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'LECTURE I

;

MULTIPLICATION IN BIMARY

U = 101100

V= 111 ;L

101160
101100

U x V = 101011010100

o = ‘the add and shift mltib’fiéation algorithm
T (U V) = time (number of baéic operations on
digits) to mulr.iply ‘U and V by

method (.

T (n) = max [Ta(U.V)I .z<u> - L(V) = n)

Remark: T (n) = 0(n2)
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p = recursive algorithm

BCa) = AT OMZ) + (ine to A4 aef shify legth

w wpeum+ Bm)

- 0¢6°82™) = o(n?)




5 B = better recui:s:lvé aléor:ltt:nn‘ ud:lng only three : :
half length multiplications
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6 Tp(n) = 3'1“3 (n/2) + 0(n)

= 0(31982™)

=0 (n1°823)

o 0(n1.6)
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9 , Turing Machine
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TWO-WAY READ-WRITE HEAD
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RIGHT| LEFT

g €L = ( tape
symbol_a]
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R " FIONEBAKT FOR F{x) =
(Emput x an tnteger in bivary wotation.’)
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13

Ma T.M.,

X an input word.

T (x) = number of instructions executed by M

m on x if M halts; o if M doesn't halt
on X.

%m(x) = number of tape squares visited by

head of M with input x if M halts;
o if M does not halt.

@méx) = output of Mon x, if any;

@ if no output.
T = time S = space ¢ = function
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Church's Thesis:

The effectively (mechanically) computable
functions and the Turing machine computable

functions are the same.

Extended Church's Thesis:

If a function is computable in time T on
any reasonable computer model, then it is
computable in time < polynomial (T) on a

Turing machine.



14 Infinitely-often Speed-up Theorem:

(M. BLUM). Let t: N -+ N be any computable
function. Then there is a computable function

Ct:N -+ {0,1) such that

given any M computing Ct one can
construct an M' also computing Ct

with the property that
Tﬁ#x) > t(x) and ;m,(x) < constant

for infinitely many x € N.
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numbers of
steps

T (x)

- - (x)

W'

input x
M is faster than M infinitely often,

m' is faster than M' infinitely often,
etc.



16 _ Let B R ,..., R be an ordetly 1list of
of 811 Turing machines (say in order of the
size of their flowcharts).

Let ¢, abbreviate ’
et P,

K T " T .
_ i m |
Universal Machine Theorem:

S i(x).,‘ regnrded‘ as a function of both

i and x, is computable.
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16a . PADDING LEMMA:

. ' . % | FR T .

Given any program, one can pad it with
instructions which it never uses. Thus,
we obtain
. a new program with the same behavior
as the old one.

| More fomlly,

--‘-------ﬂb--.----------------ucnu----- mmmemee




w S Por amyp T.M. T theme ia s lafimite
set PAD(e) C N such thet
(L) for swy e' ERAD(e) |
Py = Pgre Ty =T, SDEE =g,

elements of PAD(e) in constant time.
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(1 ¢, ‘1s- eomputable. Cinpuclt in . the
' Uni’veml Machine Thm.)

st 0 [ o ' ¥ 7 »
(1) Ifg, =€, thenT, (e')> tiah)
and C (e') = 0 (by def. of C,).

(3) Say@ = Ct. Then for any e;GPAD(e),

EIGIRS I (e*)“"i’ (‘6";

£ 3% M* K

and c.t(e') = 0,

cpeed-up ﬁ by al\nyc tutim 1! the
input is in PAD(e), and if so u-odumly |

print output O.

7* \ i{r»]’r';



Baf. Time(t) = (N W | 2405 tix)

M{)n T LS _.31 sam. |

Semellary. <, £ ‘Time{t) for amy cooputable t. |

,m mmmc Muthcm
compute t. '

m = lmth(x) ;{n}..knjx. ml.
'n- (2“) mne (2‘("7) - Time m}.

{2";") - Time (x2), stc.




20 Def. A computable t: N - N is time-honest iff

t € Tim(ta) and t(x) = L(x).

Cor. (Compression Theorem, ﬂiruantaesw)
For any tin-hnmtﬁ, ct € Time(t_:") - Time(t).

-  Remark: Lots of time-honest fcns.
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n Is wmore time batter than less?
mima(t’) - Tmet) #3

: m:;wh By there exist artiiteerily

‘Taxge mh 't such that
Ttme(t) = Time(get)

Za - Zewef of Gap Theorem:

tl{x) = the least z swch that

| O T ) < 2 or T, () >t ).
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Honesty Theorem (McCreight, Meyer)

- For every'computable t, there is a time-
honest t' such that '

Time(t) = Time(t') SR

i
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Ttain)
. ’ “ ) "
Compression: ! ' | *

Lines(f) iom £, there " -
(£) = Lines(L) is & lime L,

, {t) = Lines (2t), m
t = loglog. Fim)
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26 Def. Let f be a cmnputablie_,il Euiaction. A
sequence t,,£,,-.. of functions is a (space)

somplexity sequence for f iff

1) 1fe, = £, then s, =t

L almost eVéi';;r o

-where for some i,
and (2) For every i, there is ap, = £
such that

ti 2 Se almost everywhere.

.---g‘-------—----ﬁ-h------.- ----- -

27
Def. A sequence of fanetioms

_(for space) 1ff

(1) pi_._lsr%-p:,fbr all i, =

(2) - for eash’'i-there is-4 J such thae; .- ->

and 3) pi(x) is a computable function of i amd x.
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Theorem (Meyer, Schnorr) Every computable

function has an r.e. complexity sequence.

Every r.e. complexity sequence is a
complexity sequence for some 0-1 valued

computable function.

Example:
2
Let ti(x) = 2.. x i
2
So ti+1 = 1og2ti almost everywhere.

Cor. Almost everywhere Speed-up

(Blum) There is a 0~1 valued computable
function, ¢, such that for any T.M. computing
¢ there is another T.M. computing c which uses
exponentially less space at almost all

arguments.



LECTURE II

T = finite set called the alphabet or
vocabulary,.

an element‘& € ¥ 1s called a letter.

%
. L = set of all finite sequence of
letters, '

an ele-cne x € E s called a V_ILC_I,.

....

E&L_ 001:01 = 00101

£(x) = length (mumber of otturrences of letter)

of the word x.

4(001) = 3

rLigme
b(xey) = A(x) + ALy).
oW LT o
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*
A € X acts as an identity element under
concatenation.
3
AeX = XeA = X for all x € &,

LN = 0.

W%
Remark 1: <X ,«> is the free monoid

generated by I with identity A.

Remark 2: Remark 1 is irrelevant.

Remark 3: A is introduced as a technical
convenience and could be eliminated in what
follows at the expense of some minor

awkwardness.

%
A set Lc Y is called a language. Extending
concatenation to languages in the usual
way:
LeM, also written LM def.
{xey l x € L and y € M}
Example: ({0}-{0,1} = {00,01}
(0,00} +{1,01) = {01,001,0001)
{0,1,A}+{0,1,A)«{0,1,N\} = all binary words of
length < 3 (including A\).



Forxez:*.. n € N,

 Example: (01)° ='010101
Similarly for 4 cx”

o
P gtint o

AP = AeAs ook

RS SRtV I My

e .
et R iy 1 h .
%-----------

[0.1}4 = all binary words of length
TR B visy Mf? f'»‘\WT«?“Z‘!::»‘:F? iy m,{éfﬁt .
{0,1,7;]4 - .‘1‘1 bim%f,w‘.

| R
(0,1 HHH = (0,12 = a1l binary words of

length 16.
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Important example:

il

(01)" = 0101+++01 =
2n

n

(0,1°" - (1.(0,1,5°" U

2
(0,1,A) Moo U

{0,1,M) Zn-{00,11] +{0,1,A) 2n)

= all binary words of length 2n which do not
(1) start wrong
or (2) end wrong

or (3) move wrong (contain a forbidden

local pattern)

Problem: Given two expressions involving letters
LI sabrEes P

in 2,N, and operations

"o, on concatenation
" U 1" union

mtan squaring

vno" intersection
voaon set difference

is there a way to tell if they describe the same

language?



9 ' YES!

~ BUT MO GOOD WAY!!
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: Lema An expreuion contnining n operat:i.on
symbols describes a subset of ' : e
n

T un?

Proof. By induction on n: |

If n-O, the expreni.on must consist of a ::lwle

letter or A.

B PR . . s . Lehe T O T PN L el e s
s e e . e 0 e o G o e 2 o 8 0 0 A o 08 s e o A e 0 e

AUPRTEL mest

11
If E is an expression containing nt+l operations,

then E is of the form

E,°E,

(e, )2

| e e gt P A S
Tt B b bR AT 1R PR RSN SPOREE 4

“ T el R CREL A Y

: i EP MY+ SR R B .
vhere 31, 32 are expressions contaiiiiig < n operation
symbols. Proof follows fmmediately.
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14

For any expression E, let

3
L(E) © X be the language described by E.
Remark: Formally, El = E2 means that El and E

are identical expressions. E1 and E2 are

equivalent (written E1 = E2) iff

S(El) = £(E2).

E1 = E2 iff (E1 - E2) U (E2 - El) = ¢

Hence sufficient to test whether an expression

describes the empty set.

To test if £(E) = ¢, convert E to a list of the

words in £(E) beginning at the "innermost"
subexpressions of I and working out.

See if the list is empty when you finish.

Difficulty: The list for
2.2
(oo (CCOUT)Y ) deoen

contains

2



15 2.2 bits

16 84 _, :
Theorem 1. There is (for a‘hy finite T) a
constant & >0 #nd & Twring machine R such .’

that ) .
:gi-, £ CI

(1) !0! &cc%pts an input v 1ff v, 1s a wgll-
forng{d) efprmion and S(w) = ¢.
(2) Ty £ max(100 | e

O L TR SR O

kn ) b
$22

17 Jovea osw o F S ' g ey

I_t_xgm_.. There is 2 finite 2 and a constant
RN 1 3uch thet - T sl &"é‘}
if M il_m T.M. acceptixg precisely th%

expreuions over Z‘ describing the empt:y
oBebwiund menl g s D o cdwlwomss 2l {13

Qet*‘ z%h‘n T g s e liog
/n

| z"’(!k i@y ( Be: ol S 1
for ‘tufitdi sty M*sn:: ais. bwe sﬁy z, Toe
!  (That is, (E | £(B) = ¢} ¢ Time(2“" Ly

e [ PR, R [ Y. SR
P PR I P A L S 5,
- TN R AR T D R TR D S NS P A GE G O G5 G 0B &b OF SRAD S5 B B G5 B SN 6 45 ED U S S U0 AN G G e S - 8




18 To prove Theorem 2:
(i) Define a relation on languages

<
L1 L2

with intuitive meaning that L1 is easy

to decide given LZ'

(ii) Show that for any L € Time(2")

L < (E| £E) = ¢)}.

(iii) Deduce from the Compression Theorem that
there is an L € Time(2n) which is hard

to decide.

(iv) Conclude that {E ] L(E) = ¢} is hard to

decide.

19

C E; we say L. < L

L3
Def. For L C:El, L 1 2

1 2

(L1 is polynomial time reducible to LZ) iff

]

b L3
there exists a function f: Z{ - 22
(1) £ is computable in time bounded by a
polynomial in the length of its argument
(f € Time( po4 ) where p:N-2 N is a

¥*
polynomial and 4:X - N is the length

) 1
function),

(2) x € L1 & f(x) € L2 for all x € Z?.
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21

22

Lemma, Let t:N -+ N be nondecreasing, and t(n)
2 n.

If L, <L, and L, € Time(t(n)), then L, €

2
Time(t(p(n))) for some polynomial p:N - N
' .. n/4
Contrgpositive. If L, ¢ Time( 2 ) and L,
.. k o .
, \/n
< L,, then & k > 1 such that L, ¢ Time( 2¥ )

-------- D DD P R N Sn R AR En B 64 G G SR SN 45 N G TR AL EP TR TR G T R S TD SR SN S S S8 OB . e

2(x) /4

Because 2 is time~honest, the compression-

theorem implies ¥ L, such that
n n/4
L1€ Time(2 ) - Time(2 ).

Thm. 2 follows immediately from the preceding
contrapositive if we show

Main Construction for Theorem 2.
Lemma. For any L € 'rime(z"), there is an

alphabet T such that

L< (E | E 18 an expression over T and
S(E) = ¢}

- DD R A D S D G G5 L 05 N OB aR w6 D G B0 G W G S GB MR G Min O G5 S5 B S0 G S AN B B8 S ED NP AR 9 a8
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25 .

Let Q be the states (boxes in the flowchart) of

=,

let W be the tape symbols of I including b € W

. for- the blank tape syubol, let # be still
*another symbol.

‘2- QUWU(#]-

For x €87, 2(x)=m,

. .
Comp(x) € L 1is to be:

“n S .
# b .(start )« x b" #(tape after one step)seee

0o #’(tape after k steps) # '(ténpe after k+l steps) $#*°*

ces 4 tape - eyubols #

Euctly 2 2"+ n+1 synxbols between succeuive #'s.

z(Conp(x)) < 23"”" 3.

L . e b et s e s e T
- O D SR S D G G S 5% S S TSP B S G TR R M S i dy G G5 GBS S b SR S5 D EN 4B WD S0 4P S8 S e



26 Comp(x) has the property that any four consecutive

. n
letters determine the letter 2.2 + n to their right:

\

202" 4 i

Let F = {(01,02,03,04,05)} O is not the letter

determined by 010'2030"4}. This follows from the fact that at

any step the next move of M is determined by the state and
the tape symbol being scanned.

27
Comp(x) = (starts right)n
(ends right)N
(& U K)N ~ (moves wrong))

. 2" 2" N
starts right: #b . exsb” e # (T UN)
ends right: & U K)N' 0PNV 7‘-)N . #

28

moves wrong:

N 2.2%n-1 N
G UNT . ( LFJ‘(GIO'ZGBGA z -05))- (S UN

- ot . - P T - 0 S Sun B0 R e Gub S ey o P e b A B S A T ey S T S G W S PV S0 S S e T
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30

Let Rejects(x) =

cum” . C @@ un

Then
Xx € L © Mhalts reading a 1
& Comp(x) N Rejects(x) = ¢.
But expressions for Comp(x) and Rejects(x)

can be constructed in polynomial time in

2(x), so L <(EoverZ | £E) = ¢}.

Q.E.D.

Remarks: (1) Thm. 2 holds for expressiomns

using only " « ", " U ", " 2" and letters 0,1 .

" *
(2) If we allow (0,1} to be used in

expressions Stockmeyer has shown that

. .
(E with {0,1) | £(E) = ¢) € Time ,2° n

2n

but ¢ Time ,2° } €+log,n

for some fixed € > 0.
(3) If we allowonly " U ", " « " , the
equivalence problem is complete inNpP

(discussed in Karp's lecture).
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32

33

Remark: Most decidable theories studied in
mathematical logic require exponential time or
worse, (An important exception being the
propositional calculus, for which lower bounds

larger than a polynomial are unknown.)

Open problems:

(1) Can the satisfiable formulas of the propo-
sitional calculus be recognized in
polynomial time! (This is the P =P
question of Cook and Karp).

(2) Can a multi-tape Turing machine multiply
integers (in binary notation) in linear

time?

- A B S B B em S e W N e b S e G A W A S S R MR M T P G G M MD MR SR T ey e e e e

(3) What is the relation between time and space?

Known: Sm#n) < gm(n) < cSM#n)

(¢ > 1 depends on I
Open: If L € Time(Zn) is L € Space(n)?

(4) 1Is Space(n) = Nondeterministic Space(n)?

(The LBA problem of Myhill)



- Are linear time 3 tape T.M.'s more
poverful than linear time 2~-tape .M. 'g?

Can the primes (repreésested in binary) - -
be recognized in linear time?

. Can the contéxt-freé langusges?

Ly

Lot T ' i SN - st ‘.. it d
Can' two rixn mitriZes be miltiplied in

proportional to ni ° arithmetlc
opera“t}:"viohs‘?' o ‘
L, 29

“{n” 7 18 known to be possibla.)
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