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Section 1. Introduction

The Fast Fourier Transform (¥FT) and modular arithmetic are
two distinct techniques which recently have been employec to
increase the efficiency of numerous algorithms in the zrea of
symbolic and algebraic manipulation. Motivated by work done on
fast large integer multiplication by Schonhage and Strassen [11]
and by Knuth [7], this paper analyzes the question of when trese
two techniques can be utilized concurrently. The desirability of
the convolution property of the FFI suggests a practical
definition for the support of an FFT, while a generalization of
the modular rings of integers motivates a reasonable definition
of a finite computation structure. A Finite Conputation
Structure is defined to be a commutative ring with unity, and of
Tinite, non-zero characteristic. This report first completely
_characterizes the modular rings of integers which support the FIT
by considering the prime factorization of the modulus. This
characterization is then extended to provide the fcllowing
result: Theorem: ILet R be a finite computation structure of
characteristic m. Then R will support a K-point FFT if K divides
p~1 for each prime p dividing m. The paper then concludes with
examples of the application of this result to  the protlems of
computing products and powers of symbolic pultivariate
polynomials.

Section 2. The Discrete Fourier Transform

Definition: Iet R be a commutative ring with unity, written as
T, K an integer > 1, and WK an element of R of order K; i.e., a
primitive K-th root of unity. Then the DISCRETE FOURIER
TRANSFORM (DFT) of the K-sequence (al,al,.. .,a{k-T1)) is the K-
sequence

(3.0,5.1 [ ...,a(K-1 ))
given by the following equaticns:

K-1 .
8 = a W 0<ik-1 (1)
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Definition: Assuming the same conditions as above, and also,
That K possesses a multiplicative inverse in R (i.e. 1/K), then
the INVERSE DISCRETE FOURIER TRALSFORM (IDFT) of the K—-sequence
(20,aT, ...,a(K=T1)) 1s the K-sequence

(80,81, ...,8(kK-1))

given by the following equations:
K-1
- i3 : :
2 = (1/K) a W 0< j<K-1 (2)
J . i K
- . =07

t [
If we consider the term ai*WK**(-i*j) to be rewritten as the
equivalent term i

b

; . airwke((K-1)*3)
then we can rewrite the above equation as

| K- 1 )

i -
.8 = (1/K) a W v (%)
J K-i K : s

- i=20 : ‘

If we nbw define a(K) = a(0), then the inverse DFT can be

computed from the DFT by merely “flipping” the input sequence.
Here, flipping consists in replacing the i-th term by the (K-i)-
th term. Thus the same computational algorithm (for the DFT) can
be used to compute both the DFT and the IDFT. As might ‘be
expected from the terminology, under the right conditions, the
two transforms are inverses of each other, and thus provide
different reggesentations of K-sequences. The remainder of this
paper will concerned with determining some of the “right"
conditions under which the DFT can be inverted. Note, also, that
the DFT (and the IDFT) are linear transformations from R**K to
R*¥*K, (where R**K is the ring of K-tuples of elements of R with
component addition and multiplication) since the quentities
WK**(i*j) are all "constants" for each application of the TIFT.
For more information on this approach to the phenomenon of the
DFT, see Nicholson [10].

The computation of the DFT by classical techniques usuallg
involved O(K**2) operations, as the computation of eac
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transformed element took K multiplications followed by K-1
additions. However, Cooley and Tukey [5] demonstrated a
computation scheme by which the DIT of a K-sequence could be
computed in only O(K log K) operations. This method has become
known as the Fast Fourier Transform (FFT). The key concept in
the reduction of the computation time involves the factoggzation
of K. In other words, for K highly composite, the DIY 3 be
computed by forming sub-sequences of the original seduence,
performing a DFT of fewer elements on them, then assembling the
resulting sequences. The goal here is not to develop the theory
surrounding the FFT (see Cooley-Tukey [5]) but rather to instill
some feeling for the immense efficiency of this algorithm and
thus to motivate the desire to find as many ways as possible in
which it can be invoked. During the remainder of this paper, the
terms DFT and FFT will be used interchangeably, as they refer to
a cormputation function and a computation algorithm  which
correspond to each other.

The particular virtue of the DIT in many applications results
from the following:

Definition: Iet A = (a0,al,.. .,a2(K~1)) and B = (bO,bl,.. .,b(K-
T)) be two K-sequences in R. Then the CONVOILUTION OF A AND B,
written A*B, is the K-sequence C = (cO,c1,.. .,C(K—1)) where the
c]j are defined as follows:

where bn for n < 0 is defined as b(n+K).

Convolution Property of the DFT:

let A and B be as in the preceding definition. Iet A® and B® be
the DFT’s of A and B respectively. Then the following equation
is true:

(A*B)* = A” x B” (4)

where “x" means component-wise multiplication of K-sequences. In
other words, the DFT transforms the convolution operation in R¥*K
into the component-rultiplication in R¥*K, according to the
following commutative diagram:

n"‘.

WS
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1.
D¥T x DIT
R¥#*K X R¥*K > R¥*K X R**K
Ea*u 5"}("
v DFT v
R¥*¥*K > R¥#*K
. K-l -
— e = \“-w’l=%%&b-w°
a0 J‘ K §50 fsp S VTH K
o, K-
= i‘-i b =) L
! Qi 95t K X
450 =0
K-' K—‘
- t R | (3-)4R
- Qi ( ba-u“’n
=0 40
- I
_ ! i B
- EZ; Q; w, t{g
t=o
A A
pey Q_j_ ' b,l
QED.

As a result of (4), the convolution of two K-sequences can be
computed in the following way:

1)compute the transforms A“ and B° .of A and B
respectively.

2)perform componentwise multiplication on A® and B*
to obtain a K-sequence C°.

3)perform the inverse DFT on C* to obtain the
convolution sequence C.

Thus, the DFT provides a method (though not an intuitive one) for
computing the convolution of sequences, assuming that the inverss
DFT of step 3 is possible; i.e., if we can turn the bottom arrow
around in the above figure. What this requirement amounts to is
that we must able to compute a ¥true" inverse DFT.

Let us now loock 1into the requirements for the invertibility of
the DIT. If we aprly the inverse DFT of equation 2 to the
sequence of elements computed via the DFT of equation 1, the
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following equations:.will hold:

K- . K-\ K- < " K- .
2 __LZA L -LZ'. M-y 2 yLi-2)
Q, X Q. w, = Q:w = E:Q w
4 J=D voOF KJ=°&=O LK W i=o ‘;‘:o K

As a result, the IDFT, as defined originally, will be a true
inverse <==> a®hat~hat sub 1" = a®sub 1* for all 1 £ K=1 <=

& Li-R) S
w = K. ‘ 0%i,leK-14
-¢=° o“'*

(Recall that delta(i,j) = 1 if i=j and O.otherwise.) Notation:
Inasmuch as the following quantity appears quite frequently in
the rest of this paper, we use the following notation:

S, & 2wt

P i 0t e K-4
i=D

Using this notation, .we obtain the requirement: The IDFI is an

inverse <==> S%sub 1" = K delta(0,1 ). Thus, a reasonable basis

upon which to build a useful DFT (i.e., one able to produce the

convolution) is to define:

Definition: let K be > 1. The Support.of a K-point DIT is a
commutative ring R with identity sucE That™ ~—

§S1§ There exists 1/K in R.

S2) There exists wK in R whose order = K.
S3) S"sub 1" = K delta(0,1) for all 1 £ K-1.

Note that the support of an FFT is an “essential® property of a
ring ; i.e., if a ring R supports a K-point FIT and R is
contained in a larger ring R’, then R’ also supports K-point

FFT’s.

Two examples of support of a K-point DFT are the complex numbers
with wK being the complex number cos(2ﬂ7K)+s-1 sin(29YK), and

also the algebraic number field QE‘%’ where is a formal
solgzion to the equation x**K = 1, and!Q is the field of rational
numbers.

Section 3. Finite Computation Structures

This section deals with the problem of developing a sufficiently
rich generalization of the structure of modular rings of
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integers. The motivation for this generalization derives from
the desire to develop data structures whose underlying arithmetic
is precisely modular arithmetic. This will enable the modelling
of a data structure within a computer. As a result of this
thinking, we propose the following:

Definition: A Finite Computation Structure is a commutative ring
with unity, having finile, non-zero characleristic. (Reczll that
the characteristic of a ring is the smallest integer m such that
ma = O for all a in the ring. See Lang [8] and Albert [1].)

If the above definition holds, we say that R is a finite
computation structure (fcs) of characteristic m. It can easily be
shown that if R is an fcs of characteristic m, then there exists
a subring S in R which is isomorphic to the integers moduloc m
(Z/mZ). Thus the finite computation structure concept
encompasses the class of all modular rings.of integers.

Examples:

‘1) Z/mZ for all integers m.
2 EZ/ng[x1,x2,...,xn] for 211l m and all n.
3) (Z/mZ)¥**n for 2all m and all n, where multiplication is

component multiplication.

4) (Z/mZ)¥**n for a1l m and all n, where multiplication is
convolution of n—tuples.

5) GF(p**n) (field of p**n elements) for all primes
p and all integers n > O.

Section 4. Characterization of Modular Rings of Integers

In order to characterize the class of finite computation
structures vis-a-vis the FFT, it is first necessary to consider
the case of modular rings of integers inasmuch as one of these
rings is embedded in every fcs. The goal.of this section is to
characterize those modular rings of integers which support a K-
point FFT. In order to do this, we will draw upon work down by
Pollard [11]. In his work, Pollard puts forth necessary
conditions for the support of FFT’s in modular rings of integers
(Theorem A). The method of this section is to prove the converse
of Pollard’s result (Theorem B), eliminate a case untoucheé by
Pollard (Theorem C), and finally, remove unneeded hypotheses fron
the resulting equivalence (Theorem D). For the proofs given in
this section, the author assumes the 1reader to have basic
understanding of elementary number theory (as in Grosswald [6])
and elementary group theory (as in Birkhoff and Mac-Lane [2]).

Note: In +the remainder of the paper we will use the following
notational conveniences:
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Printed Written Meaning

Pi P, p sub i, a prime number

el € e e sub i, a positive integer

pi¥¥*el »;" p sub i to the e sub i power

Zr E/m¥E The ring of integers modulo m

Zpi¥*ei e The ring of integers modulo

z/f.‘ 2 the ei-th power of the prime ri

Z(m) Flw) ,. The multiplicative group of Zr

Z(pi**eji) Tl The multiplicative group cf Zpi**ei

g(m) ‘P(“t phi of m, the Euler phi-function

wK Wy K-th root of unity

Theorem A: Pollard”’s theorem. Let m be odd and

™, = (o 'Pt ]
If K divides pi-1 for every prime pi dividing m, and if there
exists an element wK in Z(m) such that the order of wK in
Z(pi**ei) is precisely K for all i, then the rodular ring Zm will
support a K-point FIT.

Proof. In order to prove this result, we go back to the
?ulrements for K-point FFT Uu¥port.
) Since K divides each pi-1 for all i, then K and pi are
relatively prime for all 1i. This implies that K 1is
relatively prime to the powers of the Pi’s and also to
the roduct of the powers of the pi’s. Hence, K is
latively oprime to m. This implies that K possesses an

1nverse in Zm.
(S2) By hypothesis, there is an element wK.of order K for each
Zpi**ei. Then, this element also has order K within Zm.
(83) The case for 1=0 is trivial. The proof for 1 # O depends

heavily on:

lemma A: Assume the above hyrothesis with the additicnal
assumption that m=p**e for some prirme p. Then Zm supports a K-
point FFT.

Proof of lemma:

(8T) ¥ divides p-1 and thus, K and p are relatively prlme. As a
result, K has an inverse in Zp¥*¥e.

(s2) By hypothesis, there exists an element wK of order X in

Zy**e,
(s3) Again, the case 1 = 0 is triviel, so we assume 1 is non-
ZEXO. Con51der nov the expressions for S"sub 1%, We

know that wkK**K1l=E"sub 1" (wK-1). Clearly, the left hand
side of the above equation is =zero as wK is a K-th root
of unity. We need only show that S%sub 1" = 0 (modulo
p**e). We can do this by showing that wK-1#0 (modulc p)
for then p**e would divide S%sub 1%. Now, if WwK =



PAGE 9

(rodulo p) then (wK,p)=1 and hence wK would be an elerent
of the subgroup {w in Zp**e such that (w,p)=1} of
Z(p**e). This subgroup has order p**(e-1) and Z(p**e)
has order (p-1)p**(e-1). But wK is also an elerent of
the cyclic subgroup of Z(p**e) of order K consisting of
all the powers of wK. Hence, wK 1is a2 cormon elerent of
two subgroups of Z(p**e) having relatively prime orders,
hence the identity. Thus, wK = 1 (modulo p**e).
Contradiction. Thus, wK # 1 (modulo p) and S%sut 1" = 0
(modulo p**e).
QED for lLemnma.

To continue with the proof of the Theorem, we now let m =
prod(pi**ei,i,1,r) where the pi are distinct primes. By Iemmz A,
we know that Zpi**ei will support K-point F¥T°s for each i. In
particular, S¥sub 1" = O (mod pi**ei) for each i. By using the
Chinese Remainder Algorithm (see Lipson [€] for an excellent
discussion of the various Chinese Remainder Algorithms) on the
relatively prime moduli pi**ei, we know that S"sub 1" = O (modulo
prod(pi**ei,i,1,r)); 1i.e., (modulo m). Thus the  three
conditions are satisfied and Zm supports K-point FFT’s.

The next Theorem presents the converse to Theorem A and as such
characterizes completely the odd numbers which can suprort K-
point FFT’s .

Theorem B: If Zm supports K-point FFT°s and m =

prod{(ri**ei,i,1,r), m odd, then K divides pi-1 for all i and

there exists an element wK in Zm such that wK is of order X in
Zpi**ei for all 1i.

Proof: Since Zm supports K-point FFT°’s, then by S1, K has an

inverse in Zm and hence K and m are relatively prime. It follows

that K and pi are relatively prime for each i. Thus, K does not
divide pi for all i. Next we can show that the map

v
@ :Zn ———> TT Zpi**ei
-a
given by Ax) = (x mod pli¥*el,x mod p2**e2,.. .,x mod pr¥*er)) is

a ring isomorphism and thus induces a group isomorphism between
Z(m) and “TT Z(pi**ei). First note that the order of Z(p) is

\a 'ci _ . i-‘
QUmy = QUIT-Pi) = T Q") =TT (i )pf

whereas the order of Z(pi**ei) is given by

St ) L -Npf
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We know that if wK has order K in Z(m), then K must divide the
order of Z(m). Since K does not divide any pi, then K divides
the product prod(pi-1,i,1,r). However, we now show that K
divides each factor:pi-1. By the 3rd requirement for K-pcint FFT
support (S3), we are ranteed that S'"sub 1% = 0 (moculo m =
pi**ei), for all 1 < K-1 and not zero. Since the pi**ei are all
relatively prime, then S'sub 1" = O (modulo pi**ei) for all i.
Now consider the order of wK in Z(pi**ei), say K1. Clearly, K1
divides K. If K1 does not equal K then S"sub K1" = 1+wK**K1+
wK**2K1+...=1 +1+1...=K (modulo pi**ei), since the order cf w¥ is
K1. But K and pi**ei are relatively prime for all pi and hence K
# 0 (modulo pi*¥*ei). We are then left with the conclusion that
if K1 # K, then S*¥sub KI1¥ # 0O (mod pi**ei), which is a
contradiction. Thus, wK has order K in each Z(pi**eig. Thus, K
divides the order of the group, i.e., (pi-1)pi**(ei-1). Since K
and pi are relatively prime, then K divides pi-1 for every i.
QED.

Having finished categorizing completely the case of odd moduli,
we consider now the possiblity of even moduli supporting K-point
FFT’s. This possibility is discarded by the following theorem.

Theorem C: No even modulus can support an FFT.

Proof: We assume here that K is non—trivial; i.e., K > 1. In
order to support a K-point FFT with a modulus m which is even, we
must have that K possesses an inverse in Zm. This condition is
equivalent to saying that K and m must be relatively prime and
hence that K must be odd. If there exists an element wK in Zm of
order K, where we now write m = prod(pi**ei,i,1,r) with p1=2,
then by means of the isomorphism described in Theorem B, the
order of wK in Z(2%*e1) must divide K. However, since the order
of Z(2%*e1) is 2#*(el-1), the order of wK in Z(2¥**el) can only be
even or 1. It can not be even as it must divide K. Thus we are
left with the fact that the order of wK in Z(2%*el1) must be 1;
i.e., wK = 1 (modulo 2%*el), In order to complete our proof we
look at the possible cases for m:

Case 1: m= 2%*el. 4
In this case, wK has order 1 in Zm = Z2%%*e1 and hence
cannot have order K.

Case 2: m = m] ¥ 2¥*¥el yhere m1 is odd.
If we now invoke condition S3 for FFT support, then S"sub
1" must = O (modulo ml1 * 2¥xe1), Since ml1 and 2**el are
relatively prime, this implies that S%sub 1" = O (modulo
2#%e1) for all 1 < K. If we now look at S"sub 1* however,
we find that S¥sub 1" = 1 + WK + wK*¥*2 + ... =1+ 1+ 1
+ e oo (modulo 2%*el1) (since wk =i1 (modulo 2%*el)) = K
(modulo 2#%*el1), which is not equal to O, as K is odd.
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Thus, S¥sub 1" is not zero and we have a contradiction.

Since both cases yield a contradiction, we have the result that
even moduli cannot support FFT°s.
QED.

The last theorem in this section combines all the results of this
section and provides for the complete characterization of modular
rings of integers which support the FIT.

Theorem D: Zm supports K-point FFT’s if and only if K divides
pi—1 for every prime pi dividing m.

Proof: Using theorems A,B and C, we see that we need only prove
the fcllowing assertion in order to obtain the above result:

If K divides pi~1 for all primes pi dividing m, then there exists
an) element wK in Zm of order K in each Z(pi*¥ei) (and hence in
Zm).

The argument troceeds as follows:

1. Every Z(pi**ei) possess primitive roots.of unity;
i.e., elements ri of order the same as Z(pi**eig
which is (pi—-1)pi**(ei-1). (See Grosswald [6].

2. The element wi define? bye |
il AU :
w, = )P Cmodude 45, )

has order K in Z(pi**ei) since K divides pi-1
and order(ri**n) = order(ri)/gcd(n,order(ri)) = K,

where - €.~
n-= ( >3 ) o

3. The element wK which is the unique solution (modulo m)
to the following family of congruences:

wK = vi (modulo pi¥*ei) i =i1,.04,T

is an element of order K in Z(pi**ej) for all i
and thus of order K in Zm.

Thus we see that if the hypothesis holds, we can always find an
element of the desired order. As a result, the hypothesis of
existence of K-th roots of unity in the equivalence implied by
Thorers A, B and C is redundant.

A final remark concerns the remcval of the hypothesis for odd
primes from Theorems A and B. Inasmuch as K must divide pi-1 for
each i and that X is not 1, ther the statement that the pi nust
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be odd is redundant. With the two removals of restrictions as
described above, the equivalence of Theorems A, B and C result in
exactly the statement of Theorem D.

QED.
§gg%§£1: Utilizing the various theorems presented in this
section, we have provided a complete characterization of modular

rings of integers supporting the Fast Fourier Transforms.

Examples:
T. E3 can support only 2-point FFT’s (with wK = -1).
2. Similarly, Z3**e can only support 2-point FFT‘s for all e.
3. 8-point FFT’s can be performed in Zm for any n
of the form prod(%gci+1)**ei,i,1,r) for arbitrary
r and ci, where 8ci + 1 is prime.
€.8., 17%%e, 33¥ne’, THke * Z3kxe”’,

Section 5: Extension to Finite Computation Structures

As we have seen in section 4, only certain modular rings will
support K-point FFT’s. We now extend this result to include some
of the finite computation structures.

Theorem: If R is a finite computation structure of
characteristic m, then R supports a K-point FFT if K divides p-1
for every prime p dividing m.

Proof: Jet K divide p-1 for all primes p dividing m. Then by
Theorem D we know that Z/mZ supports a K-point FFT. As a result,
the requirements S1, S2 and S3 of section 2 hold in Z/mZ. Since
R is an fcs of characteristic m, then there exists a subring S of
R isomorphic to Z/mZ. Because all of the requirements for
support of an YFT involve only ring .operations, then any
isomorphic copy of Z/mZ will satisfy the support requirements.
Thus S supports K-point FFI‘s. However, the definition of
support is essential and thus R also supports K-point FFT’s.
Q

Note: If Q':Z/mZ ———> R is the isomorphism onto a subring of R,
then Q¥(wK) is & K-th root of unity in R. Thus, knowledge of
modular K-th roots of unity will be sufficient to compute FFT’s
in R.
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Section 6: Applications

The results presented have been applied to the rproblems of
computing products and powers of symbolic multivariate
polynomials over the integers (see [3] and [4]). The following
brief example examines the application of the FFT in a finite
computation structure to the computation of products of
polynomials.

let f and g be univariate polynomials over some coefficient ring
R, with the degree of f = m and the degree .of g = n. We can thus
write:

fixy = Qp+a, X+ a8+ - + o, 2™
gy = ko +bx+ b+ - + b, at,
The product polynomial h(x) = f(x)*g(x) can then be written as
- T we
h(x) = Qo +C, 4 +Cx"+ -+ 4 C,, %

)
where the coefficients ci are computed by

ey = Za0ibi .
If we set K = m#n+1 and fcrm 2 K-sequences
A = qupq')"')q*\)o)‘”)
8 = (b"b‘)""'b"o\:o;"'/"))
then the K-sequence C given by

C =« to, Gy ey Q‘“\*\t3

is preciseﬁ{ the convoluticn of A and B, as defined in Section 2.
As "a result of this observation, if the coefficient ring R
supports K-point FFT’s, the the product polynomial, h(x) can be
computed using FFT°s as follows:
1) Form the 2 K-sequences A and B
2) Aprly a K-point FFT to each sequence, yielding R and B
3) Multiply R and B component- wise, yielding in'C.
4) Apply the inverse K-point FFT to obtain C, which is
the sequence of coefficients cf the product
polynomial h.
In particular, if the coefficient ring is the integer, we cannot
perform FFT’s as there are no roots of unity other than:.1 and -1.
However, if the largest coefficient (in absolute value) in A, B
or C is Dbounded by l, then we can embed f(x) and g(x) in the
polynomial ring Zm{x], where m > 2M and Zm supports K-point
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F¥T’s. Then, the application of the 4 steps mentioned abcve will
compute the product

hxd) = F gq (%) (oo W)

However, since the maximum coefficient is less than m/2, then
h(x) = f(x)g(x) and we are finished.

Similarly, if the coefficient ring R = Z[y] (i.e.; f and g are
bivariate polynomials in x and y over the integerss, we cen enbed
f and g in Zm[x,y] where m is sufficiently large and Zr[y]
supports K—-point F¥T’'s. Again, application of the 4 steps given
above will yield a polynomial

Ml gy 2 Feyy g, ) ¢ needude ),

but since m 1is chosen apprOpriatély, h(x,y) actually equals
£(x,y)e(x,y). _

The computaticn of powers of polynomials rroceeds in an aralogous
manner. Studies performed on these two computationsl problenms
have indicated that the FFI methods provide significant
improvement in the efficiency of these algorithms for a lerge
class of rolynomials. (See Bonneau [3] [4]).

(Y

Section 7: Summary _

This -paper has presented several results relating modular
arithmetic schemes and the ZYast Fourier Transform. In
particular, the classes of modular rings of integers in which the
FIT may ©be computed is completely characterized by the prime
decomposition of the modulus. Also, an extension of this result
for computation structures similar to modular rings of integers
yields a sufficiency hypothesis for the computation of FIT.

Further research in this area might be motivated bty the desire to
find necessary and sufficient conditions for FFT surport in
finite computation structures or in general rings. As an
example, Nicholson [10], using the definition of FIFT to be a
transformation which takes "convolution-product®¥ rings into
“component-product® rings, provides the result that FFI’s are
supported 1in division rings (i.e., rings with no zero divisors)
iff the ring contains & parficular primitive root of wunity. It
would be most desirable to extend this type of result to a larger
class of ringse.
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