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INTRODUCTION

The purpose of this paper is to study some notions of randomness
for infinite sequences of 0's and 1's.

We consider S = ) 8y o Bpeses where 8, is either 0 or 1 with
equal probability; this probability being independent of the value
of the other elements of S. If such a sequence is obtained by choosing
0 or 1 at random, one can state propertiesgy which will be verified,
with probability one, by some of the initial segments Sn of S. We
denote by Sn =8, 8, «es 8, the initial segment of length n of
S = 81 8y eve Boees o For example: The limit of the relative
frequency of 1 in Sn is %, when n increases indefinitely. Given
such a property or law, we can say that a sequence is random if it
has this property.

We shall restrict our attention on effectively testable properties,
and see under what conditions one can generate effectively (i.e. with
a program) sequences with some of these properties. Such sequences
will be called pseudo-random. We consider now some of those properties
in order to define random sequences.

a) The first point will be that a random sequence is unpredictable.
That is to say, given an initial segment of the sequence there is no
way to predict accurately ﬁhat will follow. This notion has been

introduced by Von Mises, who defined:



The probability of an event is the ultimate frequency of the
occurrence of this event, after an infinite number of independent

trials.
Upon this, he built up the definition of "kollektiv' or
random sequence. We will state precisely this notion, as well

as the formulations of Wald and Church, in the first chapter.

b) Second property: If a sequence is easy to describe; if it
contains some kind of pattérn for example, then, it is not likely
to be random.

Kolmogorov formalized this idea and defined the descriptive
complexity for finite sequences. This complexity is then used

to define random infinite sequences.

¢) The third property will use a completely different approach,
formulated by Martin-Lof. Indeed, if we want to speak of random
elements of a set S, we need to introduce a probability measure on S.
Random eléments are then characterized by properties verified by a

subset of S of measure 1.

There we introduce a measure u on the set of infinite binary
sequences:
o
n=1{0,1} .

Wwhich is the w-product of the equiprobable measure on (0,1}. This

measure is defined for the Borel sets of the topology T, with basis:



[x1 Xy ooe xn] : set of infinife seéuencgs beéinnlng yith X) Xy eee X,
where x, is either 0 or 1.' Tﬁérefotext;'say5that a property is verified
almost evt:j@h%tt'on n‘(vtthﬂtq.pEctwto #) 1Q'equivalént to say éhat
. there is an'open set of as¥itrdrily small measwre fncluding the set of
exceptions to this property. This ;11; give us the definition of
sequetital’ té#t in the second chapter. |

L O Y- el etudy vhe‘atnc‘-ruhetom: of thase concepts and consider

extensions of those definitions.

o SR P N .
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CHAPTER T

VON MISES' DEFINITION

We first present the concepts of Von Mises about randomness,
then the related works of Wald and Church. We give three definitions
of random sequences or '"Kollektivs'.
Those definitions will lead us to those of gambling procedures
and to some interesting areas of research, as the study of Pscudo=random

sequences.

1.1 Definition of a Kollektiv.

A Kollektiv is an infinite sequence
S = Sy Sy +e- S, ee-
over a finite alphabet, such that:
1) Any element of the alphabet occurs in S with a certain
limiting frequency.
2) 1f we select an infinite set of indexes (places)
I = {il, iz, ...in...], such that the decision as to

whether or not in ¢ I depends only on the value of

(in, Sys Sps cees S5 _p» sy +1...); then each element
n n

occurs with the same limiting frequency in the subsequence:

S.=s S, eees S, ese o
1 2 *n
We will in this paper consider sequences of O's and 1's and the

case where the limiting frequenc§ of 0 (or 1) is %-



Definition Let X = [0,1}* = set of finite binary sequences

A selector f is a 0-1 valued function defined on X.

A place Selection Pf is the mapping which associates to each
infinite sequence S = 8; 8, ..., the subsequence (which may be finite)

P(S) =8 S eee 8 se e
f il 12 in

where il the least i such that f(s1 S, "'81-1) =1

i the least 1, bigger than i _,, such that f(s; s,... 85-1) =

n

Notation. Given a place selection Pf and an infinite sequence S.

We write P for Pf

P(S) for the subsequence selected by P on §

P(Sh) for the subsequence selected on the first n digits of S.
# P(Sn) for the number of elements selected

#O P(Sn) (#1 P(Sn)) for the number of O's (1's) selected.

1.2 Definition of A.WALD [13]

Wald noticed that one ought to put certain restrictions on that
definition, since:
Given an increasing sequence of integers [ni}, the process

which extracts from

is a place selection.

1
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But if we consider all possible sequences [ni], for any S with
an infinite number of 0's or 1's there will be one [ni} such that

Sn = 1 identically (or Sn = Q)
i i

Therefore no sequence would be a 'kollektiv'.
To avoid this, WALD proposed:
Definition: Consider a countable set of places selection including
that one which selects every place; a sequence will be a "kollektiv' if:
For all places selection selecting an infinite number of places

the limiting frequence of the number of O's (or 1's) is 5 -

1.3 Definition of Church [1]

We can remark that, in order for a system of place selection
to be applicable, we ought to be able to reproduce each place
selection indefinitely.
It is equivalent to say, by Church's thesis, that the selectors
of those place selections are recursive function of X. Formally
Given a one-one recursive encoding t of X in {0,1,2,...1
a place selection Pf is effective, iff the function f(t(+)) is a

recursive function.

Definition. A sequence S will be a 'kollektiv' (in the sense of Church)
iff for all effective places selections, the limiting frequency of the
number of 0's (or 1's) is % .

Note that there is a countable number of places selections, and

thus, this definition is consistent with that of WALD ,
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1.4 Definition of Ggmbling Algorithms

For defining random sequences we shall use an equivalent notion.

Notation: Given an infinite sequence S, S can be congidered as
the characteristic function of a subset.
s of (1, 2....} i.e. mgS & 8 F 1

We shall often write S for 5, and not distinguish between them.

Definitions: A gambling procedure is a total function g%, S) of

one integer and one set variable such that:
g(x, §) = ¥(x, s = (x})

*

for some total recursive Y with range in {0,1,2}.
These may be called F (future)-algorithms, for emphasis.
A P(past)-algorithm is as above with

g(x, 8) =Y (x, s n {0,1,...,x-1]).

Definition:

vig, S, x) = [y s x| gy, 8) #2 }]

number of guesses up to x by g about S.

k(g, S, x) = {y <x | gy, 8) = sy}l

number of good guesses up to X

‘Cf. H. Rogers Theory of recursive functions and effective computability.
Chapter 15. ‘
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k(g, S, x)

alg, S, x) =
v(g, S, %)

We call a(g, S, x) the accuracy of g on § at x.

aflg, S) = lim a(g, S, x) if such a limit exists

X 4 o

Definition: A procedure g is applicgble to S iff lim vy(g, S, x) =+ o

A procedure g has a bias for S iff

lim 1
X = o G.(g9 S,X)> 2 .

Having defined gambling procedures, we shall show the equivalence,
within our subject,of place selections and P-algorithms.
Given a P algorithm P, we define:

PO the place selection which selects sy whenever P(n, S) = 0,

and does not select otherwise.

P1 will do the same thing for P(n, S) =1

Theorem
Given a sequence S if there exists a BP-algorithm, P, applicable to S
such that either
| 1) (P, S, x) has no limit when X 4 + =
or 2) limg (P, S, x) # %

_ then there exists a place selection Q such that either
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1im #o Q (Sn)

>
me 4 Q (Sp)

N =

or lim #1 Q (5,) 1
n*e > 2
+ Q(Sy)

Proof: The first two conditions are equivalent to either

a) lim o (P, S, x) >

N =

N =

or b) 1lim o (P, S, x) <

If the second case is true, we may use a P algorithm P'

P'(S, x) = 1= P(S, x) 1f P(S, X) # 2
P'(S, x) = P(S, x) = 2 otherwise.
Then for P'

1im a(P, S, x) > % .

So we can restrict our attention to case

(FE > 0) (@ x) (P, S, x) >

Considering now P0 and Pl- We have

Yy(P, S, n) = ¢ Po(Sn) + 4 Pl(sn)

N =

a).

+ £ 1]

That is:

e e e g
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k(P, S, n) = $5 By (S)) + #; Py (5)

#, P (S)) %, P (S)
0 0 mn 1 1 n

- Let q.(n) = ————=< (n) = —=————"

} 0 4 By (S)) a1 ¢ B (S

ap). # By (Sp) +ay (0.4 By (S)

a(P, S, n) =
* PO (Sn) + 4 Pl (Sn)

In order to prove this theorem, we have to consider two cases:

Case 1): P guesses a finite number N of, say, 0's. Then for

large n such that:

CL(P’ S, n) > %— +€

1 N N
| al(Sn)>(2+E.)(1+ m)-m

As N/4 P, (Sn) can be made arbitrarily small:

@g >0 loy (50) > 7 +E (. 0)]

Case 2: P guesses an infinite number of O's and 1's.

Then (P, S, n) > ';" +€E = (11(11) > '%""E

1
or ao(n) >5+ £
Then since .
® 1
(Hn) [G. (P’ s, n) > E +E, ]

one of ay °T ag is infinitely often bigger than % + & .
Q.E.D.
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Let us now consider random sequences

Definition (Church)

A sequence S is random iff for any P-algorithm P

lim o (P, S, x) = %
X 4

Notation: We shall write "random (VM)" for random in the sense

of Von Mises (Version of Church).

1,4.1. Discussion

The first obvious remark is that a periodic or ultimately periodic
sequence like
S = 001001001 ......
will not be a random sequence. Moreover, there is no way to predict
accurately a random (VM) sequence.
We have the important properéy, using the measure u defined in the

introduction over 0 = {0,1}%.

Theorem (Church)
p{S | s is random M)} =1
That is, a sequence S is random almost surely. In order to

prove this theorem we shall use another theorem (optional sampling

Theorem)
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Theorem (Doob) [14]

Given a place selection P such that:
P(S) is an infinite sequence, almost surely.:
= ! = ' f
Let P(S) =S S1s Sy eee Sy oeee o

then P : S = P(S) is a measure preserving transformation. That is:

if A 1is a Borel set on (, then

P“1 (/\) is also a Borel set and u(f}) = u[P—1(l\)]

Proof:

Consider the set ¥ of sequences S's such that:

D) (2 P applicable to S) 7| [lim o (P, S, x) = % 1

We shall prove that ¥ has measure 0. We know, by what is above, that

is equivalent to:

(4 P applicable to S) 1im a (P, S, x) > % ]

3 =

Then £ = U U [ wherel = (S | x) a (P, S, x)>%+
P m  P,m P,m

Since there is a countable number of P's.

e Fm gl =0 e uxy=0

(L

Assume for some P and m: I—.m > 0, Then from P,we extract P0 and P1

P

(See Theorem above)
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EO ={S | Ses, the subsequence Po(Sx) has a frequency of
' 1 1
L] - -9
0's > 2 + m }
5 = {S | S ¢ey5, the subsequence Pl(sx) has a frequency of
1.1
] - £—3
l's >+ )
7: =Y:0 U 7:1-

Assume p (s‘,o) >0

Let 72 = {S | the frequency of zero's > % +

g

0 (i. 0d}

1
(v S € 5g) By(S) € ¥pe
But applying the strong law of large numbers, we have
1} -
H(?o) =0

ule" g1 = 0

-1 . _
and 5 cP A(yo) = u(go) = 0.
Therefore u(s) =0 ' _ - Q.E.D.
Remark: In the probf of this theorem we use only the fact that

there is a countable number of places selections.

The theorem would be true also for a larger definition of
random sequences."e. g. using r.e. gambling procedures where g(x, S)

divergent is interpreted as a no guess answer.
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We know that the characteristic function of a recursive sct is
not random (VM), since this characteristic function is recursive.
This is also true for the characteristic function of a recursively

enumerable set (or its complement).
Fact: The characteristic function of a r.e set is not random (VM).

Proof: If this set is infinite, we use a recursive function enumerating

it without repetition, to construct a guessing algorithm.

Remark : By the same method; if the set, or its complement includes

an infinite r.e set, then it is not random (VM).

This leads us to the question: how non-recursive a sequence S
has to be in order to be random?

We shall use the Kleene hierarchy of sets.

The Kleene hierarchy classifies the "arithmetical' sets in

classes Tn’ s 0, 1, 2,... defined as follows:

S is the class of all sets A of the form:

h)

A= [(al,...,am) (Ql Xl) «Q, xz)...(Qn xn) P(aj,eesa_, xl,...,xn);

where P(al,...,am, xl,...,xn) is a recursive predicate, the Q2k+1 are
existential quantifiers and the QZk.are universal quantifiers.
m, is the class of all sets A as above except that the Q2k+1 are

universal quantifiers and the Q2k are existential quantifiers.
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Summarizing some basic properties of this hierarchy of sets

(see Rogers):
(1) 20 =mg = 1 N m = the collection of all recursive sets;
(2) A e Sp A € mys all n;

< .
3) Yn © zn+1’ T & v‘n+1’ m & TTn+1 and n < Tn+1 all n;

4) “a ¢ s and T d:?n for n > 0

N

(5) <, UmCc~ 0l for n > 0 and containment

n+1l

is proper.

Then we have

Theorem (lLoveland [6]): There exists recursively random sets properly in

/_\i=finni for i = 2, 3...

1.4.2. Critique of this Definition

From the point of view of gambling it may be that a particular
sequence is guessed accurately by a P algorithm, but thérevis
no effective way to fiﬁd this good gambling procedure.
The notion of "accurately guessing" 1is also artificial.
may be.that we have, for a sequence S,.a procedure which will be
accurate infinitely'often, but this procedure may be also very

inaccurate most of the time.
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For a random sequence and a given P algorithm it may also be that
the accuracy goes to % from above. This does not correspond to

the intuitive idea of a random sequence. More precisely, we will

state a theorem proved by J. Ville [12] (in a slightly different form).

Theorem (Ville [12]): There exists a sequence S randon in the sense

of Church, such that:
In any initial segment of S, the number of 0's is not greater

than the number of 1's.

1.5 Areas of Research

1) We can use a wider class of gambling procedures Kruse [15] studied
this extension in its set theoretic aspect. Given a set and a
probability measure on this set, we can define arbitrarily random
elements as long as we keep the conditibn that almost surely any
element is random.

In a more restricted point of view, we may consider gambling

procedures in the arithmetical hierarchy.

2) We will in 1.5.1 present some remarks about the general F-procedures

as defined above.

3) One cannot effectively construct random sequences in the sense of
‘Von Mises. But if we impose a bound on the time necessary to guess
elements of a sequence, we can define and (effectively) construct
sequences which will look random to all "fast' gambling procedures.

We investigate this in 1.5.2.
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1.5.1 F-Algorithms

Recall that a F-algorithm is a function F(x, S) such that
F(x,S) =¥ (x, S - {(x}) where ¥ 1is a general recursive function
of one integer and one set variable, ranging in {0,1,2}.

Our motivation for considering F-algorithms can be explained
as follows: |

D. Loveland [5], made the remark that there are selection rules,
sractically applicable, which are not place selections. On this
gasis he built an extension of the Von Mises theory of random Sequences.
Our extension of P-~algorithms to F-algorithms follows the same pattern.

A P-algorithm, applied to a sequence S, is analogous to a process
of extrapolation. For example, if we consider Sn: Sy 8y see8 as
the history of S up to time n, we want to predict what will occur next.

On the other hand, a F-algorithm is analogous to a process of
interpolétion. Then, if we consider a sequence S we want to p;edict
the value of I For this purposé, we can‘ask‘a finite number of
questions about other elements of S.

In the next section, we will cﬁmpare F and P-algorithmé. Our
results are inconclusive. We will state a fgw results and remarks.

The first point is that Doobis theorem (optional sampling theorem)

no longer applies to extended place selections.

Definition: A F-place selection is a place selection with the difference

'
I

that the selector f is a funcﬁion'of a set variable and an integer:
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£(S, x) = ¥(s -{x}, x}
ﬁhere ¥y  is general recursive.

We have
Fact: There exist F-place selections which modify the distribution.
We define a selector f:
0 if sy = 1

 f(s, 1) =
1 otherwise

£(S, n) =1 for n=2,3, ...

We see that with probability 3/4, the first element selected
will be i.

However, it is certainly possible to défine random sequences
with respect to F-algorithms as in Section 1.4. This class of
random sequences will certainly be inclucded in the class of random
(VM) sequences. In some speciai cases, we can decide whether the

containment is proper.

Theorem: If we consider gambling procedures with outputs in {0,1},
that is guessing at each argument, then: there are sequences which

are random with respect to P-algorithms but not for F-algorithms.

Proof: We know already
@se® wrem (2, 9 =3 )

Where ®© is the set of P-algorithms
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Considering such a sequence S = S1 Speee8 enes and defining

| . 1 1
S’ = s1 s2 eseS  ees

[}
[}

If (Ay<x) (y+ 2Y = x) Then s;

else s
X

A F-algorithm may thus ask the value of s x and gives this value
x+2

as output. If will be always right. Assuming there exists a

pP-algorithm with a bias on s’ i.e.

k(P,S'.x)

S'.x 1
1 = _—
a(P, 8', x) Y(P.S1x) >5 + (1.0), for some p ¢ N

O |

Here, with our restriction, Y (P, s', x) = X.

k(P,S!x
so (P,S',x) = __(._’_4_2_ S _%_ + 1
b 4 P

Let R = range [f(n)], where f(n) = nt+2 .
= 1
Then (¥ x € R) [s_ Sx]
Ther are less than log x elements in R smaller than x,

Since y + 27 <X = 27 <X = Yy < log X.

So if we apply the same algorithm to S, it will have

k(P,S,x) k(P,S,x) - log x
—_— 2

(Z(P:S’x) = X X
1 1 _ logx
2 2 + p X
1.1
2 5 + 3p (i.o)

which is in contradiction with equation (1) , Q.E.D
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To conclude this section, we give, without proof, a theorem of

Loveland, stated in [5] in a different and more general form:

Theorem (Loveland):

Ther exists a random (VM)sequence S and a F-algorithm, F, such that

Q(F,S) = 1.

1.5.2. Pseudo~Random Sequences

A recursive sequence of 0's and 1's is obviously not random, in
the sense of Church. Nevertheless we would like to construct sequences
which would be very difficult to predict.

To measure this difficulty, we will use the complexity theory as

introduced by Blum:

Let P.R. be the set of partial recursive functions, R being the

set of recursive functions.

Definition: For a Godel numbering {@i} of P.R., a sequence

@0, él""én"" of functions in P.R., is a measure of complexity 1iff:
1) dom @i = dom ©;

2) )\ (x, y)[@i(x) = y] 1is a recursive predicate.

Definition: Given a function g ¢ R. £ in R. is g-computable iff

(= 9; = f) [@i(x) < g(x) except in a finite number of points].
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We want now to introduce a measure of the complexity of a
P-algorithm P(S,x), which can be considered as a function recursive
in the set S.
P(S,x) = Qf (x) for some i
We define for a function ¢§(x), a relativized measure Qf as a function
recursively enumerable in S, with/the properties:

1) (¥5) [domain (85) = domain (p})]

2) ,x (i,x;y) [@i(x) = y] is a predicate recursive in S.

The complexity of P(S,x) is noted w(S,x). m(S,x) may represent the number
of steps necessary for a universal Turing machine, with an oracle on §,

to compute P(S,x).

Definition: Given g in R, a P-algorithm P is g-computable on S if

m(S,x) < g(x) for all but a finite number of x's.

Definition: Given g in R, an infinite sequence S is random at level g,

if any P-algorithm g-éomputable on S guesses r with a limit accuracy % .

Our aim is to generate recursive sequences random at level g.
Since a sequence S is recursive.
(T 1) g;(x) =5
Obviously if S is random at level g then the function f(x) = Sy

is not g-computable. The reverse is not true and was proved by A. Meyer

and J. McCrieght.

Theorem (Mever): (V¥ g € R) (v d € R) (7 0.1 valued C ¢ R)

V.) BPi =C > @i(x) > g(x) a.e. and

i

(Y x) (C(x) =12 (¥y) (x<ysx+dx)=Cy) =0))]
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Informally this means that there exist recursive sequences,

difficult to compute,with an arbitrarily small frequency of 1's.

In order to construct a pseudo-random sequence, we could use
an extension of a procedure by Levin, Mineky, and Silver.

This procedure given a.countable set ef P-algorithms yields a
sequence which is random with respect to this set, and recursive
in an enumerating function of that sequence.

We present a differene eonstruction, which yields a recursive
sequence random at level g and which allows us to control the |

variations of accuracy.

Theorem: For any g € R, and any positive 'computable function £ (x)
with lim € (x) = 0 and 1im x&z(x) = + », One can construct a sequence
X=eo _ X=
S such that X = !
1) S is random at level g.
2) If we let Yy(P;8,%) = |[{y sx | B(S, ¥) #2 & (S, ¥) <8O} |
K'(R,5,x) = [{y s x | P(S, y) = s &n(S, ¥) = g1 |
a'(P,S,x) = k'(P,S,x)/y"'(P,S,x)

Then [ %"‘&(7) < a'(P,S,X) <%- +£(Y»’ with y = Y'(P,S,X)] (a-e-)

Proof: We use a diagonal argument developed by McCreight.
By definition a P-algorithm P(S,x) can be written as oi(x) = P(S, x)

for some 1.
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To each mi (x) we assoclate the measure Qf (x), as above.
Consider the list (m?}. This is not an enumeration of the P-algorithms,
but all P-algorithms are in this list.

Assign to each element in the list an initial weight wo(i) = 1/(i+i)2.
This weight may be changed at some stages. We define S in stages. At
stage X, Sx__1 is defined and we compute Sy

Stage X
S S

Define I = {i < x l 8y x-l(x) < g(x)} where 6ix-1(x) < g(x) means

that wi(x) did not use the oracle for y = x and that @f(x) < g(x).

Let AG) = (1 ¢ I | og(x) = 0)
Bx) = (1 ¢ T | g =1)
W = T W(i) Wb = T w(i)
a icA(x) i1eB(x)

Let 8(x) =&é§l .

Two cases

1) multiply all weights in A(x) by 1-8(x)
and all weights in B(x) by 1 + 9(x)

a) If W > W

2) set S, = 1

b) If W, S W 1) multiply all weights in A(x) by 1 + @8(x)
and all weights in B(x) by 1 - o (x)

2) set s =0
X
END.
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To show this algorithm gives us the desired result; we define for

a P-algorithm P, and its complexity

Property Q(n):

(7 x) I[y'(P,$,x) =n and o'(P,S,x) > %‘4—63 (n)]

Consider a P-algorithm P(S,x) = wf(x). Assume it has property Q(n).
Then at stage x
w(i) = Cx Yo i)
m p
with ¢ = 1 (1-8(x)) m  (l+e(y;))
i=1 i=1
where
+ £ (x)

m+p=n and >

N Jr=

P
mr+p
and

{xi} are the points z: P(S,z) # s

il
7]

{yj} are the points z: P(S,z)

Then C,_ 2 (1=p(x)" (Lp(m)™ €M™

But (1-g(n) )n(1+9(n))n+n E@®) + o« when n 4 + o

As x = n, If P(S,x) has property Q infinitely often, then C, can be

made arbitrarily large.

. .
Initially ¥ Wo(i) < + », and at any stage this sum cannot
i=1
increase. Therefore this sum will remain finite, for all {i.
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Thus any f.-algoritl'- has. prdperty Q*at’ most a finite number

q.f times. | |

We have also prdwod: »
0B85, < 2+EG) (a0 y=y(RS

Assume
'(B,5,) < €O o)y =y (REX)
. ‘'Then from P, we can deéduce another P-aijor_it!n P, with the
‘same complexity on §, such ..th‘at ' -
@' (PS5 2 2+E@  (10) ¥ =y (FEX)
Which is a contradiction.’

Moreover 1f P 1s gecomputable on S, then q(P,S) = % . thetefore

»

) 1_s random at le_ve‘i 3.7'“
qQ.E.D.

R AT T TR AT R R R R v“_.”"
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CHAPTER II

SEQUENTIAL TESTS

2 Pu ition

As we saw in the preceding chapter, thé definition of random
sequences using a countable number of place selections (or equivalently
gambling procedures) presents some inconsistencies with the intuitive
notion of randomness. See, for example the remark of Ville.

So let us look back at probability theory. Consider a random
sequence as illustrated by an indefinite repetition of independent
events, with a finite number of possible outcomes (e.g. O or 1).

Extending the notion of probability for a finite number of possible
events, we defined in the introduction a probability measure i over the

set of infinite sequences of 0's and 1's:
Q= (0,1)%.

We characterize random elements in this set by the properties
they have almost surely. So, with Martin Lof [8], we will say,

informally:

Definition: A sequence w ¢ 0 1is random if it satisfies all "almost

surely" type theorem of probability theory.
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For example, a sequence random in the sense of Wald, will obey
the strong law of large numbers, (which is of first order) but not the
law of the iterated logarithm (which is of second order).
In order to make precise this notion, we look at what we call
"almost surely' type theorems.
An "almost surely" type theorem is a property verified by a subset
of measure 1 of (). Examples: Strong law of large number: The limiting

frequency of the number of 1's in a sequence W € (), is almost surely 7 -

lLaw of the iterated logarithm: Let cn(w) be the sum of the n first digits

of the sequence wW. Then

Tim 20, )0

0 o (resp lim ) ho—gﬂ— =+ 1 (resp. =1) almost surely

For such a theorem, then, we can say that the set of all sequences
violating the law has measure zero. By definition this means that to

every £ > 0 there exists an open‘l covering this set such that

wah)<€g .

*
For ¥ ¢ {0,1} , let [x] denotes the set of all infinite sequences

beginning with x. Then, instead ofM, we may consider the set
*
= (x| [x] cU} = (0,1}
Note that, conversely

U= 1) [x]
xcU -
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If and only if4 is open. We say that { is generated by U. Further,
U has the property that it contains all possible extensions of any
of its elements (sequentiality); y being an extension of x (in symbol y > x)
if the string y begins with x. In othef words, U may be regarded as the
critical region of a sequential test on the level € . The definition
of a null set may hence be stated in statistical terms as follows: For
every £> 0, there exists a sequential test on that level which rejects
all sequences of the set.

In order to be able to construct effectively these tests we will

impose some more restrictions. That is for a given sequential test:

1) the U's are recursively enumerable.

2) given m, one can effectively enumerate Um such that

ul y [kl <2™
erm :

*
Definition 2,.1.1. Let X = {0,1}

A subset U of N x X is a sequential test if

1) U is recursively enumerable.

2) Its intersections U (x £ X| (m,x) ¢ U} are sequential.

That is,

(vxeU) (VyeX xy eu]
3) We have X = Uo =2 U1 =2 U2 2 oo
4) And 'um the open generated by Um; verifies

-m
v ['um1< 2,
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From each sequential test U in N x X, omne obtains immediately
a sequential test Cuo,411,...) in (. The relation between 41 and U
is reversible. We shall consider then as synonyms.
All effective tests from probaBility theory of the space ) (with u)

are sequential tests in this sense.

The main property of this definition is that we can define a test

which will include all tests of the type defined above.

Definition 2.,1.2 A sequential test U is called universal if there

exists, to each sequential test V an integer C = 0 such that:

' < U (m =1,2,...)

2.2. Properties

Theorem (Martin-Iof) 2,2,1

There exist universal sequen:ial tests.

Sketch of the proof: We define a Godel numering of the set of all
©) 4@ (m)

sequential tests: U , y asey U geve and we define U universal

by its intersections:

Definition 2,2.2. A sequence is random in this definition (we shall write

[ -]
random (ML)) if it doesn't belong to r)41 n’ for U universal.
: m=1



We will call this set the universal congtructive null set. This set
is the union of the null sets: rwt?;ﬁ for all sequential tests 15 .

Since the universal comstructive null set has measure zero,

we have:
Fact: Almost all sequences are random (ML).

We shall first study the position of some random (ML) sequences
in the arithmetical hierarchy, then relate this definition to the

notion of Kollektiv.

Theorem 2,2,3: The characteric function of a recursively enumerable

set (or its complement) is not random (ML).

Proof: Let A be this set and h a recursive function enumerating A

without repetitions. We assume A infinite.

Let hn = {n first elements of A enumerated by h}.

A_ = (slh, c 8]

We have

1) u[«ln] < Z-n, since n coordinates are fixed
2) the corresponding U is sequential and

3). Un+1 c Un for all n

4) Since h is recursive, U, is also recursive.

Then if A or its complement is r.e., its characteristic function C, will

not be random (ML).
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Corollary: CA is random (ML) imﬁlies that A and its complement intersect

every infinite r.e. set.

So there is no random (ML) sequences, in ¥, and ™ We show

that there is one in Ay = S, Ny (in facf 8y - (vi u nl))

Theorem 2.2,4. There exists b, sequences which are random (ML).

Proof: We conmstruct a characteristic function recursive in a recursively
enumerable set. The sequence representing this characteristic function
will be random (ML).
Let U be a universal sequentail test, x and y binary strings.

We know that p(ﬂ}l) < %

Define C as follows:

X€C o (In) (Vy) [length (¥) =n =xy ¢ U]
Note x € U1 =>2x ¢ C
Since U1 is recursively enumerable

v.o= {(x|(v ¥) [length(y) = n = Xy € UI] is also r.e.

xeC o @An) [xev)l

So C is recursively enumerable. Moreover p(qll) < % implies that
at least half of the sequences of length n are not in C.

Using an oracle for C, we now construct a sequence S, in stages.
stage 0 Assume 0 ¢ C, Let S; = 0
stage ntl  Assume S ¢ C, then S 1 or S/ 0 doesn't belong to Cg.

If S 1 ¢ C then Sn+1 = Snl otherwise Sn+1 = Sn 0. END
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No initial segment. of the sequence S so constructed will be in C,.

and therefore cannot be in Ul so S é‘ui, S is random (ML) Q.E.D.

Using the same method; we could prove the following theorem, given

without proof:

Theorem 2.2.5. There exists random (ML) sets properly in

As

i % Nmy for i =2,3, ...

Let us now investigate the relation between this definition of

randomness and that of Church.

Let VM = {S] there exists a P-algorithm with a bias for S}. VM is

the set of sequences not random in the sense of Church.
Theorem 2.2.6. If a sequence is random (ML), then it is random (VM)

Proof: Given a P-algorithm P, we extract the two corresponding
places selections: PO, Pl’ as in chapter I. We define the set of

finite strings (for m, n integers):

Anq’0 ={8'eX l 7 S initial segment of S', such that:

1) # PO(S) = Tl
1,1
2) 4o Po(S) /# By(S) > 5 +§ )
q,0 q,0
Let CLn be the open set of () generated by An

1) We have

0 = - q,0
Clnq’ = 1) {“ q,
m=n m
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where

[‘ 1,0 _ (s| The first m places selected - by P, contains a number
m

of 0's > ('% 4-;% ).}

From Doob's theorem, if Sn is the initial segment of length m of S:

qso - _]__ .l- -
Pr{r; } P [S|Sm contains more than m ( >+ 1_) 0's)

1
Let A\ =%~+%\A>'2'

We have
q,0 - m m
Pr(rm }<2. v ()
pz)\m

If we consider the entropy function for %’<,x < 1:
= i - 1
u(,\)-,\1og/\ + (1-A) log T3

We have

q,0 -m ,mH(A)
Pr[ f'!n }] <« 2 2
m HA)-1)
2

Since A >+ = 1-H(A) =a > 0.

. 0 =ym
s BT }s2

So
q,0 2 ,mom 27"
Py, = 5 2 - ™
m>n men - 1=2
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p,o “an -
Therefore P [(1 } < 2 < 2 antl
r n -
v 1-2
We have also
q,0 5 q,0
2) A An (xr n)
q,0 - 9,0
3) x¢e A » (vy) [xy e A l.
q,0
4) A is r.e.
n
Let
q,0 q,0 |
U = AL where [x] is the smallest integer greater
[o]
than x.

Then U:’o is a sequential test in the sense of Martin-Lof.

q,1

We could, in the same manner, construct U corresponding to P

1
and some q.

Now if a sequence S is not random (VM),
(2 P, P-algorithm) (¥ q) [ [P,S,x] > ‘;‘ +é‘1' (i.0)]

which implies
q',i
(7q') (v n) [8 c1j n ] where i is either 0 or 1,

and hence S is not random (ML). | ’ Q.E.D.
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2.3. As a conclusion we can say that, some random (VM) sequences
are not random (ML). This was affirmed by Martin-Lof in a private
communication, here is a straight-forward proof :

The law of fhe iterated logarithm, as given above, may be
stated as a sequential test. Thus, all sequences which do not
obey this law will be in the null set of that teét.

Therefore, a sequence which does not obey the law of the
iterated logarithm will not be random (ML).

But by Ville [12] theorem, one can construct a random (VM)_
sequence, where the ratio of the number of 1's to the number of 0O's,
is always not less than 1. This sequence will not follow the law

of the iterated logarithm and therefore will not be random (ML).
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CHAPTER IIT

DESCRIPTIVE COMPLEXITY

After this survey of gambling algorithms and measure theoretic

arguments, we shall take another point of view, related to the difficulty

of description of a random sequence.
We can note that, if binary strings of length n are classified according

to the number of 0's in them, the strings in the largest class will have

[n/2] zero's. Thus, if we draw a string at random, it will have with a great

probability, approximately the same aumber of O's and 1l's. By the same

kind of combinatorial argument, a string of length n, chosen at random,

has a small probability to contain some kind of periodic pattern.

From those simple remarks, we can deduce another definition of

randomness:
One characteristic of a binary string, made entirely with 1's (or 0's)

or a repeating pattern, 1s their easy description. In fact, it is

sufficient to have the length of the string and the pattern in order to

reconstruct it,

Kolmogorov, in [10], formalized this idea. He gave a new definition

of the relative entropy H(x|y), x being a binary string. This entropy will

measure the difficulty of description of the string x, given the information

y (e.g. its length). This will enable us to define random elements as those

with the largest entropy.
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But, we have to make clear that a description of some element X,

will make sense only if we make precise the means to reconstruct x from it.
We consider, in this chapter, a description of a binary string,

as a "program" for a specific Turing machine (with binary strings

as outputs).
Note that we restrict our attentiom to effective reconstruction;

but we might as well consider more powerful means (using Turing

machines with an oracle, for example).

Given a Turing Machine A, with two inputs, we define:

min

H,(x[¥) = ap,y)=x £(p)

p is the program for x, £(p) its length.

Definjtion: The Kolmogorov Complexity (or descriptive complexity) of a
string x with respect to algorithm A 1is:

2.(p)

min

K, (x) =
A A(p)=x

1f there exists a string p such that A(p) = x, otherwise KA(x) = o,

The Kolmogorov conditional complexity of x given y, with respect

to A, is:

min

Ap,y)= L@

K, (x|y) =

If such a p exists, otherwise KA(x|y) = o

There are several basic properties noted by Kolmogorov [9] which

apply to all two measures.
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Fact 1 There exists a universal algorithm B such that for an arbitrary

algorithm A and for x.

K k1LY < Ky(x| gG0) + ¢

where c depends only on A and B.

Fact 2 If B1 and B2 are two universal algorithms then there exists a
constant c, such that for all x:

‘K

B, (x| £(x)) - KBZF(Xl (N sc

So two universal algorithms are equivalent up to a constant.
We shall hereafter refer to KU(x| ¢(x)) for an universal algorithm

U as K(x| g(x)).

Fact 3. There exists a constant c such that

K(x| (X)) < ntc for all x

Fact &4 1Less than 2" strings of length n satisfy

K(x| n) < r. i

3.1 Definition of Random Sequences

Consequently, we are led to the definition: A finite string x will

be random if K(x| 2(x)) is maximum for g(x) fixed.

We want to generalize this definition to infinite sequences of 0's

and 1's.
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First idea: a sequence will be random if all its initial
segments are random. And since the complexity is defined up to
an additive constant, we would have:

S, is random o (4 c) (; n) [K(Snln) > n-c ]

But such sequences, as shown by Martin Lof, do not exist. Indeed,
from probability theory, we know that a random sequence has almost
surely continuous sequences of 0's or 1's., It is clear that the
description of such segments of infinite sequences can be
substantially simplified.

More precisely

Theorem (Martin-lof) [17]): 'Let f be a real-valued function:
o]
= 2 f(n)

n;I

If =+ o then

for all S ¢ q (A n) IK(S_In) <n -£m)].

Therefore if we want to have a consistent definition with the

fact that almost all sequences are random, we can have:

Definition T (Chaitin [8]1x

The set C of patternless or random infinite binary sequences is:
x
C_ =(sI Gn) K I n) >n-f@)]

where f(n) = 3 logn or any function such that

; 2-f(n) <+t o
n=1



we will verify below that u(Cw)‘t 1.

Definitiog ¥I (ggrtgn-ggflz

The set R of random infinite binary sequences 1is

R = (8] (@ec) (n) [K(S ] n) > n=c]

we will also show that u(R) = 1, and that R C Ca.

3.2 Proper
We use the second definition. We will write ''random in the sense

of definition II" as "random (K)'".

Theorem 3,2,1
ufSlS is random (K)} = 1.

Proof:
Let K be the complement of R in (Q:

SeK o (vc) (Any) (vn2 n,) [K(Snln) < n-cl

rnc

K= 1

)] N n.c = (S|K(s_In) < n-c}
c n, nz'\o »”

We know

— -Cc ' =C
bl ‘ n;c] <2 = ”[nQno l——'n,c:] <2
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0,c =nzr:30 rn,c Bno,c = Bn0+1,c

-]

CC eee
n

2-c
= p[U Bno,C] S

-» [kl =0
We prove now that definition I gives also a set of measure 1.
Theorem 3.2.2. let f(n) be a function such that

2-f(n) < + o,Then for almost all S: (V n) [K(Sn'“) > n=f(n)]

Proof Let v = (S|(@ n) [K(S In) < n-f@)])

s=n U [, =8Ik |n) < n-f(m)
n n

ny n2ng {
By Fact &: p.(rn) < 2-f(n)
© -f(n) '
and & 2 < + o implies by Borel. Cantelli Lemma, that
n=1 A

u) =0

To prove that a random (K) sequence 1s also random in the sense

of definition I, we use:

Theorem 3.2.3. (Martin-Lof) Given a function f(n). If R g~ E(m)_

. _ n=1
and if given m,one can compute effectively N such that

o«
r 2 £(n) < 2™
n=N

+
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Then, for all random (K) sequences
o« .
(Y n) [K(Snln) > n=f(n)]

The proof uses f(n) to construct a sequential test and uses

Theorem 3.2.4 below.

Theorem 3.2.4.

S is random (K) = S is random (ML).

Proof. Assume that for some universal sequential test:

This means (¥ m) (& no) Vn 2 no) [Sn U m] ¢9)
As 1) U is recursively enumerable
2) Um contains less than 2™ strings of length n.

We can describe an algorithm A generating Sn: Aésume Sn € Um. A is
given a program for generating tpe element of U, the number m and a number z
less than 2™ Given such data, A will enumerate Um and outputs the zth
element. The progrém of A will therefore be of size:

Constant + log m + log A o pem + log m + constant

1) = (¥ m) é? n) [KA(Snln) < n-m + log m + c]

. . !
By Fact 2: K(Sn]n) < KA(Snlm) +c

(¥ m) F n) [K(Snln) <n-m+ logm+c'']

where c'' is a constant independent of § and n.
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Thus (V¥ ¢) & n) [K(Snln) < n-c]

30 S is not random (K)

3.3 Definition of K as a Null Set of a Test

*
X = {0,1}
T = (xeX|(¥yeX) [Kxy|eGy)) < oxy)-ml}

Then

1) T is sequential: xgT = (Vy € X) [xy € Tm]

2) Tl bo T2 2 cees 2 Tm 2 eee

3) ‘ZT = open in (), generated by T : u(i?') < 2
m m m
Let f-= M .Z:n’ Cis a null set.

Remark. The T, above defines a sequential test in the sense of Martin-Lof
except for recursive enumerability.

What is the degree of uneffectiveness of T.

Theorem 3.3.1. T is ”g .

Proof. Let T = (xIK(x|g(x)) < g(x)-m}

“n is a recursively enumerable set.

T = (x| (7 ) ey € 1)

or x €T o Fy) Ixy € Em]
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Therefore Tm and T are of the degree of "g'

Fact Using definition II we can see

S is random (K) & 8 ¢ ﬂfm.

We have therefore defined K as the null set of a test in ng-

Using the same method that in Chapter II. We can see:

Theorem 3.3.2. There are characteristic functions of sets in Ay which

are random (K).
That is an open problem whether T is properly in ”g‘ Or equivalently,

cince we know by Theorem 3.2.4 that M L c K: if this inclusion is proper.

By the precedings, we know that this notion of randomness is the
largest of the three in the sense that, its null set of non-random sequelces

includes the other two.

3.4, Pseudo-Random Sequences

Given a Turing Machine A, we defined the complexity of a string X,
as the minimal length of a program with which A will generate X.

We can, as in Chapter I, put a bound on the time necessary for A
to generate x. We shall present in this section .a few remarks and a
theorem of McCreight [2], which may lead to interesting research.

Given a Turing machine A, with two inputs x,y, we define a

measure of the computation of A, with inputs x,y, we call this measure

o(x,y):
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1) a(x,y) is finite o the computation A(x,y) halts

2) a(x,y) =z 1is a recursive predicate.
We can take as example the number of steps of the computation A(x,y).

Definition 3.4.1l. Given a recursive function g, the pseudo-complexity

e et ————————

of string x = X eee
a g Xq ) X,

K' (x|n) = min L(p)
g A(p,n)=x

where A is a universal algorithm and
(Y i < n) [A(p, 1) = Xy XpeeoXy and nlp, i] < g(1)]

This definition is related to this of uniform complexity bv Loveland (5].

We give a tentative
Definition. Given a recursive function g, a sequence S is random at level g, ir
F n) k' (5 1n) > n-£(n)], where £(n) will be fixed further.

Rabin gives a construction of a 0.1 valued recursive function @  such that
i

@i(x) > g(x) (a.e.).

But with this property, the sequence

S, = Qpi(l) cpi(Z)...(pi(n)‘-..

is not necessarily random at level g.

Assume that S has the property:

G K 6|0 s nE@]
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Then, for arbitrarily large n, the string Sn = 8] Sye.e8) can be
described by a program p: £(p) < n=3 log n. We can construct
a new program for S of the form o Y 8 Yy p, where y is some

binary sequence which serves to separate a, B, p. a 1is the binary

encoding of the following instructions:

"Given input x, see if x-f(x) s length of the string to
the right of the second y. If so simulate A(p,x) and
give the xth digit of the output as result. Otherwise

compute §_ according to the instructions given by B"

Let i be the Codel number of this program :log i = k+n -f(n) where k

is a constant.

Let h(n) = n - f(n), The program 9y for the sequence S, will
have the property:

-1
@i(x) < g(x) on at least [h "(log 1-k)] inputs.
Let us now state a theorem by McCreight [2]
Theorem: (YE>0) (Vg€ Rl) (7 k € N) (% 0.1 valued ¢ € Rl) (Y i € N)

[wi = c > @i(x) > g(x) for all but k +(1 + g) log i values of xl].

and moreover this c is effective kiven g,EL .

Then we let f(n) = g'.n and construct the function ¢ of the

)
theorem above with &< E -
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If the sequence c(l), c(2),...,c(n),... were random, then

there exists arbitrarily large i such that

—-&—i°_ig,‘ , which is

ultimately larger than (1+£) log 1 + é. This sequence is

w; =¢ and 3, < g on at least

therefore random if we take f(n) = g'n We have:

Theorem. Given g, and & ~ 0, one can effectively construct sequences

such that

F n) K (5,10 > 1=E)nl.

Remark. It remains an open question whether the bound in McCrieght
theorem can be decreased to k + log i.

1f that is so, then we would be able to construct sequences
such that ’
[+
(2 ¢) (1 n) [K'g(S_ In) > n-c]
which would be a definition of pseudo-random sequences consistent

with the Kolmogorov definition.
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CONCLUSTON

Fach of these three definitions of randomness is in fact based
upon some set of statistical tests. We considered in this paper
only effective tests, i.e., usable with computer programs. We
could expand this theory to a more complete form by considering
tests arbitrarily high in the arithmetiéal hierarchy.

If we let O denote the recursive T-degree*, we can define
a n-guessing algorithm as a total function g(x, S) of one integer

and one set variable.

g(x, S) = ¥(x, SN (1, 2,...,x~1})
where Y ié recursive in the nth jump of O:O(n). A sequence S will
be random (VMn) if no n-guessing algorithm has a bias for it. Note
that Ville's result applies again: there are random (VMn) sequences
which do not follow the law of the iterated logarithm.

The definition of Chapters 2 and 3 zould also be generalized by
considering sequential tests as subsets of N x X recursively enumerable
in O(H), this will give us the definition of random (MLn) sequences;
and we can generalize the Kolmogorov complexity by using Turing machines
with an oracle for O(H), and hence define random (Kn) sequences.

Each of these extended definitions will yield a set of random
sequences of measure 1. The inclusion results hold also for these
definitions relativized to O(n). A random (Kn) sequence will be
random (MLn) and, in turn, a random (MLn) sequence will be random (VMn).

*
H. Rogers: Theory of recursive functions. Chapter 13.
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One other aspect of this paper, which coﬁld lead to i.ntve‘rest‘ing
develo‘pnents, is the generation of pseudo-rand'on'.sequences. Using
a measure of the complexity of a it;éue.uuq‘ conlttu:;sod ‘sequences -
vhich.lqok tan4§ny;o a11 s1np1c;ra§dqunngrtgttq.; .

Those sequences could be useful for the generation of random
numbers with any distribution, with applicaticn in various flelds,

1ike simulation or coding theory.

S e
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