
DELAY OF 1
THROUGH LO, FOR 1=1,1,1.G.NC
GO(1)=0
NXTACT(1)=0
CONT INUE
R
R..MAIN LOOP,
NXTIME=0
THROUGH L1, FOR 1=1,1,1.G.NC
WHENEVER NXTACT(I).NE.O
WHENEVER NXTACT(1).G.TIME, TRANSFER TO JOINT
GO(1)=TIME
WAIT FOR INPUT
WHENEVER GO(1) NE.TIME
PRINT FORMAT ERR,TIME
EXIT.
V'S ERR=$10HCONS ERR. K12#$
END OF CONDITIONAL
WHENEVER RDY(1).NE.O, TRANSFER TO LW1
NXTACT(1)=0
GO(1)=0
TRANSFER TO L1
OTHERWISE)
WHENEVER RDY(1).E.0, TRANSFER TO L1
NXTACT(1)=TIME+INTDEL. (1)
END OF CONDITIONAL
WHENEVER NXTIME .G NXTACT(1).OR.NXTIME,E,0, NXTIME=NXTACT(1I)
CONTINUE
WHENEVER NXTIME.E.O
WAIT FOR INPUT
OTHERWISE
WAIT FOR INPUT OR UNTIL NXTIME
END OF CONDITIONAL
TRANSFER TO LOOP

The Simulation Programming System

R
NORMAL MODE IS INTEGER
DIMENSION RDY(50),G0(50) ,NXTACT(50)
END OF SPECIFICATION

99

100

Lo

IDLE

LOADWT

LOOP

LWl

HOLD

PUSTOP

LW2

The Simulation Proaramming System

Re.s ELEMENT TO CONTROL CPU AND SWAPPING FOR OVERLAPPED
R.. OPERATION OF DISK, DRUM, AND PROCESSOR.
R

ELEMENT CPUCTL

INPUT VARIABLES STARTU,GO,CPUBSY,CYCDON

OUTPUT VARIABLES NEEDU,RDY,CPUGO,NEWUSR

OUTPUT VARIABLES NQ,Q

NORMAL MODE 1S INTEGER

CPUGO=0
NUSERS=NCONS.(0)
THROUGH LO, FOR J=1,1,J.G.NUSERS
RDY (J)=1
CONTINUE
NQ=0
NEWUSR=0
NEEDU=18
R
R.. HERE WHEN IDLE, WAIT FOR NEW USER TO COME ALONG.
WAIT FOR INPUT
CHECKU.
WHENEVER NEWUSR.E.O, TRANSFER TO IDLE
R
R.. WAIT FOR LOAD OF NEW USER.
WAIT FOR INPUT
CHECKU.
WHENEVER STARTU.NE.NEWUSR, TRANSFER TO LOADWT
R
R.. LOAD DONE, INTERLOCK,
NEEDU=0B
CPUGO=INTCYC(NEWUSR)
SWPSW=0
EXECUTE MONSC1.(5,NEWUSR,0)
sTATUS (1. (NEWUSR))=2
GETNXT.
WAIT FOR INPUT
WHENEVER STARTU,NE.O, TRANSFER TO LW1
WHENEVER ,NOT.CPUBSY, TRANSFER TO LW1
CHECKU.
R
R.. HERE WHEN USER STARTED.
FINTIM=TIME + BURSTT.(0)
WAIT FOR INPUT OR UNTIL FINTIM
WHENEVER .NOT.CPUBSY
R.. CPU STOPPED. FINISH OFF USER.
CPUGO=0
PUBSY=1B
EQUIVALENCE (CPUBSY,PUBSY)
WAIT FOR INPUT
WHENEVER CPUBSY, TRANSFER TO LW2
TEMSTA=CONSTA. (0)
WHENEVER TEMSTA.NE.3
RDY (CURUSR) =T IME
DELQ.{(CURUSR)
gND OF CONDITIONAL

The Simulation Programming System 101

LW3

LWh

STOPPU

LW5

LW6

GETN1

GETN2

EXECUTE MONSC1, (2,CURUSR, TEMSTA)
SWPSW=1
EXECUTE MONSC1.(3,CURUSR,0)
STATUS (1, (CURUSR)) =TEMSTA
NEEDU=1B
CHECKU.
WHENEVER NEWUSR.E.0, TRANSFER TO IDLE
WHENEVER STARTU.E.NEWUSR, TRANSFER TO LOOP
CHECKU.
WAIT FOR INPUT
TRANSFER TO LW3
OR WHENEVER TIME.GE.FINTIM
WHENEVER NEWUSR.NE.O, NEEDU=18B
WHENEVER .NOT.CPUBSY, TRANSFER TO PUSTOP
CHECKU.,
WHENEVER NEWUSR.NE.O0 .AND. .NOT.NEEDU
NEEDU=1B
END OF CONDITIONAL
WHENEVER STARTU.NE.O0, TRANSFER TO STOPPU
WAIT FOR INPUT
TRANSFER TO LWk
CPUGO=0
SWPSW=1
EXECUTE MONSC1.(3,0LDUSR,0)
WAIT FOR INPUT
WHENEVER CPUBSY, TRANSFER TO LW5
INTCYC(OLDUSR) =INTCYC(OLDUSR) ~CYCDON
WHENEVER INTCYC(OLDUSR).LE.O, INTCYC(OLDUSR)=1
NEEDU=1B
CHECKU.
WHENEVER NEWUSR,.E,STARTU, TRANSFER TO LOOP
WAIT FOR INPUT]
TRANSFER TO LW6
END OF CONDITIONAL
CHECKU.
TRANSFER TO HOLD

BOOLEAN CPUBSY,PUBSY,NEEDU,CHANGE
DIMENSION GO(50),RDY(50),INTCYC(50),Q(50)

INTERNAL FUNCTION
WNTRY TO GETNXT.
CHECKU.
WHENEVER NQ.E.0 .OR. (NQ.E.1 .AND. CURUSR.NE.O)
NEWUSR=0
FUNCTION RETURN
OR WHENEVER CURUSR.E.O
NEWUSR=Q(1)
FUNCTION RETURN
END OF CONDITIONAL
THROUGH GETN1, FOR J=1,1,J.G.NQ
WHENEVER Q(J).E.CURUSR, TRANSFER TO GETN2
PRINT COMMENT $CURRENT USER NOT IN QUEUE.$
EXIT.
J=J+1

102

CHECK1

SORTO

SORT1
SORT2

DEL1

WHENEVER J.G.NQ, J=1
NEWUSR=Q(J)

FUNCTION RETURN

END OF FUNCTION

INTERNAL FUNCTION
ENTRY TO CHECKU,
CHANGE=0B

The Simulation Programming System

THROUGH CHECK1, FOR J=1,1,J.G.NUSERS
WHENEVER RDY(J).E.0 .OR. GO(J).E.0, TRANSFER TO CHECK1
WHENEVER STATUS(1.(J)).LE.1

EXECUTE MONSC1.(2,4,3)

STATUS(1.(J))=3

LENGTH(1.(J))=PRGSIZ.(0)
MONSC1.(6,J,LENGTH(1.(J)))

OTHERWI SE

EXECUTE MONSC1.(2,4,2)

STATUS(1.(J))=2
END OF CONDITIONAL
INTCYC(J)=CYCINT.(0)
RDY(J)=0
WHENEVER NEWUSR.E.O

NEWUSR=J
END OF CONDITIONAL
NQ=NQ+1
Q(NQ)=J
CHANGE=18B
CONTINUE

WHENEVER CHANGE, SORTQ.

FUNCTION RETURN
END OF FUNCTION

INTERNAL FUNCTION
ENTRY TO SORTQ.
CHANGE=08B

THROUGH SORT2, FOR J=1,1,J.GE.NQ

THROUGH SORT1, FOR JJ=J+1,1,JJ.G.NQ

WHENEVER LENGTH(!1.(Q(J))).G.LENGTH(I.(Q(JJ)))
+AND. CHANGE, TRANSFER TO SORTO

WHENEVER LENGTH(1.(Q(J))).L.LENGTH(I.(Q(JJ)))
+AND. NOT.CHANGE, TRANSFER TO SORTO

TRANSFER TO SORT1
TEM=Q(J)
Q(J)=Q(JJ)
Q(JJ)=TEM

CONTINUE
CHANGE=,NOT,CHANGE
FUNCTION RETURN
END OF FUNCTION

INTERNAL FUNCTION (A)

ENTRY TO DELQ.

THROUGH DEL1, FOR J=1,1,J.G.NQ
WHENEVER Q(J).E.A, TRANSFER TO DEL2
PRINT COMMENT $USER TO BE DELETED NOT IN QUEUE.$

The Simulation Programming System 103

PRINT FORMAT XX,A,CURUSR,OLDUSR,NEWUSR,NQ,Q(1)...Q(25)
V'S XX=$4HARG=12,3H CUI3,3H OUI3,3H NUI3,3H NQI3,
1 /2513%%
EXIT.
DEL2 THROUGH DEL3, FOR J=J+1,1,J.G.NQ
DEL3 Q(J-1)=Q(J)
NQ=NQ-1
FUNCTION RETURN
END OF FUNCTION

INSERT FILE COMN1A
END OF SPECIFICATION

Note that MONSCl1 is a data taking routine called with the
same arguments that the CTSS Scheduling Algorithm used.

104 The Simulation Programming System

R.. SWAP CONTROL FOR OVERLAPPED SWAPPING.
ELEMENT BLKCTL
R
R.. 1/0 VARIABLES.
OUTPUT VARIABLES OLDUSR,CURUSR
INPUT VARIABLES NEEDU,NEWUSR,XMTRDY
OUTPUT VARIABLES STARTU,XMIT
NORMAL MODE 1S INTEGER
BOOLEAN NEEDU, XMTRDY
R
R..INITIALIZATION.
STARTU=0
CURUSR=0
OLDUSR=0
XMIT=0
LSIZE=0
DS1ZE=0
LENGTH(0)=77776K
STATUS(0) =2
VECTOR VALUES STASIZ=714
R
R.. HERE WHEN CURRENT USER RUNNING AND NO NEW USER.
IDLE WAIT FOR INPUT
R
Loop WHENEVER NEWUSR.NE.O0, TRANSFER TO LOAD
wHENEVER .NOT.NEEDU .OR. CURUSR.E.0, TRANSFER TO IDLE
R
R.. DUMP CURRENT USER, NO NEW USER YET.
OLDUSR=CURUSR
CURUSR=0
WHENEVER STATUS(1.(OLDUSR)).E.D
DSI1ZE=0
OTHERWISE
DSIZE=LENGTH(I.(OLDUSR))
END OF CONDITIONAL
BULKGO., (DSIZE+STASIZ)
DSIZE=0
WHENEVER NEWUSR.NE.O
CURSIZ=0
TRANSFER TO LOAD1
END OF CONDITIONAL
BULKGO, (STASIZ+LENGTH(0))
CURUSR=0
TRANSFER TO LOOP
R
R.. LOAD NEW USER WHILE OLD USER RUNNING.
LOAD CURS I Z=LENGTH(1, (CURUSR))
LOAD1 LSIZE=LENGTH(I.(NEWUSR))
WHENEVER LSI1ZE.G.(77777K-CURS1Z), TRANSFER TO HARDFT
R
R.. NEW USER FITS INTO CORE WITH CURRENT USER.
WHENEVER STATUS(1.(NEWUSR)).E.3
BULKGO. (STASIZ)
BULKGO.(-LSIZE)
OTHERWISE

The Simulation Programming System 105

BULKGO,. (STASIZ+LSIZE)
END OF CONDITIONAL
LSIZE=0
LW1 WHENEVER NEEDU, TRANSFER TO L1
WAIT FOR INPUT
TRANSFER TO LWl
L1 OLDUSR=CURUSR
STARTU=NEWUSR
CURUSR=NEWUSR
LwW2 WAIT FOR INPUT
WHENEVER NEEDU, TRANSFER TO LW2
TARTU=0
aHENEVER STATUS(1.(OLDUSR)).E.O
DSI1ZE=0
OTHERWISE
DSIZE=CURSIZ
END OF CONDITIONAL
BULKGO.(DSIZE+STASIZ)
DSI1ZE=0
TRANSFER TO LOOP
R
R.. NEW USER WILL NOT FIT INTO CORE WITH CURRENT USER.
HARDFT LSIZE=CURSIZ+LSIZE-77777K
WHENEVER STATUS(1I.(NEWUSR)).E.3
BULKGO.(STAS1Z)
BULKGO,(CURSI1Z=-77777K)
OTHERWISE
BULKGO.(STAS1Z+77777K-CURSIZ)
END OF CONDITIONAL
LW3 WHENEVER NEEDU, TRANSFER TO L2
WAIT FOR INPUT
TRANSFER TO LW3
L2 STARTU=-NEWUSR
OLDUSR=CURUSR
WHENEVER STATUS(!.(OLDUSR)).E.O
DSI1ZE=0
BULKGO. (STASIZ)
OTHERWISE
BULKGO.(STASIZ+LSIZE)
DSIZE=CURSIZ-LSIZE
END OF CONDITIONAL
WHENEVER STATUS(1.(NEWUSR)).E.3
NOSEEK.(1)
BULKGO.(-LSIZE)
NOSEEK.(0)
OTHERWISE
BULKGO.(LSI1ZE)
END OF CONDITIONAL
LSIZE=0
STARTU=NEWUSR
CURUSR=NEWUSR
LWh WAIT FOR INPUT
WHENEVER NEEDU, TRANSFER TO LWk
STARTU=0
WHENEVER DS!ZE.G.0, BULKGO.(DSIZE)

106

Bl

B2

The Simulation Programming System

DSIZE=0
TRANSFER TO LOOP

R.. INTERNAL FUNCTION TO WORK DISK AND DRUM,

INTERNAL FUNCTION (ARG)

ENTRY TO BULKGO.

XMIT=ARG

WAIT FOR INPUT

WHENEVER NEWUSR.NE.Q0 .AND. CURUSR.E.O
CURUSR=NEWUSR

END OF CONDITIONAL

WHENEVER .NOT.XMTRDY, TRANSFER TO Bl

XMIT=0

WAIT FOR INPUT

WHENEVER XMTRDY, TRANSFER TO B2

FUNCTION RETURN

END OF FUNCTION

INSERT FILE COMN1A
END OF SPECIFICATION

The Simulation Programming System 107

Re. THIS ELEMENT SIMULATES BOTH THE DRUM AND THE DISK,
R.. IT PROVIDES A FACTOR, 'IOFACT', TO THE CPU ELEMENT GIVING
R.. THE AVERAGE FACTOR OF DEGRADATION BETWEEN 0 AND 1.
R
ELEMENT BULK
INPUT VARIABLES XMIT,CPUBSY
OUTPUT VARIABLES XMTRDY,|OFACT,DKOUSE,DSKUSE,DMOUSE ,DRMUSE
R
DSKUSE=0
DRMUSE=0
DKOUSE=0
DMOUSE=0
LooP XMTRDY=08B
I10FACT=1.
WAIT1 WAIT FOR L PUT
WHENEVER XMIT,E.0, TRANSFER TO WAIT1
WHENEVER XMIT.G.0
TEM=DRMDEL, (XMIT)
OFACT=.7
RMUSE=DRMUSE+TEM
WHENEVER CPUBSY, DMOUSE=DMOUSE+TEM
OTHERWISE
TEM=DSKDEL.(.ABS . XMIT)
DSKUSE=DSKUSE+TEM
I0FACT=,988
WHENEVER CPUBSY, DKOUSE=DKOUSE+TEM
END OF CONDITIONAL
DELAY OF TEM
XMTRDY=1B
WAIT2 WAIT FOR INPUT
WHENEVER XMIT.NE.0, TRANSFER TO WAIT2
TRANSFER TO LOOP

FLOATING POINT [OFACT
NORMAL MODE IS INTEGER
BOOLEAN XMTRDY,CPUBSY
END OF SPECIFICATION

108

LOoP
WAITL

AGAIN

WAIT2

STOP

WAIT3

The Simulation Programming System

R.. CPU FOR OVERLAPPED CPU AND BULK MEMORY OPERATION,
R.. SAME AS OLD CPU ELEMENT, EXCEPT THAT '1OFACT' GIVES
R.. FACTOR OF SLOWDOWN BECAUSE OF OVERLAP.
R
ELEMENT CPU
INPUT VARIABLES CPUGO, IOFACT
OUTPUT VARIABLES CRUBSY,CYCDON,: PUUSE,NPUUSE
GPUUSE=0
NPUUSE=0
R
CPUBSY=0B
WAIT FOR INPUT
WHENEVER CPUGO.E.0, TRANSFER TO WAIT1
CPUBSY=1B
CYCDON=0
PUGO=CPUGO
R
FINTIM=TIME+FTO!.(ITOF.(CPUGO-CYCDON)/(INRATE.(0)*I0FACT))
FACT=10FACT
STARTT=T IME
WAIT FOR INPUT OR UNTIL FINTIM
WHENEVER CPUGO.E.O0 .OR. IOFACT.NE.FACT
CYCDON=CYCDON+FTO! . (I TOF. (TIME-STARTT)*INRATE, (0)*FACT)
GPUUSE=GPUUSE+T IME-STARTT
NPUUSE=NPUUSE+FTOl . (FACT*ITOF.(TIME-STARTT))
WHENEVER CYCDON.GE.PUGO
CYCDON=PUGOD
STARTT=TIME
WHENEVER CPUGOL E.0, TRANSFER TO STOP
END OF CONDITIONAL
WHENEVER CPUGO.NE.0, TRANSFER TO AGAIN
CPUBSY=08B
TRANSFER TO LOOP
OR WHENEVER TIME.GE,FINTIM
CYCDON=PUGO
GPUBSY=GPUBSY+T IME+STARTT
NPUBSY=NPUBSY+FTO1!,(FACT*ITOF.(TIME~STARTT))
CPUBSY=0B
WAIT FOR INPUT
WHENEVER CPUGOL E,0, TRANSFER TO WAIT3
TRANSFER TO LOOP
END OF CONDITIONAL
TRANSFER TO WAIT2

NORMAL MODE IS INTEGER

FLOATING POINT ITOF., INRATE., IOFACT,FACT
BOOLEAN CPUBSY

END OF SPECIFICATION

The Simulation Programming System

L1

109

This program provides random numbers of various types, etc.

EXTERNAL FUNCTION (ARG)
INTEGER ARG
ENTRY TO BURST.

R ENTRY TO GIVE BURST TIME IN 1/60THS,
FUNCTION RETURN 120

R

R
ENTRY TO BURSTT.

R GIVES QUANTUM TIME.
FUNCTION RETURN 2 000 000
ENTRY TO NCONS.

R GIVES NUMBER OF CONSOLES...
FUNCTION RETURN 35
ENTRY TO PRGSIZ.

R RETURNS PROGRAM SIZES ACCORDING TO FOLLOWING DISTRIBUTION.

VECTOR VALUES SIZDIS = .155,
.045, .27, .03, .05, .03, .02, .0725, .015, .01,

.005, .0075, .00, .00, .00, .00, .00, .00, .005,
.005, .005, .005, .00, .00, .00, .00, .00, .00,
.0025, .00, .005, .0125, .0u501

LAST ENTRY 1S .00001 TOO HIGH TO INSURE WORKING.
X=RANNO, (0)
TOT=0.
THROUGH L1, FOR 1=0.,1.,TOT.GE.X
TOT=TOT+S1ZDIS(I)

INT=(1+TOT-X)*500.
WHENEVER INT.G,32766., INT=32766.
TRANSFER TO RETURN
R

ENTRY TO CONSTA.
R RETURNS THE NEW STATE FOR A PROGRAM. VALUE IS
R EITHER 0,1,3, OR &,

TOT=RANNO.(0)

WHENEVER TOT.LE..631, FUNCTION RETURN &
WHENEVER TOT.LE..812, FUNCTION RETURN 0
WHENEVER TOT.LE..88, FUNCTION RETURN 1

FUNCTION RETURN 3
R

ENTRY TO INRATE.
R ARBITRARY RATE OF INSTRUCTION EXECUTION.
FUNCTION RETURN .2
R NO. OF INSTRUCTIONS EXECUTED FOR AN INTERACTION.
R.. VALUES FOR CPU TIME DI1STRIBUTION.

VECTOR VALUES CPU=
1 .5072, .0449, .0609, .0393, .0363,
2 .0304, .0248, .0250, .0217, .0186,
3 ,0148, .0119, .0100, .0090, .0085,
L .0076, .0070, .0065, .0058, .0053, .0052
ENTRY TO INTCYC.
ENTRY TO CYCINT.
X=RANNO, (0)

BNV E WN

.035,

.025, .015, .005, .0025, .01, .01, .01, .005, .0025, .005,
.005, .01, .005, .00, .0025, .00, .005, .00, .005, .00,
.005, .005, .005, .005, .00, .00, .00, .0025, .00, .005,

.005,
.015,

110 The Simulation Programming System

WHENEVER X.G,.99
CPUT=5, + 24,7+(~-L0G.(1,-RANNO.(0)))
OR WHENEVER X.G..97
CPUT=4, + RANNO,(0)
OR WHENEVER X,G,.94
CPUT=3. + RANNO.(0)
OR WHENEVER X.G,.895
CPUT=2. + RANNOC.(0)
OTHERWISE
TOT=0.
THROUGH -LL, FOR 1=0,,1.,08
TOT= TOT + CPU(1)
LL WHENEVER TOT.G.X, TRANSFER TO LLL
LLL CPUT=1/10. + .1*RANNO,.(0)
END OF CONDITIONAL
INT=CPUT/5E-6
TRANSFER TO RETURN

ENTRY TO INTDEL.
DELAY BEFORE AN INTERACTION, 12 PERCENT OF THE TIME
AN INTERACTION HAS A ZERO CONSOLE PART (BECAUSE
OF A PROGRAM GENERATED COMM.). THIS 1S TAKEN CARE
OF BY THE 'RING' ELEMENT, THE FOLLOWING DISTRIBUTION
YIELDS A TIME BETWEEN 0 AND 2
SECONDS WITH A PROBABILITY OF ,0784 AND A TIME
DISTRIBUTED WITH A MAX OF ,05104 AT 6. (8.)
AND A MEAN OF 41,34, ADDED TO 2,
WHENEVER RANNO.(0).LE..078%4
INT=2E6+*RANNO., (0)
OTHERWISE
INT=1E6%(2.,+SPRAN.(.167,.8244,358.26))
END OF CONDITIONAL
TRANSFER TO RETURN
R
ENTRY TO DRMDEL,
R DELAY FOR 'ARG' WORDS FROM DRUM,
INT=ARG*8.4 + RANNO,.(0)+*17200.
TRANSFER TO RETURN
R
ENTRY TO DSKDEL.
R DELAY FOR 'ARG' WORDS FROM DISK,
WHENEVER RANNO,(0).G..2
BAS15=20,+466,
OTHERWISE
BASIS=1.4*466,
END OF CONDITIONAL
T0T=0.
THROUGH L2, FOR INT=ARG+BAS|S*RANNO,(0),~BASIS, INT.L.F*BASIS
X=RANNO.(0)
WHENEVER X.L..033
X=50000,
OR WHENEVER X.L..167
X=120000.
OTHERWISE
X=180000.
END OF CONDITIONAL

VIV XOVWIOVIV O =

The Simulation Programming System 111

TOT=TOT+X+RANNO. (0)*34000,

L2 CONTINUE
INT=TOT+66.5927*ARG
RETURN WHENEVER INT,.LE.1l., INT=1,

FUNCTION RETURN FTOl.(INT)
INTEGER FTOI,,F

R

ENTRY TO NOSEEK.

R ENTRY TO SAY IF NO INITIAL DISK SEEK REQUIRED.
F=ARG

FUNCTION RETURN

INTERNAL FUNCTION

THIS ROUTINE GENERATES RANDOM NUMBERS OF TWO KINDS,
VEXPRAN,' RETURNS A NUMBER EXPONENT IALLY DISTRIBUTED

FROM 0 (E.P.(=X)) WITH A MEAN OF 1.0

'DMPRAN,' RETURNS A NUMBER WHICH |S DISTRIBUTED

ACCORDING TO A DAMPED EXPONENTIAL FROM O (X#E.P.(-X)) WITH A
MEAN OF 1.0.

VRVIVODOID o

ENTRY TO EXPRAN.

FUNCTION RETURN (=-LOG,(1.-RANNO.(0)))
R

ENTRY TO DMPRAN.,

FUNCTION RETURN (~-LOG.(RANNO.(0)*RANNO.(0))})/2.

END OF FUNCTION
R
R SUBROUTINE TO RETURN RANDOM NUMBER FROM DISTRIBUTION--
R P(A.P.2)(T)(EXP(-AT)) + Q(1/TAU) FOR T.LE.TAU AND
R (A.P.2)(TI(EXP(-AT) OTHERWISE.
R
R PROGRAM WORKS BY PICKING UNIFORM DISTRIBUTION WITH
R PROBABILITY Q = 1-P, EXPONENTIAL WITH PROB. P.
R

INTERNAL FUNCTION (A,P,TAU)

ENTRY TO SPRAN.

WHENEVER RANNO,(0).G.P

FUNCTION RETURN RANNO.(0)=*TAU
OTHERWISE
FUNCTION RETURN 2.+#DMPRAN.(0)/A

END OF CONDITIONAL

END OF FUNCTION

END OF FUNCTION

BIBLIOGRAPHY

B. ARDEN, et al., The Michigan Algorithm Decoder, University of
Michigan, November, 1963.

R. W. CONWAY, "An Experimental Investigation of Priority
Assignment in a Job Shop," Memorandum RM-3789-PR, The Rand
Corporation, February, 1964.

F. J. CORBATO, et al., The Compatible Time-Sharing System, The
M.I.T. Press, Cambridge, 1962.

R. A, HOWARD, Dynamic Programming and Markov Processes, The
M.I.T. Press, Cambridge, 1960.

IBM, Reference Manual, "General Purpose Systems Simulator II,"
Form B20-6346, 1963.

H. M. MARKOWITZ, et al., SIMSCRIPT -- A Simulation Programming
Language, Prentice-Hall, Inc., Englewood Cliffs, N, J., 1963.

J. H. SALTZER, "CTSS Technical Notes," Massachusetts Institute of
Technology, Project MAC Technical Report MAC-TR-16, April, 1965.

113

Bulk-storage element, 6

CTSS, 1-2

configuration for, 65

model, 20

supervisory program for, 17
Command, 67 ff.

interactions per, 8

types of, 13 ff.

usage, 80

Commands, unclassifiable, 14

Compatible time-sharing system (CTSS), 1-2
Console element, 20-21
Console input/output,

17

6, 77 ff.
Disk accessing,
Efficiency, hardware, 3
13

43 ff.

File manipulation,
Hardware usage,
Interaction, activity during, 8, 77

console portion of, 5 ff.
model, composite, 5

task, 13 ff.
model assumptions, 12
model extensions, 12

working portion of (see also Response
time), 5, 8 ff.

Main control element, 20-21

Markov models, 2
continuous-time,
extensions of, 59
of multiple-processor systems,
predictions for, 36 ff.
of single-processor systems, 27

Measurements, method for, 17
reliability of, 16
time period measured,

27
31

5, 17

INDEX

115

Multiple Processor systems, parallel,
symmetric, 31, 46-47
asymmetric, 48 ff.
serial, 54 ff.

Overhead, system, 17, 43

Processor element, 20, 21
Productivity of system, 56 ff.
Program compilation and assembly, 14
Program input and editing, 13
Program running and debugging, 13
Program size, 9

Reliability, 16 ff.
Response time (see also
Interaction, working portion), 16 ff.
vs. CPU time/interaction, 38 ff.
distribution, 41 ff., 57
vs. number of interacting users,
vs. type of system, 42

36 ff.

Saturation,
Scheduling
Scheduling
SIMSCRIPT,
Simulation
Simulation models, 2,

of CTSS, 20 ff.

of CTSS variations, 23

results of, 36 ff.
Storage-allocation element, 20, 21
Swapping, 1, 67

61, 63
algorithm, 65,
policy, 38 ff.
26
language,

69 ff.

24, 81 ff.
19 ff.

Task, 12 ff.

Terminal 1/0, see Console 1/0

Think time, see Interaction,
console portion of

Time~sharing, 1

77 ff.

User states, &, 5 ff., 67,

	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115

